sock.c 73 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Generic socket support routines. Memory allocators, socket lock/release
  7. * handler for protocols to use and generic option handler.
  8. *
  9. *
  10. * Authors: Ross Biro
  11. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Alan Cox, <A.Cox@swansea.ac.uk>
  14. *
  15. * Fixes:
  16. * Alan Cox : Numerous verify_area() problems
  17. * Alan Cox : Connecting on a connecting socket
  18. * now returns an error for tcp.
  19. * Alan Cox : sock->protocol is set correctly.
  20. * and is not sometimes left as 0.
  21. * Alan Cox : connect handles icmp errors on a
  22. * connect properly. Unfortunately there
  23. * is a restart syscall nasty there. I
  24. * can't match BSD without hacking the C
  25. * library. Ideas urgently sought!
  26. * Alan Cox : Disallow bind() to addresses that are
  27. * not ours - especially broadcast ones!!
  28. * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
  29. * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
  30. * instead they leave that for the DESTROY timer.
  31. * Alan Cox : Clean up error flag in accept
  32. * Alan Cox : TCP ack handling is buggy, the DESTROY timer
  33. * was buggy. Put a remove_sock() in the handler
  34. * for memory when we hit 0. Also altered the timer
  35. * code. The ACK stuff can wait and needs major
  36. * TCP layer surgery.
  37. * Alan Cox : Fixed TCP ack bug, removed remove sock
  38. * and fixed timer/inet_bh race.
  39. * Alan Cox : Added zapped flag for TCP
  40. * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
  41. * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42. * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
  43. * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44. * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45. * Rick Sladkey : Relaxed UDP rules for matching packets.
  46. * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
  47. * Pauline Middelink : identd support
  48. * Alan Cox : Fixed connect() taking signals I think.
  49. * Alan Cox : SO_LINGER supported
  50. * Alan Cox : Error reporting fixes
  51. * Anonymous : inet_create tidied up (sk->reuse setting)
  52. * Alan Cox : inet sockets don't set sk->type!
  53. * Alan Cox : Split socket option code
  54. * Alan Cox : Callbacks
  55. * Alan Cox : Nagle flag for Charles & Johannes stuff
  56. * Alex : Removed restriction on inet fioctl
  57. * Alan Cox : Splitting INET from NET core
  58. * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
  59. * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
  60. * Alan Cox : Split IP from generic code
  61. * Alan Cox : New kfree_skbmem()
  62. * Alan Cox : Make SO_DEBUG superuser only.
  63. * Alan Cox : Allow anyone to clear SO_DEBUG
  64. * (compatibility fix)
  65. * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
  66. * Alan Cox : Allocator for a socket is settable.
  67. * Alan Cox : SO_ERROR includes soft errors.
  68. * Alan Cox : Allow NULL arguments on some SO_ opts
  69. * Alan Cox : Generic socket allocation to make hooks
  70. * easier (suggested by Craig Metz).
  71. * Michael Pall : SO_ERROR returns positive errno again
  72. * Steve Whitehouse: Added default destructor to free
  73. * protocol private data.
  74. * Steve Whitehouse: Added various other default routines
  75. * common to several socket families.
  76. * Chris Evans : Call suser() check last on F_SETOWN
  77. * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78. * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
  79. * Andi Kleen : Fix write_space callback
  80. * Chris Evans : Security fixes - signedness again
  81. * Arnaldo C. Melo : cleanups, use skb_queue_purge
  82. *
  83. * To Fix:
  84. *
  85. *
  86. * This program is free software; you can redistribute it and/or
  87. * modify it under the terms of the GNU General Public License
  88. * as published by the Free Software Foundation; either version
  89. * 2 of the License, or (at your option) any later version.
  90. */
  91. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  92. #include <linux/capability.h>
  93. #include <linux/errno.h>
  94. #include <linux/errqueue.h>
  95. #include <linux/types.h>
  96. #include <linux/socket.h>
  97. #include <linux/in.h>
  98. #include <linux/kernel.h>
  99. #include <linux/module.h>
  100. #include <linux/proc_fs.h>
  101. #include <linux/seq_file.h>
  102. #include <linux/sched.h>
  103. #include <linux/timer.h>
  104. #include <linux/string.h>
  105. #include <linux/sockios.h>
  106. #include <linux/net.h>
  107. #include <linux/mm.h>
  108. #include <linux/slab.h>
  109. #include <linux/interrupt.h>
  110. #include <linux/poll.h>
  111. #include <linux/tcp.h>
  112. #include <linux/init.h>
  113. #include <linux/highmem.h>
  114. #include <linux/user_namespace.h>
  115. #include <linux/static_key.h>
  116. #include <linux/memcontrol.h>
  117. #include <linux/prefetch.h>
  118. #include <asm/uaccess.h>
  119. #include <linux/netdevice.h>
  120. #include <net/protocol.h>
  121. #include <linux/skbuff.h>
  122. #include <net/net_namespace.h>
  123. #include <net/request_sock.h>
  124. #include <net/sock.h>
  125. #include <linux/net_tstamp.h>
  126. #include <net/xfrm.h>
  127. #include <linux/ipsec.h>
  128. #include <net/cls_cgroup.h>
  129. #include <net/netprio_cgroup.h>
  130. #include <linux/filter.h>
  131. #include <trace/events/sock.h>
  132. #ifdef CONFIG_INET
  133. #include <net/tcp.h>
  134. #endif
  135. #include <net/busy_poll.h>
  136. static DEFINE_MUTEX(proto_list_mutex);
  137. static LIST_HEAD(proto_list);
  138. #ifdef CONFIG_MEMCG_KMEM
  139. int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  140. {
  141. struct proto *proto;
  142. int ret = 0;
  143. mutex_lock(&proto_list_mutex);
  144. list_for_each_entry(proto, &proto_list, node) {
  145. if (proto->init_cgroup) {
  146. ret = proto->init_cgroup(memcg, ss);
  147. if (ret)
  148. goto out;
  149. }
  150. }
  151. mutex_unlock(&proto_list_mutex);
  152. return ret;
  153. out:
  154. list_for_each_entry_continue_reverse(proto, &proto_list, node)
  155. if (proto->destroy_cgroup)
  156. proto->destroy_cgroup(memcg);
  157. mutex_unlock(&proto_list_mutex);
  158. return ret;
  159. }
  160. void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
  161. {
  162. struct proto *proto;
  163. mutex_lock(&proto_list_mutex);
  164. list_for_each_entry_reverse(proto, &proto_list, node)
  165. if (proto->destroy_cgroup)
  166. proto->destroy_cgroup(memcg);
  167. mutex_unlock(&proto_list_mutex);
  168. }
  169. #endif
  170. /*
  171. * Each address family might have different locking rules, so we have
  172. * one slock key per address family:
  173. */
  174. static struct lock_class_key af_family_keys[AF_MAX];
  175. static struct lock_class_key af_family_slock_keys[AF_MAX];
  176. #if defined(CONFIG_MEMCG_KMEM)
  177. struct static_key memcg_socket_limit_enabled;
  178. EXPORT_SYMBOL(memcg_socket_limit_enabled);
  179. #endif
  180. /*
  181. * Make lock validator output more readable. (we pre-construct these
  182. * strings build-time, so that runtime initialization of socket
  183. * locks is fast):
  184. */
  185. static const char *const af_family_key_strings[AF_MAX+1] = {
  186. "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
  187. "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
  188. "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
  189. "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
  190. "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
  191. "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
  192. "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
  193. "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
  194. "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
  195. "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
  196. "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
  197. "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
  198. "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
  199. "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_MAX"
  200. };
  201. static const char *const af_family_slock_key_strings[AF_MAX+1] = {
  202. "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
  203. "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
  204. "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
  205. "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
  206. "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
  207. "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
  208. "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
  209. "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
  210. "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
  211. "slock-27" , "slock-28" , "slock-AF_CAN" ,
  212. "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
  213. "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
  214. "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
  215. "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_MAX"
  216. };
  217. static const char *const af_family_clock_key_strings[AF_MAX+1] = {
  218. "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
  219. "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
  220. "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
  221. "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
  222. "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
  223. "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
  224. "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
  225. "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
  226. "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
  227. "clock-27" , "clock-28" , "clock-AF_CAN" ,
  228. "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
  229. "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
  230. "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
  231. "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_MAX"
  232. };
  233. /*
  234. * sk_callback_lock locking rules are per-address-family,
  235. * so split the lock classes by using a per-AF key:
  236. */
  237. static struct lock_class_key af_callback_keys[AF_MAX];
  238. /* Take into consideration the size of the struct sk_buff overhead in the
  239. * determination of these values, since that is non-constant across
  240. * platforms. This makes socket queueing behavior and performance
  241. * not depend upon such differences.
  242. */
  243. #define _SK_MEM_PACKETS 256
  244. #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
  245. #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  246. #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  247. /* Run time adjustable parameters. */
  248. __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
  249. EXPORT_SYMBOL(sysctl_wmem_max);
  250. __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
  251. EXPORT_SYMBOL(sysctl_rmem_max);
  252. __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
  253. __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
  254. /* Maximal space eaten by iovec or ancillary data plus some space */
  255. int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
  256. EXPORT_SYMBOL(sysctl_optmem_max);
  257. struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
  258. EXPORT_SYMBOL_GPL(memalloc_socks);
  259. /**
  260. * sk_set_memalloc - sets %SOCK_MEMALLOC
  261. * @sk: socket to set it on
  262. *
  263. * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
  264. * It's the responsibility of the admin to adjust min_free_kbytes
  265. * to meet the requirements
  266. */
  267. void sk_set_memalloc(struct sock *sk)
  268. {
  269. sock_set_flag(sk, SOCK_MEMALLOC);
  270. sk->sk_allocation |= __GFP_MEMALLOC;
  271. static_key_slow_inc(&memalloc_socks);
  272. }
  273. EXPORT_SYMBOL_GPL(sk_set_memalloc);
  274. void sk_clear_memalloc(struct sock *sk)
  275. {
  276. sock_reset_flag(sk, SOCK_MEMALLOC);
  277. sk->sk_allocation &= ~__GFP_MEMALLOC;
  278. static_key_slow_dec(&memalloc_socks);
  279. /*
  280. * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
  281. * progress of swapping. However, if SOCK_MEMALLOC is cleared while
  282. * it has rmem allocations there is a risk that the user of the
  283. * socket cannot make forward progress due to exceeding the rmem
  284. * limits. By rights, sk_clear_memalloc() should only be called
  285. * on sockets being torn down but warn and reset the accounting if
  286. * that assumption breaks.
  287. */
  288. if (WARN_ON(sk->sk_forward_alloc))
  289. sk_mem_reclaim(sk);
  290. }
  291. EXPORT_SYMBOL_GPL(sk_clear_memalloc);
  292. int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
  293. {
  294. int ret;
  295. unsigned long pflags = current->flags;
  296. /* these should have been dropped before queueing */
  297. BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
  298. current->flags |= PF_MEMALLOC;
  299. ret = sk->sk_backlog_rcv(sk, skb);
  300. tsk_restore_flags(current, pflags, PF_MEMALLOC);
  301. return ret;
  302. }
  303. EXPORT_SYMBOL(__sk_backlog_rcv);
  304. static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
  305. {
  306. struct timeval tv;
  307. if (optlen < sizeof(tv))
  308. return -EINVAL;
  309. if (copy_from_user(&tv, optval, sizeof(tv)))
  310. return -EFAULT;
  311. if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
  312. return -EDOM;
  313. if (tv.tv_sec < 0) {
  314. static int warned __read_mostly;
  315. *timeo_p = 0;
  316. if (warned < 10 && net_ratelimit()) {
  317. warned++;
  318. pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
  319. __func__, current->comm, task_pid_nr(current));
  320. }
  321. return 0;
  322. }
  323. *timeo_p = MAX_SCHEDULE_TIMEOUT;
  324. if (tv.tv_sec == 0 && tv.tv_usec == 0)
  325. return 0;
  326. if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
  327. *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
  328. return 0;
  329. }
  330. static void sock_warn_obsolete_bsdism(const char *name)
  331. {
  332. static int warned;
  333. static char warncomm[TASK_COMM_LEN];
  334. if (strcmp(warncomm, current->comm) && warned < 5) {
  335. strcpy(warncomm, current->comm);
  336. pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
  337. warncomm, name);
  338. warned++;
  339. }
  340. }
  341. #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
  342. static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
  343. {
  344. if (sk->sk_flags & flags) {
  345. sk->sk_flags &= ~flags;
  346. if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
  347. net_disable_timestamp();
  348. }
  349. }
  350. int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  351. {
  352. int err;
  353. int skb_len;
  354. unsigned long flags;
  355. struct sk_buff_head *list = &sk->sk_receive_queue;
  356. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
  357. atomic_inc(&sk->sk_drops);
  358. trace_sock_rcvqueue_full(sk, skb);
  359. return -ENOMEM;
  360. }
  361. err = sk_filter(sk, skb);
  362. if (err)
  363. return err;
  364. if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
  365. atomic_inc(&sk->sk_drops);
  366. return -ENOBUFS;
  367. }
  368. skb->dev = NULL;
  369. skb_set_owner_r(skb, sk);
  370. /* Cache the SKB length before we tack it onto the receive
  371. * queue. Once it is added it no longer belongs to us and
  372. * may be freed by other threads of control pulling packets
  373. * from the queue.
  374. */
  375. skb_len = skb->len;
  376. /* we escape from rcu protected region, make sure we dont leak
  377. * a norefcounted dst
  378. */
  379. skb_dst_force(skb);
  380. spin_lock_irqsave(&list->lock, flags);
  381. skb->dropcount = atomic_read(&sk->sk_drops);
  382. __skb_queue_tail(list, skb);
  383. spin_unlock_irqrestore(&list->lock, flags);
  384. if (!sock_flag(sk, SOCK_DEAD))
  385. sk->sk_data_ready(sk, skb_len);
  386. return 0;
  387. }
  388. EXPORT_SYMBOL(sock_queue_rcv_skb);
  389. int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
  390. {
  391. int rc = NET_RX_SUCCESS;
  392. if (sk_filter(sk, skb))
  393. goto discard_and_relse;
  394. skb->dev = NULL;
  395. if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
  396. atomic_inc(&sk->sk_drops);
  397. goto discard_and_relse;
  398. }
  399. if (nested)
  400. bh_lock_sock_nested(sk);
  401. else
  402. bh_lock_sock(sk);
  403. if (!sock_owned_by_user(sk)) {
  404. /*
  405. * trylock + unlock semantics:
  406. */
  407. mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
  408. rc = sk_backlog_rcv(sk, skb);
  409. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  410. } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
  411. bh_unlock_sock(sk);
  412. atomic_inc(&sk->sk_drops);
  413. goto discard_and_relse;
  414. }
  415. bh_unlock_sock(sk);
  416. out:
  417. sock_put(sk);
  418. return rc;
  419. discard_and_relse:
  420. kfree_skb(skb);
  421. goto out;
  422. }
  423. EXPORT_SYMBOL(sk_receive_skb);
  424. void sk_reset_txq(struct sock *sk)
  425. {
  426. sk_tx_queue_clear(sk);
  427. }
  428. EXPORT_SYMBOL(sk_reset_txq);
  429. struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
  430. {
  431. struct dst_entry *dst = __sk_dst_get(sk);
  432. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  433. sk_tx_queue_clear(sk);
  434. RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
  435. dst_release(dst);
  436. return NULL;
  437. }
  438. return dst;
  439. }
  440. EXPORT_SYMBOL(__sk_dst_check);
  441. struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
  442. {
  443. struct dst_entry *dst = sk_dst_get(sk);
  444. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  445. sk_dst_reset(sk);
  446. dst_release(dst);
  447. return NULL;
  448. }
  449. return dst;
  450. }
  451. EXPORT_SYMBOL(sk_dst_check);
  452. static int sock_setbindtodevice(struct sock *sk, char __user *optval,
  453. int optlen)
  454. {
  455. int ret = -ENOPROTOOPT;
  456. #ifdef CONFIG_NETDEVICES
  457. struct net *net = sock_net(sk);
  458. char devname[IFNAMSIZ];
  459. int index;
  460. /* Sorry... */
  461. ret = -EPERM;
  462. if (!ns_capable(net->user_ns, CAP_NET_RAW))
  463. goto out;
  464. ret = -EINVAL;
  465. if (optlen < 0)
  466. goto out;
  467. /* Bind this socket to a particular device like "eth0",
  468. * as specified in the passed interface name. If the
  469. * name is "" or the option length is zero the socket
  470. * is not bound.
  471. */
  472. if (optlen > IFNAMSIZ - 1)
  473. optlen = IFNAMSIZ - 1;
  474. memset(devname, 0, sizeof(devname));
  475. ret = -EFAULT;
  476. if (copy_from_user(devname, optval, optlen))
  477. goto out;
  478. index = 0;
  479. if (devname[0] != '\0') {
  480. struct net_device *dev;
  481. rcu_read_lock();
  482. dev = dev_get_by_name_rcu(net, devname);
  483. if (dev)
  484. index = dev->ifindex;
  485. rcu_read_unlock();
  486. ret = -ENODEV;
  487. if (!dev)
  488. goto out;
  489. }
  490. lock_sock(sk);
  491. sk->sk_bound_dev_if = index;
  492. sk_dst_reset(sk);
  493. release_sock(sk);
  494. ret = 0;
  495. out:
  496. #endif
  497. return ret;
  498. }
  499. static int sock_getbindtodevice(struct sock *sk, char __user *optval,
  500. int __user *optlen, int len)
  501. {
  502. int ret = -ENOPROTOOPT;
  503. #ifdef CONFIG_NETDEVICES
  504. struct net *net = sock_net(sk);
  505. char devname[IFNAMSIZ];
  506. if (sk->sk_bound_dev_if == 0) {
  507. len = 0;
  508. goto zero;
  509. }
  510. ret = -EINVAL;
  511. if (len < IFNAMSIZ)
  512. goto out;
  513. ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
  514. if (ret)
  515. goto out;
  516. len = strlen(devname) + 1;
  517. ret = -EFAULT;
  518. if (copy_to_user(optval, devname, len))
  519. goto out;
  520. zero:
  521. ret = -EFAULT;
  522. if (put_user(len, optlen))
  523. goto out;
  524. ret = 0;
  525. out:
  526. #endif
  527. return ret;
  528. }
  529. static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
  530. {
  531. if (valbool)
  532. sock_set_flag(sk, bit);
  533. else
  534. sock_reset_flag(sk, bit);
  535. }
  536. /*
  537. * This is meant for all protocols to use and covers goings on
  538. * at the socket level. Everything here is generic.
  539. */
  540. int sock_setsockopt(struct socket *sock, int level, int optname,
  541. char __user *optval, unsigned int optlen)
  542. {
  543. struct sock *sk = sock->sk;
  544. int val;
  545. int valbool;
  546. struct linger ling;
  547. int ret = 0;
  548. /*
  549. * Options without arguments
  550. */
  551. if (optname == SO_BINDTODEVICE)
  552. return sock_setbindtodevice(sk, optval, optlen);
  553. if (optlen < sizeof(int))
  554. return -EINVAL;
  555. if (get_user(val, (int __user *)optval))
  556. return -EFAULT;
  557. valbool = val ? 1 : 0;
  558. lock_sock(sk);
  559. switch (optname) {
  560. case SO_DEBUG:
  561. if (val && !capable(CAP_NET_ADMIN))
  562. ret = -EACCES;
  563. else
  564. sock_valbool_flag(sk, SOCK_DBG, valbool);
  565. break;
  566. case SO_REUSEADDR:
  567. sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
  568. break;
  569. case SO_REUSEPORT:
  570. sk->sk_reuseport = valbool;
  571. break;
  572. case SO_TYPE:
  573. case SO_PROTOCOL:
  574. case SO_DOMAIN:
  575. case SO_ERROR:
  576. ret = -ENOPROTOOPT;
  577. break;
  578. case SO_DONTROUTE:
  579. sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
  580. break;
  581. case SO_BROADCAST:
  582. sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
  583. break;
  584. case SO_SNDBUF:
  585. /* Don't error on this BSD doesn't and if you think
  586. * about it this is right. Otherwise apps have to
  587. * play 'guess the biggest size' games. RCVBUF/SNDBUF
  588. * are treated in BSD as hints
  589. */
  590. val = min_t(u32, val, sysctl_wmem_max);
  591. set_sndbuf:
  592. sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
  593. sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
  594. /* Wake up sending tasks if we upped the value. */
  595. sk->sk_write_space(sk);
  596. break;
  597. case SO_SNDBUFFORCE:
  598. if (!capable(CAP_NET_ADMIN)) {
  599. ret = -EPERM;
  600. break;
  601. }
  602. goto set_sndbuf;
  603. case SO_RCVBUF:
  604. /* Don't error on this BSD doesn't and if you think
  605. * about it this is right. Otherwise apps have to
  606. * play 'guess the biggest size' games. RCVBUF/SNDBUF
  607. * are treated in BSD as hints
  608. */
  609. val = min_t(u32, val, sysctl_rmem_max);
  610. set_rcvbuf:
  611. sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
  612. /*
  613. * We double it on the way in to account for
  614. * "struct sk_buff" etc. overhead. Applications
  615. * assume that the SO_RCVBUF setting they make will
  616. * allow that much actual data to be received on that
  617. * socket.
  618. *
  619. * Applications are unaware that "struct sk_buff" and
  620. * other overheads allocate from the receive buffer
  621. * during socket buffer allocation.
  622. *
  623. * And after considering the possible alternatives,
  624. * returning the value we actually used in getsockopt
  625. * is the most desirable behavior.
  626. */
  627. sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
  628. break;
  629. case SO_RCVBUFFORCE:
  630. if (!capable(CAP_NET_ADMIN)) {
  631. ret = -EPERM;
  632. break;
  633. }
  634. goto set_rcvbuf;
  635. case SO_KEEPALIVE:
  636. #ifdef CONFIG_INET
  637. if (sk->sk_protocol == IPPROTO_TCP &&
  638. sk->sk_type == SOCK_STREAM)
  639. tcp_set_keepalive(sk, valbool);
  640. #endif
  641. sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
  642. break;
  643. case SO_OOBINLINE:
  644. sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
  645. break;
  646. case SO_NO_CHECK:
  647. sk->sk_no_check = valbool;
  648. break;
  649. case SO_PRIORITY:
  650. if ((val >= 0 && val <= 6) ||
  651. ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
  652. sk->sk_priority = val;
  653. else
  654. ret = -EPERM;
  655. break;
  656. case SO_LINGER:
  657. if (optlen < sizeof(ling)) {
  658. ret = -EINVAL; /* 1003.1g */
  659. break;
  660. }
  661. if (copy_from_user(&ling, optval, sizeof(ling))) {
  662. ret = -EFAULT;
  663. break;
  664. }
  665. if (!ling.l_onoff)
  666. sock_reset_flag(sk, SOCK_LINGER);
  667. else {
  668. #if (BITS_PER_LONG == 32)
  669. if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
  670. sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
  671. else
  672. #endif
  673. sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
  674. sock_set_flag(sk, SOCK_LINGER);
  675. }
  676. break;
  677. case SO_BSDCOMPAT:
  678. sock_warn_obsolete_bsdism("setsockopt");
  679. break;
  680. case SO_PASSCRED:
  681. if (valbool)
  682. set_bit(SOCK_PASSCRED, &sock->flags);
  683. else
  684. clear_bit(SOCK_PASSCRED, &sock->flags);
  685. break;
  686. case SO_TIMESTAMP:
  687. case SO_TIMESTAMPNS:
  688. if (valbool) {
  689. if (optname == SO_TIMESTAMP)
  690. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  691. else
  692. sock_set_flag(sk, SOCK_RCVTSTAMPNS);
  693. sock_set_flag(sk, SOCK_RCVTSTAMP);
  694. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  695. } else {
  696. sock_reset_flag(sk, SOCK_RCVTSTAMP);
  697. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  698. }
  699. break;
  700. case SO_TIMESTAMPING:
  701. if (val & ~SOF_TIMESTAMPING_MASK) {
  702. ret = -EINVAL;
  703. break;
  704. }
  705. sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
  706. val & SOF_TIMESTAMPING_TX_HARDWARE);
  707. sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
  708. val & SOF_TIMESTAMPING_TX_SOFTWARE);
  709. sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
  710. val & SOF_TIMESTAMPING_RX_HARDWARE);
  711. if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
  712. sock_enable_timestamp(sk,
  713. SOCK_TIMESTAMPING_RX_SOFTWARE);
  714. else
  715. sock_disable_timestamp(sk,
  716. (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
  717. sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
  718. val & SOF_TIMESTAMPING_SOFTWARE);
  719. sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
  720. val & SOF_TIMESTAMPING_SYS_HARDWARE);
  721. sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
  722. val & SOF_TIMESTAMPING_RAW_HARDWARE);
  723. break;
  724. case SO_RCVLOWAT:
  725. if (val < 0)
  726. val = INT_MAX;
  727. sk->sk_rcvlowat = val ? : 1;
  728. break;
  729. case SO_RCVTIMEO:
  730. ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
  731. break;
  732. case SO_SNDTIMEO:
  733. ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
  734. break;
  735. case SO_ATTACH_FILTER:
  736. ret = -EINVAL;
  737. if (optlen == sizeof(struct sock_fprog)) {
  738. struct sock_fprog fprog;
  739. ret = -EFAULT;
  740. if (copy_from_user(&fprog, optval, sizeof(fprog)))
  741. break;
  742. ret = sk_attach_filter(&fprog, sk);
  743. }
  744. break;
  745. case SO_DETACH_FILTER:
  746. ret = sk_detach_filter(sk);
  747. break;
  748. case SO_LOCK_FILTER:
  749. if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
  750. ret = -EPERM;
  751. else
  752. sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
  753. break;
  754. case SO_PASSSEC:
  755. if (valbool)
  756. set_bit(SOCK_PASSSEC, &sock->flags);
  757. else
  758. clear_bit(SOCK_PASSSEC, &sock->flags);
  759. break;
  760. case SO_MARK:
  761. if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
  762. ret = -EPERM;
  763. else
  764. sk->sk_mark = val;
  765. break;
  766. /* We implement the SO_SNDLOWAT etc to
  767. not be settable (1003.1g 5.3) */
  768. case SO_RXQ_OVFL:
  769. sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
  770. break;
  771. case SO_WIFI_STATUS:
  772. sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
  773. break;
  774. case SO_PEEK_OFF:
  775. if (sock->ops->set_peek_off)
  776. sock->ops->set_peek_off(sk, val);
  777. else
  778. ret = -EOPNOTSUPP;
  779. break;
  780. case SO_NOFCS:
  781. sock_valbool_flag(sk, SOCK_NOFCS, valbool);
  782. break;
  783. case SO_SELECT_ERR_QUEUE:
  784. sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
  785. break;
  786. #ifdef CONFIG_NET_RX_BUSY_POLL
  787. case SO_BUSY_POLL:
  788. /* allow unprivileged users to decrease the value */
  789. if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
  790. ret = -EPERM;
  791. else {
  792. if (val < 0)
  793. ret = -EINVAL;
  794. else
  795. sk->sk_ll_usec = val;
  796. }
  797. break;
  798. #endif
  799. case SO_MAX_PACING_RATE:
  800. sk->sk_max_pacing_rate = val;
  801. sk->sk_pacing_rate = min(sk->sk_pacing_rate,
  802. sk->sk_max_pacing_rate);
  803. break;
  804. default:
  805. ret = -ENOPROTOOPT;
  806. break;
  807. }
  808. release_sock(sk);
  809. return ret;
  810. }
  811. EXPORT_SYMBOL(sock_setsockopt);
  812. void cred_to_ucred(struct pid *pid, const struct cred *cred,
  813. struct ucred *ucred)
  814. {
  815. ucred->pid = pid_vnr(pid);
  816. ucred->uid = ucred->gid = -1;
  817. if (cred) {
  818. struct user_namespace *current_ns = current_user_ns();
  819. ucred->uid = from_kuid_munged(current_ns, cred->euid);
  820. ucred->gid = from_kgid_munged(current_ns, cred->egid);
  821. }
  822. }
  823. EXPORT_SYMBOL_GPL(cred_to_ucred);
  824. int sock_getsockopt(struct socket *sock, int level, int optname,
  825. char __user *optval, int __user *optlen)
  826. {
  827. struct sock *sk = sock->sk;
  828. union {
  829. int val;
  830. struct linger ling;
  831. struct timeval tm;
  832. } v;
  833. int lv = sizeof(int);
  834. int len;
  835. if (get_user(len, optlen))
  836. return -EFAULT;
  837. if (len < 0)
  838. return -EINVAL;
  839. memset(&v, 0, sizeof(v));
  840. switch (optname) {
  841. case SO_DEBUG:
  842. v.val = sock_flag(sk, SOCK_DBG);
  843. break;
  844. case SO_DONTROUTE:
  845. v.val = sock_flag(sk, SOCK_LOCALROUTE);
  846. break;
  847. case SO_BROADCAST:
  848. v.val = sock_flag(sk, SOCK_BROADCAST);
  849. break;
  850. case SO_SNDBUF:
  851. v.val = sk->sk_sndbuf;
  852. break;
  853. case SO_RCVBUF:
  854. v.val = sk->sk_rcvbuf;
  855. break;
  856. case SO_REUSEADDR:
  857. v.val = sk->sk_reuse;
  858. break;
  859. case SO_REUSEPORT:
  860. v.val = sk->sk_reuseport;
  861. break;
  862. case SO_KEEPALIVE:
  863. v.val = sock_flag(sk, SOCK_KEEPOPEN);
  864. break;
  865. case SO_TYPE:
  866. v.val = sk->sk_type;
  867. break;
  868. case SO_PROTOCOL:
  869. v.val = sk->sk_protocol;
  870. break;
  871. case SO_DOMAIN:
  872. v.val = sk->sk_family;
  873. break;
  874. case SO_ERROR:
  875. v.val = -sock_error(sk);
  876. if (v.val == 0)
  877. v.val = xchg(&sk->sk_err_soft, 0);
  878. break;
  879. case SO_OOBINLINE:
  880. v.val = sock_flag(sk, SOCK_URGINLINE);
  881. break;
  882. case SO_NO_CHECK:
  883. v.val = sk->sk_no_check;
  884. break;
  885. case SO_PRIORITY:
  886. v.val = sk->sk_priority;
  887. break;
  888. case SO_LINGER:
  889. lv = sizeof(v.ling);
  890. v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
  891. v.ling.l_linger = sk->sk_lingertime / HZ;
  892. break;
  893. case SO_BSDCOMPAT:
  894. sock_warn_obsolete_bsdism("getsockopt");
  895. break;
  896. case SO_TIMESTAMP:
  897. v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
  898. !sock_flag(sk, SOCK_RCVTSTAMPNS);
  899. break;
  900. case SO_TIMESTAMPNS:
  901. v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
  902. break;
  903. case SO_TIMESTAMPING:
  904. v.val = 0;
  905. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
  906. v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
  907. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
  908. v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
  909. if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
  910. v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
  911. if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
  912. v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
  913. if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
  914. v.val |= SOF_TIMESTAMPING_SOFTWARE;
  915. if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
  916. v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
  917. if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
  918. v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
  919. break;
  920. case SO_RCVTIMEO:
  921. lv = sizeof(struct timeval);
  922. if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
  923. v.tm.tv_sec = 0;
  924. v.tm.tv_usec = 0;
  925. } else {
  926. v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
  927. v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
  928. }
  929. break;
  930. case SO_SNDTIMEO:
  931. lv = sizeof(struct timeval);
  932. if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
  933. v.tm.tv_sec = 0;
  934. v.tm.tv_usec = 0;
  935. } else {
  936. v.tm.tv_sec = sk->sk_sndtimeo / HZ;
  937. v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
  938. }
  939. break;
  940. case SO_RCVLOWAT:
  941. v.val = sk->sk_rcvlowat;
  942. break;
  943. case SO_SNDLOWAT:
  944. v.val = 1;
  945. break;
  946. case SO_PASSCRED:
  947. v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
  948. break;
  949. case SO_PEERCRED:
  950. {
  951. struct ucred peercred;
  952. if (len > sizeof(peercred))
  953. len = sizeof(peercred);
  954. cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
  955. if (copy_to_user(optval, &peercred, len))
  956. return -EFAULT;
  957. goto lenout;
  958. }
  959. case SO_PEERNAME:
  960. {
  961. char address[128];
  962. if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
  963. return -ENOTCONN;
  964. if (lv < len)
  965. return -EINVAL;
  966. if (copy_to_user(optval, address, len))
  967. return -EFAULT;
  968. goto lenout;
  969. }
  970. /* Dubious BSD thing... Probably nobody even uses it, but
  971. * the UNIX standard wants it for whatever reason... -DaveM
  972. */
  973. case SO_ACCEPTCONN:
  974. v.val = sk->sk_state == TCP_LISTEN;
  975. break;
  976. case SO_PASSSEC:
  977. v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
  978. break;
  979. case SO_PEERSEC:
  980. return security_socket_getpeersec_stream(sock, optval, optlen, len);
  981. case SO_MARK:
  982. v.val = sk->sk_mark;
  983. break;
  984. case SO_RXQ_OVFL:
  985. v.val = sock_flag(sk, SOCK_RXQ_OVFL);
  986. break;
  987. case SO_WIFI_STATUS:
  988. v.val = sock_flag(sk, SOCK_WIFI_STATUS);
  989. break;
  990. case SO_PEEK_OFF:
  991. if (!sock->ops->set_peek_off)
  992. return -EOPNOTSUPP;
  993. v.val = sk->sk_peek_off;
  994. break;
  995. case SO_NOFCS:
  996. v.val = sock_flag(sk, SOCK_NOFCS);
  997. break;
  998. case SO_BINDTODEVICE:
  999. return sock_getbindtodevice(sk, optval, optlen, len);
  1000. case SO_GET_FILTER:
  1001. len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
  1002. if (len < 0)
  1003. return len;
  1004. goto lenout;
  1005. case SO_LOCK_FILTER:
  1006. v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
  1007. break;
  1008. case SO_SELECT_ERR_QUEUE:
  1009. v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
  1010. break;
  1011. #ifdef CONFIG_NET_RX_BUSY_POLL
  1012. case SO_BUSY_POLL:
  1013. v.val = sk->sk_ll_usec;
  1014. break;
  1015. #endif
  1016. case SO_MAX_PACING_RATE:
  1017. v.val = sk->sk_max_pacing_rate;
  1018. break;
  1019. default:
  1020. return -ENOPROTOOPT;
  1021. }
  1022. if (len > lv)
  1023. len = lv;
  1024. if (copy_to_user(optval, &v, len))
  1025. return -EFAULT;
  1026. lenout:
  1027. if (put_user(len, optlen))
  1028. return -EFAULT;
  1029. return 0;
  1030. }
  1031. /*
  1032. * Initialize an sk_lock.
  1033. *
  1034. * (We also register the sk_lock with the lock validator.)
  1035. */
  1036. static inline void sock_lock_init(struct sock *sk)
  1037. {
  1038. sock_lock_init_class_and_name(sk,
  1039. af_family_slock_key_strings[sk->sk_family],
  1040. af_family_slock_keys + sk->sk_family,
  1041. af_family_key_strings[sk->sk_family],
  1042. af_family_keys + sk->sk_family);
  1043. }
  1044. /*
  1045. * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
  1046. * even temporarly, because of RCU lookups. sk_node should also be left as is.
  1047. * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
  1048. */
  1049. static void sock_copy(struct sock *nsk, const struct sock *osk)
  1050. {
  1051. #ifdef CONFIG_SECURITY_NETWORK
  1052. void *sptr = nsk->sk_security;
  1053. #endif
  1054. memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
  1055. memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
  1056. osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
  1057. #ifdef CONFIG_SECURITY_NETWORK
  1058. nsk->sk_security = sptr;
  1059. security_sk_clone(osk, nsk);
  1060. #endif
  1061. }
  1062. void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
  1063. {
  1064. unsigned long nulls1, nulls2;
  1065. nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
  1066. nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
  1067. if (nulls1 > nulls2)
  1068. swap(nulls1, nulls2);
  1069. if (nulls1 != 0)
  1070. memset((char *)sk, 0, nulls1);
  1071. memset((char *)sk + nulls1 + sizeof(void *), 0,
  1072. nulls2 - nulls1 - sizeof(void *));
  1073. memset((char *)sk + nulls2 + sizeof(void *), 0,
  1074. size - nulls2 - sizeof(void *));
  1075. }
  1076. EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
  1077. static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
  1078. int family)
  1079. {
  1080. struct sock *sk;
  1081. struct kmem_cache *slab;
  1082. slab = prot->slab;
  1083. if (slab != NULL) {
  1084. sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
  1085. if (!sk)
  1086. return sk;
  1087. if (priority & __GFP_ZERO) {
  1088. if (prot->clear_sk)
  1089. prot->clear_sk(sk, prot->obj_size);
  1090. else
  1091. sk_prot_clear_nulls(sk, prot->obj_size);
  1092. }
  1093. } else
  1094. sk = kmalloc(prot->obj_size, priority);
  1095. if (sk != NULL) {
  1096. kmemcheck_annotate_bitfield(sk, flags);
  1097. if (security_sk_alloc(sk, family, priority))
  1098. goto out_free;
  1099. if (!try_module_get(prot->owner))
  1100. goto out_free_sec;
  1101. sk_tx_queue_clear(sk);
  1102. }
  1103. return sk;
  1104. out_free_sec:
  1105. security_sk_free(sk);
  1106. out_free:
  1107. if (slab != NULL)
  1108. kmem_cache_free(slab, sk);
  1109. else
  1110. kfree(sk);
  1111. return NULL;
  1112. }
  1113. static void sk_prot_free(struct proto *prot, struct sock *sk)
  1114. {
  1115. struct kmem_cache *slab;
  1116. struct module *owner;
  1117. owner = prot->owner;
  1118. slab = prot->slab;
  1119. security_sk_free(sk);
  1120. if (slab != NULL)
  1121. kmem_cache_free(slab, sk);
  1122. else
  1123. kfree(sk);
  1124. module_put(owner);
  1125. }
  1126. #if IS_ENABLED(CONFIG_NET_CLS_CGROUP)
  1127. void sock_update_classid(struct sock *sk)
  1128. {
  1129. u32 classid;
  1130. classid = task_cls_classid(current);
  1131. if (classid != sk->sk_classid)
  1132. sk->sk_classid = classid;
  1133. }
  1134. EXPORT_SYMBOL(sock_update_classid);
  1135. #endif
  1136. #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
  1137. void sock_update_netprioidx(struct sock *sk)
  1138. {
  1139. if (in_interrupt())
  1140. return;
  1141. sk->sk_cgrp_prioidx = task_netprioidx(current);
  1142. }
  1143. EXPORT_SYMBOL_GPL(sock_update_netprioidx);
  1144. #endif
  1145. /**
  1146. * sk_alloc - All socket objects are allocated here
  1147. * @net: the applicable net namespace
  1148. * @family: protocol family
  1149. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1150. * @prot: struct proto associated with this new sock instance
  1151. */
  1152. struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
  1153. struct proto *prot)
  1154. {
  1155. struct sock *sk;
  1156. sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
  1157. if (sk) {
  1158. sk->sk_family = family;
  1159. /*
  1160. * See comment in struct sock definition to understand
  1161. * why we need sk_prot_creator -acme
  1162. */
  1163. sk->sk_prot = sk->sk_prot_creator = prot;
  1164. sock_lock_init(sk);
  1165. sock_net_set(sk, get_net(net));
  1166. atomic_set(&sk->sk_wmem_alloc, 1);
  1167. sock_update_classid(sk);
  1168. sock_update_netprioidx(sk);
  1169. }
  1170. return sk;
  1171. }
  1172. EXPORT_SYMBOL(sk_alloc);
  1173. static void __sk_free(struct sock *sk)
  1174. {
  1175. struct sk_filter *filter;
  1176. if (sk->sk_destruct)
  1177. sk->sk_destruct(sk);
  1178. filter = rcu_dereference_check(sk->sk_filter,
  1179. atomic_read(&sk->sk_wmem_alloc) == 0);
  1180. if (filter) {
  1181. sk_filter_uncharge(sk, filter);
  1182. RCU_INIT_POINTER(sk->sk_filter, NULL);
  1183. }
  1184. sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
  1185. if (atomic_read(&sk->sk_omem_alloc))
  1186. pr_debug("%s: optmem leakage (%d bytes) detected\n",
  1187. __func__, atomic_read(&sk->sk_omem_alloc));
  1188. if (sk->sk_peer_cred)
  1189. put_cred(sk->sk_peer_cred);
  1190. put_pid(sk->sk_peer_pid);
  1191. put_net(sock_net(sk));
  1192. sk_prot_free(sk->sk_prot_creator, sk);
  1193. }
  1194. void sk_free(struct sock *sk)
  1195. {
  1196. /*
  1197. * We subtract one from sk_wmem_alloc and can know if
  1198. * some packets are still in some tx queue.
  1199. * If not null, sock_wfree() will call __sk_free(sk) later
  1200. */
  1201. if (atomic_dec_and_test(&sk->sk_wmem_alloc))
  1202. __sk_free(sk);
  1203. }
  1204. EXPORT_SYMBOL(sk_free);
  1205. /*
  1206. * Last sock_put should drop reference to sk->sk_net. It has already
  1207. * been dropped in sk_change_net. Taking reference to stopping namespace
  1208. * is not an option.
  1209. * Take reference to a socket to remove it from hash _alive_ and after that
  1210. * destroy it in the context of init_net.
  1211. */
  1212. void sk_release_kernel(struct sock *sk)
  1213. {
  1214. if (sk == NULL || sk->sk_socket == NULL)
  1215. return;
  1216. sock_hold(sk);
  1217. sock_release(sk->sk_socket);
  1218. release_net(sock_net(sk));
  1219. sock_net_set(sk, get_net(&init_net));
  1220. sock_put(sk);
  1221. }
  1222. EXPORT_SYMBOL(sk_release_kernel);
  1223. static void sk_update_clone(const struct sock *sk, struct sock *newsk)
  1224. {
  1225. if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
  1226. sock_update_memcg(newsk);
  1227. }
  1228. /**
  1229. * sk_clone_lock - clone a socket, and lock its clone
  1230. * @sk: the socket to clone
  1231. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1232. *
  1233. * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
  1234. */
  1235. struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
  1236. {
  1237. struct sock *newsk;
  1238. newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
  1239. if (newsk != NULL) {
  1240. struct sk_filter *filter;
  1241. sock_copy(newsk, sk);
  1242. /* SANITY */
  1243. get_net(sock_net(newsk));
  1244. sk_node_init(&newsk->sk_node);
  1245. sock_lock_init(newsk);
  1246. bh_lock_sock(newsk);
  1247. newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
  1248. newsk->sk_backlog.len = 0;
  1249. atomic_set(&newsk->sk_rmem_alloc, 0);
  1250. /*
  1251. * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
  1252. */
  1253. atomic_set(&newsk->sk_wmem_alloc, 1);
  1254. atomic_set(&newsk->sk_omem_alloc, 0);
  1255. skb_queue_head_init(&newsk->sk_receive_queue);
  1256. skb_queue_head_init(&newsk->sk_write_queue);
  1257. #ifdef CONFIG_NET_DMA
  1258. skb_queue_head_init(&newsk->sk_async_wait_queue);
  1259. #endif
  1260. spin_lock_init(&newsk->sk_dst_lock);
  1261. rwlock_init(&newsk->sk_callback_lock);
  1262. lockdep_set_class_and_name(&newsk->sk_callback_lock,
  1263. af_callback_keys + newsk->sk_family,
  1264. af_family_clock_key_strings[newsk->sk_family]);
  1265. newsk->sk_dst_cache = NULL;
  1266. newsk->sk_wmem_queued = 0;
  1267. newsk->sk_forward_alloc = 0;
  1268. newsk->sk_send_head = NULL;
  1269. newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
  1270. sock_reset_flag(newsk, SOCK_DONE);
  1271. skb_queue_head_init(&newsk->sk_error_queue);
  1272. filter = rcu_dereference_protected(newsk->sk_filter, 1);
  1273. if (filter != NULL)
  1274. sk_filter_charge(newsk, filter);
  1275. if (unlikely(xfrm_sk_clone_policy(newsk))) {
  1276. /* It is still raw copy of parent, so invalidate
  1277. * destructor and make plain sk_free() */
  1278. newsk->sk_destruct = NULL;
  1279. bh_unlock_sock(newsk);
  1280. sk_free(newsk);
  1281. newsk = NULL;
  1282. goto out;
  1283. }
  1284. newsk->sk_err = 0;
  1285. newsk->sk_priority = 0;
  1286. /*
  1287. * Before updating sk_refcnt, we must commit prior changes to memory
  1288. * (Documentation/RCU/rculist_nulls.txt for details)
  1289. */
  1290. smp_wmb();
  1291. atomic_set(&newsk->sk_refcnt, 2);
  1292. /*
  1293. * Increment the counter in the same struct proto as the master
  1294. * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
  1295. * is the same as sk->sk_prot->socks, as this field was copied
  1296. * with memcpy).
  1297. *
  1298. * This _changes_ the previous behaviour, where
  1299. * tcp_create_openreq_child always was incrementing the
  1300. * equivalent to tcp_prot->socks (inet_sock_nr), so this have
  1301. * to be taken into account in all callers. -acme
  1302. */
  1303. sk_refcnt_debug_inc(newsk);
  1304. sk_set_socket(newsk, NULL);
  1305. newsk->sk_wq = NULL;
  1306. sk_update_clone(sk, newsk);
  1307. if (newsk->sk_prot->sockets_allocated)
  1308. sk_sockets_allocated_inc(newsk);
  1309. if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
  1310. net_enable_timestamp();
  1311. }
  1312. out:
  1313. return newsk;
  1314. }
  1315. EXPORT_SYMBOL_GPL(sk_clone_lock);
  1316. void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
  1317. {
  1318. __sk_dst_set(sk, dst);
  1319. sk->sk_route_caps = dst->dev->features;
  1320. if (sk->sk_route_caps & NETIF_F_GSO)
  1321. sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
  1322. sk->sk_route_caps &= ~sk->sk_route_nocaps;
  1323. if (sk_can_gso(sk)) {
  1324. if (dst->header_len) {
  1325. sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
  1326. } else {
  1327. sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
  1328. sk->sk_gso_max_size = dst->dev->gso_max_size;
  1329. sk->sk_gso_max_segs = dst->dev->gso_max_segs;
  1330. }
  1331. }
  1332. }
  1333. EXPORT_SYMBOL_GPL(sk_setup_caps);
  1334. /*
  1335. * Simple resource managers for sockets.
  1336. */
  1337. /*
  1338. * Write buffer destructor automatically called from kfree_skb.
  1339. */
  1340. void sock_wfree(struct sk_buff *skb)
  1341. {
  1342. struct sock *sk = skb->sk;
  1343. unsigned int len = skb->truesize;
  1344. if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
  1345. /*
  1346. * Keep a reference on sk_wmem_alloc, this will be released
  1347. * after sk_write_space() call
  1348. */
  1349. atomic_sub(len - 1, &sk->sk_wmem_alloc);
  1350. sk->sk_write_space(sk);
  1351. len = 1;
  1352. }
  1353. /*
  1354. * if sk_wmem_alloc reaches 0, we must finish what sk_free()
  1355. * could not do because of in-flight packets
  1356. */
  1357. if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
  1358. __sk_free(sk);
  1359. }
  1360. EXPORT_SYMBOL(sock_wfree);
  1361. void skb_orphan_partial(struct sk_buff *skb)
  1362. {
  1363. /* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
  1364. * so we do not completely orphan skb, but transfert all
  1365. * accounted bytes but one, to avoid unexpected reorders.
  1366. */
  1367. if (skb->destructor == sock_wfree
  1368. #ifdef CONFIG_INET
  1369. || skb->destructor == tcp_wfree
  1370. #endif
  1371. ) {
  1372. atomic_sub(skb->truesize - 1, &skb->sk->sk_wmem_alloc);
  1373. skb->truesize = 1;
  1374. } else {
  1375. skb_orphan(skb);
  1376. }
  1377. }
  1378. EXPORT_SYMBOL(skb_orphan_partial);
  1379. /*
  1380. * Read buffer destructor automatically called from kfree_skb.
  1381. */
  1382. void sock_rfree(struct sk_buff *skb)
  1383. {
  1384. struct sock *sk = skb->sk;
  1385. unsigned int len = skb->truesize;
  1386. atomic_sub(len, &sk->sk_rmem_alloc);
  1387. sk_mem_uncharge(sk, len);
  1388. }
  1389. EXPORT_SYMBOL(sock_rfree);
  1390. void sock_edemux(struct sk_buff *skb)
  1391. {
  1392. struct sock *sk = skb->sk;
  1393. #ifdef CONFIG_INET
  1394. if (sk->sk_state == TCP_TIME_WAIT)
  1395. inet_twsk_put(inet_twsk(sk));
  1396. else
  1397. #endif
  1398. sock_put(sk);
  1399. }
  1400. EXPORT_SYMBOL(sock_edemux);
  1401. kuid_t sock_i_uid(struct sock *sk)
  1402. {
  1403. kuid_t uid;
  1404. read_lock_bh(&sk->sk_callback_lock);
  1405. uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
  1406. read_unlock_bh(&sk->sk_callback_lock);
  1407. return uid;
  1408. }
  1409. EXPORT_SYMBOL(sock_i_uid);
  1410. unsigned long sock_i_ino(struct sock *sk)
  1411. {
  1412. unsigned long ino;
  1413. read_lock_bh(&sk->sk_callback_lock);
  1414. ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
  1415. read_unlock_bh(&sk->sk_callback_lock);
  1416. return ino;
  1417. }
  1418. EXPORT_SYMBOL(sock_i_ino);
  1419. /*
  1420. * Allocate a skb from the socket's send buffer.
  1421. */
  1422. struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
  1423. gfp_t priority)
  1424. {
  1425. if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1426. struct sk_buff *skb = alloc_skb(size, priority);
  1427. if (skb) {
  1428. skb_set_owner_w(skb, sk);
  1429. return skb;
  1430. }
  1431. }
  1432. return NULL;
  1433. }
  1434. EXPORT_SYMBOL(sock_wmalloc);
  1435. /*
  1436. * Allocate a skb from the socket's receive buffer.
  1437. */
  1438. struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
  1439. gfp_t priority)
  1440. {
  1441. if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
  1442. struct sk_buff *skb = alloc_skb(size, priority);
  1443. if (skb) {
  1444. skb_set_owner_r(skb, sk);
  1445. return skb;
  1446. }
  1447. }
  1448. return NULL;
  1449. }
  1450. /*
  1451. * Allocate a memory block from the socket's option memory buffer.
  1452. */
  1453. void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
  1454. {
  1455. if ((unsigned int)size <= sysctl_optmem_max &&
  1456. atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
  1457. void *mem;
  1458. /* First do the add, to avoid the race if kmalloc
  1459. * might sleep.
  1460. */
  1461. atomic_add(size, &sk->sk_omem_alloc);
  1462. mem = kmalloc(size, priority);
  1463. if (mem)
  1464. return mem;
  1465. atomic_sub(size, &sk->sk_omem_alloc);
  1466. }
  1467. return NULL;
  1468. }
  1469. EXPORT_SYMBOL(sock_kmalloc);
  1470. /*
  1471. * Free an option memory block.
  1472. */
  1473. void sock_kfree_s(struct sock *sk, void *mem, int size)
  1474. {
  1475. kfree(mem);
  1476. atomic_sub(size, &sk->sk_omem_alloc);
  1477. }
  1478. EXPORT_SYMBOL(sock_kfree_s);
  1479. /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
  1480. I think, these locks should be removed for datagram sockets.
  1481. */
  1482. static long sock_wait_for_wmem(struct sock *sk, long timeo)
  1483. {
  1484. DEFINE_WAIT(wait);
  1485. clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1486. for (;;) {
  1487. if (!timeo)
  1488. break;
  1489. if (signal_pending(current))
  1490. break;
  1491. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1492. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1493. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
  1494. break;
  1495. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1496. break;
  1497. if (sk->sk_err)
  1498. break;
  1499. timeo = schedule_timeout(timeo);
  1500. }
  1501. finish_wait(sk_sleep(sk), &wait);
  1502. return timeo;
  1503. }
  1504. /*
  1505. * Generic send/receive buffer handlers
  1506. */
  1507. struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
  1508. unsigned long data_len, int noblock,
  1509. int *errcode, int max_page_order)
  1510. {
  1511. struct sk_buff *skb = NULL;
  1512. unsigned long chunk;
  1513. gfp_t gfp_mask;
  1514. long timeo;
  1515. int err;
  1516. int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
  1517. struct page *page;
  1518. int i;
  1519. err = -EMSGSIZE;
  1520. if (npages > MAX_SKB_FRAGS)
  1521. goto failure;
  1522. timeo = sock_sndtimeo(sk, noblock);
  1523. while (!skb) {
  1524. err = sock_error(sk);
  1525. if (err != 0)
  1526. goto failure;
  1527. err = -EPIPE;
  1528. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1529. goto failure;
  1530. if (atomic_read(&sk->sk_wmem_alloc) >= sk->sk_sndbuf) {
  1531. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1532. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1533. err = -EAGAIN;
  1534. if (!timeo)
  1535. goto failure;
  1536. if (signal_pending(current))
  1537. goto interrupted;
  1538. timeo = sock_wait_for_wmem(sk, timeo);
  1539. continue;
  1540. }
  1541. err = -ENOBUFS;
  1542. gfp_mask = sk->sk_allocation;
  1543. if (gfp_mask & __GFP_WAIT)
  1544. gfp_mask |= __GFP_REPEAT;
  1545. skb = alloc_skb(header_len, gfp_mask);
  1546. if (!skb)
  1547. goto failure;
  1548. skb->truesize += data_len;
  1549. for (i = 0; npages > 0; i++) {
  1550. int order = max_page_order;
  1551. while (order) {
  1552. if (npages >= 1 << order) {
  1553. page = alloc_pages(sk->sk_allocation |
  1554. __GFP_COMP | __GFP_NOWARN,
  1555. order);
  1556. if (page)
  1557. goto fill_page;
  1558. }
  1559. order--;
  1560. }
  1561. page = alloc_page(sk->sk_allocation);
  1562. if (!page)
  1563. goto failure;
  1564. fill_page:
  1565. chunk = min_t(unsigned long, data_len,
  1566. PAGE_SIZE << order);
  1567. skb_fill_page_desc(skb, i, page, 0, chunk);
  1568. data_len -= chunk;
  1569. npages -= 1 << order;
  1570. }
  1571. }
  1572. skb_set_owner_w(skb, sk);
  1573. return skb;
  1574. interrupted:
  1575. err = sock_intr_errno(timeo);
  1576. failure:
  1577. kfree_skb(skb);
  1578. *errcode = err;
  1579. return NULL;
  1580. }
  1581. EXPORT_SYMBOL(sock_alloc_send_pskb);
  1582. struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
  1583. int noblock, int *errcode)
  1584. {
  1585. return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
  1586. }
  1587. EXPORT_SYMBOL(sock_alloc_send_skb);
  1588. /* On 32bit arches, an skb frag is limited to 2^15 */
  1589. #define SKB_FRAG_PAGE_ORDER get_order(32768)
  1590. /**
  1591. * skb_page_frag_refill - check that a page_frag contains enough room
  1592. * @sz: minimum size of the fragment we want to get
  1593. * @pfrag: pointer to page_frag
  1594. * @prio: priority for memory allocation
  1595. *
  1596. * Note: While this allocator tries to use high order pages, there is
  1597. * no guarantee that allocations succeed. Therefore, @sz MUST be
  1598. * less or equal than PAGE_SIZE.
  1599. */
  1600. bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio)
  1601. {
  1602. int order;
  1603. if (pfrag->page) {
  1604. if (atomic_read(&pfrag->page->_count) == 1) {
  1605. pfrag->offset = 0;
  1606. return true;
  1607. }
  1608. if (pfrag->offset + sz <= pfrag->size)
  1609. return true;
  1610. put_page(pfrag->page);
  1611. }
  1612. /* We restrict high order allocations to users that can afford to wait */
  1613. order = (prio & __GFP_WAIT) ? SKB_FRAG_PAGE_ORDER : 0;
  1614. do {
  1615. gfp_t gfp = prio;
  1616. if (order)
  1617. gfp |= __GFP_COMP | __GFP_NOWARN;
  1618. pfrag->page = alloc_pages(gfp, order);
  1619. if (likely(pfrag->page)) {
  1620. pfrag->offset = 0;
  1621. pfrag->size = PAGE_SIZE << order;
  1622. return true;
  1623. }
  1624. } while (--order >= 0);
  1625. return false;
  1626. }
  1627. EXPORT_SYMBOL(skb_page_frag_refill);
  1628. bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
  1629. {
  1630. if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
  1631. return true;
  1632. sk_enter_memory_pressure(sk);
  1633. sk_stream_moderate_sndbuf(sk);
  1634. return false;
  1635. }
  1636. EXPORT_SYMBOL(sk_page_frag_refill);
  1637. static void __lock_sock(struct sock *sk)
  1638. __releases(&sk->sk_lock.slock)
  1639. __acquires(&sk->sk_lock.slock)
  1640. {
  1641. DEFINE_WAIT(wait);
  1642. for (;;) {
  1643. prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
  1644. TASK_UNINTERRUPTIBLE);
  1645. spin_unlock_bh(&sk->sk_lock.slock);
  1646. schedule();
  1647. spin_lock_bh(&sk->sk_lock.slock);
  1648. if (!sock_owned_by_user(sk))
  1649. break;
  1650. }
  1651. finish_wait(&sk->sk_lock.wq, &wait);
  1652. }
  1653. static void __release_sock(struct sock *sk)
  1654. __releases(&sk->sk_lock.slock)
  1655. __acquires(&sk->sk_lock.slock)
  1656. {
  1657. struct sk_buff *skb = sk->sk_backlog.head;
  1658. do {
  1659. sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
  1660. bh_unlock_sock(sk);
  1661. do {
  1662. struct sk_buff *next = skb->next;
  1663. prefetch(next);
  1664. WARN_ON_ONCE(skb_dst_is_noref(skb));
  1665. skb->next = NULL;
  1666. sk_backlog_rcv(sk, skb);
  1667. /*
  1668. * We are in process context here with softirqs
  1669. * disabled, use cond_resched_softirq() to preempt.
  1670. * This is safe to do because we've taken the backlog
  1671. * queue private:
  1672. */
  1673. cond_resched_softirq();
  1674. skb = next;
  1675. } while (skb != NULL);
  1676. bh_lock_sock(sk);
  1677. } while ((skb = sk->sk_backlog.head) != NULL);
  1678. /*
  1679. * Doing the zeroing here guarantee we can not loop forever
  1680. * while a wild producer attempts to flood us.
  1681. */
  1682. sk->sk_backlog.len = 0;
  1683. }
  1684. /**
  1685. * sk_wait_data - wait for data to arrive at sk_receive_queue
  1686. * @sk: sock to wait on
  1687. * @timeo: for how long
  1688. *
  1689. * Now socket state including sk->sk_err is changed only under lock,
  1690. * hence we may omit checks after joining wait queue.
  1691. * We check receive queue before schedule() only as optimization;
  1692. * it is very likely that release_sock() added new data.
  1693. */
  1694. int sk_wait_data(struct sock *sk, long *timeo)
  1695. {
  1696. int rc;
  1697. DEFINE_WAIT(wait);
  1698. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1699. set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1700. rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
  1701. clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1702. finish_wait(sk_sleep(sk), &wait);
  1703. return rc;
  1704. }
  1705. EXPORT_SYMBOL(sk_wait_data);
  1706. /**
  1707. * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
  1708. * @sk: socket
  1709. * @size: memory size to allocate
  1710. * @kind: allocation type
  1711. *
  1712. * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
  1713. * rmem allocation. This function assumes that protocols which have
  1714. * memory_pressure use sk_wmem_queued as write buffer accounting.
  1715. */
  1716. int __sk_mem_schedule(struct sock *sk, int size, int kind)
  1717. {
  1718. struct proto *prot = sk->sk_prot;
  1719. int amt = sk_mem_pages(size);
  1720. long allocated;
  1721. int parent_status = UNDER_LIMIT;
  1722. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  1723. allocated = sk_memory_allocated_add(sk, amt, &parent_status);
  1724. /* Under limit. */
  1725. if (parent_status == UNDER_LIMIT &&
  1726. allocated <= sk_prot_mem_limits(sk, 0)) {
  1727. sk_leave_memory_pressure(sk);
  1728. return 1;
  1729. }
  1730. /* Under pressure. (we or our parents) */
  1731. if ((parent_status > SOFT_LIMIT) ||
  1732. allocated > sk_prot_mem_limits(sk, 1))
  1733. sk_enter_memory_pressure(sk);
  1734. /* Over hard limit (we or our parents) */
  1735. if ((parent_status == OVER_LIMIT) ||
  1736. (allocated > sk_prot_mem_limits(sk, 2)))
  1737. goto suppress_allocation;
  1738. /* guarantee minimum buffer size under pressure */
  1739. if (kind == SK_MEM_RECV) {
  1740. if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
  1741. return 1;
  1742. } else { /* SK_MEM_SEND */
  1743. if (sk->sk_type == SOCK_STREAM) {
  1744. if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
  1745. return 1;
  1746. } else if (atomic_read(&sk->sk_wmem_alloc) <
  1747. prot->sysctl_wmem[0])
  1748. return 1;
  1749. }
  1750. if (sk_has_memory_pressure(sk)) {
  1751. int alloc;
  1752. if (!sk_under_memory_pressure(sk))
  1753. return 1;
  1754. alloc = sk_sockets_allocated_read_positive(sk);
  1755. if (sk_prot_mem_limits(sk, 2) > alloc *
  1756. sk_mem_pages(sk->sk_wmem_queued +
  1757. atomic_read(&sk->sk_rmem_alloc) +
  1758. sk->sk_forward_alloc))
  1759. return 1;
  1760. }
  1761. suppress_allocation:
  1762. if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
  1763. sk_stream_moderate_sndbuf(sk);
  1764. /* Fail only if socket is _under_ its sndbuf.
  1765. * In this case we cannot block, so that we have to fail.
  1766. */
  1767. if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
  1768. return 1;
  1769. }
  1770. trace_sock_exceed_buf_limit(sk, prot, allocated);
  1771. /* Alas. Undo changes. */
  1772. sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
  1773. sk_memory_allocated_sub(sk, amt);
  1774. return 0;
  1775. }
  1776. EXPORT_SYMBOL(__sk_mem_schedule);
  1777. /**
  1778. * __sk_reclaim - reclaim memory_allocated
  1779. * @sk: socket
  1780. */
  1781. void __sk_mem_reclaim(struct sock *sk)
  1782. {
  1783. sk_memory_allocated_sub(sk,
  1784. sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
  1785. sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
  1786. if (sk_under_memory_pressure(sk) &&
  1787. (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
  1788. sk_leave_memory_pressure(sk);
  1789. }
  1790. EXPORT_SYMBOL(__sk_mem_reclaim);
  1791. /*
  1792. * Set of default routines for initialising struct proto_ops when
  1793. * the protocol does not support a particular function. In certain
  1794. * cases where it makes no sense for a protocol to have a "do nothing"
  1795. * function, some default processing is provided.
  1796. */
  1797. int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
  1798. {
  1799. return -EOPNOTSUPP;
  1800. }
  1801. EXPORT_SYMBOL(sock_no_bind);
  1802. int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
  1803. int len, int flags)
  1804. {
  1805. return -EOPNOTSUPP;
  1806. }
  1807. EXPORT_SYMBOL(sock_no_connect);
  1808. int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
  1809. {
  1810. return -EOPNOTSUPP;
  1811. }
  1812. EXPORT_SYMBOL(sock_no_socketpair);
  1813. int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
  1814. {
  1815. return -EOPNOTSUPP;
  1816. }
  1817. EXPORT_SYMBOL(sock_no_accept);
  1818. int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
  1819. int *len, int peer)
  1820. {
  1821. return -EOPNOTSUPP;
  1822. }
  1823. EXPORT_SYMBOL(sock_no_getname);
  1824. unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
  1825. {
  1826. return 0;
  1827. }
  1828. EXPORT_SYMBOL(sock_no_poll);
  1829. int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
  1830. {
  1831. return -EOPNOTSUPP;
  1832. }
  1833. EXPORT_SYMBOL(sock_no_ioctl);
  1834. int sock_no_listen(struct socket *sock, int backlog)
  1835. {
  1836. return -EOPNOTSUPP;
  1837. }
  1838. EXPORT_SYMBOL(sock_no_listen);
  1839. int sock_no_shutdown(struct socket *sock, int how)
  1840. {
  1841. return -EOPNOTSUPP;
  1842. }
  1843. EXPORT_SYMBOL(sock_no_shutdown);
  1844. int sock_no_setsockopt(struct socket *sock, int level, int optname,
  1845. char __user *optval, unsigned int optlen)
  1846. {
  1847. return -EOPNOTSUPP;
  1848. }
  1849. EXPORT_SYMBOL(sock_no_setsockopt);
  1850. int sock_no_getsockopt(struct socket *sock, int level, int optname,
  1851. char __user *optval, int __user *optlen)
  1852. {
  1853. return -EOPNOTSUPP;
  1854. }
  1855. EXPORT_SYMBOL(sock_no_getsockopt);
  1856. int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1857. size_t len)
  1858. {
  1859. return -EOPNOTSUPP;
  1860. }
  1861. EXPORT_SYMBOL(sock_no_sendmsg);
  1862. int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1863. size_t len, int flags)
  1864. {
  1865. return -EOPNOTSUPP;
  1866. }
  1867. EXPORT_SYMBOL(sock_no_recvmsg);
  1868. int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
  1869. {
  1870. /* Mirror missing mmap method error code */
  1871. return -ENODEV;
  1872. }
  1873. EXPORT_SYMBOL(sock_no_mmap);
  1874. ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
  1875. {
  1876. ssize_t res;
  1877. struct msghdr msg = {.msg_flags = flags};
  1878. struct kvec iov;
  1879. char *kaddr = kmap(page);
  1880. iov.iov_base = kaddr + offset;
  1881. iov.iov_len = size;
  1882. res = kernel_sendmsg(sock, &msg, &iov, 1, size);
  1883. kunmap(page);
  1884. return res;
  1885. }
  1886. EXPORT_SYMBOL(sock_no_sendpage);
  1887. /*
  1888. * Default Socket Callbacks
  1889. */
  1890. static void sock_def_wakeup(struct sock *sk)
  1891. {
  1892. struct socket_wq *wq;
  1893. rcu_read_lock();
  1894. wq = rcu_dereference(sk->sk_wq);
  1895. if (wq_has_sleeper(wq))
  1896. wake_up_interruptible_all(&wq->wait);
  1897. rcu_read_unlock();
  1898. }
  1899. static void sock_def_error_report(struct sock *sk)
  1900. {
  1901. struct socket_wq *wq;
  1902. rcu_read_lock();
  1903. wq = rcu_dereference(sk->sk_wq);
  1904. if (wq_has_sleeper(wq))
  1905. wake_up_interruptible_poll(&wq->wait, POLLERR);
  1906. sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
  1907. rcu_read_unlock();
  1908. }
  1909. static void sock_def_readable(struct sock *sk, int len)
  1910. {
  1911. struct socket_wq *wq;
  1912. rcu_read_lock();
  1913. wq = rcu_dereference(sk->sk_wq);
  1914. if (wq_has_sleeper(wq))
  1915. wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
  1916. POLLRDNORM | POLLRDBAND);
  1917. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  1918. rcu_read_unlock();
  1919. }
  1920. static void sock_def_write_space(struct sock *sk)
  1921. {
  1922. struct socket_wq *wq;
  1923. rcu_read_lock();
  1924. /* Do not wake up a writer until he can make "significant"
  1925. * progress. --DaveM
  1926. */
  1927. if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
  1928. wq = rcu_dereference(sk->sk_wq);
  1929. if (wq_has_sleeper(wq))
  1930. wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
  1931. POLLWRNORM | POLLWRBAND);
  1932. /* Should agree with poll, otherwise some programs break */
  1933. if (sock_writeable(sk))
  1934. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  1935. }
  1936. rcu_read_unlock();
  1937. }
  1938. static void sock_def_destruct(struct sock *sk)
  1939. {
  1940. kfree(sk->sk_protinfo);
  1941. }
  1942. void sk_send_sigurg(struct sock *sk)
  1943. {
  1944. if (sk->sk_socket && sk->sk_socket->file)
  1945. if (send_sigurg(&sk->sk_socket->file->f_owner))
  1946. sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
  1947. }
  1948. EXPORT_SYMBOL(sk_send_sigurg);
  1949. void sk_reset_timer(struct sock *sk, struct timer_list* timer,
  1950. unsigned long expires)
  1951. {
  1952. if (!mod_timer(timer, expires))
  1953. sock_hold(sk);
  1954. }
  1955. EXPORT_SYMBOL(sk_reset_timer);
  1956. void sk_stop_timer(struct sock *sk, struct timer_list* timer)
  1957. {
  1958. if (del_timer(timer))
  1959. __sock_put(sk);
  1960. }
  1961. EXPORT_SYMBOL(sk_stop_timer);
  1962. void sock_init_data(struct socket *sock, struct sock *sk)
  1963. {
  1964. skb_queue_head_init(&sk->sk_receive_queue);
  1965. skb_queue_head_init(&sk->sk_write_queue);
  1966. skb_queue_head_init(&sk->sk_error_queue);
  1967. #ifdef CONFIG_NET_DMA
  1968. skb_queue_head_init(&sk->sk_async_wait_queue);
  1969. #endif
  1970. sk->sk_send_head = NULL;
  1971. init_timer(&sk->sk_timer);
  1972. sk->sk_allocation = GFP_KERNEL;
  1973. sk->sk_rcvbuf = sysctl_rmem_default;
  1974. sk->sk_sndbuf = sysctl_wmem_default;
  1975. sk->sk_state = TCP_CLOSE;
  1976. sk_set_socket(sk, sock);
  1977. sock_set_flag(sk, SOCK_ZAPPED);
  1978. if (sock) {
  1979. sk->sk_type = sock->type;
  1980. sk->sk_wq = sock->wq;
  1981. sock->sk = sk;
  1982. } else
  1983. sk->sk_wq = NULL;
  1984. spin_lock_init(&sk->sk_dst_lock);
  1985. rwlock_init(&sk->sk_callback_lock);
  1986. lockdep_set_class_and_name(&sk->sk_callback_lock,
  1987. af_callback_keys + sk->sk_family,
  1988. af_family_clock_key_strings[sk->sk_family]);
  1989. sk->sk_state_change = sock_def_wakeup;
  1990. sk->sk_data_ready = sock_def_readable;
  1991. sk->sk_write_space = sock_def_write_space;
  1992. sk->sk_error_report = sock_def_error_report;
  1993. sk->sk_destruct = sock_def_destruct;
  1994. sk->sk_frag.page = NULL;
  1995. sk->sk_frag.offset = 0;
  1996. sk->sk_peek_off = -1;
  1997. sk->sk_peer_pid = NULL;
  1998. sk->sk_peer_cred = NULL;
  1999. sk->sk_write_pending = 0;
  2000. sk->sk_rcvlowat = 1;
  2001. sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
  2002. sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
  2003. sk->sk_stamp = ktime_set(-1L, 0);
  2004. #ifdef CONFIG_NET_RX_BUSY_POLL
  2005. sk->sk_napi_id = 0;
  2006. sk->sk_ll_usec = sysctl_net_busy_read;
  2007. #endif
  2008. sk->sk_max_pacing_rate = ~0U;
  2009. sk->sk_pacing_rate = ~0U;
  2010. /*
  2011. * Before updating sk_refcnt, we must commit prior changes to memory
  2012. * (Documentation/RCU/rculist_nulls.txt for details)
  2013. */
  2014. smp_wmb();
  2015. atomic_set(&sk->sk_refcnt, 1);
  2016. atomic_set(&sk->sk_drops, 0);
  2017. }
  2018. EXPORT_SYMBOL(sock_init_data);
  2019. void lock_sock_nested(struct sock *sk, int subclass)
  2020. {
  2021. might_sleep();
  2022. spin_lock_bh(&sk->sk_lock.slock);
  2023. if (sk->sk_lock.owned)
  2024. __lock_sock(sk);
  2025. sk->sk_lock.owned = 1;
  2026. spin_unlock(&sk->sk_lock.slock);
  2027. /*
  2028. * The sk_lock has mutex_lock() semantics here:
  2029. */
  2030. mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
  2031. local_bh_enable();
  2032. }
  2033. EXPORT_SYMBOL(lock_sock_nested);
  2034. void release_sock(struct sock *sk)
  2035. {
  2036. /*
  2037. * The sk_lock has mutex_unlock() semantics:
  2038. */
  2039. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  2040. spin_lock_bh(&sk->sk_lock.slock);
  2041. if (sk->sk_backlog.tail)
  2042. __release_sock(sk);
  2043. if (sk->sk_prot->release_cb)
  2044. sk->sk_prot->release_cb(sk);
  2045. sk->sk_lock.owned = 0;
  2046. if (waitqueue_active(&sk->sk_lock.wq))
  2047. wake_up(&sk->sk_lock.wq);
  2048. spin_unlock_bh(&sk->sk_lock.slock);
  2049. }
  2050. EXPORT_SYMBOL(release_sock);
  2051. /**
  2052. * lock_sock_fast - fast version of lock_sock
  2053. * @sk: socket
  2054. *
  2055. * This version should be used for very small section, where process wont block
  2056. * return false if fast path is taken
  2057. * sk_lock.slock locked, owned = 0, BH disabled
  2058. * return true if slow path is taken
  2059. * sk_lock.slock unlocked, owned = 1, BH enabled
  2060. */
  2061. bool lock_sock_fast(struct sock *sk)
  2062. {
  2063. might_sleep();
  2064. spin_lock_bh(&sk->sk_lock.slock);
  2065. if (!sk->sk_lock.owned)
  2066. /*
  2067. * Note : We must disable BH
  2068. */
  2069. return false;
  2070. __lock_sock(sk);
  2071. sk->sk_lock.owned = 1;
  2072. spin_unlock(&sk->sk_lock.slock);
  2073. /*
  2074. * The sk_lock has mutex_lock() semantics here:
  2075. */
  2076. mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
  2077. local_bh_enable();
  2078. return true;
  2079. }
  2080. EXPORT_SYMBOL(lock_sock_fast);
  2081. int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
  2082. {
  2083. struct timeval tv;
  2084. if (!sock_flag(sk, SOCK_TIMESTAMP))
  2085. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  2086. tv = ktime_to_timeval(sk->sk_stamp);
  2087. if (tv.tv_sec == -1)
  2088. return -ENOENT;
  2089. if (tv.tv_sec == 0) {
  2090. sk->sk_stamp = ktime_get_real();
  2091. tv = ktime_to_timeval(sk->sk_stamp);
  2092. }
  2093. return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
  2094. }
  2095. EXPORT_SYMBOL(sock_get_timestamp);
  2096. int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
  2097. {
  2098. struct timespec ts;
  2099. if (!sock_flag(sk, SOCK_TIMESTAMP))
  2100. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  2101. ts = ktime_to_timespec(sk->sk_stamp);
  2102. if (ts.tv_sec == -1)
  2103. return -ENOENT;
  2104. if (ts.tv_sec == 0) {
  2105. sk->sk_stamp = ktime_get_real();
  2106. ts = ktime_to_timespec(sk->sk_stamp);
  2107. }
  2108. return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
  2109. }
  2110. EXPORT_SYMBOL(sock_get_timestampns);
  2111. void sock_enable_timestamp(struct sock *sk, int flag)
  2112. {
  2113. if (!sock_flag(sk, flag)) {
  2114. unsigned long previous_flags = sk->sk_flags;
  2115. sock_set_flag(sk, flag);
  2116. /*
  2117. * we just set one of the two flags which require net
  2118. * time stamping, but time stamping might have been on
  2119. * already because of the other one
  2120. */
  2121. if (!(previous_flags & SK_FLAGS_TIMESTAMP))
  2122. net_enable_timestamp();
  2123. }
  2124. }
  2125. int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
  2126. int level, int type)
  2127. {
  2128. struct sock_exterr_skb *serr;
  2129. struct sk_buff *skb, *skb2;
  2130. int copied, err;
  2131. err = -EAGAIN;
  2132. skb = skb_dequeue(&sk->sk_error_queue);
  2133. if (skb == NULL)
  2134. goto out;
  2135. copied = skb->len;
  2136. if (copied > len) {
  2137. msg->msg_flags |= MSG_TRUNC;
  2138. copied = len;
  2139. }
  2140. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  2141. if (err)
  2142. goto out_free_skb;
  2143. sock_recv_timestamp(msg, sk, skb);
  2144. serr = SKB_EXT_ERR(skb);
  2145. put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
  2146. msg->msg_flags |= MSG_ERRQUEUE;
  2147. err = copied;
  2148. /* Reset and regenerate socket error */
  2149. spin_lock_bh(&sk->sk_error_queue.lock);
  2150. sk->sk_err = 0;
  2151. if ((skb2 = skb_peek(&sk->sk_error_queue)) != NULL) {
  2152. sk->sk_err = SKB_EXT_ERR(skb2)->ee.ee_errno;
  2153. spin_unlock_bh(&sk->sk_error_queue.lock);
  2154. sk->sk_error_report(sk);
  2155. } else
  2156. spin_unlock_bh(&sk->sk_error_queue.lock);
  2157. out_free_skb:
  2158. kfree_skb(skb);
  2159. out:
  2160. return err;
  2161. }
  2162. EXPORT_SYMBOL(sock_recv_errqueue);
  2163. /*
  2164. * Get a socket option on an socket.
  2165. *
  2166. * FIX: POSIX 1003.1g is very ambiguous here. It states that
  2167. * asynchronous errors should be reported by getsockopt. We assume
  2168. * this means if you specify SO_ERROR (otherwise whats the point of it).
  2169. */
  2170. int sock_common_getsockopt(struct socket *sock, int level, int optname,
  2171. char __user *optval, int __user *optlen)
  2172. {
  2173. struct sock *sk = sock->sk;
  2174. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  2175. }
  2176. EXPORT_SYMBOL(sock_common_getsockopt);
  2177. #ifdef CONFIG_COMPAT
  2178. int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
  2179. char __user *optval, int __user *optlen)
  2180. {
  2181. struct sock *sk = sock->sk;
  2182. if (sk->sk_prot->compat_getsockopt != NULL)
  2183. return sk->sk_prot->compat_getsockopt(sk, level, optname,
  2184. optval, optlen);
  2185. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  2186. }
  2187. EXPORT_SYMBOL(compat_sock_common_getsockopt);
  2188. #endif
  2189. int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
  2190. struct msghdr *msg, size_t size, int flags)
  2191. {
  2192. struct sock *sk = sock->sk;
  2193. int addr_len = 0;
  2194. int err;
  2195. err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
  2196. flags & ~MSG_DONTWAIT, &addr_len);
  2197. if (err >= 0)
  2198. msg->msg_namelen = addr_len;
  2199. return err;
  2200. }
  2201. EXPORT_SYMBOL(sock_common_recvmsg);
  2202. /*
  2203. * Set socket options on an inet socket.
  2204. */
  2205. int sock_common_setsockopt(struct socket *sock, int level, int optname,
  2206. char __user *optval, unsigned int optlen)
  2207. {
  2208. struct sock *sk = sock->sk;
  2209. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  2210. }
  2211. EXPORT_SYMBOL(sock_common_setsockopt);
  2212. #ifdef CONFIG_COMPAT
  2213. int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
  2214. char __user *optval, unsigned int optlen)
  2215. {
  2216. struct sock *sk = sock->sk;
  2217. if (sk->sk_prot->compat_setsockopt != NULL)
  2218. return sk->sk_prot->compat_setsockopt(sk, level, optname,
  2219. optval, optlen);
  2220. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  2221. }
  2222. EXPORT_SYMBOL(compat_sock_common_setsockopt);
  2223. #endif
  2224. void sk_common_release(struct sock *sk)
  2225. {
  2226. if (sk->sk_prot->destroy)
  2227. sk->sk_prot->destroy(sk);
  2228. /*
  2229. * Observation: when sock_common_release is called, processes have
  2230. * no access to socket. But net still has.
  2231. * Step one, detach it from networking:
  2232. *
  2233. * A. Remove from hash tables.
  2234. */
  2235. sk->sk_prot->unhash(sk);
  2236. /*
  2237. * In this point socket cannot receive new packets, but it is possible
  2238. * that some packets are in flight because some CPU runs receiver and
  2239. * did hash table lookup before we unhashed socket. They will achieve
  2240. * receive queue and will be purged by socket destructor.
  2241. *
  2242. * Also we still have packets pending on receive queue and probably,
  2243. * our own packets waiting in device queues. sock_destroy will drain
  2244. * receive queue, but transmitted packets will delay socket destruction
  2245. * until the last reference will be released.
  2246. */
  2247. sock_orphan(sk);
  2248. xfrm_sk_free_policy(sk);
  2249. sk_refcnt_debug_release(sk);
  2250. if (sk->sk_frag.page) {
  2251. put_page(sk->sk_frag.page);
  2252. sk->sk_frag.page = NULL;
  2253. }
  2254. sock_put(sk);
  2255. }
  2256. EXPORT_SYMBOL(sk_common_release);
  2257. #ifdef CONFIG_PROC_FS
  2258. #define PROTO_INUSE_NR 64 /* should be enough for the first time */
  2259. struct prot_inuse {
  2260. int val[PROTO_INUSE_NR];
  2261. };
  2262. static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
  2263. #ifdef CONFIG_NET_NS
  2264. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2265. {
  2266. __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
  2267. }
  2268. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2269. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2270. {
  2271. int cpu, idx = prot->inuse_idx;
  2272. int res = 0;
  2273. for_each_possible_cpu(cpu)
  2274. res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
  2275. return res >= 0 ? res : 0;
  2276. }
  2277. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2278. static int __net_init sock_inuse_init_net(struct net *net)
  2279. {
  2280. net->core.inuse = alloc_percpu(struct prot_inuse);
  2281. return net->core.inuse ? 0 : -ENOMEM;
  2282. }
  2283. static void __net_exit sock_inuse_exit_net(struct net *net)
  2284. {
  2285. free_percpu(net->core.inuse);
  2286. }
  2287. static struct pernet_operations net_inuse_ops = {
  2288. .init = sock_inuse_init_net,
  2289. .exit = sock_inuse_exit_net,
  2290. };
  2291. static __init int net_inuse_init(void)
  2292. {
  2293. if (register_pernet_subsys(&net_inuse_ops))
  2294. panic("Cannot initialize net inuse counters");
  2295. return 0;
  2296. }
  2297. core_initcall(net_inuse_init);
  2298. #else
  2299. static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
  2300. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2301. {
  2302. __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
  2303. }
  2304. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2305. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2306. {
  2307. int cpu, idx = prot->inuse_idx;
  2308. int res = 0;
  2309. for_each_possible_cpu(cpu)
  2310. res += per_cpu(prot_inuse, cpu).val[idx];
  2311. return res >= 0 ? res : 0;
  2312. }
  2313. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2314. #endif
  2315. static void assign_proto_idx(struct proto *prot)
  2316. {
  2317. prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
  2318. if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
  2319. pr_err("PROTO_INUSE_NR exhausted\n");
  2320. return;
  2321. }
  2322. set_bit(prot->inuse_idx, proto_inuse_idx);
  2323. }
  2324. static void release_proto_idx(struct proto *prot)
  2325. {
  2326. if (prot->inuse_idx != PROTO_INUSE_NR - 1)
  2327. clear_bit(prot->inuse_idx, proto_inuse_idx);
  2328. }
  2329. #else
  2330. static inline void assign_proto_idx(struct proto *prot)
  2331. {
  2332. }
  2333. static inline void release_proto_idx(struct proto *prot)
  2334. {
  2335. }
  2336. #endif
  2337. int proto_register(struct proto *prot, int alloc_slab)
  2338. {
  2339. if (alloc_slab) {
  2340. prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
  2341. SLAB_HWCACHE_ALIGN | prot->slab_flags,
  2342. NULL);
  2343. if (prot->slab == NULL) {
  2344. pr_crit("%s: Can't create sock SLAB cache!\n",
  2345. prot->name);
  2346. goto out;
  2347. }
  2348. if (prot->rsk_prot != NULL) {
  2349. prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
  2350. if (prot->rsk_prot->slab_name == NULL)
  2351. goto out_free_sock_slab;
  2352. prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
  2353. prot->rsk_prot->obj_size, 0,
  2354. SLAB_HWCACHE_ALIGN, NULL);
  2355. if (prot->rsk_prot->slab == NULL) {
  2356. pr_crit("%s: Can't create request sock SLAB cache!\n",
  2357. prot->name);
  2358. goto out_free_request_sock_slab_name;
  2359. }
  2360. }
  2361. if (prot->twsk_prot != NULL) {
  2362. prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
  2363. if (prot->twsk_prot->twsk_slab_name == NULL)
  2364. goto out_free_request_sock_slab;
  2365. prot->twsk_prot->twsk_slab =
  2366. kmem_cache_create(prot->twsk_prot->twsk_slab_name,
  2367. prot->twsk_prot->twsk_obj_size,
  2368. 0,
  2369. SLAB_HWCACHE_ALIGN |
  2370. prot->slab_flags,
  2371. NULL);
  2372. if (prot->twsk_prot->twsk_slab == NULL)
  2373. goto out_free_timewait_sock_slab_name;
  2374. }
  2375. }
  2376. mutex_lock(&proto_list_mutex);
  2377. list_add(&prot->node, &proto_list);
  2378. assign_proto_idx(prot);
  2379. mutex_unlock(&proto_list_mutex);
  2380. return 0;
  2381. out_free_timewait_sock_slab_name:
  2382. kfree(prot->twsk_prot->twsk_slab_name);
  2383. out_free_request_sock_slab:
  2384. if (prot->rsk_prot && prot->rsk_prot->slab) {
  2385. kmem_cache_destroy(prot->rsk_prot->slab);
  2386. prot->rsk_prot->slab = NULL;
  2387. }
  2388. out_free_request_sock_slab_name:
  2389. if (prot->rsk_prot)
  2390. kfree(prot->rsk_prot->slab_name);
  2391. out_free_sock_slab:
  2392. kmem_cache_destroy(prot->slab);
  2393. prot->slab = NULL;
  2394. out:
  2395. return -ENOBUFS;
  2396. }
  2397. EXPORT_SYMBOL(proto_register);
  2398. void proto_unregister(struct proto *prot)
  2399. {
  2400. mutex_lock(&proto_list_mutex);
  2401. release_proto_idx(prot);
  2402. list_del(&prot->node);
  2403. mutex_unlock(&proto_list_mutex);
  2404. if (prot->slab != NULL) {
  2405. kmem_cache_destroy(prot->slab);
  2406. prot->slab = NULL;
  2407. }
  2408. if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
  2409. kmem_cache_destroy(prot->rsk_prot->slab);
  2410. kfree(prot->rsk_prot->slab_name);
  2411. prot->rsk_prot->slab = NULL;
  2412. }
  2413. if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
  2414. kmem_cache_destroy(prot->twsk_prot->twsk_slab);
  2415. kfree(prot->twsk_prot->twsk_slab_name);
  2416. prot->twsk_prot->twsk_slab = NULL;
  2417. }
  2418. }
  2419. EXPORT_SYMBOL(proto_unregister);
  2420. #ifdef CONFIG_PROC_FS
  2421. static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
  2422. __acquires(proto_list_mutex)
  2423. {
  2424. mutex_lock(&proto_list_mutex);
  2425. return seq_list_start_head(&proto_list, *pos);
  2426. }
  2427. static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2428. {
  2429. return seq_list_next(v, &proto_list, pos);
  2430. }
  2431. static void proto_seq_stop(struct seq_file *seq, void *v)
  2432. __releases(proto_list_mutex)
  2433. {
  2434. mutex_unlock(&proto_list_mutex);
  2435. }
  2436. static char proto_method_implemented(const void *method)
  2437. {
  2438. return method == NULL ? 'n' : 'y';
  2439. }
  2440. static long sock_prot_memory_allocated(struct proto *proto)
  2441. {
  2442. return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
  2443. }
  2444. static char *sock_prot_memory_pressure(struct proto *proto)
  2445. {
  2446. return proto->memory_pressure != NULL ?
  2447. proto_memory_pressure(proto) ? "yes" : "no" : "NI";
  2448. }
  2449. static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
  2450. {
  2451. seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
  2452. "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
  2453. proto->name,
  2454. proto->obj_size,
  2455. sock_prot_inuse_get(seq_file_net(seq), proto),
  2456. sock_prot_memory_allocated(proto),
  2457. sock_prot_memory_pressure(proto),
  2458. proto->max_header,
  2459. proto->slab == NULL ? "no" : "yes",
  2460. module_name(proto->owner),
  2461. proto_method_implemented(proto->close),
  2462. proto_method_implemented(proto->connect),
  2463. proto_method_implemented(proto->disconnect),
  2464. proto_method_implemented(proto->accept),
  2465. proto_method_implemented(proto->ioctl),
  2466. proto_method_implemented(proto->init),
  2467. proto_method_implemented(proto->destroy),
  2468. proto_method_implemented(proto->shutdown),
  2469. proto_method_implemented(proto->setsockopt),
  2470. proto_method_implemented(proto->getsockopt),
  2471. proto_method_implemented(proto->sendmsg),
  2472. proto_method_implemented(proto->recvmsg),
  2473. proto_method_implemented(proto->sendpage),
  2474. proto_method_implemented(proto->bind),
  2475. proto_method_implemented(proto->backlog_rcv),
  2476. proto_method_implemented(proto->hash),
  2477. proto_method_implemented(proto->unhash),
  2478. proto_method_implemented(proto->get_port),
  2479. proto_method_implemented(proto->enter_memory_pressure));
  2480. }
  2481. static int proto_seq_show(struct seq_file *seq, void *v)
  2482. {
  2483. if (v == &proto_list)
  2484. seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
  2485. "protocol",
  2486. "size",
  2487. "sockets",
  2488. "memory",
  2489. "press",
  2490. "maxhdr",
  2491. "slab",
  2492. "module",
  2493. "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
  2494. else
  2495. proto_seq_printf(seq, list_entry(v, struct proto, node));
  2496. return 0;
  2497. }
  2498. static const struct seq_operations proto_seq_ops = {
  2499. .start = proto_seq_start,
  2500. .next = proto_seq_next,
  2501. .stop = proto_seq_stop,
  2502. .show = proto_seq_show,
  2503. };
  2504. static int proto_seq_open(struct inode *inode, struct file *file)
  2505. {
  2506. return seq_open_net(inode, file, &proto_seq_ops,
  2507. sizeof(struct seq_net_private));
  2508. }
  2509. static const struct file_operations proto_seq_fops = {
  2510. .owner = THIS_MODULE,
  2511. .open = proto_seq_open,
  2512. .read = seq_read,
  2513. .llseek = seq_lseek,
  2514. .release = seq_release_net,
  2515. };
  2516. static __net_init int proto_init_net(struct net *net)
  2517. {
  2518. if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
  2519. return -ENOMEM;
  2520. return 0;
  2521. }
  2522. static __net_exit void proto_exit_net(struct net *net)
  2523. {
  2524. remove_proc_entry("protocols", net->proc_net);
  2525. }
  2526. static __net_initdata struct pernet_operations proto_net_ops = {
  2527. .init = proto_init_net,
  2528. .exit = proto_exit_net,
  2529. };
  2530. static int __init proto_init(void)
  2531. {
  2532. return register_pernet_subsys(&proto_net_ops);
  2533. }
  2534. subsys_initcall(proto_init);
  2535. #endif /* PROC_FS */