af_key.c 101 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/capability.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <linux/slab.h>
  29. #include <net/net_namespace.h>
  30. #include <net/netns/generic.h>
  31. #include <net/xfrm.h>
  32. #include <net/sock.h>
  33. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  34. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  35. static int pfkey_net_id __read_mostly;
  36. struct netns_pfkey {
  37. /* List of all pfkey sockets. */
  38. struct hlist_head table;
  39. atomic_t socks_nr;
  40. };
  41. static DEFINE_MUTEX(pfkey_mutex);
  42. #define DUMMY_MARK 0
  43. static const struct xfrm_mark dummy_mark = {0, 0};
  44. struct pfkey_sock {
  45. /* struct sock must be the first member of struct pfkey_sock */
  46. struct sock sk;
  47. int registered;
  48. int promisc;
  49. struct {
  50. uint8_t msg_version;
  51. uint32_t msg_portid;
  52. int (*dump)(struct pfkey_sock *sk);
  53. void (*done)(struct pfkey_sock *sk);
  54. union {
  55. struct xfrm_policy_walk policy;
  56. struct xfrm_state_walk state;
  57. } u;
  58. struct sk_buff *skb;
  59. } dump;
  60. };
  61. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  62. {
  63. return (struct pfkey_sock *)sk;
  64. }
  65. static int pfkey_can_dump(const struct sock *sk)
  66. {
  67. if (3 * atomic_read(&sk->sk_rmem_alloc) <= 2 * sk->sk_rcvbuf)
  68. return 1;
  69. return 0;
  70. }
  71. static void pfkey_terminate_dump(struct pfkey_sock *pfk)
  72. {
  73. if (pfk->dump.dump) {
  74. if (pfk->dump.skb) {
  75. kfree_skb(pfk->dump.skb);
  76. pfk->dump.skb = NULL;
  77. }
  78. pfk->dump.done(pfk);
  79. pfk->dump.dump = NULL;
  80. pfk->dump.done = NULL;
  81. }
  82. }
  83. static void pfkey_sock_destruct(struct sock *sk)
  84. {
  85. struct net *net = sock_net(sk);
  86. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  87. pfkey_terminate_dump(pfkey_sk(sk));
  88. skb_queue_purge(&sk->sk_receive_queue);
  89. if (!sock_flag(sk, SOCK_DEAD)) {
  90. pr_err("Attempt to release alive pfkey socket: %p\n", sk);
  91. return;
  92. }
  93. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  94. WARN_ON(atomic_read(&sk->sk_wmem_alloc));
  95. atomic_dec(&net_pfkey->socks_nr);
  96. }
  97. static const struct proto_ops pfkey_ops;
  98. static void pfkey_insert(struct sock *sk)
  99. {
  100. struct net *net = sock_net(sk);
  101. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  102. mutex_lock(&pfkey_mutex);
  103. sk_add_node_rcu(sk, &net_pfkey->table);
  104. mutex_unlock(&pfkey_mutex);
  105. }
  106. static void pfkey_remove(struct sock *sk)
  107. {
  108. mutex_lock(&pfkey_mutex);
  109. sk_del_node_init_rcu(sk);
  110. mutex_unlock(&pfkey_mutex);
  111. }
  112. static struct proto key_proto = {
  113. .name = "KEY",
  114. .owner = THIS_MODULE,
  115. .obj_size = sizeof(struct pfkey_sock),
  116. };
  117. static int pfkey_create(struct net *net, struct socket *sock, int protocol,
  118. int kern)
  119. {
  120. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  121. struct sock *sk;
  122. int err;
  123. if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
  124. return -EPERM;
  125. if (sock->type != SOCK_RAW)
  126. return -ESOCKTNOSUPPORT;
  127. if (protocol != PF_KEY_V2)
  128. return -EPROTONOSUPPORT;
  129. err = -ENOMEM;
  130. sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto);
  131. if (sk == NULL)
  132. goto out;
  133. sock->ops = &pfkey_ops;
  134. sock_init_data(sock, sk);
  135. sk->sk_family = PF_KEY;
  136. sk->sk_destruct = pfkey_sock_destruct;
  137. atomic_inc(&net_pfkey->socks_nr);
  138. pfkey_insert(sk);
  139. return 0;
  140. out:
  141. return err;
  142. }
  143. static int pfkey_release(struct socket *sock)
  144. {
  145. struct sock *sk = sock->sk;
  146. if (!sk)
  147. return 0;
  148. pfkey_remove(sk);
  149. sock_orphan(sk);
  150. sock->sk = NULL;
  151. skb_queue_purge(&sk->sk_write_queue);
  152. synchronize_rcu();
  153. sock_put(sk);
  154. return 0;
  155. }
  156. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  157. gfp_t allocation, struct sock *sk)
  158. {
  159. int err = -ENOBUFS;
  160. sock_hold(sk);
  161. if (*skb2 == NULL) {
  162. if (atomic_read(&skb->users) != 1) {
  163. *skb2 = skb_clone(skb, allocation);
  164. } else {
  165. *skb2 = skb;
  166. atomic_inc(&skb->users);
  167. }
  168. }
  169. if (*skb2 != NULL) {
  170. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  171. skb_set_owner_r(*skb2, sk);
  172. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  173. sk->sk_data_ready(sk, (*skb2)->len);
  174. *skb2 = NULL;
  175. err = 0;
  176. }
  177. }
  178. sock_put(sk);
  179. return err;
  180. }
  181. /* Send SKB to all pfkey sockets matching selected criteria. */
  182. #define BROADCAST_ALL 0
  183. #define BROADCAST_ONE 1
  184. #define BROADCAST_REGISTERED 2
  185. #define BROADCAST_PROMISC_ONLY 4
  186. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  187. int broadcast_flags, struct sock *one_sk,
  188. struct net *net)
  189. {
  190. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  191. struct sock *sk;
  192. struct sk_buff *skb2 = NULL;
  193. int err = -ESRCH;
  194. /* XXX Do we need something like netlink_overrun? I think
  195. * XXX PF_KEY socket apps will not mind current behavior.
  196. */
  197. if (!skb)
  198. return -ENOMEM;
  199. rcu_read_lock();
  200. sk_for_each_rcu(sk, &net_pfkey->table) {
  201. struct pfkey_sock *pfk = pfkey_sk(sk);
  202. int err2;
  203. /* Yes, it means that if you are meant to receive this
  204. * pfkey message you receive it twice as promiscuous
  205. * socket.
  206. */
  207. if (pfk->promisc)
  208. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  209. /* the exact target will be processed later */
  210. if (sk == one_sk)
  211. continue;
  212. if (broadcast_flags != BROADCAST_ALL) {
  213. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  214. continue;
  215. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  216. !pfk->registered)
  217. continue;
  218. if (broadcast_flags & BROADCAST_ONE)
  219. continue;
  220. }
  221. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  222. /* Error is cleare after succecful sending to at least one
  223. * registered KM */
  224. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  225. err = err2;
  226. }
  227. rcu_read_unlock();
  228. if (one_sk != NULL)
  229. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  230. kfree_skb(skb2);
  231. kfree_skb(skb);
  232. return err;
  233. }
  234. static int pfkey_do_dump(struct pfkey_sock *pfk)
  235. {
  236. struct sadb_msg *hdr;
  237. int rc;
  238. rc = pfk->dump.dump(pfk);
  239. if (rc == -ENOBUFS)
  240. return 0;
  241. if (pfk->dump.skb) {
  242. if (!pfkey_can_dump(&pfk->sk))
  243. return 0;
  244. hdr = (struct sadb_msg *) pfk->dump.skb->data;
  245. hdr->sadb_msg_seq = 0;
  246. hdr->sadb_msg_errno = rc;
  247. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  248. &pfk->sk, sock_net(&pfk->sk));
  249. pfk->dump.skb = NULL;
  250. }
  251. pfkey_terminate_dump(pfk);
  252. return rc;
  253. }
  254. static inline void pfkey_hdr_dup(struct sadb_msg *new,
  255. const struct sadb_msg *orig)
  256. {
  257. *new = *orig;
  258. }
  259. static int pfkey_error(const struct sadb_msg *orig, int err, struct sock *sk)
  260. {
  261. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  262. struct sadb_msg *hdr;
  263. if (!skb)
  264. return -ENOBUFS;
  265. /* Woe be to the platform trying to support PFKEY yet
  266. * having normal errnos outside the 1-255 range, inclusive.
  267. */
  268. err = -err;
  269. if (err == ERESTARTSYS ||
  270. err == ERESTARTNOHAND ||
  271. err == ERESTARTNOINTR)
  272. err = EINTR;
  273. if (err >= 512)
  274. err = EINVAL;
  275. BUG_ON(err <= 0 || err >= 256);
  276. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  277. pfkey_hdr_dup(hdr, orig);
  278. hdr->sadb_msg_errno = (uint8_t) err;
  279. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  280. sizeof(uint64_t));
  281. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk, sock_net(sk));
  282. return 0;
  283. }
  284. static const u8 sadb_ext_min_len[] = {
  285. [SADB_EXT_RESERVED] = (u8) 0,
  286. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  287. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  288. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  289. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  290. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  291. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  292. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  293. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  294. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  295. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  296. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  297. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  298. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  299. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  300. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  301. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  302. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  303. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  304. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  305. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  306. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  307. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  308. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  309. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  310. [SADB_X_EXT_KMADDRESS] = (u8) sizeof(struct sadb_x_kmaddress),
  311. };
  312. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  313. static int verify_address_len(const void *p)
  314. {
  315. const struct sadb_address *sp = p;
  316. const struct sockaddr *addr = (const struct sockaddr *)(sp + 1);
  317. const struct sockaddr_in *sin;
  318. #if IS_ENABLED(CONFIG_IPV6)
  319. const struct sockaddr_in6 *sin6;
  320. #endif
  321. int len;
  322. switch (addr->sa_family) {
  323. case AF_INET:
  324. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
  325. if (sp->sadb_address_len != len ||
  326. sp->sadb_address_prefixlen > 32)
  327. return -EINVAL;
  328. break;
  329. #if IS_ENABLED(CONFIG_IPV6)
  330. case AF_INET6:
  331. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
  332. if (sp->sadb_address_len != len ||
  333. sp->sadb_address_prefixlen > 128)
  334. return -EINVAL;
  335. break;
  336. #endif
  337. default:
  338. /* It is user using kernel to keep track of security
  339. * associations for another protocol, such as
  340. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  341. * lengths.
  342. *
  343. * XXX Actually, association/policy database is not yet
  344. * XXX able to cope with arbitrary sockaddr families.
  345. * XXX When it can, remove this -EINVAL. -DaveM
  346. */
  347. return -EINVAL;
  348. break;
  349. }
  350. return 0;
  351. }
  352. static inline int pfkey_sec_ctx_len(const struct sadb_x_sec_ctx *sec_ctx)
  353. {
  354. return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
  355. sec_ctx->sadb_x_ctx_len,
  356. sizeof(uint64_t));
  357. }
  358. static inline int verify_sec_ctx_len(const void *p)
  359. {
  360. const struct sadb_x_sec_ctx *sec_ctx = p;
  361. int len = sec_ctx->sadb_x_ctx_len;
  362. if (len > PAGE_SIZE)
  363. return -EINVAL;
  364. len = pfkey_sec_ctx_len(sec_ctx);
  365. if (sec_ctx->sadb_x_sec_len != len)
  366. return -EINVAL;
  367. return 0;
  368. }
  369. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(const struct sadb_x_sec_ctx *sec_ctx)
  370. {
  371. struct xfrm_user_sec_ctx *uctx = NULL;
  372. int ctx_size = sec_ctx->sadb_x_ctx_len;
  373. uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
  374. if (!uctx)
  375. return NULL;
  376. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  377. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  378. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  379. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  380. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  381. memcpy(uctx + 1, sec_ctx + 1,
  382. uctx->ctx_len);
  383. return uctx;
  384. }
  385. static int present_and_same_family(const struct sadb_address *src,
  386. const struct sadb_address *dst)
  387. {
  388. const struct sockaddr *s_addr, *d_addr;
  389. if (!src || !dst)
  390. return 0;
  391. s_addr = (const struct sockaddr *)(src + 1);
  392. d_addr = (const struct sockaddr *)(dst + 1);
  393. if (s_addr->sa_family != d_addr->sa_family)
  394. return 0;
  395. if (s_addr->sa_family != AF_INET
  396. #if IS_ENABLED(CONFIG_IPV6)
  397. && s_addr->sa_family != AF_INET6
  398. #endif
  399. )
  400. return 0;
  401. return 1;
  402. }
  403. static int parse_exthdrs(struct sk_buff *skb, const struct sadb_msg *hdr, void **ext_hdrs)
  404. {
  405. const char *p = (char *) hdr;
  406. int len = skb->len;
  407. len -= sizeof(*hdr);
  408. p += sizeof(*hdr);
  409. while (len > 0) {
  410. const struct sadb_ext *ehdr = (const struct sadb_ext *) p;
  411. uint16_t ext_type;
  412. int ext_len;
  413. ext_len = ehdr->sadb_ext_len;
  414. ext_len *= sizeof(uint64_t);
  415. ext_type = ehdr->sadb_ext_type;
  416. if (ext_len < sizeof(uint64_t) ||
  417. ext_len > len ||
  418. ext_type == SADB_EXT_RESERVED)
  419. return -EINVAL;
  420. if (ext_type <= SADB_EXT_MAX) {
  421. int min = (int) sadb_ext_min_len[ext_type];
  422. if (ext_len < min)
  423. return -EINVAL;
  424. if (ext_hdrs[ext_type-1] != NULL)
  425. return -EINVAL;
  426. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  427. ext_type == SADB_EXT_ADDRESS_DST ||
  428. ext_type == SADB_EXT_ADDRESS_PROXY ||
  429. ext_type == SADB_X_EXT_NAT_T_OA) {
  430. if (verify_address_len(p))
  431. return -EINVAL;
  432. }
  433. if (ext_type == SADB_X_EXT_SEC_CTX) {
  434. if (verify_sec_ctx_len(p))
  435. return -EINVAL;
  436. }
  437. ext_hdrs[ext_type-1] = (void *) p;
  438. }
  439. p += ext_len;
  440. len -= ext_len;
  441. }
  442. return 0;
  443. }
  444. static uint16_t
  445. pfkey_satype2proto(uint8_t satype)
  446. {
  447. switch (satype) {
  448. case SADB_SATYPE_UNSPEC:
  449. return IPSEC_PROTO_ANY;
  450. case SADB_SATYPE_AH:
  451. return IPPROTO_AH;
  452. case SADB_SATYPE_ESP:
  453. return IPPROTO_ESP;
  454. case SADB_X_SATYPE_IPCOMP:
  455. return IPPROTO_COMP;
  456. break;
  457. default:
  458. return 0;
  459. }
  460. /* NOTREACHED */
  461. }
  462. static uint8_t
  463. pfkey_proto2satype(uint16_t proto)
  464. {
  465. switch (proto) {
  466. case IPPROTO_AH:
  467. return SADB_SATYPE_AH;
  468. case IPPROTO_ESP:
  469. return SADB_SATYPE_ESP;
  470. case IPPROTO_COMP:
  471. return SADB_X_SATYPE_IPCOMP;
  472. break;
  473. default:
  474. return 0;
  475. }
  476. /* NOTREACHED */
  477. }
  478. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  479. * say specifically 'just raw sockets' as we encode them as 255.
  480. */
  481. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  482. {
  483. return proto == IPSEC_PROTO_ANY ? 0 : proto;
  484. }
  485. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  486. {
  487. return proto ? proto : IPSEC_PROTO_ANY;
  488. }
  489. static inline int pfkey_sockaddr_len(sa_family_t family)
  490. {
  491. switch (family) {
  492. case AF_INET:
  493. return sizeof(struct sockaddr_in);
  494. #if IS_ENABLED(CONFIG_IPV6)
  495. case AF_INET6:
  496. return sizeof(struct sockaddr_in6);
  497. #endif
  498. }
  499. return 0;
  500. }
  501. static
  502. int pfkey_sockaddr_extract(const struct sockaddr *sa, xfrm_address_t *xaddr)
  503. {
  504. switch (sa->sa_family) {
  505. case AF_INET:
  506. xaddr->a4 =
  507. ((struct sockaddr_in *)sa)->sin_addr.s_addr;
  508. return AF_INET;
  509. #if IS_ENABLED(CONFIG_IPV6)
  510. case AF_INET6:
  511. memcpy(xaddr->a6,
  512. &((struct sockaddr_in6 *)sa)->sin6_addr,
  513. sizeof(struct in6_addr));
  514. return AF_INET6;
  515. #endif
  516. }
  517. return 0;
  518. }
  519. static
  520. int pfkey_sadb_addr2xfrm_addr(const struct sadb_address *addr, xfrm_address_t *xaddr)
  521. {
  522. return pfkey_sockaddr_extract((struct sockaddr *)(addr + 1),
  523. xaddr);
  524. }
  525. static struct xfrm_state *pfkey_xfrm_state_lookup(struct net *net, const struct sadb_msg *hdr, void * const *ext_hdrs)
  526. {
  527. const struct sadb_sa *sa;
  528. const struct sadb_address *addr;
  529. uint16_t proto;
  530. unsigned short family;
  531. xfrm_address_t *xaddr;
  532. sa = ext_hdrs[SADB_EXT_SA - 1];
  533. if (sa == NULL)
  534. return NULL;
  535. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  536. if (proto == 0)
  537. return NULL;
  538. /* sadb_address_len should be checked by caller */
  539. addr = ext_hdrs[SADB_EXT_ADDRESS_DST - 1];
  540. if (addr == NULL)
  541. return NULL;
  542. family = ((const struct sockaddr *)(addr + 1))->sa_family;
  543. switch (family) {
  544. case AF_INET:
  545. xaddr = (xfrm_address_t *)&((const struct sockaddr_in *)(addr + 1))->sin_addr;
  546. break;
  547. #if IS_ENABLED(CONFIG_IPV6)
  548. case AF_INET6:
  549. xaddr = (xfrm_address_t *)&((const struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  550. break;
  551. #endif
  552. default:
  553. xaddr = NULL;
  554. }
  555. if (!xaddr)
  556. return NULL;
  557. return xfrm_state_lookup(net, DUMMY_MARK, xaddr, sa->sadb_sa_spi, proto, family);
  558. }
  559. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  560. static int
  561. pfkey_sockaddr_size(sa_family_t family)
  562. {
  563. return PFKEY_ALIGN8(pfkey_sockaddr_len(family));
  564. }
  565. static inline int pfkey_mode_from_xfrm(int mode)
  566. {
  567. switch(mode) {
  568. case XFRM_MODE_TRANSPORT:
  569. return IPSEC_MODE_TRANSPORT;
  570. case XFRM_MODE_TUNNEL:
  571. return IPSEC_MODE_TUNNEL;
  572. case XFRM_MODE_BEET:
  573. return IPSEC_MODE_BEET;
  574. default:
  575. return -1;
  576. }
  577. }
  578. static inline int pfkey_mode_to_xfrm(int mode)
  579. {
  580. switch(mode) {
  581. case IPSEC_MODE_ANY: /*XXX*/
  582. case IPSEC_MODE_TRANSPORT:
  583. return XFRM_MODE_TRANSPORT;
  584. case IPSEC_MODE_TUNNEL:
  585. return XFRM_MODE_TUNNEL;
  586. case IPSEC_MODE_BEET:
  587. return XFRM_MODE_BEET;
  588. default:
  589. return -1;
  590. }
  591. }
  592. static unsigned int pfkey_sockaddr_fill(const xfrm_address_t *xaddr, __be16 port,
  593. struct sockaddr *sa,
  594. unsigned short family)
  595. {
  596. switch (family) {
  597. case AF_INET:
  598. {
  599. struct sockaddr_in *sin = (struct sockaddr_in *)sa;
  600. sin->sin_family = AF_INET;
  601. sin->sin_port = port;
  602. sin->sin_addr.s_addr = xaddr->a4;
  603. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  604. return 32;
  605. }
  606. #if IS_ENABLED(CONFIG_IPV6)
  607. case AF_INET6:
  608. {
  609. struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;
  610. sin6->sin6_family = AF_INET6;
  611. sin6->sin6_port = port;
  612. sin6->sin6_flowinfo = 0;
  613. sin6->sin6_addr = *(struct in6_addr *)xaddr->a6;
  614. sin6->sin6_scope_id = 0;
  615. return 128;
  616. }
  617. #endif
  618. }
  619. return 0;
  620. }
  621. static struct sk_buff *__pfkey_xfrm_state2msg(const struct xfrm_state *x,
  622. int add_keys, int hsc)
  623. {
  624. struct sk_buff *skb;
  625. struct sadb_msg *hdr;
  626. struct sadb_sa *sa;
  627. struct sadb_lifetime *lifetime;
  628. struct sadb_address *addr;
  629. struct sadb_key *key;
  630. struct sadb_x_sa2 *sa2;
  631. struct sadb_x_sec_ctx *sec_ctx;
  632. struct xfrm_sec_ctx *xfrm_ctx;
  633. int ctx_size = 0;
  634. int size;
  635. int auth_key_size = 0;
  636. int encrypt_key_size = 0;
  637. int sockaddr_size;
  638. struct xfrm_encap_tmpl *natt = NULL;
  639. int mode;
  640. /* address family check */
  641. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  642. if (!sockaddr_size)
  643. return ERR_PTR(-EINVAL);
  644. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  645. key(AE), (identity(SD),) (sensitivity)> */
  646. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  647. sizeof(struct sadb_lifetime) +
  648. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  649. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  650. sizeof(struct sadb_address)*2 +
  651. sockaddr_size*2 +
  652. sizeof(struct sadb_x_sa2);
  653. if ((xfrm_ctx = x->security)) {
  654. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  655. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  656. }
  657. /* identity & sensitivity */
  658. if (!xfrm_addr_equal(&x->sel.saddr, &x->props.saddr, x->props.family))
  659. size += sizeof(struct sadb_address) + sockaddr_size;
  660. if (add_keys) {
  661. if (x->aalg && x->aalg->alg_key_len) {
  662. auth_key_size =
  663. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  664. size += sizeof(struct sadb_key) + auth_key_size;
  665. }
  666. if (x->ealg && x->ealg->alg_key_len) {
  667. encrypt_key_size =
  668. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  669. size += sizeof(struct sadb_key) + encrypt_key_size;
  670. }
  671. }
  672. if (x->encap)
  673. natt = x->encap;
  674. if (natt && natt->encap_type) {
  675. size += sizeof(struct sadb_x_nat_t_type);
  676. size += sizeof(struct sadb_x_nat_t_port);
  677. size += sizeof(struct sadb_x_nat_t_port);
  678. }
  679. skb = alloc_skb(size + 16, GFP_ATOMIC);
  680. if (skb == NULL)
  681. return ERR_PTR(-ENOBUFS);
  682. /* call should fill header later */
  683. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  684. memset(hdr, 0, size); /* XXX do we need this ? */
  685. hdr->sadb_msg_len = size / sizeof(uint64_t);
  686. /* sa */
  687. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  688. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  689. sa->sadb_sa_exttype = SADB_EXT_SA;
  690. sa->sadb_sa_spi = x->id.spi;
  691. sa->sadb_sa_replay = x->props.replay_window;
  692. switch (x->km.state) {
  693. case XFRM_STATE_VALID:
  694. sa->sadb_sa_state = x->km.dying ?
  695. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  696. break;
  697. case XFRM_STATE_ACQ:
  698. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  699. break;
  700. default:
  701. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  702. break;
  703. }
  704. sa->sadb_sa_auth = 0;
  705. if (x->aalg) {
  706. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  707. sa->sadb_sa_auth = (a && a->pfkey_supported) ?
  708. a->desc.sadb_alg_id : 0;
  709. }
  710. sa->sadb_sa_encrypt = 0;
  711. BUG_ON(x->ealg && x->calg);
  712. if (x->ealg) {
  713. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  714. sa->sadb_sa_encrypt = (a && a->pfkey_supported) ?
  715. a->desc.sadb_alg_id : 0;
  716. }
  717. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  718. if (x->calg) {
  719. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  720. sa->sadb_sa_encrypt = (a && a->pfkey_supported) ?
  721. a->desc.sadb_alg_id : 0;
  722. }
  723. sa->sadb_sa_flags = 0;
  724. if (x->props.flags & XFRM_STATE_NOECN)
  725. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  726. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  727. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  728. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  729. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  730. /* hard time */
  731. if (hsc & 2) {
  732. lifetime = (struct sadb_lifetime *) skb_put(skb,
  733. sizeof(struct sadb_lifetime));
  734. lifetime->sadb_lifetime_len =
  735. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  736. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  737. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  738. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  739. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  740. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  741. }
  742. /* soft time */
  743. if (hsc & 1) {
  744. lifetime = (struct sadb_lifetime *) skb_put(skb,
  745. sizeof(struct sadb_lifetime));
  746. lifetime->sadb_lifetime_len =
  747. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  748. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  749. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  750. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  751. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  752. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  753. }
  754. /* current time */
  755. lifetime = (struct sadb_lifetime *) skb_put(skb,
  756. sizeof(struct sadb_lifetime));
  757. lifetime->sadb_lifetime_len =
  758. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  759. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  760. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  761. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  762. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  763. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  764. /* src address */
  765. addr = (struct sadb_address*) skb_put(skb,
  766. sizeof(struct sadb_address)+sockaddr_size);
  767. addr->sadb_address_len =
  768. (sizeof(struct sadb_address)+sockaddr_size)/
  769. sizeof(uint64_t);
  770. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  771. /* "if the ports are non-zero, then the sadb_address_proto field,
  772. normally zero, MUST be filled in with the transport
  773. protocol's number." - RFC2367 */
  774. addr->sadb_address_proto = 0;
  775. addr->sadb_address_reserved = 0;
  776. addr->sadb_address_prefixlen =
  777. pfkey_sockaddr_fill(&x->props.saddr, 0,
  778. (struct sockaddr *) (addr + 1),
  779. x->props.family);
  780. if (!addr->sadb_address_prefixlen)
  781. BUG();
  782. /* dst address */
  783. addr = (struct sadb_address*) skb_put(skb,
  784. sizeof(struct sadb_address)+sockaddr_size);
  785. addr->sadb_address_len =
  786. (sizeof(struct sadb_address)+sockaddr_size)/
  787. sizeof(uint64_t);
  788. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  789. addr->sadb_address_proto = 0;
  790. addr->sadb_address_reserved = 0;
  791. addr->sadb_address_prefixlen =
  792. pfkey_sockaddr_fill(&x->id.daddr, 0,
  793. (struct sockaddr *) (addr + 1),
  794. x->props.family);
  795. if (!addr->sadb_address_prefixlen)
  796. BUG();
  797. if (!xfrm_addr_equal(&x->sel.saddr, &x->props.saddr,
  798. x->props.family)) {
  799. addr = (struct sadb_address*) skb_put(skb,
  800. sizeof(struct sadb_address)+sockaddr_size);
  801. addr->sadb_address_len =
  802. (sizeof(struct sadb_address)+sockaddr_size)/
  803. sizeof(uint64_t);
  804. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  805. addr->sadb_address_proto =
  806. pfkey_proto_from_xfrm(x->sel.proto);
  807. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  808. addr->sadb_address_reserved = 0;
  809. pfkey_sockaddr_fill(&x->sel.saddr, x->sel.sport,
  810. (struct sockaddr *) (addr + 1),
  811. x->props.family);
  812. }
  813. /* auth key */
  814. if (add_keys && auth_key_size) {
  815. key = (struct sadb_key *) skb_put(skb,
  816. sizeof(struct sadb_key)+auth_key_size);
  817. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  818. sizeof(uint64_t);
  819. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  820. key->sadb_key_bits = x->aalg->alg_key_len;
  821. key->sadb_key_reserved = 0;
  822. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  823. }
  824. /* encrypt key */
  825. if (add_keys && encrypt_key_size) {
  826. key = (struct sadb_key *) skb_put(skb,
  827. sizeof(struct sadb_key)+encrypt_key_size);
  828. key->sadb_key_len = (sizeof(struct sadb_key) +
  829. encrypt_key_size) / sizeof(uint64_t);
  830. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  831. key->sadb_key_bits = x->ealg->alg_key_len;
  832. key->sadb_key_reserved = 0;
  833. memcpy(key + 1, x->ealg->alg_key,
  834. (x->ealg->alg_key_len+7)/8);
  835. }
  836. /* sa */
  837. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  838. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  839. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  840. if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
  841. kfree_skb(skb);
  842. return ERR_PTR(-EINVAL);
  843. }
  844. sa2->sadb_x_sa2_mode = mode;
  845. sa2->sadb_x_sa2_reserved1 = 0;
  846. sa2->sadb_x_sa2_reserved2 = 0;
  847. sa2->sadb_x_sa2_sequence = 0;
  848. sa2->sadb_x_sa2_reqid = x->props.reqid;
  849. if (natt && natt->encap_type) {
  850. struct sadb_x_nat_t_type *n_type;
  851. struct sadb_x_nat_t_port *n_port;
  852. /* type */
  853. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  854. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  855. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  856. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  857. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  858. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  859. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  860. /* source port */
  861. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  862. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  863. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  864. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  865. n_port->sadb_x_nat_t_port_reserved = 0;
  866. /* dest port */
  867. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  868. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  869. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  870. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  871. n_port->sadb_x_nat_t_port_reserved = 0;
  872. }
  873. /* security context */
  874. if (xfrm_ctx) {
  875. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  876. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  877. sec_ctx->sadb_x_sec_len =
  878. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  879. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  880. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  881. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  882. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  883. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  884. xfrm_ctx->ctx_len);
  885. }
  886. return skb;
  887. }
  888. static inline struct sk_buff *pfkey_xfrm_state2msg(const struct xfrm_state *x)
  889. {
  890. struct sk_buff *skb;
  891. skb = __pfkey_xfrm_state2msg(x, 1, 3);
  892. return skb;
  893. }
  894. static inline struct sk_buff *pfkey_xfrm_state2msg_expire(const struct xfrm_state *x,
  895. int hsc)
  896. {
  897. return __pfkey_xfrm_state2msg(x, 0, hsc);
  898. }
  899. static struct xfrm_state * pfkey_msg2xfrm_state(struct net *net,
  900. const struct sadb_msg *hdr,
  901. void * const *ext_hdrs)
  902. {
  903. struct xfrm_state *x;
  904. const struct sadb_lifetime *lifetime;
  905. const struct sadb_sa *sa;
  906. const struct sadb_key *key;
  907. const struct sadb_x_sec_ctx *sec_ctx;
  908. uint16_t proto;
  909. int err;
  910. sa = ext_hdrs[SADB_EXT_SA - 1];
  911. if (!sa ||
  912. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  913. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  914. return ERR_PTR(-EINVAL);
  915. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  916. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  917. return ERR_PTR(-EINVAL);
  918. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  919. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  920. return ERR_PTR(-EINVAL);
  921. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  922. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  923. return ERR_PTR(-EINVAL);
  924. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  925. if (proto == 0)
  926. return ERR_PTR(-EINVAL);
  927. /* default error is no buffer space */
  928. err = -ENOBUFS;
  929. /* RFC2367:
  930. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  931. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  932. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  933. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  934. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  935. not true.
  936. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  937. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  938. */
  939. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  940. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  941. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  942. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  943. return ERR_PTR(-EINVAL);
  944. key = ext_hdrs[SADB_EXT_KEY_AUTH - 1];
  945. if (key != NULL &&
  946. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  947. ((key->sadb_key_bits+7) / 8 == 0 ||
  948. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  949. return ERR_PTR(-EINVAL);
  950. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  951. if (key != NULL &&
  952. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  953. ((key->sadb_key_bits+7) / 8 == 0 ||
  954. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  955. return ERR_PTR(-EINVAL);
  956. x = xfrm_state_alloc(net);
  957. if (x == NULL)
  958. return ERR_PTR(-ENOBUFS);
  959. x->id.proto = proto;
  960. x->id.spi = sa->sadb_sa_spi;
  961. x->props.replay_window = sa->sadb_sa_replay;
  962. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  963. x->props.flags |= XFRM_STATE_NOECN;
  964. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  965. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  966. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  967. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  968. lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD - 1];
  969. if (lifetime != NULL) {
  970. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  971. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  972. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  973. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  974. }
  975. lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT - 1];
  976. if (lifetime != NULL) {
  977. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  978. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  979. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  980. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  981. }
  982. sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
  983. if (sec_ctx != NULL) {
  984. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  985. if (!uctx)
  986. goto out;
  987. err = security_xfrm_state_alloc(x, uctx);
  988. kfree(uctx);
  989. if (err)
  990. goto out;
  991. }
  992. key = ext_hdrs[SADB_EXT_KEY_AUTH - 1];
  993. if (sa->sadb_sa_auth) {
  994. int keysize = 0;
  995. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  996. if (!a || !a->pfkey_supported) {
  997. err = -ENOSYS;
  998. goto out;
  999. }
  1000. if (key)
  1001. keysize = (key->sadb_key_bits + 7) / 8;
  1002. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  1003. if (!x->aalg)
  1004. goto out;
  1005. strcpy(x->aalg->alg_name, a->name);
  1006. x->aalg->alg_key_len = 0;
  1007. if (key) {
  1008. x->aalg->alg_key_len = key->sadb_key_bits;
  1009. memcpy(x->aalg->alg_key, key+1, keysize);
  1010. }
  1011. x->aalg->alg_trunc_len = a->uinfo.auth.icv_truncbits;
  1012. x->props.aalgo = sa->sadb_sa_auth;
  1013. /* x->algo.flags = sa->sadb_sa_flags; */
  1014. }
  1015. if (sa->sadb_sa_encrypt) {
  1016. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  1017. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  1018. if (!a || !a->pfkey_supported) {
  1019. err = -ENOSYS;
  1020. goto out;
  1021. }
  1022. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  1023. if (!x->calg)
  1024. goto out;
  1025. strcpy(x->calg->alg_name, a->name);
  1026. x->props.calgo = sa->sadb_sa_encrypt;
  1027. } else {
  1028. int keysize = 0;
  1029. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  1030. if (!a || !a->pfkey_supported) {
  1031. err = -ENOSYS;
  1032. goto out;
  1033. }
  1034. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  1035. if (key)
  1036. keysize = (key->sadb_key_bits + 7) / 8;
  1037. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  1038. if (!x->ealg)
  1039. goto out;
  1040. strcpy(x->ealg->alg_name, a->name);
  1041. x->ealg->alg_key_len = 0;
  1042. if (key) {
  1043. x->ealg->alg_key_len = key->sadb_key_bits;
  1044. memcpy(x->ealg->alg_key, key+1, keysize);
  1045. }
  1046. x->props.ealgo = sa->sadb_sa_encrypt;
  1047. }
  1048. }
  1049. /* x->algo.flags = sa->sadb_sa_flags; */
  1050. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1051. &x->props.saddr);
  1052. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1053. &x->id.daddr);
  1054. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1055. const struct sadb_x_sa2 *sa2 = ext_hdrs[SADB_X_EXT_SA2-1];
  1056. int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1057. if (mode < 0) {
  1058. err = -EINVAL;
  1059. goto out;
  1060. }
  1061. x->props.mode = mode;
  1062. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1063. }
  1064. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1065. const struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1066. /* Nobody uses this, but we try. */
  1067. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1068. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1069. }
  1070. if (!x->sel.family)
  1071. x->sel.family = x->props.family;
  1072. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1073. const struct sadb_x_nat_t_type* n_type;
  1074. struct xfrm_encap_tmpl *natt;
  1075. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1076. if (!x->encap)
  1077. goto out;
  1078. natt = x->encap;
  1079. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1080. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1081. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1082. const struct sadb_x_nat_t_port *n_port =
  1083. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1084. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1085. }
  1086. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1087. const struct sadb_x_nat_t_port *n_port =
  1088. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1089. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1090. }
  1091. memset(&natt->encap_oa, 0, sizeof(natt->encap_oa));
  1092. }
  1093. err = xfrm_init_state(x);
  1094. if (err)
  1095. goto out;
  1096. x->km.seq = hdr->sadb_msg_seq;
  1097. return x;
  1098. out:
  1099. x->km.state = XFRM_STATE_DEAD;
  1100. xfrm_state_put(x);
  1101. return ERR_PTR(err);
  1102. }
  1103. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1104. {
  1105. return -EOPNOTSUPP;
  1106. }
  1107. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1108. {
  1109. struct net *net = sock_net(sk);
  1110. struct sk_buff *resp_skb;
  1111. struct sadb_x_sa2 *sa2;
  1112. struct sadb_address *saddr, *daddr;
  1113. struct sadb_msg *out_hdr;
  1114. struct sadb_spirange *range;
  1115. struct xfrm_state *x = NULL;
  1116. int mode;
  1117. int err;
  1118. u32 min_spi, max_spi;
  1119. u32 reqid;
  1120. u8 proto;
  1121. unsigned short family;
  1122. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1123. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1124. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1125. return -EINVAL;
  1126. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1127. if (proto == 0)
  1128. return -EINVAL;
  1129. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1130. mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1131. if (mode < 0)
  1132. return -EINVAL;
  1133. reqid = sa2->sadb_x_sa2_reqid;
  1134. } else {
  1135. mode = 0;
  1136. reqid = 0;
  1137. }
  1138. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1139. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1140. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1141. switch (family) {
  1142. case AF_INET:
  1143. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1144. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1145. break;
  1146. #if IS_ENABLED(CONFIG_IPV6)
  1147. case AF_INET6:
  1148. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1149. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1150. break;
  1151. #endif
  1152. }
  1153. if (hdr->sadb_msg_seq) {
  1154. x = xfrm_find_acq_byseq(net, DUMMY_MARK, hdr->sadb_msg_seq);
  1155. if (x && !xfrm_addr_equal(&x->id.daddr, xdaddr, family)) {
  1156. xfrm_state_put(x);
  1157. x = NULL;
  1158. }
  1159. }
  1160. if (!x)
  1161. x = xfrm_find_acq(net, &dummy_mark, mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1162. if (x == NULL)
  1163. return -ENOENT;
  1164. min_spi = 0x100;
  1165. max_spi = 0x0fffffff;
  1166. range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1167. if (range) {
  1168. min_spi = range->sadb_spirange_min;
  1169. max_spi = range->sadb_spirange_max;
  1170. }
  1171. err = xfrm_alloc_spi(x, min_spi, max_spi);
  1172. resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x);
  1173. if (IS_ERR(resp_skb)) {
  1174. xfrm_state_put(x);
  1175. return PTR_ERR(resp_skb);
  1176. }
  1177. out_hdr = (struct sadb_msg *) resp_skb->data;
  1178. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1179. out_hdr->sadb_msg_type = SADB_GETSPI;
  1180. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1181. out_hdr->sadb_msg_errno = 0;
  1182. out_hdr->sadb_msg_reserved = 0;
  1183. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1184. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1185. xfrm_state_put(x);
  1186. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk, net);
  1187. return 0;
  1188. }
  1189. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1190. {
  1191. struct net *net = sock_net(sk);
  1192. struct xfrm_state *x;
  1193. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1194. return -EOPNOTSUPP;
  1195. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1196. return 0;
  1197. x = xfrm_find_acq_byseq(net, DUMMY_MARK, hdr->sadb_msg_seq);
  1198. if (x == NULL)
  1199. return 0;
  1200. spin_lock_bh(&x->lock);
  1201. if (x->km.state == XFRM_STATE_ACQ) {
  1202. x->km.state = XFRM_STATE_ERROR;
  1203. wake_up(&net->xfrm.km_waitq);
  1204. }
  1205. spin_unlock_bh(&x->lock);
  1206. xfrm_state_put(x);
  1207. return 0;
  1208. }
  1209. static inline int event2poltype(int event)
  1210. {
  1211. switch (event) {
  1212. case XFRM_MSG_DELPOLICY:
  1213. return SADB_X_SPDDELETE;
  1214. case XFRM_MSG_NEWPOLICY:
  1215. return SADB_X_SPDADD;
  1216. case XFRM_MSG_UPDPOLICY:
  1217. return SADB_X_SPDUPDATE;
  1218. case XFRM_MSG_POLEXPIRE:
  1219. // return SADB_X_SPDEXPIRE;
  1220. default:
  1221. pr_err("pfkey: Unknown policy event %d\n", event);
  1222. break;
  1223. }
  1224. return 0;
  1225. }
  1226. static inline int event2keytype(int event)
  1227. {
  1228. switch (event) {
  1229. case XFRM_MSG_DELSA:
  1230. return SADB_DELETE;
  1231. case XFRM_MSG_NEWSA:
  1232. return SADB_ADD;
  1233. case XFRM_MSG_UPDSA:
  1234. return SADB_UPDATE;
  1235. case XFRM_MSG_EXPIRE:
  1236. return SADB_EXPIRE;
  1237. default:
  1238. pr_err("pfkey: Unknown SA event %d\n", event);
  1239. break;
  1240. }
  1241. return 0;
  1242. }
  1243. /* ADD/UPD/DEL */
  1244. static int key_notify_sa(struct xfrm_state *x, const struct km_event *c)
  1245. {
  1246. struct sk_buff *skb;
  1247. struct sadb_msg *hdr;
  1248. skb = pfkey_xfrm_state2msg(x);
  1249. if (IS_ERR(skb))
  1250. return PTR_ERR(skb);
  1251. hdr = (struct sadb_msg *) skb->data;
  1252. hdr->sadb_msg_version = PF_KEY_V2;
  1253. hdr->sadb_msg_type = event2keytype(c->event);
  1254. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1255. hdr->sadb_msg_errno = 0;
  1256. hdr->sadb_msg_reserved = 0;
  1257. hdr->sadb_msg_seq = c->seq;
  1258. hdr->sadb_msg_pid = c->portid;
  1259. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xs_net(x));
  1260. return 0;
  1261. }
  1262. static int pfkey_add(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1263. {
  1264. struct net *net = sock_net(sk);
  1265. struct xfrm_state *x;
  1266. int err;
  1267. struct km_event c;
  1268. x = pfkey_msg2xfrm_state(net, hdr, ext_hdrs);
  1269. if (IS_ERR(x))
  1270. return PTR_ERR(x);
  1271. xfrm_state_hold(x);
  1272. if (hdr->sadb_msg_type == SADB_ADD)
  1273. err = xfrm_state_add(x);
  1274. else
  1275. err = xfrm_state_update(x);
  1276. xfrm_audit_state_add(x, err ? 0 : 1,
  1277. audit_get_loginuid(current),
  1278. audit_get_sessionid(current), 0);
  1279. if (err < 0) {
  1280. x->km.state = XFRM_STATE_DEAD;
  1281. __xfrm_state_put(x);
  1282. goto out;
  1283. }
  1284. if (hdr->sadb_msg_type == SADB_ADD)
  1285. c.event = XFRM_MSG_NEWSA;
  1286. else
  1287. c.event = XFRM_MSG_UPDSA;
  1288. c.seq = hdr->sadb_msg_seq;
  1289. c.portid = hdr->sadb_msg_pid;
  1290. km_state_notify(x, &c);
  1291. out:
  1292. xfrm_state_put(x);
  1293. return err;
  1294. }
  1295. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1296. {
  1297. struct net *net = sock_net(sk);
  1298. struct xfrm_state *x;
  1299. struct km_event c;
  1300. int err;
  1301. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1302. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1303. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1304. return -EINVAL;
  1305. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1306. if (x == NULL)
  1307. return -ESRCH;
  1308. if ((err = security_xfrm_state_delete(x)))
  1309. goto out;
  1310. if (xfrm_state_kern(x)) {
  1311. err = -EPERM;
  1312. goto out;
  1313. }
  1314. err = xfrm_state_delete(x);
  1315. if (err < 0)
  1316. goto out;
  1317. c.seq = hdr->sadb_msg_seq;
  1318. c.portid = hdr->sadb_msg_pid;
  1319. c.event = XFRM_MSG_DELSA;
  1320. km_state_notify(x, &c);
  1321. out:
  1322. xfrm_audit_state_delete(x, err ? 0 : 1,
  1323. audit_get_loginuid(current),
  1324. audit_get_sessionid(current), 0);
  1325. xfrm_state_put(x);
  1326. return err;
  1327. }
  1328. static int pfkey_get(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1329. {
  1330. struct net *net = sock_net(sk);
  1331. __u8 proto;
  1332. struct sk_buff *out_skb;
  1333. struct sadb_msg *out_hdr;
  1334. struct xfrm_state *x;
  1335. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1336. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1337. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1338. return -EINVAL;
  1339. x = pfkey_xfrm_state_lookup(net, hdr, ext_hdrs);
  1340. if (x == NULL)
  1341. return -ESRCH;
  1342. out_skb = pfkey_xfrm_state2msg(x);
  1343. proto = x->id.proto;
  1344. xfrm_state_put(x);
  1345. if (IS_ERR(out_skb))
  1346. return PTR_ERR(out_skb);
  1347. out_hdr = (struct sadb_msg *) out_skb->data;
  1348. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1349. out_hdr->sadb_msg_type = SADB_GET;
  1350. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1351. out_hdr->sadb_msg_errno = 0;
  1352. out_hdr->sadb_msg_reserved = 0;
  1353. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1354. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1355. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, sock_net(sk));
  1356. return 0;
  1357. }
  1358. static struct sk_buff *compose_sadb_supported(const struct sadb_msg *orig,
  1359. gfp_t allocation)
  1360. {
  1361. struct sk_buff *skb;
  1362. struct sadb_msg *hdr;
  1363. int len, auth_len, enc_len, i;
  1364. auth_len = xfrm_count_pfkey_auth_supported();
  1365. if (auth_len) {
  1366. auth_len *= sizeof(struct sadb_alg);
  1367. auth_len += sizeof(struct sadb_supported);
  1368. }
  1369. enc_len = xfrm_count_pfkey_enc_supported();
  1370. if (enc_len) {
  1371. enc_len *= sizeof(struct sadb_alg);
  1372. enc_len += sizeof(struct sadb_supported);
  1373. }
  1374. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1375. skb = alloc_skb(len + 16, allocation);
  1376. if (!skb)
  1377. goto out_put_algs;
  1378. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1379. pfkey_hdr_dup(hdr, orig);
  1380. hdr->sadb_msg_errno = 0;
  1381. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1382. if (auth_len) {
  1383. struct sadb_supported *sp;
  1384. struct sadb_alg *ap;
  1385. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1386. ap = (struct sadb_alg *) (sp + 1);
  1387. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1388. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1389. for (i = 0; ; i++) {
  1390. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1391. if (!aalg)
  1392. break;
  1393. if (!aalg->pfkey_supported)
  1394. continue;
  1395. if (aalg->available)
  1396. *ap++ = aalg->desc;
  1397. }
  1398. }
  1399. if (enc_len) {
  1400. struct sadb_supported *sp;
  1401. struct sadb_alg *ap;
  1402. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1403. ap = (struct sadb_alg *) (sp + 1);
  1404. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1405. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1406. for (i = 0; ; i++) {
  1407. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1408. if (!ealg)
  1409. break;
  1410. if (!ealg->pfkey_supported)
  1411. continue;
  1412. if (ealg->available)
  1413. *ap++ = ealg->desc;
  1414. }
  1415. }
  1416. out_put_algs:
  1417. return skb;
  1418. }
  1419. static int pfkey_register(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1420. {
  1421. struct pfkey_sock *pfk = pfkey_sk(sk);
  1422. struct sk_buff *supp_skb;
  1423. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1424. return -EINVAL;
  1425. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1426. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1427. return -EEXIST;
  1428. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1429. }
  1430. xfrm_probe_algs();
  1431. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1432. if (!supp_skb) {
  1433. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1434. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1435. return -ENOBUFS;
  1436. }
  1437. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk, sock_net(sk));
  1438. return 0;
  1439. }
  1440. static int unicast_flush_resp(struct sock *sk, const struct sadb_msg *ihdr)
  1441. {
  1442. struct sk_buff *skb;
  1443. struct sadb_msg *hdr;
  1444. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1445. if (!skb)
  1446. return -ENOBUFS;
  1447. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1448. memcpy(hdr, ihdr, sizeof(struct sadb_msg));
  1449. hdr->sadb_msg_errno = (uint8_t) 0;
  1450. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1451. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ONE, sk, sock_net(sk));
  1452. }
  1453. static int key_notify_sa_flush(const struct km_event *c)
  1454. {
  1455. struct sk_buff *skb;
  1456. struct sadb_msg *hdr;
  1457. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1458. if (!skb)
  1459. return -ENOBUFS;
  1460. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1461. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1462. hdr->sadb_msg_type = SADB_FLUSH;
  1463. hdr->sadb_msg_seq = c->seq;
  1464. hdr->sadb_msg_pid = c->portid;
  1465. hdr->sadb_msg_version = PF_KEY_V2;
  1466. hdr->sadb_msg_errno = (uint8_t) 0;
  1467. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1468. hdr->sadb_msg_reserved = 0;
  1469. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
  1470. return 0;
  1471. }
  1472. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1473. {
  1474. struct net *net = sock_net(sk);
  1475. unsigned int proto;
  1476. struct km_event c;
  1477. struct xfrm_audit audit_info;
  1478. int err, err2;
  1479. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1480. if (proto == 0)
  1481. return -EINVAL;
  1482. audit_info.loginuid = audit_get_loginuid(current);
  1483. audit_info.sessionid = audit_get_sessionid(current);
  1484. audit_info.secid = 0;
  1485. err = xfrm_state_flush(net, proto, &audit_info);
  1486. err2 = unicast_flush_resp(sk, hdr);
  1487. if (err || err2) {
  1488. if (err == -ESRCH) /* empty table - go quietly */
  1489. err = 0;
  1490. return err ? err : err2;
  1491. }
  1492. c.data.proto = proto;
  1493. c.seq = hdr->sadb_msg_seq;
  1494. c.portid = hdr->sadb_msg_pid;
  1495. c.event = XFRM_MSG_FLUSHSA;
  1496. c.net = net;
  1497. km_state_notify(NULL, &c);
  1498. return 0;
  1499. }
  1500. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1501. {
  1502. struct pfkey_sock *pfk = ptr;
  1503. struct sk_buff *out_skb;
  1504. struct sadb_msg *out_hdr;
  1505. if (!pfkey_can_dump(&pfk->sk))
  1506. return -ENOBUFS;
  1507. out_skb = pfkey_xfrm_state2msg(x);
  1508. if (IS_ERR(out_skb))
  1509. return PTR_ERR(out_skb);
  1510. out_hdr = (struct sadb_msg *) out_skb->data;
  1511. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  1512. out_hdr->sadb_msg_type = SADB_DUMP;
  1513. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1514. out_hdr->sadb_msg_errno = 0;
  1515. out_hdr->sadb_msg_reserved = 0;
  1516. out_hdr->sadb_msg_seq = count + 1;
  1517. out_hdr->sadb_msg_pid = pfk->dump.msg_portid;
  1518. if (pfk->dump.skb)
  1519. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  1520. &pfk->sk, sock_net(&pfk->sk));
  1521. pfk->dump.skb = out_skb;
  1522. return 0;
  1523. }
  1524. static int pfkey_dump_sa(struct pfkey_sock *pfk)
  1525. {
  1526. struct net *net = sock_net(&pfk->sk);
  1527. return xfrm_state_walk(net, &pfk->dump.u.state, dump_sa, (void *) pfk);
  1528. }
  1529. static void pfkey_dump_sa_done(struct pfkey_sock *pfk)
  1530. {
  1531. xfrm_state_walk_done(&pfk->dump.u.state);
  1532. }
  1533. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1534. {
  1535. u8 proto;
  1536. struct pfkey_sock *pfk = pfkey_sk(sk);
  1537. if (pfk->dump.dump != NULL)
  1538. return -EBUSY;
  1539. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1540. if (proto == 0)
  1541. return -EINVAL;
  1542. pfk->dump.msg_version = hdr->sadb_msg_version;
  1543. pfk->dump.msg_portid = hdr->sadb_msg_pid;
  1544. pfk->dump.dump = pfkey_dump_sa;
  1545. pfk->dump.done = pfkey_dump_sa_done;
  1546. xfrm_state_walk_init(&pfk->dump.u.state, proto);
  1547. return pfkey_do_dump(pfk);
  1548. }
  1549. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1550. {
  1551. struct pfkey_sock *pfk = pfkey_sk(sk);
  1552. int satype = hdr->sadb_msg_satype;
  1553. bool reset_errno = false;
  1554. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1555. reset_errno = true;
  1556. if (satype != 0 && satype != 1)
  1557. return -EINVAL;
  1558. pfk->promisc = satype;
  1559. }
  1560. if (reset_errno && skb_cloned(skb))
  1561. skb = skb_copy(skb, GFP_KERNEL);
  1562. else
  1563. skb = skb_clone(skb, GFP_KERNEL);
  1564. if (reset_errno && skb) {
  1565. struct sadb_msg *new_hdr = (struct sadb_msg *) skb->data;
  1566. new_hdr->sadb_msg_errno = 0;
  1567. }
  1568. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ALL, NULL, sock_net(sk));
  1569. return 0;
  1570. }
  1571. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1572. {
  1573. int i;
  1574. u32 reqid = *(u32*)ptr;
  1575. for (i=0; i<xp->xfrm_nr; i++) {
  1576. if (xp->xfrm_vec[i].reqid == reqid)
  1577. return -EEXIST;
  1578. }
  1579. return 0;
  1580. }
  1581. static u32 gen_reqid(struct net *net)
  1582. {
  1583. struct xfrm_policy_walk walk;
  1584. u32 start;
  1585. int rc;
  1586. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1587. start = reqid;
  1588. do {
  1589. ++reqid;
  1590. if (reqid == 0)
  1591. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1592. xfrm_policy_walk_init(&walk, XFRM_POLICY_TYPE_MAIN);
  1593. rc = xfrm_policy_walk(net, &walk, check_reqid, (void*)&reqid);
  1594. xfrm_policy_walk_done(&walk);
  1595. if (rc != -EEXIST)
  1596. return reqid;
  1597. } while (reqid != start);
  1598. return 0;
  1599. }
  1600. static int
  1601. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1602. {
  1603. struct net *net = xp_net(xp);
  1604. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1605. int mode;
  1606. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1607. return -ELOOP;
  1608. if (rq->sadb_x_ipsecrequest_mode == 0)
  1609. return -EINVAL;
  1610. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1611. if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
  1612. return -EINVAL;
  1613. t->mode = mode;
  1614. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1615. t->optional = 1;
  1616. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1617. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1618. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1619. t->reqid = 0;
  1620. if (!t->reqid && !(t->reqid = gen_reqid(net)))
  1621. return -ENOBUFS;
  1622. }
  1623. /* addresses present only in tunnel mode */
  1624. if (t->mode == XFRM_MODE_TUNNEL) {
  1625. u8 *sa = (u8 *) (rq + 1);
  1626. int family, socklen;
  1627. family = pfkey_sockaddr_extract((struct sockaddr *)sa,
  1628. &t->saddr);
  1629. if (!family)
  1630. return -EINVAL;
  1631. socklen = pfkey_sockaddr_len(family);
  1632. if (pfkey_sockaddr_extract((struct sockaddr *)(sa + socklen),
  1633. &t->id.daddr) != family)
  1634. return -EINVAL;
  1635. t->encap_family = family;
  1636. } else
  1637. t->encap_family = xp->family;
  1638. /* No way to set this via kame pfkey */
  1639. t->allalgs = 1;
  1640. xp->xfrm_nr++;
  1641. return 0;
  1642. }
  1643. static int
  1644. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1645. {
  1646. int err;
  1647. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1648. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1649. if (pol->sadb_x_policy_len * 8 < sizeof(struct sadb_x_policy))
  1650. return -EINVAL;
  1651. while (len >= sizeof(struct sadb_x_ipsecrequest)) {
  1652. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1653. return err;
  1654. len -= rq->sadb_x_ipsecrequest_len;
  1655. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1656. }
  1657. return 0;
  1658. }
  1659. static inline int pfkey_xfrm_policy2sec_ctx_size(const struct xfrm_policy *xp)
  1660. {
  1661. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1662. if (xfrm_ctx) {
  1663. int len = sizeof(struct sadb_x_sec_ctx);
  1664. len += xfrm_ctx->ctx_len;
  1665. return PFKEY_ALIGN8(len);
  1666. }
  1667. return 0;
  1668. }
  1669. static int pfkey_xfrm_policy2msg_size(const struct xfrm_policy *xp)
  1670. {
  1671. const struct xfrm_tmpl *t;
  1672. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1673. int socklen = 0;
  1674. int i;
  1675. for (i=0; i<xp->xfrm_nr; i++) {
  1676. t = xp->xfrm_vec + i;
  1677. socklen += pfkey_sockaddr_len(t->encap_family);
  1678. }
  1679. return sizeof(struct sadb_msg) +
  1680. (sizeof(struct sadb_lifetime) * 3) +
  1681. (sizeof(struct sadb_address) * 2) +
  1682. (sockaddr_size * 2) +
  1683. sizeof(struct sadb_x_policy) +
  1684. (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
  1685. (socklen * 2) +
  1686. pfkey_xfrm_policy2sec_ctx_size(xp);
  1687. }
  1688. static struct sk_buff * pfkey_xfrm_policy2msg_prep(const struct xfrm_policy *xp)
  1689. {
  1690. struct sk_buff *skb;
  1691. int size;
  1692. size = pfkey_xfrm_policy2msg_size(xp);
  1693. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1694. if (skb == NULL)
  1695. return ERR_PTR(-ENOBUFS);
  1696. return skb;
  1697. }
  1698. static int pfkey_xfrm_policy2msg(struct sk_buff *skb, const struct xfrm_policy *xp, int dir)
  1699. {
  1700. struct sadb_msg *hdr;
  1701. struct sadb_address *addr;
  1702. struct sadb_lifetime *lifetime;
  1703. struct sadb_x_policy *pol;
  1704. struct sadb_x_sec_ctx *sec_ctx;
  1705. struct xfrm_sec_ctx *xfrm_ctx;
  1706. int i;
  1707. int size;
  1708. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1709. int socklen = pfkey_sockaddr_len(xp->family);
  1710. size = pfkey_xfrm_policy2msg_size(xp);
  1711. /* call should fill header later */
  1712. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1713. memset(hdr, 0, size); /* XXX do we need this ? */
  1714. /* src address */
  1715. addr = (struct sadb_address*) skb_put(skb,
  1716. sizeof(struct sadb_address)+sockaddr_size);
  1717. addr->sadb_address_len =
  1718. (sizeof(struct sadb_address)+sockaddr_size)/
  1719. sizeof(uint64_t);
  1720. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1721. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1722. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1723. addr->sadb_address_reserved = 0;
  1724. if (!pfkey_sockaddr_fill(&xp->selector.saddr,
  1725. xp->selector.sport,
  1726. (struct sockaddr *) (addr + 1),
  1727. xp->family))
  1728. BUG();
  1729. /* dst address */
  1730. addr = (struct sadb_address*) skb_put(skb,
  1731. sizeof(struct sadb_address)+sockaddr_size);
  1732. addr->sadb_address_len =
  1733. (sizeof(struct sadb_address)+sockaddr_size)/
  1734. sizeof(uint64_t);
  1735. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1736. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1737. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1738. addr->sadb_address_reserved = 0;
  1739. pfkey_sockaddr_fill(&xp->selector.daddr, xp->selector.dport,
  1740. (struct sockaddr *) (addr + 1),
  1741. xp->family);
  1742. /* hard time */
  1743. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1744. sizeof(struct sadb_lifetime));
  1745. lifetime->sadb_lifetime_len =
  1746. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1747. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1748. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1749. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1750. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1751. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1752. /* soft time */
  1753. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1754. sizeof(struct sadb_lifetime));
  1755. lifetime->sadb_lifetime_len =
  1756. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1757. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1758. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1759. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1760. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1761. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1762. /* current time */
  1763. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1764. sizeof(struct sadb_lifetime));
  1765. lifetime->sadb_lifetime_len =
  1766. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1767. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1768. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1769. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1770. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1771. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1772. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1773. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1774. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1775. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1776. if (xp->action == XFRM_POLICY_ALLOW) {
  1777. if (xp->xfrm_nr)
  1778. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1779. else
  1780. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1781. }
  1782. pol->sadb_x_policy_dir = dir+1;
  1783. pol->sadb_x_policy_reserved = 0;
  1784. pol->sadb_x_policy_id = xp->index;
  1785. pol->sadb_x_policy_priority = xp->priority;
  1786. for (i=0; i<xp->xfrm_nr; i++) {
  1787. const struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1788. struct sadb_x_ipsecrequest *rq;
  1789. int req_size;
  1790. int mode;
  1791. req_size = sizeof(struct sadb_x_ipsecrequest);
  1792. if (t->mode == XFRM_MODE_TUNNEL) {
  1793. socklen = pfkey_sockaddr_len(t->encap_family);
  1794. req_size += socklen * 2;
  1795. } else {
  1796. size -= 2*socklen;
  1797. }
  1798. rq = (void*)skb_put(skb, req_size);
  1799. pol->sadb_x_policy_len += req_size/8;
  1800. memset(rq, 0, sizeof(*rq));
  1801. rq->sadb_x_ipsecrequest_len = req_size;
  1802. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1803. if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
  1804. return -EINVAL;
  1805. rq->sadb_x_ipsecrequest_mode = mode;
  1806. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1807. if (t->reqid)
  1808. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1809. if (t->optional)
  1810. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1811. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1812. if (t->mode == XFRM_MODE_TUNNEL) {
  1813. u8 *sa = (void *)(rq + 1);
  1814. pfkey_sockaddr_fill(&t->saddr, 0,
  1815. (struct sockaddr *)sa,
  1816. t->encap_family);
  1817. pfkey_sockaddr_fill(&t->id.daddr, 0,
  1818. (struct sockaddr *) (sa + socklen),
  1819. t->encap_family);
  1820. }
  1821. }
  1822. /* security context */
  1823. if ((xfrm_ctx = xp->security)) {
  1824. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1825. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
  1826. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1827. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1828. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1829. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1830. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1831. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1832. xfrm_ctx->ctx_len);
  1833. }
  1834. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1835. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1836. return 0;
  1837. }
  1838. static int key_notify_policy(struct xfrm_policy *xp, int dir, const struct km_event *c)
  1839. {
  1840. struct sk_buff *out_skb;
  1841. struct sadb_msg *out_hdr;
  1842. int err;
  1843. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1844. if (IS_ERR(out_skb))
  1845. return PTR_ERR(out_skb);
  1846. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1847. if (err < 0)
  1848. return err;
  1849. out_hdr = (struct sadb_msg *) out_skb->data;
  1850. out_hdr->sadb_msg_version = PF_KEY_V2;
  1851. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1852. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1853. else
  1854. out_hdr->sadb_msg_type = event2poltype(c->event);
  1855. out_hdr->sadb_msg_errno = 0;
  1856. out_hdr->sadb_msg_seq = c->seq;
  1857. out_hdr->sadb_msg_pid = c->portid;
  1858. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL, xp_net(xp));
  1859. return 0;
  1860. }
  1861. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1862. {
  1863. struct net *net = sock_net(sk);
  1864. int err = 0;
  1865. struct sadb_lifetime *lifetime;
  1866. struct sadb_address *sa;
  1867. struct sadb_x_policy *pol;
  1868. struct xfrm_policy *xp;
  1869. struct km_event c;
  1870. struct sadb_x_sec_ctx *sec_ctx;
  1871. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1872. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1873. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1874. return -EINVAL;
  1875. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1876. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1877. return -EINVAL;
  1878. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1879. return -EINVAL;
  1880. xp = xfrm_policy_alloc(net, GFP_KERNEL);
  1881. if (xp == NULL)
  1882. return -ENOBUFS;
  1883. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1884. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1885. xp->priority = pol->sadb_x_policy_priority;
  1886. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1887. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1888. xp->selector.family = xp->family;
  1889. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1890. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1891. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1892. if (xp->selector.sport)
  1893. xp->selector.sport_mask = htons(0xffff);
  1894. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1895. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1896. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1897. /* Amusing, we set this twice. KAME apps appear to set same value
  1898. * in both addresses.
  1899. */
  1900. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1901. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1902. if (xp->selector.dport)
  1903. xp->selector.dport_mask = htons(0xffff);
  1904. sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
  1905. if (sec_ctx != NULL) {
  1906. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1907. if (!uctx) {
  1908. err = -ENOBUFS;
  1909. goto out;
  1910. }
  1911. err = security_xfrm_policy_alloc(&xp->security, uctx);
  1912. kfree(uctx);
  1913. if (err)
  1914. goto out;
  1915. }
  1916. xp->lft.soft_byte_limit = XFRM_INF;
  1917. xp->lft.hard_byte_limit = XFRM_INF;
  1918. xp->lft.soft_packet_limit = XFRM_INF;
  1919. xp->lft.hard_packet_limit = XFRM_INF;
  1920. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1921. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1922. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1923. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1924. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1925. }
  1926. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1927. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1928. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1929. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1930. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1931. }
  1932. xp->xfrm_nr = 0;
  1933. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1934. (err = parse_ipsecrequests(xp, pol)) < 0)
  1935. goto out;
  1936. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1937. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1938. xfrm_audit_policy_add(xp, err ? 0 : 1,
  1939. audit_get_loginuid(current),
  1940. audit_get_sessionid(current), 0);
  1941. if (err)
  1942. goto out;
  1943. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1944. c.event = XFRM_MSG_UPDPOLICY;
  1945. else
  1946. c.event = XFRM_MSG_NEWPOLICY;
  1947. c.seq = hdr->sadb_msg_seq;
  1948. c.portid = hdr->sadb_msg_pid;
  1949. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1950. xfrm_pol_put(xp);
  1951. return 0;
  1952. out:
  1953. xp->walk.dead = 1;
  1954. xfrm_policy_destroy(xp);
  1955. return err;
  1956. }
  1957. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  1958. {
  1959. struct net *net = sock_net(sk);
  1960. int err;
  1961. struct sadb_address *sa;
  1962. struct sadb_x_policy *pol;
  1963. struct xfrm_policy *xp;
  1964. struct xfrm_selector sel;
  1965. struct km_event c;
  1966. struct sadb_x_sec_ctx *sec_ctx;
  1967. struct xfrm_sec_ctx *pol_ctx = NULL;
  1968. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1969. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1970. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1971. return -EINVAL;
  1972. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1973. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1974. return -EINVAL;
  1975. memset(&sel, 0, sizeof(sel));
  1976. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1977. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  1978. sel.prefixlen_s = sa->sadb_address_prefixlen;
  1979. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1980. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1981. if (sel.sport)
  1982. sel.sport_mask = htons(0xffff);
  1983. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1984. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  1985. sel.prefixlen_d = sa->sadb_address_prefixlen;
  1986. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1987. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1988. if (sel.dport)
  1989. sel.dport_mask = htons(0xffff);
  1990. sec_ctx = ext_hdrs[SADB_X_EXT_SEC_CTX - 1];
  1991. if (sec_ctx != NULL) {
  1992. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1993. if (!uctx)
  1994. return -ENOMEM;
  1995. err = security_xfrm_policy_alloc(&pol_ctx, uctx);
  1996. kfree(uctx);
  1997. if (err)
  1998. return err;
  1999. }
  2000. xp = xfrm_policy_bysel_ctx(net, DUMMY_MARK, XFRM_POLICY_TYPE_MAIN,
  2001. pol->sadb_x_policy_dir - 1, &sel, pol_ctx,
  2002. 1, &err);
  2003. security_xfrm_policy_free(pol_ctx);
  2004. if (xp == NULL)
  2005. return -ENOENT;
  2006. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2007. audit_get_loginuid(current),
  2008. audit_get_sessionid(current), 0);
  2009. if (err)
  2010. goto out;
  2011. c.seq = hdr->sadb_msg_seq;
  2012. c.portid = hdr->sadb_msg_pid;
  2013. c.data.byid = 0;
  2014. c.event = XFRM_MSG_DELPOLICY;
  2015. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2016. out:
  2017. xfrm_pol_put(xp);
  2018. if (err == 0)
  2019. xfrm_garbage_collect(net);
  2020. return err;
  2021. }
  2022. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, const struct sadb_msg *hdr, int dir)
  2023. {
  2024. int err;
  2025. struct sk_buff *out_skb;
  2026. struct sadb_msg *out_hdr;
  2027. err = 0;
  2028. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2029. if (IS_ERR(out_skb)) {
  2030. err = PTR_ERR(out_skb);
  2031. goto out;
  2032. }
  2033. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2034. if (err < 0)
  2035. goto out;
  2036. out_hdr = (struct sadb_msg *) out_skb->data;
  2037. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  2038. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  2039. out_hdr->sadb_msg_satype = 0;
  2040. out_hdr->sadb_msg_errno = 0;
  2041. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  2042. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  2043. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk, xp_net(xp));
  2044. err = 0;
  2045. out:
  2046. return err;
  2047. }
  2048. #ifdef CONFIG_NET_KEY_MIGRATE
  2049. static int pfkey_sockaddr_pair_size(sa_family_t family)
  2050. {
  2051. return PFKEY_ALIGN8(pfkey_sockaddr_len(family) * 2);
  2052. }
  2053. static int parse_sockaddr_pair(struct sockaddr *sa, int ext_len,
  2054. xfrm_address_t *saddr, xfrm_address_t *daddr,
  2055. u16 *family)
  2056. {
  2057. int af, socklen;
  2058. if (ext_len < pfkey_sockaddr_pair_size(sa->sa_family))
  2059. return -EINVAL;
  2060. af = pfkey_sockaddr_extract(sa, saddr);
  2061. if (!af)
  2062. return -EINVAL;
  2063. socklen = pfkey_sockaddr_len(af);
  2064. if (pfkey_sockaddr_extract((struct sockaddr *) (((u8 *)sa) + socklen),
  2065. daddr) != af)
  2066. return -EINVAL;
  2067. *family = af;
  2068. return 0;
  2069. }
  2070. static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
  2071. struct xfrm_migrate *m)
  2072. {
  2073. int err;
  2074. struct sadb_x_ipsecrequest *rq2;
  2075. int mode;
  2076. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2077. len < rq1->sadb_x_ipsecrequest_len)
  2078. return -EINVAL;
  2079. /* old endoints */
  2080. err = parse_sockaddr_pair((struct sockaddr *)(rq1 + 1),
  2081. rq1->sadb_x_ipsecrequest_len,
  2082. &m->old_saddr, &m->old_daddr,
  2083. &m->old_family);
  2084. if (err)
  2085. return err;
  2086. rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
  2087. len -= rq1->sadb_x_ipsecrequest_len;
  2088. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2089. len < rq2->sadb_x_ipsecrequest_len)
  2090. return -EINVAL;
  2091. /* new endpoints */
  2092. err = parse_sockaddr_pair((struct sockaddr *)(rq2 + 1),
  2093. rq2->sadb_x_ipsecrequest_len,
  2094. &m->new_saddr, &m->new_daddr,
  2095. &m->new_family);
  2096. if (err)
  2097. return err;
  2098. if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
  2099. rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
  2100. rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
  2101. return -EINVAL;
  2102. m->proto = rq1->sadb_x_ipsecrequest_proto;
  2103. if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
  2104. return -EINVAL;
  2105. m->mode = mode;
  2106. m->reqid = rq1->sadb_x_ipsecrequest_reqid;
  2107. return ((int)(rq1->sadb_x_ipsecrequest_len +
  2108. rq2->sadb_x_ipsecrequest_len));
  2109. }
  2110. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2111. const struct sadb_msg *hdr, void * const *ext_hdrs)
  2112. {
  2113. int i, len, ret, err = -EINVAL;
  2114. u8 dir;
  2115. struct sadb_address *sa;
  2116. struct sadb_x_kmaddress *kma;
  2117. struct sadb_x_policy *pol;
  2118. struct sadb_x_ipsecrequest *rq;
  2119. struct xfrm_selector sel;
  2120. struct xfrm_migrate m[XFRM_MAX_DEPTH];
  2121. struct xfrm_kmaddress k;
  2122. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
  2123. ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
  2124. !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
  2125. err = -EINVAL;
  2126. goto out;
  2127. }
  2128. kma = ext_hdrs[SADB_X_EXT_KMADDRESS - 1];
  2129. pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
  2130. if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
  2131. err = -EINVAL;
  2132. goto out;
  2133. }
  2134. if (kma) {
  2135. /* convert sadb_x_kmaddress to xfrm_kmaddress */
  2136. k.reserved = kma->sadb_x_kmaddress_reserved;
  2137. ret = parse_sockaddr_pair((struct sockaddr *)(kma + 1),
  2138. 8*(kma->sadb_x_kmaddress_len) - sizeof(*kma),
  2139. &k.local, &k.remote, &k.family);
  2140. if (ret < 0) {
  2141. err = ret;
  2142. goto out;
  2143. }
  2144. }
  2145. dir = pol->sadb_x_policy_dir - 1;
  2146. memset(&sel, 0, sizeof(sel));
  2147. /* set source address info of selector */
  2148. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
  2149. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2150. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2151. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2152. sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2153. if (sel.sport)
  2154. sel.sport_mask = htons(0xffff);
  2155. /* set destination address info of selector */
  2156. sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1],
  2157. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2158. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2159. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2160. sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2161. if (sel.dport)
  2162. sel.dport_mask = htons(0xffff);
  2163. rq = (struct sadb_x_ipsecrequest *)(pol + 1);
  2164. /* extract ipsecrequests */
  2165. i = 0;
  2166. len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
  2167. while (len > 0 && i < XFRM_MAX_DEPTH) {
  2168. ret = ipsecrequests_to_migrate(rq, len, &m[i]);
  2169. if (ret < 0) {
  2170. err = ret;
  2171. goto out;
  2172. } else {
  2173. rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
  2174. len -= ret;
  2175. i++;
  2176. }
  2177. }
  2178. if (!i || len > 0) {
  2179. err = -EINVAL;
  2180. goto out;
  2181. }
  2182. return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i,
  2183. kma ? &k : NULL);
  2184. out:
  2185. return err;
  2186. }
  2187. #else
  2188. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2189. const struct sadb_msg *hdr, void * const *ext_hdrs)
  2190. {
  2191. return -ENOPROTOOPT;
  2192. }
  2193. #endif
  2194. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2195. {
  2196. struct net *net = sock_net(sk);
  2197. unsigned int dir;
  2198. int err = 0, delete;
  2199. struct sadb_x_policy *pol;
  2200. struct xfrm_policy *xp;
  2201. struct km_event c;
  2202. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2203. return -EINVAL;
  2204. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2205. if (dir >= XFRM_POLICY_MAX)
  2206. return -EINVAL;
  2207. delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2208. xp = xfrm_policy_byid(net, DUMMY_MARK, XFRM_POLICY_TYPE_MAIN,
  2209. dir, pol->sadb_x_policy_id, delete, &err);
  2210. if (xp == NULL)
  2211. return -ENOENT;
  2212. if (delete) {
  2213. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2214. audit_get_loginuid(current),
  2215. audit_get_sessionid(current), 0);
  2216. if (err)
  2217. goto out;
  2218. c.seq = hdr->sadb_msg_seq;
  2219. c.portid = hdr->sadb_msg_pid;
  2220. c.data.byid = 1;
  2221. c.event = XFRM_MSG_DELPOLICY;
  2222. km_policy_notify(xp, dir, &c);
  2223. } else {
  2224. err = key_pol_get_resp(sk, xp, hdr, dir);
  2225. }
  2226. out:
  2227. xfrm_pol_put(xp);
  2228. if (delete && err == 0)
  2229. xfrm_garbage_collect(net);
  2230. return err;
  2231. }
  2232. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2233. {
  2234. struct pfkey_sock *pfk = ptr;
  2235. struct sk_buff *out_skb;
  2236. struct sadb_msg *out_hdr;
  2237. int err;
  2238. if (!pfkey_can_dump(&pfk->sk))
  2239. return -ENOBUFS;
  2240. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2241. if (IS_ERR(out_skb))
  2242. return PTR_ERR(out_skb);
  2243. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2244. if (err < 0)
  2245. return err;
  2246. out_hdr = (struct sadb_msg *) out_skb->data;
  2247. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  2248. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2249. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2250. out_hdr->sadb_msg_errno = 0;
  2251. out_hdr->sadb_msg_seq = count + 1;
  2252. out_hdr->sadb_msg_pid = pfk->dump.msg_portid;
  2253. if (pfk->dump.skb)
  2254. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  2255. &pfk->sk, sock_net(&pfk->sk));
  2256. pfk->dump.skb = out_skb;
  2257. return 0;
  2258. }
  2259. static int pfkey_dump_sp(struct pfkey_sock *pfk)
  2260. {
  2261. struct net *net = sock_net(&pfk->sk);
  2262. return xfrm_policy_walk(net, &pfk->dump.u.policy, dump_sp, (void *) pfk);
  2263. }
  2264. static void pfkey_dump_sp_done(struct pfkey_sock *pfk)
  2265. {
  2266. xfrm_policy_walk_done(&pfk->dump.u.policy);
  2267. }
  2268. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2269. {
  2270. struct pfkey_sock *pfk = pfkey_sk(sk);
  2271. if (pfk->dump.dump != NULL)
  2272. return -EBUSY;
  2273. pfk->dump.msg_version = hdr->sadb_msg_version;
  2274. pfk->dump.msg_portid = hdr->sadb_msg_pid;
  2275. pfk->dump.dump = pfkey_dump_sp;
  2276. pfk->dump.done = pfkey_dump_sp_done;
  2277. xfrm_policy_walk_init(&pfk->dump.u.policy, XFRM_POLICY_TYPE_MAIN);
  2278. return pfkey_do_dump(pfk);
  2279. }
  2280. static int key_notify_policy_flush(const struct km_event *c)
  2281. {
  2282. struct sk_buff *skb_out;
  2283. struct sadb_msg *hdr;
  2284. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2285. if (!skb_out)
  2286. return -ENOBUFS;
  2287. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  2288. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2289. hdr->sadb_msg_seq = c->seq;
  2290. hdr->sadb_msg_pid = c->portid;
  2291. hdr->sadb_msg_version = PF_KEY_V2;
  2292. hdr->sadb_msg_errno = (uint8_t) 0;
  2293. hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2294. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2295. hdr->sadb_msg_reserved = 0;
  2296. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL, c->net);
  2297. return 0;
  2298. }
  2299. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr, void * const *ext_hdrs)
  2300. {
  2301. struct net *net = sock_net(sk);
  2302. struct km_event c;
  2303. struct xfrm_audit audit_info;
  2304. int err, err2;
  2305. audit_info.loginuid = audit_get_loginuid(current);
  2306. audit_info.sessionid = audit_get_sessionid(current);
  2307. audit_info.secid = 0;
  2308. err = xfrm_policy_flush(net, XFRM_POLICY_TYPE_MAIN, &audit_info);
  2309. err2 = unicast_flush_resp(sk, hdr);
  2310. if (err || err2) {
  2311. if (err == -ESRCH) /* empty table - old silent behavior */
  2312. return 0;
  2313. return err;
  2314. }
  2315. c.data.type = XFRM_POLICY_TYPE_MAIN;
  2316. c.event = XFRM_MSG_FLUSHPOLICY;
  2317. c.portid = hdr->sadb_msg_pid;
  2318. c.seq = hdr->sadb_msg_seq;
  2319. c.net = net;
  2320. km_policy_notify(NULL, 0, &c);
  2321. return 0;
  2322. }
  2323. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2324. const struct sadb_msg *hdr, void * const *ext_hdrs);
  2325. static const pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2326. [SADB_RESERVED] = pfkey_reserved,
  2327. [SADB_GETSPI] = pfkey_getspi,
  2328. [SADB_UPDATE] = pfkey_add,
  2329. [SADB_ADD] = pfkey_add,
  2330. [SADB_DELETE] = pfkey_delete,
  2331. [SADB_GET] = pfkey_get,
  2332. [SADB_ACQUIRE] = pfkey_acquire,
  2333. [SADB_REGISTER] = pfkey_register,
  2334. [SADB_EXPIRE] = NULL,
  2335. [SADB_FLUSH] = pfkey_flush,
  2336. [SADB_DUMP] = pfkey_dump,
  2337. [SADB_X_PROMISC] = pfkey_promisc,
  2338. [SADB_X_PCHANGE] = NULL,
  2339. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2340. [SADB_X_SPDADD] = pfkey_spdadd,
  2341. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2342. [SADB_X_SPDGET] = pfkey_spdget,
  2343. [SADB_X_SPDACQUIRE] = NULL,
  2344. [SADB_X_SPDDUMP] = pfkey_spddump,
  2345. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2346. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2347. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2348. [SADB_X_MIGRATE] = pfkey_migrate,
  2349. };
  2350. static int pfkey_process(struct sock *sk, struct sk_buff *skb, const struct sadb_msg *hdr)
  2351. {
  2352. void *ext_hdrs[SADB_EXT_MAX];
  2353. int err;
  2354. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2355. BROADCAST_PROMISC_ONLY, NULL, sock_net(sk));
  2356. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2357. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2358. if (!err) {
  2359. err = -EOPNOTSUPP;
  2360. if (pfkey_funcs[hdr->sadb_msg_type])
  2361. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2362. }
  2363. return err;
  2364. }
  2365. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2366. {
  2367. struct sadb_msg *hdr = NULL;
  2368. if (skb->len < sizeof(*hdr)) {
  2369. *errp = -EMSGSIZE;
  2370. } else {
  2371. hdr = (struct sadb_msg *) skb->data;
  2372. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2373. hdr->sadb_msg_reserved != 0 ||
  2374. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2375. hdr->sadb_msg_type > SADB_MAX)) {
  2376. hdr = NULL;
  2377. *errp = -EINVAL;
  2378. } else if (hdr->sadb_msg_len != (skb->len /
  2379. sizeof(uint64_t)) ||
  2380. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2381. sizeof(uint64_t))) {
  2382. hdr = NULL;
  2383. *errp = -EMSGSIZE;
  2384. } else {
  2385. *errp = 0;
  2386. }
  2387. }
  2388. return hdr;
  2389. }
  2390. static inline int aalg_tmpl_set(const struct xfrm_tmpl *t,
  2391. const struct xfrm_algo_desc *d)
  2392. {
  2393. unsigned int id = d->desc.sadb_alg_id;
  2394. if (id >= sizeof(t->aalgos) * 8)
  2395. return 0;
  2396. return (t->aalgos >> id) & 1;
  2397. }
  2398. static inline int ealg_tmpl_set(const struct xfrm_tmpl *t,
  2399. const struct xfrm_algo_desc *d)
  2400. {
  2401. unsigned int id = d->desc.sadb_alg_id;
  2402. if (id >= sizeof(t->ealgos) * 8)
  2403. return 0;
  2404. return (t->ealgos >> id) & 1;
  2405. }
  2406. static int count_ah_combs(const struct xfrm_tmpl *t)
  2407. {
  2408. int i, sz = 0;
  2409. for (i = 0; ; i++) {
  2410. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2411. if (!aalg)
  2412. break;
  2413. if (!aalg->pfkey_supported)
  2414. continue;
  2415. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2416. sz += sizeof(struct sadb_comb);
  2417. }
  2418. return sz + sizeof(struct sadb_prop);
  2419. }
  2420. static int count_esp_combs(const struct xfrm_tmpl *t)
  2421. {
  2422. int i, k, sz = 0;
  2423. for (i = 0; ; i++) {
  2424. const struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2425. if (!ealg)
  2426. break;
  2427. if (!ealg->pfkey_supported)
  2428. continue;
  2429. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2430. continue;
  2431. for (k = 1; ; k++) {
  2432. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2433. if (!aalg)
  2434. break;
  2435. if (!aalg->pfkey_supported)
  2436. continue;
  2437. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2438. sz += sizeof(struct sadb_comb);
  2439. }
  2440. }
  2441. return sz + sizeof(struct sadb_prop);
  2442. }
  2443. static void dump_ah_combs(struct sk_buff *skb, const struct xfrm_tmpl *t)
  2444. {
  2445. struct sadb_prop *p;
  2446. int i;
  2447. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2448. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2449. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2450. p->sadb_prop_replay = 32;
  2451. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2452. for (i = 0; ; i++) {
  2453. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2454. if (!aalg)
  2455. break;
  2456. if (!aalg->pfkey_supported)
  2457. continue;
  2458. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2459. struct sadb_comb *c;
  2460. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2461. memset(c, 0, sizeof(*c));
  2462. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2463. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2464. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2465. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2466. c->sadb_comb_hard_addtime = 24*60*60;
  2467. c->sadb_comb_soft_addtime = 20*60*60;
  2468. c->sadb_comb_hard_usetime = 8*60*60;
  2469. c->sadb_comb_soft_usetime = 7*60*60;
  2470. }
  2471. }
  2472. }
  2473. static void dump_esp_combs(struct sk_buff *skb, const struct xfrm_tmpl *t)
  2474. {
  2475. struct sadb_prop *p;
  2476. int i, k;
  2477. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2478. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2479. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2480. p->sadb_prop_replay = 32;
  2481. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2482. for (i=0; ; i++) {
  2483. const struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2484. if (!ealg)
  2485. break;
  2486. if (!ealg->pfkey_supported)
  2487. continue;
  2488. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2489. continue;
  2490. for (k = 1; ; k++) {
  2491. struct sadb_comb *c;
  2492. const struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2493. if (!aalg)
  2494. break;
  2495. if (!aalg->pfkey_supported)
  2496. continue;
  2497. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2498. continue;
  2499. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2500. memset(c, 0, sizeof(*c));
  2501. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2502. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2503. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2504. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2505. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2506. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2507. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2508. c->sadb_comb_hard_addtime = 24*60*60;
  2509. c->sadb_comb_soft_addtime = 20*60*60;
  2510. c->sadb_comb_hard_usetime = 8*60*60;
  2511. c->sadb_comb_soft_usetime = 7*60*60;
  2512. }
  2513. }
  2514. }
  2515. static int key_notify_policy_expire(struct xfrm_policy *xp, const struct km_event *c)
  2516. {
  2517. return 0;
  2518. }
  2519. static int key_notify_sa_expire(struct xfrm_state *x, const struct km_event *c)
  2520. {
  2521. struct sk_buff *out_skb;
  2522. struct sadb_msg *out_hdr;
  2523. int hard;
  2524. int hsc;
  2525. hard = c->data.hard;
  2526. if (hard)
  2527. hsc = 2;
  2528. else
  2529. hsc = 1;
  2530. out_skb = pfkey_xfrm_state2msg_expire(x, hsc);
  2531. if (IS_ERR(out_skb))
  2532. return PTR_ERR(out_skb);
  2533. out_hdr = (struct sadb_msg *) out_skb->data;
  2534. out_hdr->sadb_msg_version = PF_KEY_V2;
  2535. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2536. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2537. out_hdr->sadb_msg_errno = 0;
  2538. out_hdr->sadb_msg_reserved = 0;
  2539. out_hdr->sadb_msg_seq = 0;
  2540. out_hdr->sadb_msg_pid = 0;
  2541. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x));
  2542. return 0;
  2543. }
  2544. static int pfkey_send_notify(struct xfrm_state *x, const struct km_event *c)
  2545. {
  2546. struct net *net = x ? xs_net(x) : c->net;
  2547. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  2548. if (atomic_read(&net_pfkey->socks_nr) == 0)
  2549. return 0;
  2550. switch (c->event) {
  2551. case XFRM_MSG_EXPIRE:
  2552. return key_notify_sa_expire(x, c);
  2553. case XFRM_MSG_DELSA:
  2554. case XFRM_MSG_NEWSA:
  2555. case XFRM_MSG_UPDSA:
  2556. return key_notify_sa(x, c);
  2557. case XFRM_MSG_FLUSHSA:
  2558. return key_notify_sa_flush(c);
  2559. case XFRM_MSG_NEWAE: /* not yet supported */
  2560. break;
  2561. default:
  2562. pr_err("pfkey: Unknown SA event %d\n", c->event);
  2563. break;
  2564. }
  2565. return 0;
  2566. }
  2567. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, const struct km_event *c)
  2568. {
  2569. if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
  2570. return 0;
  2571. switch (c->event) {
  2572. case XFRM_MSG_POLEXPIRE:
  2573. return key_notify_policy_expire(xp, c);
  2574. case XFRM_MSG_DELPOLICY:
  2575. case XFRM_MSG_NEWPOLICY:
  2576. case XFRM_MSG_UPDPOLICY:
  2577. return key_notify_policy(xp, dir, c);
  2578. case XFRM_MSG_FLUSHPOLICY:
  2579. if (c->data.type != XFRM_POLICY_TYPE_MAIN)
  2580. break;
  2581. return key_notify_policy_flush(c);
  2582. default:
  2583. pr_err("pfkey: Unknown policy event %d\n", c->event);
  2584. break;
  2585. }
  2586. return 0;
  2587. }
  2588. static u32 get_acqseq(void)
  2589. {
  2590. u32 res;
  2591. static atomic_t acqseq;
  2592. do {
  2593. res = atomic_inc_return(&acqseq);
  2594. } while (!res);
  2595. return res;
  2596. }
  2597. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp)
  2598. {
  2599. struct sk_buff *skb;
  2600. struct sadb_msg *hdr;
  2601. struct sadb_address *addr;
  2602. struct sadb_x_policy *pol;
  2603. int sockaddr_size;
  2604. int size;
  2605. struct sadb_x_sec_ctx *sec_ctx;
  2606. struct xfrm_sec_ctx *xfrm_ctx;
  2607. int ctx_size = 0;
  2608. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2609. if (!sockaddr_size)
  2610. return -EINVAL;
  2611. size = sizeof(struct sadb_msg) +
  2612. (sizeof(struct sadb_address) * 2) +
  2613. (sockaddr_size * 2) +
  2614. sizeof(struct sadb_x_policy);
  2615. if (x->id.proto == IPPROTO_AH)
  2616. size += count_ah_combs(t);
  2617. else if (x->id.proto == IPPROTO_ESP)
  2618. size += count_esp_combs(t);
  2619. if ((xfrm_ctx = x->security)) {
  2620. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  2621. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  2622. }
  2623. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2624. if (skb == NULL)
  2625. return -ENOMEM;
  2626. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2627. hdr->sadb_msg_version = PF_KEY_V2;
  2628. hdr->sadb_msg_type = SADB_ACQUIRE;
  2629. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2630. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2631. hdr->sadb_msg_errno = 0;
  2632. hdr->sadb_msg_reserved = 0;
  2633. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2634. hdr->sadb_msg_pid = 0;
  2635. /* src address */
  2636. addr = (struct sadb_address*) skb_put(skb,
  2637. sizeof(struct sadb_address)+sockaddr_size);
  2638. addr->sadb_address_len =
  2639. (sizeof(struct sadb_address)+sockaddr_size)/
  2640. sizeof(uint64_t);
  2641. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2642. addr->sadb_address_proto = 0;
  2643. addr->sadb_address_reserved = 0;
  2644. addr->sadb_address_prefixlen =
  2645. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2646. (struct sockaddr *) (addr + 1),
  2647. x->props.family);
  2648. if (!addr->sadb_address_prefixlen)
  2649. BUG();
  2650. /* dst address */
  2651. addr = (struct sadb_address*) skb_put(skb,
  2652. sizeof(struct sadb_address)+sockaddr_size);
  2653. addr->sadb_address_len =
  2654. (sizeof(struct sadb_address)+sockaddr_size)/
  2655. sizeof(uint64_t);
  2656. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2657. addr->sadb_address_proto = 0;
  2658. addr->sadb_address_reserved = 0;
  2659. addr->sadb_address_prefixlen =
  2660. pfkey_sockaddr_fill(&x->id.daddr, 0,
  2661. (struct sockaddr *) (addr + 1),
  2662. x->props.family);
  2663. if (!addr->sadb_address_prefixlen)
  2664. BUG();
  2665. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2666. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2667. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2668. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2669. pol->sadb_x_policy_dir = XFRM_POLICY_OUT + 1;
  2670. pol->sadb_x_policy_reserved = 0;
  2671. pol->sadb_x_policy_id = xp->index;
  2672. pol->sadb_x_policy_priority = xp->priority;
  2673. /* Set sadb_comb's. */
  2674. if (x->id.proto == IPPROTO_AH)
  2675. dump_ah_combs(skb, t);
  2676. else if (x->id.proto == IPPROTO_ESP)
  2677. dump_esp_combs(skb, t);
  2678. /* security context */
  2679. if (xfrm_ctx) {
  2680. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  2681. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  2682. sec_ctx->sadb_x_sec_len =
  2683. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  2684. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  2685. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  2686. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  2687. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  2688. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  2689. xfrm_ctx->ctx_len);
  2690. }
  2691. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x));
  2692. }
  2693. static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
  2694. u8 *data, int len, int *dir)
  2695. {
  2696. struct net *net = sock_net(sk);
  2697. struct xfrm_policy *xp;
  2698. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2699. struct sadb_x_sec_ctx *sec_ctx;
  2700. switch (sk->sk_family) {
  2701. case AF_INET:
  2702. if (opt != IP_IPSEC_POLICY) {
  2703. *dir = -EOPNOTSUPP;
  2704. return NULL;
  2705. }
  2706. break;
  2707. #if IS_ENABLED(CONFIG_IPV6)
  2708. case AF_INET6:
  2709. if (opt != IPV6_IPSEC_POLICY) {
  2710. *dir = -EOPNOTSUPP;
  2711. return NULL;
  2712. }
  2713. break;
  2714. #endif
  2715. default:
  2716. *dir = -EINVAL;
  2717. return NULL;
  2718. }
  2719. *dir = -EINVAL;
  2720. if (len < sizeof(struct sadb_x_policy) ||
  2721. pol->sadb_x_policy_len*8 > len ||
  2722. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2723. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2724. return NULL;
  2725. xp = xfrm_policy_alloc(net, GFP_ATOMIC);
  2726. if (xp == NULL) {
  2727. *dir = -ENOBUFS;
  2728. return NULL;
  2729. }
  2730. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2731. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2732. xp->lft.soft_byte_limit = XFRM_INF;
  2733. xp->lft.hard_byte_limit = XFRM_INF;
  2734. xp->lft.soft_packet_limit = XFRM_INF;
  2735. xp->lft.hard_packet_limit = XFRM_INF;
  2736. xp->family = sk->sk_family;
  2737. xp->xfrm_nr = 0;
  2738. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2739. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2740. goto out;
  2741. /* security context too */
  2742. if (len >= (pol->sadb_x_policy_len*8 +
  2743. sizeof(struct sadb_x_sec_ctx))) {
  2744. char *p = (char *)pol;
  2745. struct xfrm_user_sec_ctx *uctx;
  2746. p += pol->sadb_x_policy_len*8;
  2747. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2748. if (len < pol->sadb_x_policy_len*8 +
  2749. sec_ctx->sadb_x_sec_len) {
  2750. *dir = -EINVAL;
  2751. goto out;
  2752. }
  2753. if ((*dir = verify_sec_ctx_len(p)))
  2754. goto out;
  2755. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2756. *dir = security_xfrm_policy_alloc(&xp->security, uctx);
  2757. kfree(uctx);
  2758. if (*dir)
  2759. goto out;
  2760. }
  2761. *dir = pol->sadb_x_policy_dir-1;
  2762. return xp;
  2763. out:
  2764. xp->walk.dead = 1;
  2765. xfrm_policy_destroy(xp);
  2766. return NULL;
  2767. }
  2768. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  2769. {
  2770. struct sk_buff *skb;
  2771. struct sadb_msg *hdr;
  2772. struct sadb_sa *sa;
  2773. struct sadb_address *addr;
  2774. struct sadb_x_nat_t_port *n_port;
  2775. int sockaddr_size;
  2776. int size;
  2777. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2778. struct xfrm_encap_tmpl *natt = NULL;
  2779. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2780. if (!sockaddr_size)
  2781. return -EINVAL;
  2782. if (!satype)
  2783. return -EINVAL;
  2784. if (!x->encap)
  2785. return -EINVAL;
  2786. natt = x->encap;
  2787. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2788. *
  2789. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2790. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2791. */
  2792. size = sizeof(struct sadb_msg) +
  2793. sizeof(struct sadb_sa) +
  2794. (sizeof(struct sadb_address) * 2) +
  2795. (sockaddr_size * 2) +
  2796. (sizeof(struct sadb_x_nat_t_port) * 2);
  2797. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2798. if (skb == NULL)
  2799. return -ENOMEM;
  2800. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2801. hdr->sadb_msg_version = PF_KEY_V2;
  2802. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2803. hdr->sadb_msg_satype = satype;
  2804. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2805. hdr->sadb_msg_errno = 0;
  2806. hdr->sadb_msg_reserved = 0;
  2807. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2808. hdr->sadb_msg_pid = 0;
  2809. /* SA */
  2810. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2811. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2812. sa->sadb_sa_exttype = SADB_EXT_SA;
  2813. sa->sadb_sa_spi = x->id.spi;
  2814. sa->sadb_sa_replay = 0;
  2815. sa->sadb_sa_state = 0;
  2816. sa->sadb_sa_auth = 0;
  2817. sa->sadb_sa_encrypt = 0;
  2818. sa->sadb_sa_flags = 0;
  2819. /* ADDRESS_SRC (old addr) */
  2820. addr = (struct sadb_address*)
  2821. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2822. addr->sadb_address_len =
  2823. (sizeof(struct sadb_address)+sockaddr_size)/
  2824. sizeof(uint64_t);
  2825. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2826. addr->sadb_address_proto = 0;
  2827. addr->sadb_address_reserved = 0;
  2828. addr->sadb_address_prefixlen =
  2829. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2830. (struct sockaddr *) (addr + 1),
  2831. x->props.family);
  2832. if (!addr->sadb_address_prefixlen)
  2833. BUG();
  2834. /* NAT_T_SPORT (old port) */
  2835. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2836. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2837. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2838. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2839. n_port->sadb_x_nat_t_port_reserved = 0;
  2840. /* ADDRESS_DST (new addr) */
  2841. addr = (struct sadb_address*)
  2842. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2843. addr->sadb_address_len =
  2844. (sizeof(struct sadb_address)+sockaddr_size)/
  2845. sizeof(uint64_t);
  2846. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2847. addr->sadb_address_proto = 0;
  2848. addr->sadb_address_reserved = 0;
  2849. addr->sadb_address_prefixlen =
  2850. pfkey_sockaddr_fill(ipaddr, 0,
  2851. (struct sockaddr *) (addr + 1),
  2852. x->props.family);
  2853. if (!addr->sadb_address_prefixlen)
  2854. BUG();
  2855. /* NAT_T_DPORT (new port) */
  2856. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2857. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2858. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2859. n_port->sadb_x_nat_t_port_port = sport;
  2860. n_port->sadb_x_nat_t_port_reserved = 0;
  2861. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL, xs_net(x));
  2862. }
  2863. #ifdef CONFIG_NET_KEY_MIGRATE
  2864. static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
  2865. const struct xfrm_selector *sel)
  2866. {
  2867. struct sadb_address *addr;
  2868. addr = (struct sadb_address *)skb_put(skb, sizeof(struct sadb_address) + sasize);
  2869. addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
  2870. addr->sadb_address_exttype = type;
  2871. addr->sadb_address_proto = sel->proto;
  2872. addr->sadb_address_reserved = 0;
  2873. switch (type) {
  2874. case SADB_EXT_ADDRESS_SRC:
  2875. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2876. pfkey_sockaddr_fill(&sel->saddr, 0,
  2877. (struct sockaddr *)(addr + 1),
  2878. sel->family);
  2879. break;
  2880. case SADB_EXT_ADDRESS_DST:
  2881. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2882. pfkey_sockaddr_fill(&sel->daddr, 0,
  2883. (struct sockaddr *)(addr + 1),
  2884. sel->family);
  2885. break;
  2886. default:
  2887. return -EINVAL;
  2888. }
  2889. return 0;
  2890. }
  2891. static int set_sadb_kmaddress(struct sk_buff *skb, const struct xfrm_kmaddress *k)
  2892. {
  2893. struct sadb_x_kmaddress *kma;
  2894. u8 *sa;
  2895. int family = k->family;
  2896. int socklen = pfkey_sockaddr_len(family);
  2897. int size_req;
  2898. size_req = (sizeof(struct sadb_x_kmaddress) +
  2899. pfkey_sockaddr_pair_size(family));
  2900. kma = (struct sadb_x_kmaddress *)skb_put(skb, size_req);
  2901. memset(kma, 0, size_req);
  2902. kma->sadb_x_kmaddress_len = size_req / 8;
  2903. kma->sadb_x_kmaddress_exttype = SADB_X_EXT_KMADDRESS;
  2904. kma->sadb_x_kmaddress_reserved = k->reserved;
  2905. sa = (u8 *)(kma + 1);
  2906. if (!pfkey_sockaddr_fill(&k->local, 0, (struct sockaddr *)sa, family) ||
  2907. !pfkey_sockaddr_fill(&k->remote, 0, (struct sockaddr *)(sa+socklen), family))
  2908. return -EINVAL;
  2909. return 0;
  2910. }
  2911. static int set_ipsecrequest(struct sk_buff *skb,
  2912. uint8_t proto, uint8_t mode, int level,
  2913. uint32_t reqid, uint8_t family,
  2914. const xfrm_address_t *src, const xfrm_address_t *dst)
  2915. {
  2916. struct sadb_x_ipsecrequest *rq;
  2917. u8 *sa;
  2918. int socklen = pfkey_sockaddr_len(family);
  2919. int size_req;
  2920. size_req = sizeof(struct sadb_x_ipsecrequest) +
  2921. pfkey_sockaddr_pair_size(family);
  2922. rq = (struct sadb_x_ipsecrequest *)skb_put(skb, size_req);
  2923. memset(rq, 0, size_req);
  2924. rq->sadb_x_ipsecrequest_len = size_req;
  2925. rq->sadb_x_ipsecrequest_proto = proto;
  2926. rq->sadb_x_ipsecrequest_mode = mode;
  2927. rq->sadb_x_ipsecrequest_level = level;
  2928. rq->sadb_x_ipsecrequest_reqid = reqid;
  2929. sa = (u8 *) (rq + 1);
  2930. if (!pfkey_sockaddr_fill(src, 0, (struct sockaddr *)sa, family) ||
  2931. !pfkey_sockaddr_fill(dst, 0, (struct sockaddr *)(sa + socklen), family))
  2932. return -EINVAL;
  2933. return 0;
  2934. }
  2935. #endif
  2936. #ifdef CONFIG_NET_KEY_MIGRATE
  2937. static int pfkey_send_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
  2938. const struct xfrm_migrate *m, int num_bundles,
  2939. const struct xfrm_kmaddress *k)
  2940. {
  2941. int i;
  2942. int sasize_sel;
  2943. int size = 0;
  2944. int size_pol = 0;
  2945. struct sk_buff *skb;
  2946. struct sadb_msg *hdr;
  2947. struct sadb_x_policy *pol;
  2948. const struct xfrm_migrate *mp;
  2949. if (type != XFRM_POLICY_TYPE_MAIN)
  2950. return 0;
  2951. if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
  2952. return -EINVAL;
  2953. if (k != NULL) {
  2954. /* addresses for KM */
  2955. size += PFKEY_ALIGN8(sizeof(struct sadb_x_kmaddress) +
  2956. pfkey_sockaddr_pair_size(k->family));
  2957. }
  2958. /* selector */
  2959. sasize_sel = pfkey_sockaddr_size(sel->family);
  2960. if (!sasize_sel)
  2961. return -EINVAL;
  2962. size += (sizeof(struct sadb_address) + sasize_sel) * 2;
  2963. /* policy info */
  2964. size_pol += sizeof(struct sadb_x_policy);
  2965. /* ipsecrequests */
  2966. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  2967. /* old locator pair */
  2968. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2969. pfkey_sockaddr_pair_size(mp->old_family);
  2970. /* new locator pair */
  2971. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2972. pfkey_sockaddr_pair_size(mp->new_family);
  2973. }
  2974. size += sizeof(struct sadb_msg) + size_pol;
  2975. /* alloc buffer */
  2976. skb = alloc_skb(size, GFP_ATOMIC);
  2977. if (skb == NULL)
  2978. return -ENOMEM;
  2979. hdr = (struct sadb_msg *)skb_put(skb, sizeof(struct sadb_msg));
  2980. hdr->sadb_msg_version = PF_KEY_V2;
  2981. hdr->sadb_msg_type = SADB_X_MIGRATE;
  2982. hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
  2983. hdr->sadb_msg_len = size / 8;
  2984. hdr->sadb_msg_errno = 0;
  2985. hdr->sadb_msg_reserved = 0;
  2986. hdr->sadb_msg_seq = 0;
  2987. hdr->sadb_msg_pid = 0;
  2988. /* Addresses to be used by KM for negotiation, if ext is available */
  2989. if (k != NULL && (set_sadb_kmaddress(skb, k) < 0))
  2990. goto err;
  2991. /* selector src */
  2992. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
  2993. /* selector dst */
  2994. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
  2995. /* policy information */
  2996. pol = (struct sadb_x_policy *)skb_put(skb, sizeof(struct sadb_x_policy));
  2997. pol->sadb_x_policy_len = size_pol / 8;
  2998. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2999. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  3000. pol->sadb_x_policy_dir = dir + 1;
  3001. pol->sadb_x_policy_reserved = 0;
  3002. pol->sadb_x_policy_id = 0;
  3003. pol->sadb_x_policy_priority = 0;
  3004. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3005. /* old ipsecrequest */
  3006. int mode = pfkey_mode_from_xfrm(mp->mode);
  3007. if (mode < 0)
  3008. goto err;
  3009. if (set_ipsecrequest(skb, mp->proto, mode,
  3010. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3011. mp->reqid, mp->old_family,
  3012. &mp->old_saddr, &mp->old_daddr) < 0)
  3013. goto err;
  3014. /* new ipsecrequest */
  3015. if (set_ipsecrequest(skb, mp->proto, mode,
  3016. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3017. mp->reqid, mp->new_family,
  3018. &mp->new_saddr, &mp->new_daddr) < 0)
  3019. goto err;
  3020. }
  3021. /* broadcast migrate message to sockets */
  3022. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL, &init_net);
  3023. return 0;
  3024. err:
  3025. kfree_skb(skb);
  3026. return -EINVAL;
  3027. }
  3028. #else
  3029. static int pfkey_send_migrate(const struct xfrm_selector *sel, u8 dir, u8 type,
  3030. const struct xfrm_migrate *m, int num_bundles,
  3031. const struct xfrm_kmaddress *k)
  3032. {
  3033. return -ENOPROTOOPT;
  3034. }
  3035. #endif
  3036. static int pfkey_sendmsg(struct kiocb *kiocb,
  3037. struct socket *sock, struct msghdr *msg, size_t len)
  3038. {
  3039. struct sock *sk = sock->sk;
  3040. struct sk_buff *skb = NULL;
  3041. struct sadb_msg *hdr = NULL;
  3042. int err;
  3043. err = -EOPNOTSUPP;
  3044. if (msg->msg_flags & MSG_OOB)
  3045. goto out;
  3046. err = -EMSGSIZE;
  3047. if ((unsigned int)len > sk->sk_sndbuf - 32)
  3048. goto out;
  3049. err = -ENOBUFS;
  3050. skb = alloc_skb(len, GFP_KERNEL);
  3051. if (skb == NULL)
  3052. goto out;
  3053. err = -EFAULT;
  3054. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
  3055. goto out;
  3056. hdr = pfkey_get_base_msg(skb, &err);
  3057. if (!hdr)
  3058. goto out;
  3059. mutex_lock(&xfrm_cfg_mutex);
  3060. err = pfkey_process(sk, skb, hdr);
  3061. mutex_unlock(&xfrm_cfg_mutex);
  3062. out:
  3063. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  3064. err = 0;
  3065. kfree_skb(skb);
  3066. return err ? : len;
  3067. }
  3068. static int pfkey_recvmsg(struct kiocb *kiocb,
  3069. struct socket *sock, struct msghdr *msg, size_t len,
  3070. int flags)
  3071. {
  3072. struct sock *sk = sock->sk;
  3073. struct pfkey_sock *pfk = pfkey_sk(sk);
  3074. struct sk_buff *skb;
  3075. int copied, err;
  3076. err = -EINVAL;
  3077. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  3078. goto out;
  3079. msg->msg_namelen = 0;
  3080. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  3081. if (skb == NULL)
  3082. goto out;
  3083. copied = skb->len;
  3084. if (copied > len) {
  3085. msg->msg_flags |= MSG_TRUNC;
  3086. copied = len;
  3087. }
  3088. skb_reset_transport_header(skb);
  3089. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  3090. if (err)
  3091. goto out_free;
  3092. sock_recv_ts_and_drops(msg, sk, skb);
  3093. err = (flags & MSG_TRUNC) ? skb->len : copied;
  3094. if (pfk->dump.dump != NULL &&
  3095. 3 * atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3096. pfkey_do_dump(pfk);
  3097. out_free:
  3098. skb_free_datagram(sk, skb);
  3099. out:
  3100. return err;
  3101. }
  3102. static const struct proto_ops pfkey_ops = {
  3103. .family = PF_KEY,
  3104. .owner = THIS_MODULE,
  3105. /* Operations that make no sense on pfkey sockets. */
  3106. .bind = sock_no_bind,
  3107. .connect = sock_no_connect,
  3108. .socketpair = sock_no_socketpair,
  3109. .accept = sock_no_accept,
  3110. .getname = sock_no_getname,
  3111. .ioctl = sock_no_ioctl,
  3112. .listen = sock_no_listen,
  3113. .shutdown = sock_no_shutdown,
  3114. .setsockopt = sock_no_setsockopt,
  3115. .getsockopt = sock_no_getsockopt,
  3116. .mmap = sock_no_mmap,
  3117. .sendpage = sock_no_sendpage,
  3118. /* Now the operations that really occur. */
  3119. .release = pfkey_release,
  3120. .poll = datagram_poll,
  3121. .sendmsg = pfkey_sendmsg,
  3122. .recvmsg = pfkey_recvmsg,
  3123. };
  3124. static const struct net_proto_family pfkey_family_ops = {
  3125. .family = PF_KEY,
  3126. .create = pfkey_create,
  3127. .owner = THIS_MODULE,
  3128. };
  3129. #ifdef CONFIG_PROC_FS
  3130. static int pfkey_seq_show(struct seq_file *f, void *v)
  3131. {
  3132. struct sock *s = sk_entry(v);
  3133. if (v == SEQ_START_TOKEN)
  3134. seq_printf(f ,"sk RefCnt Rmem Wmem User Inode\n");
  3135. else
  3136. seq_printf(f, "%pK %-6d %-6u %-6u %-6u %-6lu\n",
  3137. s,
  3138. atomic_read(&s->sk_refcnt),
  3139. sk_rmem_alloc_get(s),
  3140. sk_wmem_alloc_get(s),
  3141. from_kuid_munged(seq_user_ns(f), sock_i_uid(s)),
  3142. sock_i_ino(s)
  3143. );
  3144. return 0;
  3145. }
  3146. static void *pfkey_seq_start(struct seq_file *f, loff_t *ppos)
  3147. __acquires(rcu)
  3148. {
  3149. struct net *net = seq_file_net(f);
  3150. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3151. rcu_read_lock();
  3152. return seq_hlist_start_head_rcu(&net_pfkey->table, *ppos);
  3153. }
  3154. static void *pfkey_seq_next(struct seq_file *f, void *v, loff_t *ppos)
  3155. {
  3156. struct net *net = seq_file_net(f);
  3157. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3158. return seq_hlist_next_rcu(v, &net_pfkey->table, ppos);
  3159. }
  3160. static void pfkey_seq_stop(struct seq_file *f, void *v)
  3161. __releases(rcu)
  3162. {
  3163. rcu_read_unlock();
  3164. }
  3165. static const struct seq_operations pfkey_seq_ops = {
  3166. .start = pfkey_seq_start,
  3167. .next = pfkey_seq_next,
  3168. .stop = pfkey_seq_stop,
  3169. .show = pfkey_seq_show,
  3170. };
  3171. static int pfkey_seq_open(struct inode *inode, struct file *file)
  3172. {
  3173. return seq_open_net(inode, file, &pfkey_seq_ops,
  3174. sizeof(struct seq_net_private));
  3175. }
  3176. static const struct file_operations pfkey_proc_ops = {
  3177. .open = pfkey_seq_open,
  3178. .read = seq_read,
  3179. .llseek = seq_lseek,
  3180. .release = seq_release_net,
  3181. };
  3182. static int __net_init pfkey_init_proc(struct net *net)
  3183. {
  3184. struct proc_dir_entry *e;
  3185. e = proc_create("pfkey", 0, net->proc_net, &pfkey_proc_ops);
  3186. if (e == NULL)
  3187. return -ENOMEM;
  3188. return 0;
  3189. }
  3190. static void __net_exit pfkey_exit_proc(struct net *net)
  3191. {
  3192. remove_proc_entry("pfkey", net->proc_net);
  3193. }
  3194. #else
  3195. static inline int pfkey_init_proc(struct net *net)
  3196. {
  3197. return 0;
  3198. }
  3199. static inline void pfkey_exit_proc(struct net *net)
  3200. {
  3201. }
  3202. #endif
  3203. static struct xfrm_mgr pfkeyv2_mgr =
  3204. {
  3205. .id = "pfkeyv2",
  3206. .notify = pfkey_send_notify,
  3207. .acquire = pfkey_send_acquire,
  3208. .compile_policy = pfkey_compile_policy,
  3209. .new_mapping = pfkey_send_new_mapping,
  3210. .notify_policy = pfkey_send_policy_notify,
  3211. .migrate = pfkey_send_migrate,
  3212. };
  3213. static int __net_init pfkey_net_init(struct net *net)
  3214. {
  3215. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3216. int rv;
  3217. INIT_HLIST_HEAD(&net_pfkey->table);
  3218. atomic_set(&net_pfkey->socks_nr, 0);
  3219. rv = pfkey_init_proc(net);
  3220. return rv;
  3221. }
  3222. static void __net_exit pfkey_net_exit(struct net *net)
  3223. {
  3224. struct netns_pfkey *net_pfkey = net_generic(net, pfkey_net_id);
  3225. pfkey_exit_proc(net);
  3226. BUG_ON(!hlist_empty(&net_pfkey->table));
  3227. }
  3228. static struct pernet_operations pfkey_net_ops = {
  3229. .init = pfkey_net_init,
  3230. .exit = pfkey_net_exit,
  3231. .id = &pfkey_net_id,
  3232. .size = sizeof(struct netns_pfkey),
  3233. };
  3234. static void __exit ipsec_pfkey_exit(void)
  3235. {
  3236. xfrm_unregister_km(&pfkeyv2_mgr);
  3237. sock_unregister(PF_KEY);
  3238. unregister_pernet_subsys(&pfkey_net_ops);
  3239. proto_unregister(&key_proto);
  3240. }
  3241. static int __init ipsec_pfkey_init(void)
  3242. {
  3243. int err = proto_register(&key_proto, 0);
  3244. if (err != 0)
  3245. goto out;
  3246. err = register_pernet_subsys(&pfkey_net_ops);
  3247. if (err != 0)
  3248. goto out_unregister_key_proto;
  3249. err = sock_register(&pfkey_family_ops);
  3250. if (err != 0)
  3251. goto out_unregister_pernet;
  3252. err = xfrm_register_km(&pfkeyv2_mgr);
  3253. if (err != 0)
  3254. goto out_sock_unregister;
  3255. out:
  3256. return err;
  3257. out_sock_unregister:
  3258. sock_unregister(PF_KEY);
  3259. out_unregister_pernet:
  3260. unregister_pernet_subsys(&pfkey_net_ops);
  3261. out_unregister_key_proto:
  3262. proto_unregister(&key_proto);
  3263. goto out;
  3264. }
  3265. module_init(ipsec_pfkey_init);
  3266. module_exit(ipsec_pfkey_exit);
  3267. MODULE_LICENSE("GPL");
  3268. MODULE_ALIAS_NETPROTO(PF_KEY);