vmstat.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453
  1. /*
  2. * linux/mm/vmstat.c
  3. *
  4. * Manages VM statistics
  5. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  6. *
  7. * zoned VM statistics
  8. * Copyright (C) 2006 Silicon Graphics, Inc.,
  9. * Christoph Lameter <christoph@lameter.com>
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/mm.h>
  13. #include <linux/err.h>
  14. #include <linux/module.h>
  15. #include <linux/slab.h>
  16. #include <linux/cpu.h>
  17. #include <linux/vmstat.h>
  18. #include <linux/sched.h>
  19. #include <linux/math64.h>
  20. #include <linux/writeback.h>
  21. #include <linux/compaction.h>
  22. #include <linux/mm_inline.h>
  23. #include "internal.h"
  24. #ifdef CONFIG_VM_EVENT_COUNTERS
  25. DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
  26. EXPORT_PER_CPU_SYMBOL(vm_event_states);
  27. static void sum_vm_events(unsigned long *ret)
  28. {
  29. int cpu;
  30. int i;
  31. memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
  32. for_each_online_cpu(cpu) {
  33. struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
  34. for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
  35. ret[i] += this->event[i];
  36. }
  37. }
  38. /*
  39. * Accumulate the vm event counters across all CPUs.
  40. * The result is unavoidably approximate - it can change
  41. * during and after execution of this function.
  42. */
  43. void all_vm_events(unsigned long *ret)
  44. {
  45. get_online_cpus();
  46. sum_vm_events(ret);
  47. put_online_cpus();
  48. }
  49. EXPORT_SYMBOL_GPL(all_vm_events);
  50. /*
  51. * Fold the foreign cpu events into our own.
  52. *
  53. * This is adding to the events on one processor
  54. * but keeps the global counts constant.
  55. */
  56. void vm_events_fold_cpu(int cpu)
  57. {
  58. struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
  59. int i;
  60. for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
  61. count_vm_events(i, fold_state->event[i]);
  62. fold_state->event[i] = 0;
  63. }
  64. }
  65. #endif /* CONFIG_VM_EVENT_COUNTERS */
  66. /*
  67. * Manage combined zone based / global counters
  68. *
  69. * vm_stat contains the global counters
  70. */
  71. atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
  72. EXPORT_SYMBOL(vm_stat);
  73. #ifdef CONFIG_SMP
  74. int calculate_pressure_threshold(struct zone *zone)
  75. {
  76. int threshold;
  77. int watermark_distance;
  78. /*
  79. * As vmstats are not up to date, there is drift between the estimated
  80. * and real values. For high thresholds and a high number of CPUs, it
  81. * is possible for the min watermark to be breached while the estimated
  82. * value looks fine. The pressure threshold is a reduced value such
  83. * that even the maximum amount of drift will not accidentally breach
  84. * the min watermark
  85. */
  86. watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
  87. threshold = max(1, (int)(watermark_distance / num_online_cpus()));
  88. /*
  89. * Maximum threshold is 125
  90. */
  91. threshold = min(125, threshold);
  92. return threshold;
  93. }
  94. int calculate_normal_threshold(struct zone *zone)
  95. {
  96. int threshold;
  97. int mem; /* memory in 128 MB units */
  98. /*
  99. * The threshold scales with the number of processors and the amount
  100. * of memory per zone. More memory means that we can defer updates for
  101. * longer, more processors could lead to more contention.
  102. * fls() is used to have a cheap way of logarithmic scaling.
  103. *
  104. * Some sample thresholds:
  105. *
  106. * Threshold Processors (fls) Zonesize fls(mem+1)
  107. * ------------------------------------------------------------------
  108. * 8 1 1 0.9-1 GB 4
  109. * 16 2 2 0.9-1 GB 4
  110. * 20 2 2 1-2 GB 5
  111. * 24 2 2 2-4 GB 6
  112. * 28 2 2 4-8 GB 7
  113. * 32 2 2 8-16 GB 8
  114. * 4 2 2 <128M 1
  115. * 30 4 3 2-4 GB 5
  116. * 48 4 3 8-16 GB 8
  117. * 32 8 4 1-2 GB 4
  118. * 32 8 4 0.9-1GB 4
  119. * 10 16 5 <128M 1
  120. * 40 16 5 900M 4
  121. * 70 64 7 2-4 GB 5
  122. * 84 64 7 4-8 GB 6
  123. * 108 512 9 4-8 GB 6
  124. * 125 1024 10 8-16 GB 8
  125. * 125 1024 10 16-32 GB 9
  126. */
  127. mem = zone->managed_pages >> (27 - PAGE_SHIFT);
  128. threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
  129. /*
  130. * Maximum threshold is 125
  131. */
  132. threshold = min(125, threshold);
  133. return threshold;
  134. }
  135. /*
  136. * Refresh the thresholds for each zone.
  137. */
  138. void refresh_zone_stat_thresholds(void)
  139. {
  140. struct zone *zone;
  141. int cpu;
  142. int threshold;
  143. for_each_populated_zone(zone) {
  144. unsigned long max_drift, tolerate_drift;
  145. threshold = calculate_normal_threshold(zone);
  146. for_each_online_cpu(cpu)
  147. per_cpu_ptr(zone->pageset, cpu)->stat_threshold
  148. = threshold;
  149. /*
  150. * Only set percpu_drift_mark if there is a danger that
  151. * NR_FREE_PAGES reports the low watermark is ok when in fact
  152. * the min watermark could be breached by an allocation
  153. */
  154. tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
  155. max_drift = num_online_cpus() * threshold;
  156. if (max_drift > tolerate_drift)
  157. zone->percpu_drift_mark = high_wmark_pages(zone) +
  158. max_drift;
  159. }
  160. }
  161. void set_pgdat_percpu_threshold(pg_data_t *pgdat,
  162. int (*calculate_pressure)(struct zone *))
  163. {
  164. struct zone *zone;
  165. int cpu;
  166. int threshold;
  167. int i;
  168. for (i = 0; i < pgdat->nr_zones; i++) {
  169. zone = &pgdat->node_zones[i];
  170. if (!zone->percpu_drift_mark)
  171. continue;
  172. threshold = (*calculate_pressure)(zone);
  173. for_each_possible_cpu(cpu)
  174. per_cpu_ptr(zone->pageset, cpu)->stat_threshold
  175. = threshold;
  176. }
  177. }
  178. /*
  179. * For use when we know that interrupts are disabled.
  180. */
  181. void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
  182. int delta)
  183. {
  184. struct per_cpu_pageset __percpu *pcp = zone->pageset;
  185. s8 __percpu *p = pcp->vm_stat_diff + item;
  186. long x;
  187. long t;
  188. x = delta + __this_cpu_read(*p);
  189. t = __this_cpu_read(pcp->stat_threshold);
  190. if (unlikely(x > t || x < -t)) {
  191. zone_page_state_add(x, zone, item);
  192. x = 0;
  193. }
  194. __this_cpu_write(*p, x);
  195. }
  196. EXPORT_SYMBOL(__mod_zone_page_state);
  197. /*
  198. * Optimized increment and decrement functions.
  199. *
  200. * These are only for a single page and therefore can take a struct page *
  201. * argument instead of struct zone *. This allows the inclusion of the code
  202. * generated for page_zone(page) into the optimized functions.
  203. *
  204. * No overflow check is necessary and therefore the differential can be
  205. * incremented or decremented in place which may allow the compilers to
  206. * generate better code.
  207. * The increment or decrement is known and therefore one boundary check can
  208. * be omitted.
  209. *
  210. * NOTE: These functions are very performance sensitive. Change only
  211. * with care.
  212. *
  213. * Some processors have inc/dec instructions that are atomic vs an interrupt.
  214. * However, the code must first determine the differential location in a zone
  215. * based on the processor number and then inc/dec the counter. There is no
  216. * guarantee without disabling preemption that the processor will not change
  217. * in between and therefore the atomicity vs. interrupt cannot be exploited
  218. * in a useful way here.
  219. */
  220. void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
  221. {
  222. struct per_cpu_pageset __percpu *pcp = zone->pageset;
  223. s8 __percpu *p = pcp->vm_stat_diff + item;
  224. s8 v, t;
  225. v = __this_cpu_inc_return(*p);
  226. t = __this_cpu_read(pcp->stat_threshold);
  227. if (unlikely(v > t)) {
  228. s8 overstep = t >> 1;
  229. zone_page_state_add(v + overstep, zone, item);
  230. __this_cpu_write(*p, -overstep);
  231. }
  232. }
  233. void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
  234. {
  235. __inc_zone_state(page_zone(page), item);
  236. }
  237. EXPORT_SYMBOL(__inc_zone_page_state);
  238. void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
  239. {
  240. struct per_cpu_pageset __percpu *pcp = zone->pageset;
  241. s8 __percpu *p = pcp->vm_stat_diff + item;
  242. s8 v, t;
  243. v = __this_cpu_dec_return(*p);
  244. t = __this_cpu_read(pcp->stat_threshold);
  245. if (unlikely(v < - t)) {
  246. s8 overstep = t >> 1;
  247. zone_page_state_add(v - overstep, zone, item);
  248. __this_cpu_write(*p, overstep);
  249. }
  250. }
  251. void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
  252. {
  253. __dec_zone_state(page_zone(page), item);
  254. }
  255. EXPORT_SYMBOL(__dec_zone_page_state);
  256. #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
  257. /*
  258. * If we have cmpxchg_local support then we do not need to incur the overhead
  259. * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
  260. *
  261. * mod_state() modifies the zone counter state through atomic per cpu
  262. * operations.
  263. *
  264. * Overstep mode specifies how overstep should handled:
  265. * 0 No overstepping
  266. * 1 Overstepping half of threshold
  267. * -1 Overstepping minus half of threshold
  268. */
  269. static inline void mod_state(struct zone *zone,
  270. enum zone_stat_item item, int delta, int overstep_mode)
  271. {
  272. struct per_cpu_pageset __percpu *pcp = zone->pageset;
  273. s8 __percpu *p = pcp->vm_stat_diff + item;
  274. long o, n, t, z;
  275. do {
  276. z = 0; /* overflow to zone counters */
  277. /*
  278. * The fetching of the stat_threshold is racy. We may apply
  279. * a counter threshold to the wrong the cpu if we get
  280. * rescheduled while executing here. However, the next
  281. * counter update will apply the threshold again and
  282. * therefore bring the counter under the threshold again.
  283. *
  284. * Most of the time the thresholds are the same anyways
  285. * for all cpus in a zone.
  286. */
  287. t = this_cpu_read(pcp->stat_threshold);
  288. o = this_cpu_read(*p);
  289. n = delta + o;
  290. if (n > t || n < -t) {
  291. int os = overstep_mode * (t >> 1) ;
  292. /* Overflow must be added to zone counters */
  293. z = n + os;
  294. n = -os;
  295. }
  296. } while (this_cpu_cmpxchg(*p, o, n) != o);
  297. if (z)
  298. zone_page_state_add(z, zone, item);
  299. }
  300. void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
  301. int delta)
  302. {
  303. mod_state(zone, item, delta, 0);
  304. }
  305. EXPORT_SYMBOL(mod_zone_page_state);
  306. void inc_zone_state(struct zone *zone, enum zone_stat_item item)
  307. {
  308. mod_state(zone, item, 1, 1);
  309. }
  310. void inc_zone_page_state(struct page *page, enum zone_stat_item item)
  311. {
  312. mod_state(page_zone(page), item, 1, 1);
  313. }
  314. EXPORT_SYMBOL(inc_zone_page_state);
  315. void dec_zone_page_state(struct page *page, enum zone_stat_item item)
  316. {
  317. mod_state(page_zone(page), item, -1, -1);
  318. }
  319. EXPORT_SYMBOL(dec_zone_page_state);
  320. #else
  321. /*
  322. * Use interrupt disable to serialize counter updates
  323. */
  324. void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
  325. int delta)
  326. {
  327. unsigned long flags;
  328. local_irq_save(flags);
  329. __mod_zone_page_state(zone, item, delta);
  330. local_irq_restore(flags);
  331. }
  332. EXPORT_SYMBOL(mod_zone_page_state);
  333. void inc_zone_state(struct zone *zone, enum zone_stat_item item)
  334. {
  335. unsigned long flags;
  336. local_irq_save(flags);
  337. __inc_zone_state(zone, item);
  338. local_irq_restore(flags);
  339. }
  340. void inc_zone_page_state(struct page *page, enum zone_stat_item item)
  341. {
  342. unsigned long flags;
  343. struct zone *zone;
  344. zone = page_zone(page);
  345. local_irq_save(flags);
  346. __inc_zone_state(zone, item);
  347. local_irq_restore(flags);
  348. }
  349. EXPORT_SYMBOL(inc_zone_page_state);
  350. void dec_zone_page_state(struct page *page, enum zone_stat_item item)
  351. {
  352. unsigned long flags;
  353. local_irq_save(flags);
  354. __dec_zone_page_state(page, item);
  355. local_irq_restore(flags);
  356. }
  357. EXPORT_SYMBOL(dec_zone_page_state);
  358. #endif
  359. static inline void fold_diff(int *diff)
  360. {
  361. int i;
  362. for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
  363. if (diff[i])
  364. atomic_long_add(diff[i], &vm_stat[i]);
  365. }
  366. /*
  367. * Update the zone counters for the current cpu.
  368. *
  369. * Note that refresh_cpu_vm_stats strives to only access
  370. * node local memory. The per cpu pagesets on remote zones are placed
  371. * in the memory local to the processor using that pageset. So the
  372. * loop over all zones will access a series of cachelines local to
  373. * the processor.
  374. *
  375. * The call to zone_page_state_add updates the cachelines with the
  376. * statistics in the remote zone struct as well as the global cachelines
  377. * with the global counters. These could cause remote node cache line
  378. * bouncing and will have to be only done when necessary.
  379. */
  380. static void refresh_cpu_vm_stats(void)
  381. {
  382. struct zone *zone;
  383. int i;
  384. int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
  385. for_each_populated_zone(zone) {
  386. struct per_cpu_pageset __percpu *p = zone->pageset;
  387. for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
  388. int v;
  389. v = this_cpu_xchg(p->vm_stat_diff[i], 0);
  390. if (v) {
  391. atomic_long_add(v, &zone->vm_stat[i]);
  392. global_diff[i] += v;
  393. #ifdef CONFIG_NUMA
  394. /* 3 seconds idle till flush */
  395. __this_cpu_write(p->expire, 3);
  396. #endif
  397. }
  398. }
  399. cond_resched();
  400. #ifdef CONFIG_NUMA
  401. /*
  402. * Deal with draining the remote pageset of this
  403. * processor
  404. *
  405. * Check if there are pages remaining in this pageset
  406. * if not then there is nothing to expire.
  407. */
  408. if (!__this_cpu_read(p->expire) ||
  409. !__this_cpu_read(p->pcp.count))
  410. continue;
  411. /*
  412. * We never drain zones local to this processor.
  413. */
  414. if (zone_to_nid(zone) == numa_node_id()) {
  415. __this_cpu_write(p->expire, 0);
  416. continue;
  417. }
  418. if (__this_cpu_dec_return(p->expire))
  419. continue;
  420. if (__this_cpu_read(p->pcp.count))
  421. drain_zone_pages(zone, __this_cpu_ptr(&p->pcp));
  422. #endif
  423. }
  424. fold_diff(global_diff);
  425. }
  426. /*
  427. * Fold the data for an offline cpu into the global array.
  428. * There cannot be any access by the offline cpu and therefore
  429. * synchronization is simplified.
  430. */
  431. void cpu_vm_stats_fold(int cpu)
  432. {
  433. struct zone *zone;
  434. int i;
  435. int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
  436. for_each_populated_zone(zone) {
  437. struct per_cpu_pageset *p;
  438. p = per_cpu_ptr(zone->pageset, cpu);
  439. for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
  440. if (p->vm_stat_diff[i]) {
  441. int v;
  442. v = p->vm_stat_diff[i];
  443. p->vm_stat_diff[i] = 0;
  444. atomic_long_add(v, &zone->vm_stat[i]);
  445. global_diff[i] += v;
  446. }
  447. }
  448. fold_diff(global_diff);
  449. }
  450. /*
  451. * this is only called if !populated_zone(zone), which implies no other users of
  452. * pset->vm_stat_diff[] exsist.
  453. */
  454. void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
  455. {
  456. int i;
  457. for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
  458. if (pset->vm_stat_diff[i]) {
  459. int v = pset->vm_stat_diff[i];
  460. pset->vm_stat_diff[i] = 0;
  461. atomic_long_add(v, &zone->vm_stat[i]);
  462. atomic_long_add(v, &vm_stat[i]);
  463. }
  464. }
  465. #endif
  466. #ifdef CONFIG_NUMA
  467. /*
  468. * zonelist = the list of zones passed to the allocator
  469. * z = the zone from which the allocation occurred.
  470. *
  471. * Must be called with interrupts disabled.
  472. *
  473. * When __GFP_OTHER_NODE is set assume the node of the preferred
  474. * zone is the local node. This is useful for daemons who allocate
  475. * memory on behalf of other processes.
  476. */
  477. void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags)
  478. {
  479. if (z->zone_pgdat == preferred_zone->zone_pgdat) {
  480. __inc_zone_state(z, NUMA_HIT);
  481. } else {
  482. __inc_zone_state(z, NUMA_MISS);
  483. __inc_zone_state(preferred_zone, NUMA_FOREIGN);
  484. }
  485. if (z->node == ((flags & __GFP_OTHER_NODE) ?
  486. preferred_zone->node : numa_node_id()))
  487. __inc_zone_state(z, NUMA_LOCAL);
  488. else
  489. __inc_zone_state(z, NUMA_OTHER);
  490. }
  491. #endif
  492. #ifdef CONFIG_COMPACTION
  493. struct contig_page_info {
  494. unsigned long free_pages;
  495. unsigned long free_blocks_total;
  496. unsigned long free_blocks_suitable;
  497. };
  498. /*
  499. * Calculate the number of free pages in a zone, how many contiguous
  500. * pages are free and how many are large enough to satisfy an allocation of
  501. * the target size. Note that this function makes no attempt to estimate
  502. * how many suitable free blocks there *might* be if MOVABLE pages were
  503. * migrated. Calculating that is possible, but expensive and can be
  504. * figured out from userspace
  505. */
  506. static void fill_contig_page_info(struct zone *zone,
  507. unsigned int suitable_order,
  508. struct contig_page_info *info)
  509. {
  510. unsigned int order;
  511. info->free_pages = 0;
  512. info->free_blocks_total = 0;
  513. info->free_blocks_suitable = 0;
  514. for (order = 0; order < MAX_ORDER; order++) {
  515. unsigned long blocks;
  516. /* Count number of free blocks */
  517. blocks = zone->free_area[order].nr_free;
  518. info->free_blocks_total += blocks;
  519. /* Count free base pages */
  520. info->free_pages += blocks << order;
  521. /* Count the suitable free blocks */
  522. if (order >= suitable_order)
  523. info->free_blocks_suitable += blocks <<
  524. (order - suitable_order);
  525. }
  526. }
  527. /*
  528. * A fragmentation index only makes sense if an allocation of a requested
  529. * size would fail. If that is true, the fragmentation index indicates
  530. * whether external fragmentation or a lack of memory was the problem.
  531. * The value can be used to determine if page reclaim or compaction
  532. * should be used
  533. */
  534. static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
  535. {
  536. unsigned long requested = 1UL << order;
  537. if (!info->free_blocks_total)
  538. return 0;
  539. /* Fragmentation index only makes sense when a request would fail */
  540. if (info->free_blocks_suitable)
  541. return -1000;
  542. /*
  543. * Index is between 0 and 1 so return within 3 decimal places
  544. *
  545. * 0 => allocation would fail due to lack of memory
  546. * 1 => allocation would fail due to fragmentation
  547. */
  548. return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
  549. }
  550. /* Same as __fragmentation index but allocs contig_page_info on stack */
  551. int fragmentation_index(struct zone *zone, unsigned int order)
  552. {
  553. struct contig_page_info info;
  554. fill_contig_page_info(zone, order, &info);
  555. return __fragmentation_index(order, &info);
  556. }
  557. #endif
  558. #if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION)
  559. #include <linux/proc_fs.h>
  560. #include <linux/seq_file.h>
  561. static char * const migratetype_names[MIGRATE_TYPES] = {
  562. "Unmovable",
  563. "Reclaimable",
  564. "Movable",
  565. "Reserve",
  566. #ifdef CONFIG_CMA
  567. "CMA",
  568. #endif
  569. #ifdef CONFIG_MEMORY_ISOLATION
  570. "Isolate",
  571. #endif
  572. };
  573. static void *frag_start(struct seq_file *m, loff_t *pos)
  574. {
  575. pg_data_t *pgdat;
  576. loff_t node = *pos;
  577. for (pgdat = first_online_pgdat();
  578. pgdat && node;
  579. pgdat = next_online_pgdat(pgdat))
  580. --node;
  581. return pgdat;
  582. }
  583. static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
  584. {
  585. pg_data_t *pgdat = (pg_data_t *)arg;
  586. (*pos)++;
  587. return next_online_pgdat(pgdat);
  588. }
  589. static void frag_stop(struct seq_file *m, void *arg)
  590. {
  591. }
  592. /* Walk all the zones in a node and print using a callback */
  593. static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
  594. void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
  595. {
  596. struct zone *zone;
  597. struct zone *node_zones = pgdat->node_zones;
  598. unsigned long flags;
  599. for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
  600. if (!populated_zone(zone))
  601. continue;
  602. spin_lock_irqsave(&zone->lock, flags);
  603. print(m, pgdat, zone);
  604. spin_unlock_irqrestore(&zone->lock, flags);
  605. }
  606. }
  607. #endif
  608. #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA)
  609. #ifdef CONFIG_ZONE_DMA
  610. #define TEXT_FOR_DMA(xx) xx "_dma",
  611. #else
  612. #define TEXT_FOR_DMA(xx)
  613. #endif
  614. #ifdef CONFIG_ZONE_DMA32
  615. #define TEXT_FOR_DMA32(xx) xx "_dma32",
  616. #else
  617. #define TEXT_FOR_DMA32(xx)
  618. #endif
  619. #ifdef CONFIG_HIGHMEM
  620. #define TEXT_FOR_HIGHMEM(xx) xx "_high",
  621. #else
  622. #define TEXT_FOR_HIGHMEM(xx)
  623. #endif
  624. #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
  625. TEXT_FOR_HIGHMEM(xx) xx "_movable",
  626. const char * const vmstat_text[] = {
  627. /* Zoned VM counters */
  628. "nr_free_pages",
  629. "nr_alloc_batch",
  630. "nr_inactive_anon",
  631. "nr_active_anon",
  632. "nr_inactive_file",
  633. "nr_active_file",
  634. "nr_unevictable",
  635. "nr_mlock",
  636. "nr_anon_pages",
  637. "nr_mapped",
  638. "nr_file_pages",
  639. "nr_dirty",
  640. "nr_writeback",
  641. "nr_slab_reclaimable",
  642. "nr_slab_unreclaimable",
  643. "nr_page_table_pages",
  644. "nr_kernel_stack",
  645. "nr_unstable",
  646. "nr_bounce",
  647. "nr_vmscan_write",
  648. "nr_vmscan_immediate_reclaim",
  649. "nr_writeback_temp",
  650. "nr_isolated_anon",
  651. "nr_isolated_file",
  652. "nr_shmem",
  653. "nr_dirtied",
  654. "nr_written",
  655. #ifdef CONFIG_NUMA
  656. "numa_hit",
  657. "numa_miss",
  658. "numa_foreign",
  659. "numa_interleave",
  660. "numa_local",
  661. "numa_other",
  662. #endif
  663. "nr_anon_transparent_hugepages",
  664. "nr_free_cma",
  665. "nr_dirty_threshold",
  666. "nr_dirty_background_threshold",
  667. #ifdef CONFIG_VM_EVENT_COUNTERS
  668. "pgpgin",
  669. "pgpgout",
  670. "pswpin",
  671. "pswpout",
  672. TEXTS_FOR_ZONES("pgalloc")
  673. "pgfree",
  674. "pgactivate",
  675. "pgdeactivate",
  676. "pgfault",
  677. "pgmajfault",
  678. TEXTS_FOR_ZONES("pgrefill")
  679. TEXTS_FOR_ZONES("pgsteal_kswapd")
  680. TEXTS_FOR_ZONES("pgsteal_direct")
  681. TEXTS_FOR_ZONES("pgscan_kswapd")
  682. TEXTS_FOR_ZONES("pgscan_direct")
  683. "pgscan_direct_throttle",
  684. #ifdef CONFIG_NUMA
  685. "zone_reclaim_failed",
  686. #endif
  687. "pginodesteal",
  688. "slabs_scanned",
  689. "kswapd_inodesteal",
  690. "kswapd_low_wmark_hit_quickly",
  691. "kswapd_high_wmark_hit_quickly",
  692. "pageoutrun",
  693. "allocstall",
  694. "pgrotated",
  695. #ifdef CONFIG_NUMA_BALANCING
  696. "numa_pte_updates",
  697. "numa_hint_faults",
  698. "numa_hint_faults_local",
  699. "numa_pages_migrated",
  700. #endif
  701. #ifdef CONFIG_MIGRATION
  702. "pgmigrate_success",
  703. "pgmigrate_fail",
  704. #endif
  705. #ifdef CONFIG_COMPACTION
  706. "compact_migrate_scanned",
  707. "compact_free_scanned",
  708. "compact_isolated",
  709. "compact_stall",
  710. "compact_fail",
  711. "compact_success",
  712. #endif
  713. #ifdef CONFIG_HUGETLB_PAGE
  714. "htlb_buddy_alloc_success",
  715. "htlb_buddy_alloc_fail",
  716. #endif
  717. "unevictable_pgs_culled",
  718. "unevictable_pgs_scanned",
  719. "unevictable_pgs_rescued",
  720. "unevictable_pgs_mlocked",
  721. "unevictable_pgs_munlocked",
  722. "unevictable_pgs_cleared",
  723. "unevictable_pgs_stranded",
  724. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  725. "thp_fault_alloc",
  726. "thp_fault_fallback",
  727. "thp_collapse_alloc",
  728. "thp_collapse_alloc_failed",
  729. "thp_split",
  730. "thp_zero_page_alloc",
  731. "thp_zero_page_alloc_failed",
  732. #endif
  733. #ifdef CONFIG_SMP
  734. "nr_tlb_remote_flush",
  735. "nr_tlb_remote_flush_received",
  736. #endif
  737. "nr_tlb_local_flush_all",
  738. "nr_tlb_local_flush_one",
  739. #endif /* CONFIG_VM_EVENTS_COUNTERS */
  740. };
  741. #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */
  742. #ifdef CONFIG_PROC_FS
  743. static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
  744. struct zone *zone)
  745. {
  746. int order;
  747. seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
  748. for (order = 0; order < MAX_ORDER; ++order)
  749. seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
  750. seq_putc(m, '\n');
  751. }
  752. /*
  753. * This walks the free areas for each zone.
  754. */
  755. static int frag_show(struct seq_file *m, void *arg)
  756. {
  757. pg_data_t *pgdat = (pg_data_t *)arg;
  758. walk_zones_in_node(m, pgdat, frag_show_print);
  759. return 0;
  760. }
  761. static void pagetypeinfo_showfree_print(struct seq_file *m,
  762. pg_data_t *pgdat, struct zone *zone)
  763. {
  764. int order, mtype;
  765. for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
  766. seq_printf(m, "Node %4d, zone %8s, type %12s ",
  767. pgdat->node_id,
  768. zone->name,
  769. migratetype_names[mtype]);
  770. for (order = 0; order < MAX_ORDER; ++order) {
  771. unsigned long freecount = 0;
  772. struct free_area *area;
  773. struct list_head *curr;
  774. area = &(zone->free_area[order]);
  775. list_for_each(curr, &area->free_list[mtype])
  776. freecount++;
  777. seq_printf(m, "%6lu ", freecount);
  778. }
  779. seq_putc(m, '\n');
  780. }
  781. }
  782. /* Print out the free pages at each order for each migatetype */
  783. static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
  784. {
  785. int order;
  786. pg_data_t *pgdat = (pg_data_t *)arg;
  787. /* Print header */
  788. seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
  789. for (order = 0; order < MAX_ORDER; ++order)
  790. seq_printf(m, "%6d ", order);
  791. seq_putc(m, '\n');
  792. walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
  793. return 0;
  794. }
  795. static void pagetypeinfo_showblockcount_print(struct seq_file *m,
  796. pg_data_t *pgdat, struct zone *zone)
  797. {
  798. int mtype;
  799. unsigned long pfn;
  800. unsigned long start_pfn = zone->zone_start_pfn;
  801. unsigned long end_pfn = zone_end_pfn(zone);
  802. unsigned long count[MIGRATE_TYPES] = { 0, };
  803. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  804. struct page *page;
  805. if (!pfn_valid(pfn))
  806. continue;
  807. page = pfn_to_page(pfn);
  808. /* Watch for unexpected holes punched in the memmap */
  809. if (!memmap_valid_within(pfn, page, zone))
  810. continue;
  811. mtype = get_pageblock_migratetype(page);
  812. if (mtype < MIGRATE_TYPES)
  813. count[mtype]++;
  814. }
  815. /* Print counts */
  816. seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
  817. for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
  818. seq_printf(m, "%12lu ", count[mtype]);
  819. seq_putc(m, '\n');
  820. }
  821. /* Print out the free pages at each order for each migratetype */
  822. static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
  823. {
  824. int mtype;
  825. pg_data_t *pgdat = (pg_data_t *)arg;
  826. seq_printf(m, "\n%-23s", "Number of blocks type ");
  827. for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
  828. seq_printf(m, "%12s ", migratetype_names[mtype]);
  829. seq_putc(m, '\n');
  830. walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
  831. return 0;
  832. }
  833. /*
  834. * This prints out statistics in relation to grouping pages by mobility.
  835. * It is expensive to collect so do not constantly read the file.
  836. */
  837. static int pagetypeinfo_show(struct seq_file *m, void *arg)
  838. {
  839. pg_data_t *pgdat = (pg_data_t *)arg;
  840. /* check memoryless node */
  841. if (!node_state(pgdat->node_id, N_MEMORY))
  842. return 0;
  843. seq_printf(m, "Page block order: %d\n", pageblock_order);
  844. seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
  845. seq_putc(m, '\n');
  846. pagetypeinfo_showfree(m, pgdat);
  847. pagetypeinfo_showblockcount(m, pgdat);
  848. return 0;
  849. }
  850. static const struct seq_operations fragmentation_op = {
  851. .start = frag_start,
  852. .next = frag_next,
  853. .stop = frag_stop,
  854. .show = frag_show,
  855. };
  856. static int fragmentation_open(struct inode *inode, struct file *file)
  857. {
  858. return seq_open(file, &fragmentation_op);
  859. }
  860. static const struct file_operations fragmentation_file_operations = {
  861. .open = fragmentation_open,
  862. .read = seq_read,
  863. .llseek = seq_lseek,
  864. .release = seq_release,
  865. };
  866. static const struct seq_operations pagetypeinfo_op = {
  867. .start = frag_start,
  868. .next = frag_next,
  869. .stop = frag_stop,
  870. .show = pagetypeinfo_show,
  871. };
  872. static int pagetypeinfo_open(struct inode *inode, struct file *file)
  873. {
  874. return seq_open(file, &pagetypeinfo_op);
  875. }
  876. static const struct file_operations pagetypeinfo_file_ops = {
  877. .open = pagetypeinfo_open,
  878. .read = seq_read,
  879. .llseek = seq_lseek,
  880. .release = seq_release,
  881. };
  882. static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
  883. struct zone *zone)
  884. {
  885. int i;
  886. seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
  887. seq_printf(m,
  888. "\n pages free %lu"
  889. "\n min %lu"
  890. "\n low %lu"
  891. "\n high %lu"
  892. "\n scanned %lu"
  893. "\n spanned %lu"
  894. "\n present %lu"
  895. "\n managed %lu",
  896. zone_page_state(zone, NR_FREE_PAGES),
  897. min_wmark_pages(zone),
  898. low_wmark_pages(zone),
  899. high_wmark_pages(zone),
  900. zone->pages_scanned,
  901. zone->spanned_pages,
  902. zone->present_pages,
  903. zone->managed_pages);
  904. for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
  905. seq_printf(m, "\n %-12s %lu", vmstat_text[i],
  906. zone_page_state(zone, i));
  907. seq_printf(m,
  908. "\n protection: (%lu",
  909. zone->lowmem_reserve[0]);
  910. for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
  911. seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
  912. seq_printf(m,
  913. ")"
  914. "\n pagesets");
  915. for_each_online_cpu(i) {
  916. struct per_cpu_pageset *pageset;
  917. pageset = per_cpu_ptr(zone->pageset, i);
  918. seq_printf(m,
  919. "\n cpu: %i"
  920. "\n count: %i"
  921. "\n high: %i"
  922. "\n batch: %i",
  923. i,
  924. pageset->pcp.count,
  925. pageset->pcp.high,
  926. pageset->pcp.batch);
  927. #ifdef CONFIG_SMP
  928. seq_printf(m, "\n vm stats threshold: %d",
  929. pageset->stat_threshold);
  930. #endif
  931. }
  932. seq_printf(m,
  933. "\n all_unreclaimable: %u"
  934. "\n start_pfn: %lu"
  935. "\n inactive_ratio: %u",
  936. !zone_reclaimable(zone),
  937. zone->zone_start_pfn,
  938. zone->inactive_ratio);
  939. seq_putc(m, '\n');
  940. }
  941. /*
  942. * Output information about zones in @pgdat.
  943. */
  944. static int zoneinfo_show(struct seq_file *m, void *arg)
  945. {
  946. pg_data_t *pgdat = (pg_data_t *)arg;
  947. walk_zones_in_node(m, pgdat, zoneinfo_show_print);
  948. return 0;
  949. }
  950. static const struct seq_operations zoneinfo_op = {
  951. .start = frag_start, /* iterate over all zones. The same as in
  952. * fragmentation. */
  953. .next = frag_next,
  954. .stop = frag_stop,
  955. .show = zoneinfo_show,
  956. };
  957. static int zoneinfo_open(struct inode *inode, struct file *file)
  958. {
  959. return seq_open(file, &zoneinfo_op);
  960. }
  961. static const struct file_operations proc_zoneinfo_file_operations = {
  962. .open = zoneinfo_open,
  963. .read = seq_read,
  964. .llseek = seq_lseek,
  965. .release = seq_release,
  966. };
  967. enum writeback_stat_item {
  968. NR_DIRTY_THRESHOLD,
  969. NR_DIRTY_BG_THRESHOLD,
  970. NR_VM_WRITEBACK_STAT_ITEMS,
  971. };
  972. static void *vmstat_start(struct seq_file *m, loff_t *pos)
  973. {
  974. unsigned long *v;
  975. int i, stat_items_size;
  976. if (*pos >= ARRAY_SIZE(vmstat_text))
  977. return NULL;
  978. stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) +
  979. NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long);
  980. #ifdef CONFIG_VM_EVENT_COUNTERS
  981. stat_items_size += sizeof(struct vm_event_state);
  982. #endif
  983. v = kmalloc(stat_items_size, GFP_KERNEL);
  984. m->private = v;
  985. if (!v)
  986. return ERR_PTR(-ENOMEM);
  987. for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
  988. v[i] = global_page_state(i);
  989. v += NR_VM_ZONE_STAT_ITEMS;
  990. global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
  991. v + NR_DIRTY_THRESHOLD);
  992. v += NR_VM_WRITEBACK_STAT_ITEMS;
  993. #ifdef CONFIG_VM_EVENT_COUNTERS
  994. all_vm_events(v);
  995. v[PGPGIN] /= 2; /* sectors -> kbytes */
  996. v[PGPGOUT] /= 2;
  997. #endif
  998. return (unsigned long *)m->private + *pos;
  999. }
  1000. static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
  1001. {
  1002. (*pos)++;
  1003. if (*pos >= ARRAY_SIZE(vmstat_text))
  1004. return NULL;
  1005. return (unsigned long *)m->private + *pos;
  1006. }
  1007. static int vmstat_show(struct seq_file *m, void *arg)
  1008. {
  1009. unsigned long *l = arg;
  1010. unsigned long off = l - (unsigned long *)m->private;
  1011. seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
  1012. return 0;
  1013. }
  1014. static void vmstat_stop(struct seq_file *m, void *arg)
  1015. {
  1016. kfree(m->private);
  1017. m->private = NULL;
  1018. }
  1019. static const struct seq_operations vmstat_op = {
  1020. .start = vmstat_start,
  1021. .next = vmstat_next,
  1022. .stop = vmstat_stop,
  1023. .show = vmstat_show,
  1024. };
  1025. static int vmstat_open(struct inode *inode, struct file *file)
  1026. {
  1027. return seq_open(file, &vmstat_op);
  1028. }
  1029. static const struct file_operations proc_vmstat_file_operations = {
  1030. .open = vmstat_open,
  1031. .read = seq_read,
  1032. .llseek = seq_lseek,
  1033. .release = seq_release,
  1034. };
  1035. #endif /* CONFIG_PROC_FS */
  1036. #ifdef CONFIG_SMP
  1037. static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
  1038. int sysctl_stat_interval __read_mostly = HZ;
  1039. static void vmstat_update(struct work_struct *w)
  1040. {
  1041. refresh_cpu_vm_stats();
  1042. schedule_delayed_work(&__get_cpu_var(vmstat_work),
  1043. round_jiffies_relative(sysctl_stat_interval));
  1044. }
  1045. static void start_cpu_timer(int cpu)
  1046. {
  1047. struct delayed_work *work = &per_cpu(vmstat_work, cpu);
  1048. INIT_DEFERRABLE_WORK(work, vmstat_update);
  1049. schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu));
  1050. }
  1051. /*
  1052. * Use the cpu notifier to insure that the thresholds are recalculated
  1053. * when necessary.
  1054. */
  1055. static int vmstat_cpuup_callback(struct notifier_block *nfb,
  1056. unsigned long action,
  1057. void *hcpu)
  1058. {
  1059. long cpu = (long)hcpu;
  1060. switch (action) {
  1061. case CPU_ONLINE:
  1062. case CPU_ONLINE_FROZEN:
  1063. refresh_zone_stat_thresholds();
  1064. start_cpu_timer(cpu);
  1065. node_set_state(cpu_to_node(cpu), N_CPU);
  1066. break;
  1067. case CPU_DOWN_PREPARE:
  1068. case CPU_DOWN_PREPARE_FROZEN:
  1069. cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
  1070. per_cpu(vmstat_work, cpu).work.func = NULL;
  1071. break;
  1072. case CPU_DOWN_FAILED:
  1073. case CPU_DOWN_FAILED_FROZEN:
  1074. start_cpu_timer(cpu);
  1075. break;
  1076. case CPU_DEAD:
  1077. case CPU_DEAD_FROZEN:
  1078. refresh_zone_stat_thresholds();
  1079. break;
  1080. default:
  1081. break;
  1082. }
  1083. return NOTIFY_OK;
  1084. }
  1085. static struct notifier_block vmstat_notifier =
  1086. { &vmstat_cpuup_callback, NULL, 0 };
  1087. #endif
  1088. static int __init setup_vmstat(void)
  1089. {
  1090. #ifdef CONFIG_SMP
  1091. int cpu;
  1092. register_cpu_notifier(&vmstat_notifier);
  1093. for_each_online_cpu(cpu)
  1094. start_cpu_timer(cpu);
  1095. #endif
  1096. #ifdef CONFIG_PROC_FS
  1097. proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations);
  1098. proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops);
  1099. proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations);
  1100. proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations);
  1101. #endif
  1102. return 0;
  1103. }
  1104. module_init(setup_vmstat)
  1105. #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
  1106. #include <linux/debugfs.h>
  1107. /*
  1108. * Return an index indicating how much of the available free memory is
  1109. * unusable for an allocation of the requested size.
  1110. */
  1111. static int unusable_free_index(unsigned int order,
  1112. struct contig_page_info *info)
  1113. {
  1114. /* No free memory is interpreted as all free memory is unusable */
  1115. if (info->free_pages == 0)
  1116. return 1000;
  1117. /*
  1118. * Index should be a value between 0 and 1. Return a value to 3
  1119. * decimal places.
  1120. *
  1121. * 0 => no fragmentation
  1122. * 1 => high fragmentation
  1123. */
  1124. return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
  1125. }
  1126. static void unusable_show_print(struct seq_file *m,
  1127. pg_data_t *pgdat, struct zone *zone)
  1128. {
  1129. unsigned int order;
  1130. int index;
  1131. struct contig_page_info info;
  1132. seq_printf(m, "Node %d, zone %8s ",
  1133. pgdat->node_id,
  1134. zone->name);
  1135. for (order = 0; order < MAX_ORDER; ++order) {
  1136. fill_contig_page_info(zone, order, &info);
  1137. index = unusable_free_index(order, &info);
  1138. seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
  1139. }
  1140. seq_putc(m, '\n');
  1141. }
  1142. /*
  1143. * Display unusable free space index
  1144. *
  1145. * The unusable free space index measures how much of the available free
  1146. * memory cannot be used to satisfy an allocation of a given size and is a
  1147. * value between 0 and 1. The higher the value, the more of free memory is
  1148. * unusable and by implication, the worse the external fragmentation is. This
  1149. * can be expressed as a percentage by multiplying by 100.
  1150. */
  1151. static int unusable_show(struct seq_file *m, void *arg)
  1152. {
  1153. pg_data_t *pgdat = (pg_data_t *)arg;
  1154. /* check memoryless node */
  1155. if (!node_state(pgdat->node_id, N_MEMORY))
  1156. return 0;
  1157. walk_zones_in_node(m, pgdat, unusable_show_print);
  1158. return 0;
  1159. }
  1160. static const struct seq_operations unusable_op = {
  1161. .start = frag_start,
  1162. .next = frag_next,
  1163. .stop = frag_stop,
  1164. .show = unusable_show,
  1165. };
  1166. static int unusable_open(struct inode *inode, struct file *file)
  1167. {
  1168. return seq_open(file, &unusable_op);
  1169. }
  1170. static const struct file_operations unusable_file_ops = {
  1171. .open = unusable_open,
  1172. .read = seq_read,
  1173. .llseek = seq_lseek,
  1174. .release = seq_release,
  1175. };
  1176. static void extfrag_show_print(struct seq_file *m,
  1177. pg_data_t *pgdat, struct zone *zone)
  1178. {
  1179. unsigned int order;
  1180. int index;
  1181. /* Alloc on stack as interrupts are disabled for zone walk */
  1182. struct contig_page_info info;
  1183. seq_printf(m, "Node %d, zone %8s ",
  1184. pgdat->node_id,
  1185. zone->name);
  1186. for (order = 0; order < MAX_ORDER; ++order) {
  1187. fill_contig_page_info(zone, order, &info);
  1188. index = __fragmentation_index(order, &info);
  1189. seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
  1190. }
  1191. seq_putc(m, '\n');
  1192. }
  1193. /*
  1194. * Display fragmentation index for orders that allocations would fail for
  1195. */
  1196. static int extfrag_show(struct seq_file *m, void *arg)
  1197. {
  1198. pg_data_t *pgdat = (pg_data_t *)arg;
  1199. walk_zones_in_node(m, pgdat, extfrag_show_print);
  1200. return 0;
  1201. }
  1202. static const struct seq_operations extfrag_op = {
  1203. .start = frag_start,
  1204. .next = frag_next,
  1205. .stop = frag_stop,
  1206. .show = extfrag_show,
  1207. };
  1208. static int extfrag_open(struct inode *inode, struct file *file)
  1209. {
  1210. return seq_open(file, &extfrag_op);
  1211. }
  1212. static const struct file_operations extfrag_file_ops = {
  1213. .open = extfrag_open,
  1214. .read = seq_read,
  1215. .llseek = seq_lseek,
  1216. .release = seq_release,
  1217. };
  1218. static int __init extfrag_debug_init(void)
  1219. {
  1220. struct dentry *extfrag_debug_root;
  1221. extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
  1222. if (!extfrag_debug_root)
  1223. return -ENOMEM;
  1224. if (!debugfs_create_file("unusable_index", 0444,
  1225. extfrag_debug_root, NULL, &unusable_file_ops))
  1226. goto fail;
  1227. if (!debugfs_create_file("extfrag_index", 0444,
  1228. extfrag_debug_root, NULL, &extfrag_file_ops))
  1229. goto fail;
  1230. return 0;
  1231. fail:
  1232. debugfs_remove_recursive(extfrag_debug_root);
  1233. return -ENOMEM;
  1234. }
  1235. module_init(extfrag_debug_init);
  1236. #endif