key.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893
  1. /*
  2. * Copyright 2002-2005, Instant802 Networks, Inc.
  3. * Copyright 2005-2006, Devicescape Software, Inc.
  4. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
  5. * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/if_ether.h>
  12. #include <linux/etherdevice.h>
  13. #include <linux/list.h>
  14. #include <linux/rcupdate.h>
  15. #include <linux/rtnetlink.h>
  16. #include <linux/slab.h>
  17. #include <linux/export.h>
  18. #include <net/mac80211.h>
  19. #include <asm/unaligned.h>
  20. #include "ieee80211_i.h"
  21. #include "driver-ops.h"
  22. #include "debugfs_key.h"
  23. #include "aes_ccm.h"
  24. #include "aes_cmac.h"
  25. /**
  26. * DOC: Key handling basics
  27. *
  28. * Key handling in mac80211 is done based on per-interface (sub_if_data)
  29. * keys and per-station keys. Since each station belongs to an interface,
  30. * each station key also belongs to that interface.
  31. *
  32. * Hardware acceleration is done on a best-effort basis for algorithms
  33. * that are implemented in software, for each key the hardware is asked
  34. * to enable that key for offloading but if it cannot do that the key is
  35. * simply kept for software encryption (unless it is for an algorithm
  36. * that isn't implemented in software).
  37. * There is currently no way of knowing whether a key is handled in SW
  38. * or HW except by looking into debugfs.
  39. *
  40. * All key management is internally protected by a mutex. Within all
  41. * other parts of mac80211, key references are, just as STA structure
  42. * references, protected by RCU. Note, however, that some things are
  43. * unprotected, namely the key->sta dereferences within the hardware
  44. * acceleration functions. This means that sta_info_destroy() must
  45. * remove the key which waits for an RCU grace period.
  46. */
  47. static const u8 bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
  48. static void assert_key_lock(struct ieee80211_local *local)
  49. {
  50. lockdep_assert_held(&local->key_mtx);
  51. }
  52. static void increment_tailroom_need_count(struct ieee80211_sub_if_data *sdata)
  53. {
  54. /*
  55. * When this count is zero, SKB resizing for allocating tailroom
  56. * for IV or MMIC is skipped. But, this check has created two race
  57. * cases in xmit path while transiting from zero count to one:
  58. *
  59. * 1. SKB resize was skipped because no key was added but just before
  60. * the xmit key is added and SW encryption kicks off.
  61. *
  62. * 2. SKB resize was skipped because all the keys were hw planted but
  63. * just before xmit one of the key is deleted and SW encryption kicks
  64. * off.
  65. *
  66. * In both the above case SW encryption will find not enough space for
  67. * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
  68. *
  69. * Solution has been explained at
  70. * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
  71. */
  72. if (!sdata->crypto_tx_tailroom_needed_cnt++) {
  73. /*
  74. * Flush all XMIT packets currently using HW encryption or no
  75. * encryption at all if the count transition is from 0 -> 1.
  76. */
  77. synchronize_net();
  78. }
  79. }
  80. static int ieee80211_key_enable_hw_accel(struct ieee80211_key *key)
  81. {
  82. struct ieee80211_sub_if_data *sdata;
  83. struct sta_info *sta;
  84. int ret;
  85. might_sleep();
  86. if (key->flags & KEY_FLAG_TAINTED)
  87. return -EINVAL;
  88. if (!key->local->ops->set_key)
  89. goto out_unsupported;
  90. assert_key_lock(key->local);
  91. sta = key->sta;
  92. /*
  93. * If this is a per-STA GTK, check if it
  94. * is supported; if not, return.
  95. */
  96. if (sta && !(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE) &&
  97. !(key->local->hw.flags & IEEE80211_HW_SUPPORTS_PER_STA_GTK))
  98. goto out_unsupported;
  99. if (sta && !sta->uploaded)
  100. goto out_unsupported;
  101. sdata = key->sdata;
  102. if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) {
  103. /*
  104. * The driver doesn't know anything about VLAN interfaces.
  105. * Hence, don't send GTKs for VLAN interfaces to the driver.
  106. */
  107. if (!(key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE))
  108. goto out_unsupported;
  109. }
  110. ret = drv_set_key(key->local, SET_KEY, sdata,
  111. sta ? &sta->sta : NULL, &key->conf);
  112. if (!ret) {
  113. key->flags |= KEY_FLAG_UPLOADED_TO_HARDWARE;
  114. if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
  115. (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) ||
  116. (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)))
  117. sdata->crypto_tx_tailroom_needed_cnt--;
  118. WARN_ON((key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE) &&
  119. (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV));
  120. return 0;
  121. }
  122. if (ret != -ENOSPC && ret != -EOPNOTSUPP)
  123. sdata_err(sdata,
  124. "failed to set key (%d, %pM) to hardware (%d)\n",
  125. key->conf.keyidx,
  126. sta ? sta->sta.addr : bcast_addr, ret);
  127. out_unsupported:
  128. switch (key->conf.cipher) {
  129. case WLAN_CIPHER_SUITE_WEP40:
  130. case WLAN_CIPHER_SUITE_WEP104:
  131. case WLAN_CIPHER_SUITE_TKIP:
  132. case WLAN_CIPHER_SUITE_CCMP:
  133. case WLAN_CIPHER_SUITE_AES_CMAC:
  134. /* all of these we can do in software */
  135. return 0;
  136. default:
  137. return -EINVAL;
  138. }
  139. }
  140. static void ieee80211_key_disable_hw_accel(struct ieee80211_key *key)
  141. {
  142. struct ieee80211_sub_if_data *sdata;
  143. struct sta_info *sta;
  144. int ret;
  145. might_sleep();
  146. if (!key || !key->local->ops->set_key)
  147. return;
  148. assert_key_lock(key->local);
  149. if (!(key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE))
  150. return;
  151. sta = key->sta;
  152. sdata = key->sdata;
  153. if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
  154. (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) ||
  155. (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)))
  156. increment_tailroom_need_count(sdata);
  157. ret = drv_set_key(key->local, DISABLE_KEY, sdata,
  158. sta ? &sta->sta : NULL, &key->conf);
  159. if (ret)
  160. sdata_err(sdata,
  161. "failed to remove key (%d, %pM) from hardware (%d)\n",
  162. key->conf.keyidx,
  163. sta ? sta->sta.addr : bcast_addr, ret);
  164. key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
  165. }
  166. static void __ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata,
  167. int idx, bool uni, bool multi)
  168. {
  169. struct ieee80211_key *key = NULL;
  170. assert_key_lock(sdata->local);
  171. if (idx >= 0 && idx < NUM_DEFAULT_KEYS)
  172. key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
  173. if (uni) {
  174. rcu_assign_pointer(sdata->default_unicast_key, key);
  175. drv_set_default_unicast_key(sdata->local, sdata, idx);
  176. }
  177. if (multi)
  178. rcu_assign_pointer(sdata->default_multicast_key, key);
  179. ieee80211_debugfs_key_update_default(sdata);
  180. }
  181. void ieee80211_set_default_key(struct ieee80211_sub_if_data *sdata, int idx,
  182. bool uni, bool multi)
  183. {
  184. mutex_lock(&sdata->local->key_mtx);
  185. __ieee80211_set_default_key(sdata, idx, uni, multi);
  186. mutex_unlock(&sdata->local->key_mtx);
  187. }
  188. static void
  189. __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata, int idx)
  190. {
  191. struct ieee80211_key *key = NULL;
  192. assert_key_lock(sdata->local);
  193. if (idx >= NUM_DEFAULT_KEYS &&
  194. idx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
  195. key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
  196. rcu_assign_pointer(sdata->default_mgmt_key, key);
  197. ieee80211_debugfs_key_update_default(sdata);
  198. }
  199. void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data *sdata,
  200. int idx)
  201. {
  202. mutex_lock(&sdata->local->key_mtx);
  203. __ieee80211_set_default_mgmt_key(sdata, idx);
  204. mutex_unlock(&sdata->local->key_mtx);
  205. }
  206. static void ieee80211_key_replace(struct ieee80211_sub_if_data *sdata,
  207. struct sta_info *sta,
  208. bool pairwise,
  209. struct ieee80211_key *old,
  210. struct ieee80211_key *new)
  211. {
  212. int idx;
  213. bool defunikey, defmultikey, defmgmtkey;
  214. if (new)
  215. list_add_tail(&new->list, &sdata->key_list);
  216. if (sta && pairwise) {
  217. rcu_assign_pointer(sta->ptk, new);
  218. } else if (sta) {
  219. if (old)
  220. idx = old->conf.keyidx;
  221. else
  222. idx = new->conf.keyidx;
  223. rcu_assign_pointer(sta->gtk[idx], new);
  224. } else {
  225. WARN_ON(new && old && new->conf.keyidx != old->conf.keyidx);
  226. if (old)
  227. idx = old->conf.keyidx;
  228. else
  229. idx = new->conf.keyidx;
  230. defunikey = old &&
  231. old == key_mtx_dereference(sdata->local,
  232. sdata->default_unicast_key);
  233. defmultikey = old &&
  234. old == key_mtx_dereference(sdata->local,
  235. sdata->default_multicast_key);
  236. defmgmtkey = old &&
  237. old == key_mtx_dereference(sdata->local,
  238. sdata->default_mgmt_key);
  239. if (defunikey && !new)
  240. __ieee80211_set_default_key(sdata, -1, true, false);
  241. if (defmultikey && !new)
  242. __ieee80211_set_default_key(sdata, -1, false, true);
  243. if (defmgmtkey && !new)
  244. __ieee80211_set_default_mgmt_key(sdata, -1);
  245. rcu_assign_pointer(sdata->keys[idx], new);
  246. if (defunikey && new)
  247. __ieee80211_set_default_key(sdata, new->conf.keyidx,
  248. true, false);
  249. if (defmultikey && new)
  250. __ieee80211_set_default_key(sdata, new->conf.keyidx,
  251. false, true);
  252. if (defmgmtkey && new)
  253. __ieee80211_set_default_mgmt_key(sdata,
  254. new->conf.keyidx);
  255. }
  256. if (old)
  257. list_del(&old->list);
  258. }
  259. struct ieee80211_key *ieee80211_key_alloc(u32 cipher, int idx, size_t key_len,
  260. const u8 *key_data,
  261. size_t seq_len, const u8 *seq)
  262. {
  263. struct ieee80211_key *key;
  264. int i, j, err;
  265. BUG_ON(idx < 0 || idx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS);
  266. key = kzalloc(sizeof(struct ieee80211_key) + key_len, GFP_KERNEL);
  267. if (!key)
  268. return ERR_PTR(-ENOMEM);
  269. /*
  270. * Default to software encryption; we'll later upload the
  271. * key to the hardware if possible.
  272. */
  273. key->conf.flags = 0;
  274. key->flags = 0;
  275. key->conf.cipher = cipher;
  276. key->conf.keyidx = idx;
  277. key->conf.keylen = key_len;
  278. switch (cipher) {
  279. case WLAN_CIPHER_SUITE_WEP40:
  280. case WLAN_CIPHER_SUITE_WEP104:
  281. key->conf.iv_len = IEEE80211_WEP_IV_LEN;
  282. key->conf.icv_len = IEEE80211_WEP_ICV_LEN;
  283. break;
  284. case WLAN_CIPHER_SUITE_TKIP:
  285. key->conf.iv_len = IEEE80211_TKIP_IV_LEN;
  286. key->conf.icv_len = IEEE80211_TKIP_ICV_LEN;
  287. if (seq) {
  288. for (i = 0; i < IEEE80211_NUM_TIDS; i++) {
  289. key->u.tkip.rx[i].iv32 =
  290. get_unaligned_le32(&seq[2]);
  291. key->u.tkip.rx[i].iv16 =
  292. get_unaligned_le16(seq);
  293. }
  294. }
  295. spin_lock_init(&key->u.tkip.txlock);
  296. break;
  297. case WLAN_CIPHER_SUITE_CCMP:
  298. key->conf.iv_len = IEEE80211_CCMP_HDR_LEN;
  299. key->conf.icv_len = IEEE80211_CCMP_MIC_LEN;
  300. if (seq) {
  301. for (i = 0; i < IEEE80211_NUM_TIDS + 1; i++)
  302. for (j = 0; j < IEEE80211_CCMP_PN_LEN; j++)
  303. key->u.ccmp.rx_pn[i][j] =
  304. seq[IEEE80211_CCMP_PN_LEN - j - 1];
  305. }
  306. /*
  307. * Initialize AES key state here as an optimization so that
  308. * it does not need to be initialized for every packet.
  309. */
  310. key->u.ccmp.tfm = ieee80211_aes_key_setup_encrypt(key_data);
  311. if (IS_ERR(key->u.ccmp.tfm)) {
  312. err = PTR_ERR(key->u.ccmp.tfm);
  313. kfree(key);
  314. return ERR_PTR(err);
  315. }
  316. break;
  317. case WLAN_CIPHER_SUITE_AES_CMAC:
  318. key->conf.iv_len = 0;
  319. key->conf.icv_len = sizeof(struct ieee80211_mmie);
  320. if (seq)
  321. for (j = 0; j < IEEE80211_CMAC_PN_LEN; j++)
  322. key->u.aes_cmac.rx_pn[j] =
  323. seq[IEEE80211_CMAC_PN_LEN - j - 1];
  324. /*
  325. * Initialize AES key state here as an optimization so that
  326. * it does not need to be initialized for every packet.
  327. */
  328. key->u.aes_cmac.tfm =
  329. ieee80211_aes_cmac_key_setup(key_data);
  330. if (IS_ERR(key->u.aes_cmac.tfm)) {
  331. err = PTR_ERR(key->u.aes_cmac.tfm);
  332. kfree(key);
  333. return ERR_PTR(err);
  334. }
  335. break;
  336. }
  337. memcpy(key->conf.key, key_data, key_len);
  338. INIT_LIST_HEAD(&key->list);
  339. return key;
  340. }
  341. static void ieee80211_key_free_common(struct ieee80211_key *key)
  342. {
  343. if (key->conf.cipher == WLAN_CIPHER_SUITE_CCMP)
  344. ieee80211_aes_key_free(key->u.ccmp.tfm);
  345. if (key->conf.cipher == WLAN_CIPHER_SUITE_AES_CMAC)
  346. ieee80211_aes_cmac_key_free(key->u.aes_cmac.tfm);
  347. kfree(key);
  348. }
  349. static void __ieee80211_key_destroy(struct ieee80211_key *key,
  350. bool delay_tailroom)
  351. {
  352. if (key->local)
  353. ieee80211_key_disable_hw_accel(key);
  354. if (key->local) {
  355. struct ieee80211_sub_if_data *sdata = key->sdata;
  356. ieee80211_debugfs_key_remove(key);
  357. if (delay_tailroom) {
  358. /* see ieee80211_delayed_tailroom_dec */
  359. sdata->crypto_tx_tailroom_pending_dec++;
  360. schedule_delayed_work(&sdata->dec_tailroom_needed_wk,
  361. HZ/2);
  362. } else {
  363. sdata->crypto_tx_tailroom_needed_cnt--;
  364. }
  365. }
  366. ieee80211_key_free_common(key);
  367. }
  368. static void ieee80211_key_destroy(struct ieee80211_key *key,
  369. bool delay_tailroom)
  370. {
  371. if (!key)
  372. return;
  373. /*
  374. * Synchronize so the TX path can no longer be using
  375. * this key before we free/remove it.
  376. */
  377. synchronize_net();
  378. __ieee80211_key_destroy(key, delay_tailroom);
  379. }
  380. void ieee80211_key_free_unused(struct ieee80211_key *key)
  381. {
  382. WARN_ON(key->sdata || key->local);
  383. ieee80211_key_free_common(key);
  384. }
  385. int ieee80211_key_link(struct ieee80211_key *key,
  386. struct ieee80211_sub_if_data *sdata,
  387. struct sta_info *sta)
  388. {
  389. struct ieee80211_local *local = sdata->local;
  390. struct ieee80211_key *old_key;
  391. int idx, ret;
  392. bool pairwise;
  393. BUG_ON(!sdata);
  394. BUG_ON(!key);
  395. pairwise = key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE;
  396. idx = key->conf.keyidx;
  397. key->local = sdata->local;
  398. key->sdata = sdata;
  399. key->sta = sta;
  400. mutex_lock(&sdata->local->key_mtx);
  401. if (sta && pairwise)
  402. old_key = key_mtx_dereference(sdata->local, sta->ptk);
  403. else if (sta)
  404. old_key = key_mtx_dereference(sdata->local, sta->gtk[idx]);
  405. else
  406. old_key = key_mtx_dereference(sdata->local, sdata->keys[idx]);
  407. increment_tailroom_need_count(sdata);
  408. ieee80211_key_replace(sdata, sta, pairwise, old_key, key);
  409. ieee80211_key_destroy(old_key, true);
  410. ieee80211_debugfs_key_add(key);
  411. if (!local->wowlan) {
  412. ret = ieee80211_key_enable_hw_accel(key);
  413. if (ret)
  414. ieee80211_key_free(key, true);
  415. } else {
  416. ret = 0;
  417. }
  418. mutex_unlock(&sdata->local->key_mtx);
  419. return ret;
  420. }
  421. void ieee80211_key_free(struct ieee80211_key *key, bool delay_tailroom)
  422. {
  423. if (!key)
  424. return;
  425. /*
  426. * Replace key with nothingness if it was ever used.
  427. */
  428. if (key->sdata)
  429. ieee80211_key_replace(key->sdata, key->sta,
  430. key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
  431. key, NULL);
  432. ieee80211_key_destroy(key, delay_tailroom);
  433. }
  434. void ieee80211_enable_keys(struct ieee80211_sub_if_data *sdata)
  435. {
  436. struct ieee80211_key *key;
  437. ASSERT_RTNL();
  438. if (WARN_ON(!ieee80211_sdata_running(sdata)))
  439. return;
  440. mutex_lock(&sdata->local->key_mtx);
  441. sdata->crypto_tx_tailroom_needed_cnt = 0;
  442. list_for_each_entry(key, &sdata->key_list, list) {
  443. increment_tailroom_need_count(sdata);
  444. ieee80211_key_enable_hw_accel(key);
  445. }
  446. mutex_unlock(&sdata->local->key_mtx);
  447. }
  448. void ieee80211_iter_keys(struct ieee80211_hw *hw,
  449. struct ieee80211_vif *vif,
  450. void (*iter)(struct ieee80211_hw *hw,
  451. struct ieee80211_vif *vif,
  452. struct ieee80211_sta *sta,
  453. struct ieee80211_key_conf *key,
  454. void *data),
  455. void *iter_data)
  456. {
  457. struct ieee80211_local *local = hw_to_local(hw);
  458. struct ieee80211_key *key, *tmp;
  459. struct ieee80211_sub_if_data *sdata;
  460. ASSERT_RTNL();
  461. mutex_lock(&local->key_mtx);
  462. if (vif) {
  463. sdata = vif_to_sdata(vif);
  464. list_for_each_entry_safe(key, tmp, &sdata->key_list, list)
  465. iter(hw, &sdata->vif,
  466. key->sta ? &key->sta->sta : NULL,
  467. &key->conf, iter_data);
  468. } else {
  469. list_for_each_entry(sdata, &local->interfaces, list)
  470. list_for_each_entry_safe(key, tmp,
  471. &sdata->key_list, list)
  472. iter(hw, &sdata->vif,
  473. key->sta ? &key->sta->sta : NULL,
  474. &key->conf, iter_data);
  475. }
  476. mutex_unlock(&local->key_mtx);
  477. }
  478. EXPORT_SYMBOL(ieee80211_iter_keys);
  479. void ieee80211_free_keys(struct ieee80211_sub_if_data *sdata)
  480. {
  481. struct ieee80211_key *key, *tmp;
  482. LIST_HEAD(keys);
  483. cancel_delayed_work_sync(&sdata->dec_tailroom_needed_wk);
  484. mutex_lock(&sdata->local->key_mtx);
  485. sdata->crypto_tx_tailroom_needed_cnt -=
  486. sdata->crypto_tx_tailroom_pending_dec;
  487. sdata->crypto_tx_tailroom_pending_dec = 0;
  488. ieee80211_debugfs_key_remove_mgmt_default(sdata);
  489. list_for_each_entry_safe(key, tmp, &sdata->key_list, list) {
  490. ieee80211_key_replace(key->sdata, key->sta,
  491. key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
  492. key, NULL);
  493. list_add_tail(&key->list, &keys);
  494. }
  495. ieee80211_debugfs_key_update_default(sdata);
  496. if (!list_empty(&keys)) {
  497. synchronize_net();
  498. list_for_each_entry_safe(key, tmp, &keys, list)
  499. __ieee80211_key_destroy(key, false);
  500. }
  501. WARN_ON_ONCE(sdata->crypto_tx_tailroom_needed_cnt ||
  502. sdata->crypto_tx_tailroom_pending_dec);
  503. mutex_unlock(&sdata->local->key_mtx);
  504. }
  505. void ieee80211_free_sta_keys(struct ieee80211_local *local,
  506. struct sta_info *sta)
  507. {
  508. struct ieee80211_key *key, *tmp;
  509. LIST_HEAD(keys);
  510. int i;
  511. mutex_lock(&local->key_mtx);
  512. for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
  513. key = key_mtx_dereference(local, sta->gtk[i]);
  514. if (!key)
  515. continue;
  516. ieee80211_key_replace(key->sdata, key->sta,
  517. key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
  518. key, NULL);
  519. list_add(&key->list, &keys);
  520. }
  521. key = key_mtx_dereference(local, sta->ptk);
  522. if (key) {
  523. ieee80211_key_replace(key->sdata, key->sta,
  524. key->conf.flags & IEEE80211_KEY_FLAG_PAIRWISE,
  525. key, NULL);
  526. list_add(&key->list, &keys);
  527. }
  528. /*
  529. * NB: the station code relies on this being
  530. * done even if there aren't any keys
  531. */
  532. synchronize_net();
  533. list_for_each_entry_safe(key, tmp, &keys, list)
  534. __ieee80211_key_destroy(key, true);
  535. mutex_unlock(&local->key_mtx);
  536. }
  537. void ieee80211_delayed_tailroom_dec(struct work_struct *wk)
  538. {
  539. struct ieee80211_sub_if_data *sdata;
  540. sdata = container_of(wk, struct ieee80211_sub_if_data,
  541. dec_tailroom_needed_wk.work);
  542. /*
  543. * The reason for the delayed tailroom needed decrementing is to
  544. * make roaming faster: during roaming, all keys are first deleted
  545. * and then new keys are installed. The first new key causes the
  546. * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
  547. * the cost of synchronize_net() (which can be slow). Avoid this
  548. * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
  549. * key removal for a while, so if we roam the value is larger than
  550. * zero and no 0->1 transition happens.
  551. *
  552. * The cost is that if the AP switching was from an AP with keys
  553. * to one without, we still allocate tailroom while it would no
  554. * longer be needed. However, in the typical (fast) roaming case
  555. * within an ESS this usually won't happen.
  556. */
  557. mutex_lock(&sdata->local->key_mtx);
  558. sdata->crypto_tx_tailroom_needed_cnt -=
  559. sdata->crypto_tx_tailroom_pending_dec;
  560. sdata->crypto_tx_tailroom_pending_dec = 0;
  561. mutex_unlock(&sdata->local->key_mtx);
  562. }
  563. void ieee80211_gtk_rekey_notify(struct ieee80211_vif *vif, const u8 *bssid,
  564. const u8 *replay_ctr, gfp_t gfp)
  565. {
  566. struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
  567. trace_api_gtk_rekey_notify(sdata, bssid, replay_ctr);
  568. cfg80211_gtk_rekey_notify(sdata->dev, bssid, replay_ctr, gfp);
  569. }
  570. EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify);
  571. void ieee80211_get_key_tx_seq(struct ieee80211_key_conf *keyconf,
  572. struct ieee80211_key_seq *seq)
  573. {
  574. struct ieee80211_key *key;
  575. u64 pn64;
  576. if (WARN_ON(!(keyconf->flags & IEEE80211_KEY_FLAG_GENERATE_IV)))
  577. return;
  578. key = container_of(keyconf, struct ieee80211_key, conf);
  579. switch (key->conf.cipher) {
  580. case WLAN_CIPHER_SUITE_TKIP:
  581. seq->tkip.iv32 = key->u.tkip.tx.iv32;
  582. seq->tkip.iv16 = key->u.tkip.tx.iv16;
  583. break;
  584. case WLAN_CIPHER_SUITE_CCMP:
  585. pn64 = atomic64_read(&key->u.ccmp.tx_pn);
  586. seq->ccmp.pn[5] = pn64;
  587. seq->ccmp.pn[4] = pn64 >> 8;
  588. seq->ccmp.pn[3] = pn64 >> 16;
  589. seq->ccmp.pn[2] = pn64 >> 24;
  590. seq->ccmp.pn[1] = pn64 >> 32;
  591. seq->ccmp.pn[0] = pn64 >> 40;
  592. break;
  593. case WLAN_CIPHER_SUITE_AES_CMAC:
  594. pn64 = atomic64_read(&key->u.aes_cmac.tx_pn);
  595. seq->ccmp.pn[5] = pn64;
  596. seq->ccmp.pn[4] = pn64 >> 8;
  597. seq->ccmp.pn[3] = pn64 >> 16;
  598. seq->ccmp.pn[2] = pn64 >> 24;
  599. seq->ccmp.pn[1] = pn64 >> 32;
  600. seq->ccmp.pn[0] = pn64 >> 40;
  601. break;
  602. default:
  603. WARN_ON(1);
  604. }
  605. }
  606. EXPORT_SYMBOL(ieee80211_get_key_tx_seq);
  607. void ieee80211_get_key_rx_seq(struct ieee80211_key_conf *keyconf,
  608. int tid, struct ieee80211_key_seq *seq)
  609. {
  610. struct ieee80211_key *key;
  611. const u8 *pn;
  612. key = container_of(keyconf, struct ieee80211_key, conf);
  613. switch (key->conf.cipher) {
  614. case WLAN_CIPHER_SUITE_TKIP:
  615. if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
  616. return;
  617. seq->tkip.iv32 = key->u.tkip.rx[tid].iv32;
  618. seq->tkip.iv16 = key->u.tkip.rx[tid].iv16;
  619. break;
  620. case WLAN_CIPHER_SUITE_CCMP:
  621. if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
  622. return;
  623. if (tid < 0)
  624. pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
  625. else
  626. pn = key->u.ccmp.rx_pn[tid];
  627. memcpy(seq->ccmp.pn, pn, IEEE80211_CCMP_PN_LEN);
  628. break;
  629. case WLAN_CIPHER_SUITE_AES_CMAC:
  630. if (WARN_ON(tid != 0))
  631. return;
  632. pn = key->u.aes_cmac.rx_pn;
  633. memcpy(seq->aes_cmac.pn, pn, IEEE80211_CMAC_PN_LEN);
  634. break;
  635. }
  636. }
  637. EXPORT_SYMBOL(ieee80211_get_key_rx_seq);
  638. void ieee80211_set_key_tx_seq(struct ieee80211_key_conf *keyconf,
  639. struct ieee80211_key_seq *seq)
  640. {
  641. struct ieee80211_key *key;
  642. u64 pn64;
  643. key = container_of(keyconf, struct ieee80211_key, conf);
  644. switch (key->conf.cipher) {
  645. case WLAN_CIPHER_SUITE_TKIP:
  646. key->u.tkip.tx.iv32 = seq->tkip.iv32;
  647. key->u.tkip.tx.iv16 = seq->tkip.iv16;
  648. break;
  649. case WLAN_CIPHER_SUITE_CCMP:
  650. pn64 = (u64)seq->ccmp.pn[5] |
  651. ((u64)seq->ccmp.pn[4] << 8) |
  652. ((u64)seq->ccmp.pn[3] << 16) |
  653. ((u64)seq->ccmp.pn[2] << 24) |
  654. ((u64)seq->ccmp.pn[1] << 32) |
  655. ((u64)seq->ccmp.pn[0] << 40);
  656. atomic64_set(&key->u.ccmp.tx_pn, pn64);
  657. break;
  658. case WLAN_CIPHER_SUITE_AES_CMAC:
  659. pn64 = (u64)seq->aes_cmac.pn[5] |
  660. ((u64)seq->aes_cmac.pn[4] << 8) |
  661. ((u64)seq->aes_cmac.pn[3] << 16) |
  662. ((u64)seq->aes_cmac.pn[2] << 24) |
  663. ((u64)seq->aes_cmac.pn[1] << 32) |
  664. ((u64)seq->aes_cmac.pn[0] << 40);
  665. atomic64_set(&key->u.aes_cmac.tx_pn, pn64);
  666. break;
  667. default:
  668. WARN_ON(1);
  669. break;
  670. }
  671. }
  672. EXPORT_SYMBOL_GPL(ieee80211_set_key_tx_seq);
  673. void ieee80211_set_key_rx_seq(struct ieee80211_key_conf *keyconf,
  674. int tid, struct ieee80211_key_seq *seq)
  675. {
  676. struct ieee80211_key *key;
  677. u8 *pn;
  678. key = container_of(keyconf, struct ieee80211_key, conf);
  679. switch (key->conf.cipher) {
  680. case WLAN_CIPHER_SUITE_TKIP:
  681. if (WARN_ON(tid < 0 || tid >= IEEE80211_NUM_TIDS))
  682. return;
  683. key->u.tkip.rx[tid].iv32 = seq->tkip.iv32;
  684. key->u.tkip.rx[tid].iv16 = seq->tkip.iv16;
  685. break;
  686. case WLAN_CIPHER_SUITE_CCMP:
  687. if (WARN_ON(tid < -1 || tid >= IEEE80211_NUM_TIDS))
  688. return;
  689. if (tid < 0)
  690. pn = key->u.ccmp.rx_pn[IEEE80211_NUM_TIDS];
  691. else
  692. pn = key->u.ccmp.rx_pn[tid];
  693. memcpy(pn, seq->ccmp.pn, IEEE80211_CCMP_PN_LEN);
  694. break;
  695. case WLAN_CIPHER_SUITE_AES_CMAC:
  696. if (WARN_ON(tid != 0))
  697. return;
  698. pn = key->u.aes_cmac.rx_pn;
  699. memcpy(pn, seq->aes_cmac.pn, IEEE80211_CMAC_PN_LEN);
  700. break;
  701. default:
  702. WARN_ON(1);
  703. break;
  704. }
  705. }
  706. EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq);
  707. void ieee80211_remove_key(struct ieee80211_key_conf *keyconf)
  708. {
  709. struct ieee80211_key *key;
  710. key = container_of(keyconf, struct ieee80211_key, conf);
  711. assert_key_lock(key->local);
  712. /*
  713. * if key was uploaded, we assume the driver will/has remove(d)
  714. * it, so adjust bookkeeping accordingly
  715. */
  716. if (key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
  717. key->flags &= ~KEY_FLAG_UPLOADED_TO_HARDWARE;
  718. if (!((key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC) ||
  719. (key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV) ||
  720. (key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE)))
  721. increment_tailroom_need_count(key->sdata);
  722. }
  723. ieee80211_key_free(key, false);
  724. }
  725. EXPORT_SYMBOL_GPL(ieee80211_remove_key);
  726. struct ieee80211_key_conf *
  727. ieee80211_gtk_rekey_add(struct ieee80211_vif *vif,
  728. struct ieee80211_key_conf *keyconf)
  729. {
  730. struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif);
  731. struct ieee80211_local *local = sdata->local;
  732. struct ieee80211_key *key;
  733. int err;
  734. if (WARN_ON(!local->wowlan))
  735. return ERR_PTR(-EINVAL);
  736. if (WARN_ON(vif->type != NL80211_IFTYPE_STATION))
  737. return ERR_PTR(-EINVAL);
  738. key = ieee80211_key_alloc(keyconf->cipher, keyconf->keyidx,
  739. keyconf->keylen, keyconf->key,
  740. 0, NULL);
  741. if (IS_ERR(key))
  742. return ERR_CAST(key);
  743. if (sdata->u.mgd.mfp != IEEE80211_MFP_DISABLED)
  744. key->conf.flags |= IEEE80211_KEY_FLAG_RX_MGMT;
  745. err = ieee80211_key_link(key, sdata, NULL);
  746. if (err)
  747. return ERR_PTR(err);
  748. return &key->conf;
  749. }
  750. EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add);