page-writeback.c 75 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473
  1. /*
  2. * mm/page-writeback.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  6. *
  7. * Contains functions related to writing back dirty pages at the
  8. * address_space level.
  9. *
  10. * 10Apr2002 Andrew Morton
  11. * Initial version
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/export.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/fs.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/slab.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/writeback.h>
  22. #include <linux/init.h>
  23. #include <linux/backing-dev.h>
  24. #include <linux/task_io_accounting_ops.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/mpage.h>
  27. #include <linux/rmap.h>
  28. #include <linux/percpu.h>
  29. #include <linux/notifier.h>
  30. #include <linux/smp.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  35. #include <linux/pagevec.h>
  36. #include <linux/timer.h>
  37. #include <linux/sched/rt.h>
  38. #include <linux/mm_inline.h>
  39. #include <trace/events/writeback.h>
  40. #include "internal.h"
  41. /*
  42. * Sleep at most 200ms at a time in balance_dirty_pages().
  43. */
  44. #define MAX_PAUSE max(HZ/5, 1)
  45. /*
  46. * Try to keep balance_dirty_pages() call intervals higher than this many pages
  47. * by raising pause time to max_pause when falls below it.
  48. */
  49. #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
  50. /*
  51. * Estimate write bandwidth at 200ms intervals.
  52. */
  53. #define BANDWIDTH_INTERVAL max(HZ/5, 1)
  54. #define RATELIMIT_CALC_SHIFT 10
  55. /*
  56. * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  57. * will look to see if it needs to force writeback or throttling.
  58. */
  59. static long ratelimit_pages = 32;
  60. /* The following parameters are exported via /proc/sys/vm */
  61. /*
  62. * Start background writeback (via writeback threads) at this percentage
  63. */
  64. int dirty_background_ratio = 10;
  65. /*
  66. * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  67. * dirty_background_ratio * the amount of dirtyable memory
  68. */
  69. unsigned long dirty_background_bytes;
  70. /*
  71. * free highmem will not be subtracted from the total free memory
  72. * for calculating free ratios if vm_highmem_is_dirtyable is true
  73. */
  74. int vm_highmem_is_dirtyable;
  75. /*
  76. * The generator of dirty data starts writeback at this percentage
  77. */
  78. int vm_dirty_ratio = 20;
  79. /*
  80. * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  81. * vm_dirty_ratio * the amount of dirtyable memory
  82. */
  83. unsigned long vm_dirty_bytes;
  84. /*
  85. * The interval between `kupdate'-style writebacks
  86. */
  87. unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
  88. EXPORT_SYMBOL_GPL(dirty_writeback_interval);
  89. /*
  90. * The longest time for which data is allowed to remain dirty
  91. */
  92. unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
  93. /*
  94. * Flag that makes the machine dump writes/reads and block dirtyings.
  95. */
  96. int block_dump;
  97. /*
  98. * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
  99. * a full sync is triggered after this time elapses without any disk activity.
  100. */
  101. int laptop_mode;
  102. EXPORT_SYMBOL(laptop_mode);
  103. /* End of sysctl-exported parameters */
  104. unsigned long global_dirty_limit;
  105. /*
  106. * Scale the writeback cache size proportional to the relative writeout speeds.
  107. *
  108. * We do this by keeping a floating proportion between BDIs, based on page
  109. * writeback completions [end_page_writeback()]. Those devices that write out
  110. * pages fastest will get the larger share, while the slower will get a smaller
  111. * share.
  112. *
  113. * We use page writeout completions because we are interested in getting rid of
  114. * dirty pages. Having them written out is the primary goal.
  115. *
  116. * We introduce a concept of time, a period over which we measure these events,
  117. * because demand can/will vary over time. The length of this period itself is
  118. * measured in page writeback completions.
  119. *
  120. */
  121. static struct fprop_global writeout_completions;
  122. static void writeout_period(unsigned long t);
  123. /* Timer for aging of writeout_completions */
  124. static struct timer_list writeout_period_timer =
  125. TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
  126. static unsigned long writeout_period_time = 0;
  127. /*
  128. * Length of period for aging writeout fractions of bdis. This is an
  129. * arbitrarily chosen number. The longer the period, the slower fractions will
  130. * reflect changes in current writeout rate.
  131. */
  132. #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
  133. /*
  134. * Work out the current dirty-memory clamping and background writeout
  135. * thresholds.
  136. *
  137. * The main aim here is to lower them aggressively if there is a lot of mapped
  138. * memory around. To avoid stressing page reclaim with lots of unreclaimable
  139. * pages. It is better to clamp down on writers than to start swapping, and
  140. * performing lots of scanning.
  141. *
  142. * We only allow 1/2 of the currently-unmapped memory to be dirtied.
  143. *
  144. * We don't permit the clamping level to fall below 5% - that is getting rather
  145. * excessive.
  146. *
  147. * We make sure that the background writeout level is below the adjusted
  148. * clamping level.
  149. */
  150. /*
  151. * In a memory zone, there is a certain amount of pages we consider
  152. * available for the page cache, which is essentially the number of
  153. * free and reclaimable pages, minus some zone reserves to protect
  154. * lowmem and the ability to uphold the zone's watermarks without
  155. * requiring writeback.
  156. *
  157. * This number of dirtyable pages is the base value of which the
  158. * user-configurable dirty ratio is the effictive number of pages that
  159. * are allowed to be actually dirtied. Per individual zone, or
  160. * globally by using the sum of dirtyable pages over all zones.
  161. *
  162. * Because the user is allowed to specify the dirty limit globally as
  163. * absolute number of bytes, calculating the per-zone dirty limit can
  164. * require translating the configured limit into a percentage of
  165. * global dirtyable memory first.
  166. */
  167. static unsigned long highmem_dirtyable_memory(unsigned long total)
  168. {
  169. #ifdef CONFIG_HIGHMEM
  170. int node;
  171. unsigned long x = 0;
  172. for_each_node_state(node, N_HIGH_MEMORY) {
  173. struct zone *z =
  174. &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
  175. x += zone_page_state(z, NR_FREE_PAGES) +
  176. zone_reclaimable_pages(z) - z->dirty_balance_reserve;
  177. }
  178. /*
  179. * Unreclaimable memory (kernel memory or anonymous memory
  180. * without swap) can bring down the dirtyable pages below
  181. * the zone's dirty balance reserve and the above calculation
  182. * will underflow. However we still want to add in nodes
  183. * which are below threshold (negative values) to get a more
  184. * accurate calculation but make sure that the total never
  185. * underflows.
  186. */
  187. if ((long)x < 0)
  188. x = 0;
  189. /*
  190. * Make sure that the number of highmem pages is never larger
  191. * than the number of the total dirtyable memory. This can only
  192. * occur in very strange VM situations but we want to make sure
  193. * that this does not occur.
  194. */
  195. return min(x, total);
  196. #else
  197. return 0;
  198. #endif
  199. }
  200. /**
  201. * global_dirtyable_memory - number of globally dirtyable pages
  202. *
  203. * Returns the global number of pages potentially available for dirty
  204. * page cache. This is the base value for the global dirty limits.
  205. */
  206. static unsigned long global_dirtyable_memory(void)
  207. {
  208. unsigned long x;
  209. x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
  210. x -= min(x, dirty_balance_reserve);
  211. if (!vm_highmem_is_dirtyable)
  212. x -= highmem_dirtyable_memory(x);
  213. return x + 1; /* Ensure that we never return 0 */
  214. }
  215. /*
  216. * global_dirty_limits - background-writeback and dirty-throttling thresholds
  217. *
  218. * Calculate the dirty thresholds based on sysctl parameters
  219. * - vm.dirty_background_ratio or vm.dirty_background_bytes
  220. * - vm.dirty_ratio or vm.dirty_bytes
  221. * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
  222. * real-time tasks.
  223. */
  224. void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
  225. {
  226. unsigned long background;
  227. unsigned long dirty;
  228. unsigned long uninitialized_var(available_memory);
  229. struct task_struct *tsk;
  230. if (!vm_dirty_bytes || !dirty_background_bytes)
  231. available_memory = global_dirtyable_memory();
  232. if (vm_dirty_bytes)
  233. dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
  234. else
  235. dirty = (vm_dirty_ratio * available_memory) / 100;
  236. if (dirty_background_bytes)
  237. background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
  238. else
  239. background = (dirty_background_ratio * available_memory) / 100;
  240. if (background >= dirty)
  241. background = dirty / 2;
  242. tsk = current;
  243. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
  244. background += background / 4;
  245. dirty += dirty / 4;
  246. }
  247. *pbackground = background;
  248. *pdirty = dirty;
  249. trace_global_dirty_state(background, dirty);
  250. }
  251. /**
  252. * zone_dirtyable_memory - number of dirtyable pages in a zone
  253. * @zone: the zone
  254. *
  255. * Returns the zone's number of pages potentially available for dirty
  256. * page cache. This is the base value for the per-zone dirty limits.
  257. */
  258. static unsigned long zone_dirtyable_memory(struct zone *zone)
  259. {
  260. /*
  261. * The effective global number of dirtyable pages may exclude
  262. * highmem as a big-picture measure to keep the ratio between
  263. * dirty memory and lowmem reasonable.
  264. *
  265. * But this function is purely about the individual zone and a
  266. * highmem zone can hold its share of dirty pages, so we don't
  267. * care about vm_highmem_is_dirtyable here.
  268. */
  269. unsigned long nr_pages = zone_page_state(zone, NR_FREE_PAGES) +
  270. zone_reclaimable_pages(zone);
  271. /* don't allow this to underflow */
  272. nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
  273. return nr_pages;
  274. }
  275. /**
  276. * zone_dirty_limit - maximum number of dirty pages allowed in a zone
  277. * @zone: the zone
  278. *
  279. * Returns the maximum number of dirty pages allowed in a zone, based
  280. * on the zone's dirtyable memory.
  281. */
  282. static unsigned long zone_dirty_limit(struct zone *zone)
  283. {
  284. unsigned long zone_memory = zone_dirtyable_memory(zone);
  285. struct task_struct *tsk = current;
  286. unsigned long dirty;
  287. if (vm_dirty_bytes)
  288. dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
  289. zone_memory / global_dirtyable_memory();
  290. else
  291. dirty = vm_dirty_ratio * zone_memory / 100;
  292. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
  293. dirty += dirty / 4;
  294. return dirty;
  295. }
  296. /**
  297. * zone_dirty_ok - tells whether a zone is within its dirty limits
  298. * @zone: the zone to check
  299. *
  300. * Returns %true when the dirty pages in @zone are within the zone's
  301. * dirty limit, %false if the limit is exceeded.
  302. */
  303. bool zone_dirty_ok(struct zone *zone)
  304. {
  305. unsigned long limit = zone_dirty_limit(zone);
  306. return zone_page_state(zone, NR_FILE_DIRTY) +
  307. zone_page_state(zone, NR_UNSTABLE_NFS) +
  308. zone_page_state(zone, NR_WRITEBACK) <= limit;
  309. }
  310. int dirty_background_ratio_handler(struct ctl_table *table, int write,
  311. void __user *buffer, size_t *lenp,
  312. loff_t *ppos)
  313. {
  314. int ret;
  315. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  316. if (ret == 0 && write)
  317. dirty_background_bytes = 0;
  318. return ret;
  319. }
  320. int dirty_background_bytes_handler(struct ctl_table *table, int write,
  321. void __user *buffer, size_t *lenp,
  322. loff_t *ppos)
  323. {
  324. int ret;
  325. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  326. if (ret == 0 && write)
  327. dirty_background_ratio = 0;
  328. return ret;
  329. }
  330. int dirty_ratio_handler(struct ctl_table *table, int write,
  331. void __user *buffer, size_t *lenp,
  332. loff_t *ppos)
  333. {
  334. int old_ratio = vm_dirty_ratio;
  335. int ret;
  336. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  337. if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
  338. writeback_set_ratelimit();
  339. vm_dirty_bytes = 0;
  340. }
  341. return ret;
  342. }
  343. int dirty_bytes_handler(struct ctl_table *table, int write,
  344. void __user *buffer, size_t *lenp,
  345. loff_t *ppos)
  346. {
  347. unsigned long old_bytes = vm_dirty_bytes;
  348. int ret;
  349. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  350. if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
  351. writeback_set_ratelimit();
  352. vm_dirty_ratio = 0;
  353. }
  354. return ret;
  355. }
  356. static unsigned long wp_next_time(unsigned long cur_time)
  357. {
  358. cur_time += VM_COMPLETIONS_PERIOD_LEN;
  359. /* 0 has a special meaning... */
  360. if (!cur_time)
  361. return 1;
  362. return cur_time;
  363. }
  364. /*
  365. * Increment the BDI's writeout completion count and the global writeout
  366. * completion count. Called from test_clear_page_writeback().
  367. */
  368. static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
  369. {
  370. __inc_bdi_stat(bdi, BDI_WRITTEN);
  371. __fprop_inc_percpu_max(&writeout_completions, &bdi->completions,
  372. bdi->max_prop_frac);
  373. /* First event after period switching was turned off? */
  374. if (!unlikely(writeout_period_time)) {
  375. /*
  376. * We can race with other __bdi_writeout_inc calls here but
  377. * it does not cause any harm since the resulting time when
  378. * timer will fire and what is in writeout_period_time will be
  379. * roughly the same.
  380. */
  381. writeout_period_time = wp_next_time(jiffies);
  382. mod_timer(&writeout_period_timer, writeout_period_time);
  383. }
  384. }
  385. void bdi_writeout_inc(struct backing_dev_info *bdi)
  386. {
  387. unsigned long flags;
  388. local_irq_save(flags);
  389. __bdi_writeout_inc(bdi);
  390. local_irq_restore(flags);
  391. }
  392. EXPORT_SYMBOL_GPL(bdi_writeout_inc);
  393. /*
  394. * Obtain an accurate fraction of the BDI's portion.
  395. */
  396. static void bdi_writeout_fraction(struct backing_dev_info *bdi,
  397. long *numerator, long *denominator)
  398. {
  399. fprop_fraction_percpu(&writeout_completions, &bdi->completions,
  400. numerator, denominator);
  401. }
  402. /*
  403. * On idle system, we can be called long after we scheduled because we use
  404. * deferred timers so count with missed periods.
  405. */
  406. static void writeout_period(unsigned long t)
  407. {
  408. int miss_periods = (jiffies - writeout_period_time) /
  409. VM_COMPLETIONS_PERIOD_LEN;
  410. if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
  411. writeout_period_time = wp_next_time(writeout_period_time +
  412. miss_periods * VM_COMPLETIONS_PERIOD_LEN);
  413. mod_timer(&writeout_period_timer, writeout_period_time);
  414. } else {
  415. /*
  416. * Aging has zeroed all fractions. Stop wasting CPU on period
  417. * updates.
  418. */
  419. writeout_period_time = 0;
  420. }
  421. }
  422. /*
  423. * bdi_min_ratio keeps the sum of the minimum dirty shares of all
  424. * registered backing devices, which, for obvious reasons, can not
  425. * exceed 100%.
  426. */
  427. static unsigned int bdi_min_ratio;
  428. int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
  429. {
  430. int ret = 0;
  431. spin_lock_bh(&bdi_lock);
  432. if (min_ratio > bdi->max_ratio) {
  433. ret = -EINVAL;
  434. } else {
  435. min_ratio -= bdi->min_ratio;
  436. if (bdi_min_ratio + min_ratio < 100) {
  437. bdi_min_ratio += min_ratio;
  438. bdi->min_ratio += min_ratio;
  439. } else {
  440. ret = -EINVAL;
  441. }
  442. }
  443. spin_unlock_bh(&bdi_lock);
  444. return ret;
  445. }
  446. int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
  447. {
  448. int ret = 0;
  449. if (max_ratio > 100)
  450. return -EINVAL;
  451. spin_lock_bh(&bdi_lock);
  452. if (bdi->min_ratio > max_ratio) {
  453. ret = -EINVAL;
  454. } else {
  455. bdi->max_ratio = max_ratio;
  456. bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
  457. }
  458. spin_unlock_bh(&bdi_lock);
  459. return ret;
  460. }
  461. EXPORT_SYMBOL(bdi_set_max_ratio);
  462. static unsigned long dirty_freerun_ceiling(unsigned long thresh,
  463. unsigned long bg_thresh)
  464. {
  465. return (thresh + bg_thresh) / 2;
  466. }
  467. static unsigned long hard_dirty_limit(unsigned long thresh)
  468. {
  469. return max(thresh, global_dirty_limit);
  470. }
  471. /**
  472. * bdi_dirty_limit - @bdi's share of dirty throttling threshold
  473. * @bdi: the backing_dev_info to query
  474. * @dirty: global dirty limit in pages
  475. *
  476. * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
  477. * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
  478. *
  479. * Note that balance_dirty_pages() will only seriously take it as a hard limit
  480. * when sleeping max_pause per page is not enough to keep the dirty pages under
  481. * control. For example, when the device is completely stalled due to some error
  482. * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
  483. * In the other normal situations, it acts more gently by throttling the tasks
  484. * more (rather than completely block them) when the bdi dirty pages go high.
  485. *
  486. * It allocates high/low dirty limits to fast/slow devices, in order to prevent
  487. * - starving fast devices
  488. * - piling up dirty pages (that will take long time to sync) on slow devices
  489. *
  490. * The bdi's share of dirty limit will be adapting to its throughput and
  491. * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
  492. */
  493. unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
  494. {
  495. u64 bdi_dirty;
  496. long numerator, denominator;
  497. /*
  498. * Calculate this BDI's share of the dirty ratio.
  499. */
  500. bdi_writeout_fraction(bdi, &numerator, &denominator);
  501. bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
  502. bdi_dirty *= numerator;
  503. do_div(bdi_dirty, denominator);
  504. bdi_dirty += (dirty * bdi->min_ratio) / 100;
  505. if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
  506. bdi_dirty = dirty * bdi->max_ratio / 100;
  507. return bdi_dirty;
  508. }
  509. /*
  510. * setpoint - dirty 3
  511. * f(dirty) := 1.0 + (----------------)
  512. * limit - setpoint
  513. *
  514. * it's a 3rd order polynomial that subjects to
  515. *
  516. * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
  517. * (2) f(setpoint) = 1.0 => the balance point
  518. * (3) f(limit) = 0 => the hard limit
  519. * (4) df/dx <= 0 => negative feedback control
  520. * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
  521. * => fast response on large errors; small oscillation near setpoint
  522. */
  523. static inline long long pos_ratio_polynom(unsigned long setpoint,
  524. unsigned long dirty,
  525. unsigned long limit)
  526. {
  527. long long pos_ratio;
  528. long x;
  529. x = div_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
  530. limit - setpoint + 1);
  531. pos_ratio = x;
  532. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  533. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  534. pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
  535. return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
  536. }
  537. /*
  538. * Dirty position control.
  539. *
  540. * (o) global/bdi setpoints
  541. *
  542. * We want the dirty pages be balanced around the global/bdi setpoints.
  543. * When the number of dirty pages is higher/lower than the setpoint, the
  544. * dirty position control ratio (and hence task dirty ratelimit) will be
  545. * decreased/increased to bring the dirty pages back to the setpoint.
  546. *
  547. * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
  548. *
  549. * if (dirty < setpoint) scale up pos_ratio
  550. * if (dirty > setpoint) scale down pos_ratio
  551. *
  552. * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
  553. * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
  554. *
  555. * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
  556. *
  557. * (o) global control line
  558. *
  559. * ^ pos_ratio
  560. * |
  561. * | |<===== global dirty control scope ======>|
  562. * 2.0 .............*
  563. * | .*
  564. * | . *
  565. * | . *
  566. * | . *
  567. * | . *
  568. * | . *
  569. * 1.0 ................................*
  570. * | . . *
  571. * | . . *
  572. * | . . *
  573. * | . . *
  574. * | . . *
  575. * 0 +------------.------------------.----------------------*------------->
  576. * freerun^ setpoint^ limit^ dirty pages
  577. *
  578. * (o) bdi control line
  579. *
  580. * ^ pos_ratio
  581. * |
  582. * | *
  583. * | *
  584. * | *
  585. * | *
  586. * | * |<=========== span ============>|
  587. * 1.0 .......................*
  588. * | . *
  589. * | . *
  590. * | . *
  591. * | . *
  592. * | . *
  593. * | . *
  594. * | . *
  595. * | . *
  596. * | . *
  597. * | . *
  598. * | . *
  599. * 1/4 ...............................................* * * * * * * * * * * *
  600. * | . .
  601. * | . .
  602. * | . .
  603. * 0 +----------------------.-------------------------------.------------->
  604. * bdi_setpoint^ x_intercept^
  605. *
  606. * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
  607. * be smoothly throttled down to normal if it starts high in situations like
  608. * - start writing to a slow SD card and a fast disk at the same time. The SD
  609. * card's bdi_dirty may rush to many times higher than bdi_setpoint.
  610. * - the bdi dirty thresh drops quickly due to change of JBOD workload
  611. */
  612. static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
  613. unsigned long thresh,
  614. unsigned long bg_thresh,
  615. unsigned long dirty,
  616. unsigned long bdi_thresh,
  617. unsigned long bdi_dirty)
  618. {
  619. unsigned long write_bw = bdi->avg_write_bandwidth;
  620. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  621. unsigned long limit = hard_dirty_limit(thresh);
  622. unsigned long x_intercept;
  623. unsigned long setpoint; /* dirty pages' target balance point */
  624. unsigned long bdi_setpoint;
  625. unsigned long span;
  626. long long pos_ratio; /* for scaling up/down the rate limit */
  627. long x;
  628. if (unlikely(dirty >= limit))
  629. return 0;
  630. /*
  631. * global setpoint
  632. *
  633. * See comment for pos_ratio_polynom().
  634. */
  635. setpoint = (freerun + limit) / 2;
  636. pos_ratio = pos_ratio_polynom(setpoint, dirty, limit);
  637. /*
  638. * The strictlimit feature is a tool preventing mistrusted filesystems
  639. * from growing a large number of dirty pages before throttling. For
  640. * such filesystems balance_dirty_pages always checks bdi counters
  641. * against bdi limits. Even if global "nr_dirty" is under "freerun".
  642. * This is especially important for fuse which sets bdi->max_ratio to
  643. * 1% by default. Without strictlimit feature, fuse writeback may
  644. * consume arbitrary amount of RAM because it is accounted in
  645. * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
  646. *
  647. * Here, in bdi_position_ratio(), we calculate pos_ratio based on
  648. * two values: bdi_dirty and bdi_thresh. Let's consider an example:
  649. * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
  650. * limits are set by default to 10% and 20% (background and throttle).
  651. * Then bdi_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
  652. * bdi_dirty_limit(bdi, bg_thresh) is about ~4K pages. bdi_setpoint is
  653. * about ~6K pages (as the average of background and throttle bdi
  654. * limits). The 3rd order polynomial will provide positive feedback if
  655. * bdi_dirty is under bdi_setpoint and vice versa.
  656. *
  657. * Note, that we cannot use global counters in these calculations
  658. * because we want to throttle process writing to a strictlimit BDI
  659. * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
  660. * in the example above).
  661. */
  662. if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
  663. long long bdi_pos_ratio;
  664. unsigned long bdi_bg_thresh;
  665. if (bdi_dirty < 8)
  666. return min_t(long long, pos_ratio * 2,
  667. 2 << RATELIMIT_CALC_SHIFT);
  668. if (bdi_dirty >= bdi_thresh)
  669. return 0;
  670. bdi_bg_thresh = div_u64((u64)bdi_thresh * bg_thresh, thresh);
  671. bdi_setpoint = dirty_freerun_ceiling(bdi_thresh,
  672. bdi_bg_thresh);
  673. if (bdi_setpoint == 0 || bdi_setpoint == bdi_thresh)
  674. return 0;
  675. bdi_pos_ratio = pos_ratio_polynom(bdi_setpoint, bdi_dirty,
  676. bdi_thresh);
  677. /*
  678. * Typically, for strictlimit case, bdi_setpoint << setpoint
  679. * and pos_ratio >> bdi_pos_ratio. In the other words global
  680. * state ("dirty") is not limiting factor and we have to
  681. * make decision based on bdi counters. But there is an
  682. * important case when global pos_ratio should get precedence:
  683. * global limits are exceeded (e.g. due to activities on other
  684. * BDIs) while given strictlimit BDI is below limit.
  685. *
  686. * "pos_ratio * bdi_pos_ratio" would work for the case above,
  687. * but it would look too non-natural for the case of all
  688. * activity in the system coming from a single strictlimit BDI
  689. * with bdi->max_ratio == 100%.
  690. *
  691. * Note that min() below somewhat changes the dynamics of the
  692. * control system. Normally, pos_ratio value can be well over 3
  693. * (when globally we are at freerun and bdi is well below bdi
  694. * setpoint). Now the maximum pos_ratio in the same situation
  695. * is 2. We might want to tweak this if we observe the control
  696. * system is too slow to adapt.
  697. */
  698. return min(pos_ratio, bdi_pos_ratio);
  699. }
  700. /*
  701. * We have computed basic pos_ratio above based on global situation. If
  702. * the bdi is over/under its share of dirty pages, we want to scale
  703. * pos_ratio further down/up. That is done by the following mechanism.
  704. */
  705. /*
  706. * bdi setpoint
  707. *
  708. * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
  709. *
  710. * x_intercept - bdi_dirty
  711. * := --------------------------
  712. * x_intercept - bdi_setpoint
  713. *
  714. * The main bdi control line is a linear function that subjects to
  715. *
  716. * (1) f(bdi_setpoint) = 1.0
  717. * (2) k = - 1 / (8 * write_bw) (in single bdi case)
  718. * or equally: x_intercept = bdi_setpoint + 8 * write_bw
  719. *
  720. * For single bdi case, the dirty pages are observed to fluctuate
  721. * regularly within range
  722. * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
  723. * for various filesystems, where (2) can yield in a reasonable 12.5%
  724. * fluctuation range for pos_ratio.
  725. *
  726. * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
  727. * own size, so move the slope over accordingly and choose a slope that
  728. * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
  729. */
  730. if (unlikely(bdi_thresh > thresh))
  731. bdi_thresh = thresh;
  732. /*
  733. * It's very possible that bdi_thresh is close to 0 not because the
  734. * device is slow, but that it has remained inactive for long time.
  735. * Honour such devices a reasonable good (hopefully IO efficient)
  736. * threshold, so that the occasional writes won't be blocked and active
  737. * writes can rampup the threshold quickly.
  738. */
  739. bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
  740. /*
  741. * scale global setpoint to bdi's:
  742. * bdi_setpoint = setpoint * bdi_thresh / thresh
  743. */
  744. x = div_u64((u64)bdi_thresh << 16, thresh + 1);
  745. bdi_setpoint = setpoint * (u64)x >> 16;
  746. /*
  747. * Use span=(8*write_bw) in single bdi case as indicated by
  748. * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
  749. *
  750. * bdi_thresh thresh - bdi_thresh
  751. * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
  752. * thresh thresh
  753. */
  754. span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
  755. x_intercept = bdi_setpoint + span;
  756. if (bdi_dirty < x_intercept - span / 4) {
  757. pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
  758. x_intercept - bdi_setpoint + 1);
  759. } else
  760. pos_ratio /= 4;
  761. /*
  762. * bdi reserve area, safeguard against dirty pool underrun and disk idle
  763. * It may push the desired control point of global dirty pages higher
  764. * than setpoint.
  765. */
  766. x_intercept = bdi_thresh / 2;
  767. if (bdi_dirty < x_intercept) {
  768. if (bdi_dirty > x_intercept / 8)
  769. pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
  770. else
  771. pos_ratio *= 8;
  772. }
  773. return pos_ratio;
  774. }
  775. static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
  776. unsigned long elapsed,
  777. unsigned long written)
  778. {
  779. const unsigned long period = roundup_pow_of_two(3 * HZ);
  780. unsigned long avg = bdi->avg_write_bandwidth;
  781. unsigned long old = bdi->write_bandwidth;
  782. u64 bw;
  783. /*
  784. * bw = written * HZ / elapsed
  785. *
  786. * bw * elapsed + write_bandwidth * (period - elapsed)
  787. * write_bandwidth = ---------------------------------------------------
  788. * period
  789. */
  790. bw = written - bdi->written_stamp;
  791. bw *= HZ;
  792. if (unlikely(elapsed > period)) {
  793. do_div(bw, elapsed);
  794. avg = bw;
  795. goto out;
  796. }
  797. bw += (u64)bdi->write_bandwidth * (period - elapsed);
  798. bw >>= ilog2(period);
  799. /*
  800. * one more level of smoothing, for filtering out sudden spikes
  801. */
  802. if (avg > old && old >= (unsigned long)bw)
  803. avg -= (avg - old) >> 3;
  804. if (avg < old && old <= (unsigned long)bw)
  805. avg += (old - avg) >> 3;
  806. out:
  807. bdi->write_bandwidth = bw;
  808. bdi->avg_write_bandwidth = avg;
  809. }
  810. /*
  811. * The global dirtyable memory and dirty threshold could be suddenly knocked
  812. * down by a large amount (eg. on the startup of KVM in a swapless system).
  813. * This may throw the system into deep dirty exceeded state and throttle
  814. * heavy/light dirtiers alike. To retain good responsiveness, maintain
  815. * global_dirty_limit for tracking slowly down to the knocked down dirty
  816. * threshold.
  817. */
  818. static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
  819. {
  820. unsigned long limit = global_dirty_limit;
  821. /*
  822. * Follow up in one step.
  823. */
  824. if (limit < thresh) {
  825. limit = thresh;
  826. goto update;
  827. }
  828. /*
  829. * Follow down slowly. Use the higher one as the target, because thresh
  830. * may drop below dirty. This is exactly the reason to introduce
  831. * global_dirty_limit which is guaranteed to lie above the dirty pages.
  832. */
  833. thresh = max(thresh, dirty);
  834. if (limit > thresh) {
  835. limit -= (limit - thresh) >> 5;
  836. goto update;
  837. }
  838. return;
  839. update:
  840. global_dirty_limit = limit;
  841. }
  842. static void global_update_bandwidth(unsigned long thresh,
  843. unsigned long dirty,
  844. unsigned long now)
  845. {
  846. static DEFINE_SPINLOCK(dirty_lock);
  847. static unsigned long update_time;
  848. /*
  849. * check locklessly first to optimize away locking for the most time
  850. */
  851. if (time_before(now, update_time + BANDWIDTH_INTERVAL))
  852. return;
  853. spin_lock(&dirty_lock);
  854. if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
  855. update_dirty_limit(thresh, dirty);
  856. update_time = now;
  857. }
  858. spin_unlock(&dirty_lock);
  859. }
  860. /*
  861. * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
  862. *
  863. * Normal bdi tasks will be curbed at or below it in long term.
  864. * Obviously it should be around (write_bw / N) when there are N dd tasks.
  865. */
  866. static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
  867. unsigned long thresh,
  868. unsigned long bg_thresh,
  869. unsigned long dirty,
  870. unsigned long bdi_thresh,
  871. unsigned long bdi_dirty,
  872. unsigned long dirtied,
  873. unsigned long elapsed)
  874. {
  875. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  876. unsigned long limit = hard_dirty_limit(thresh);
  877. unsigned long setpoint = (freerun + limit) / 2;
  878. unsigned long write_bw = bdi->avg_write_bandwidth;
  879. unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
  880. unsigned long dirty_rate;
  881. unsigned long task_ratelimit;
  882. unsigned long balanced_dirty_ratelimit;
  883. unsigned long pos_ratio;
  884. unsigned long step;
  885. unsigned long x;
  886. /*
  887. * The dirty rate will match the writeout rate in long term, except
  888. * when dirty pages are truncated by userspace or re-dirtied by FS.
  889. */
  890. dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
  891. pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
  892. bdi_thresh, bdi_dirty);
  893. /*
  894. * task_ratelimit reflects each dd's dirty rate for the past 200ms.
  895. */
  896. task_ratelimit = (u64)dirty_ratelimit *
  897. pos_ratio >> RATELIMIT_CALC_SHIFT;
  898. task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
  899. /*
  900. * A linear estimation of the "balanced" throttle rate. The theory is,
  901. * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
  902. * dirty_rate will be measured to be (N * task_ratelimit). So the below
  903. * formula will yield the balanced rate limit (write_bw / N).
  904. *
  905. * Note that the expanded form is not a pure rate feedback:
  906. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
  907. * but also takes pos_ratio into account:
  908. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
  909. *
  910. * (1) is not realistic because pos_ratio also takes part in balancing
  911. * the dirty rate. Consider the state
  912. * pos_ratio = 0.5 (3)
  913. * rate = 2 * (write_bw / N) (4)
  914. * If (1) is used, it will stuck in that state! Because each dd will
  915. * be throttled at
  916. * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
  917. * yielding
  918. * dirty_rate = N * task_ratelimit = write_bw (6)
  919. * put (6) into (1) we get
  920. * rate_(i+1) = rate_(i) (7)
  921. *
  922. * So we end up using (2) to always keep
  923. * rate_(i+1) ~= (write_bw / N) (8)
  924. * regardless of the value of pos_ratio. As long as (8) is satisfied,
  925. * pos_ratio is able to drive itself to 1.0, which is not only where
  926. * the dirty count meet the setpoint, but also where the slope of
  927. * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
  928. */
  929. balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
  930. dirty_rate | 1);
  931. /*
  932. * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
  933. */
  934. if (unlikely(balanced_dirty_ratelimit > write_bw))
  935. balanced_dirty_ratelimit = write_bw;
  936. /*
  937. * We could safely do this and return immediately:
  938. *
  939. * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
  940. *
  941. * However to get a more stable dirty_ratelimit, the below elaborated
  942. * code makes use of task_ratelimit to filter out singular points and
  943. * limit the step size.
  944. *
  945. * The below code essentially only uses the relative value of
  946. *
  947. * task_ratelimit - dirty_ratelimit
  948. * = (pos_ratio - 1) * dirty_ratelimit
  949. *
  950. * which reflects the direction and size of dirty position error.
  951. */
  952. /*
  953. * dirty_ratelimit will follow balanced_dirty_ratelimit iff
  954. * task_ratelimit is on the same side of dirty_ratelimit, too.
  955. * For example, when
  956. * - dirty_ratelimit > balanced_dirty_ratelimit
  957. * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
  958. * lowering dirty_ratelimit will help meet both the position and rate
  959. * control targets. Otherwise, don't update dirty_ratelimit if it will
  960. * only help meet the rate target. After all, what the users ultimately
  961. * feel and care are stable dirty rate and small position error.
  962. *
  963. * |task_ratelimit - dirty_ratelimit| is used to limit the step size
  964. * and filter out the singular points of balanced_dirty_ratelimit. Which
  965. * keeps jumping around randomly and can even leap far away at times
  966. * due to the small 200ms estimation period of dirty_rate (we want to
  967. * keep that period small to reduce time lags).
  968. */
  969. step = 0;
  970. /*
  971. * For strictlimit case, calculations above were based on bdi counters
  972. * and limits (starting from pos_ratio = bdi_position_ratio() and up to
  973. * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
  974. * Hence, to calculate "step" properly, we have to use bdi_dirty as
  975. * "dirty" and bdi_setpoint as "setpoint".
  976. *
  977. * We rampup dirty_ratelimit forcibly if bdi_dirty is low because
  978. * it's possible that bdi_thresh is close to zero due to inactivity
  979. * of backing device (see the implementation of bdi_dirty_limit()).
  980. */
  981. if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
  982. dirty = bdi_dirty;
  983. if (bdi_dirty < 8)
  984. setpoint = bdi_dirty + 1;
  985. else
  986. setpoint = (bdi_thresh +
  987. bdi_dirty_limit(bdi, bg_thresh)) / 2;
  988. }
  989. if (dirty < setpoint) {
  990. x = min(bdi->balanced_dirty_ratelimit,
  991. min(balanced_dirty_ratelimit, task_ratelimit));
  992. if (dirty_ratelimit < x)
  993. step = x - dirty_ratelimit;
  994. } else {
  995. x = max(bdi->balanced_dirty_ratelimit,
  996. max(balanced_dirty_ratelimit, task_ratelimit));
  997. if (dirty_ratelimit > x)
  998. step = dirty_ratelimit - x;
  999. }
  1000. /*
  1001. * Don't pursue 100% rate matching. It's impossible since the balanced
  1002. * rate itself is constantly fluctuating. So decrease the track speed
  1003. * when it gets close to the target. Helps eliminate pointless tremors.
  1004. */
  1005. step >>= dirty_ratelimit / (2 * step + 1);
  1006. /*
  1007. * Limit the tracking speed to avoid overshooting.
  1008. */
  1009. step = (step + 7) / 8;
  1010. if (dirty_ratelimit < balanced_dirty_ratelimit)
  1011. dirty_ratelimit += step;
  1012. else
  1013. dirty_ratelimit -= step;
  1014. bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
  1015. bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
  1016. trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
  1017. }
  1018. void __bdi_update_bandwidth(struct backing_dev_info *bdi,
  1019. unsigned long thresh,
  1020. unsigned long bg_thresh,
  1021. unsigned long dirty,
  1022. unsigned long bdi_thresh,
  1023. unsigned long bdi_dirty,
  1024. unsigned long start_time)
  1025. {
  1026. unsigned long now = jiffies;
  1027. unsigned long elapsed = now - bdi->bw_time_stamp;
  1028. unsigned long dirtied;
  1029. unsigned long written;
  1030. /*
  1031. * rate-limit, only update once every 200ms.
  1032. */
  1033. if (elapsed < BANDWIDTH_INTERVAL)
  1034. return;
  1035. dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
  1036. written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
  1037. /*
  1038. * Skip quiet periods when disk bandwidth is under-utilized.
  1039. * (at least 1s idle time between two flusher runs)
  1040. */
  1041. if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
  1042. goto snapshot;
  1043. if (thresh) {
  1044. global_update_bandwidth(thresh, dirty, now);
  1045. bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
  1046. bdi_thresh, bdi_dirty,
  1047. dirtied, elapsed);
  1048. }
  1049. bdi_update_write_bandwidth(bdi, elapsed, written);
  1050. snapshot:
  1051. bdi->dirtied_stamp = dirtied;
  1052. bdi->written_stamp = written;
  1053. bdi->bw_time_stamp = now;
  1054. }
  1055. static void bdi_update_bandwidth(struct backing_dev_info *bdi,
  1056. unsigned long thresh,
  1057. unsigned long bg_thresh,
  1058. unsigned long dirty,
  1059. unsigned long bdi_thresh,
  1060. unsigned long bdi_dirty,
  1061. unsigned long start_time)
  1062. {
  1063. if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
  1064. return;
  1065. spin_lock(&bdi->wb.list_lock);
  1066. __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
  1067. bdi_thresh, bdi_dirty, start_time);
  1068. spin_unlock(&bdi->wb.list_lock);
  1069. }
  1070. /*
  1071. * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
  1072. * will look to see if it needs to start dirty throttling.
  1073. *
  1074. * If dirty_poll_interval is too low, big NUMA machines will call the expensive
  1075. * global_page_state() too often. So scale it near-sqrt to the safety margin
  1076. * (the number of pages we may dirty without exceeding the dirty limits).
  1077. */
  1078. static unsigned long dirty_poll_interval(unsigned long dirty,
  1079. unsigned long thresh)
  1080. {
  1081. if (thresh > dirty)
  1082. return 1UL << (ilog2(thresh - dirty) >> 1);
  1083. return 1;
  1084. }
  1085. static long bdi_max_pause(struct backing_dev_info *bdi,
  1086. unsigned long bdi_dirty)
  1087. {
  1088. long bw = bdi->avg_write_bandwidth;
  1089. long t;
  1090. /*
  1091. * Limit pause time for small memory systems. If sleeping for too long
  1092. * time, a small pool of dirty/writeback pages may go empty and disk go
  1093. * idle.
  1094. *
  1095. * 8 serves as the safety ratio.
  1096. */
  1097. t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
  1098. t++;
  1099. return min_t(long, t, MAX_PAUSE);
  1100. }
  1101. static long bdi_min_pause(struct backing_dev_info *bdi,
  1102. long max_pause,
  1103. unsigned long task_ratelimit,
  1104. unsigned long dirty_ratelimit,
  1105. int *nr_dirtied_pause)
  1106. {
  1107. long hi = ilog2(bdi->avg_write_bandwidth);
  1108. long lo = ilog2(bdi->dirty_ratelimit);
  1109. long t; /* target pause */
  1110. long pause; /* estimated next pause */
  1111. int pages; /* target nr_dirtied_pause */
  1112. /* target for 10ms pause on 1-dd case */
  1113. t = max(1, HZ / 100);
  1114. /*
  1115. * Scale up pause time for concurrent dirtiers in order to reduce CPU
  1116. * overheads.
  1117. *
  1118. * (N * 10ms) on 2^N concurrent tasks.
  1119. */
  1120. if (hi > lo)
  1121. t += (hi - lo) * (10 * HZ) / 1024;
  1122. /*
  1123. * This is a bit convoluted. We try to base the next nr_dirtied_pause
  1124. * on the much more stable dirty_ratelimit. However the next pause time
  1125. * will be computed based on task_ratelimit and the two rate limits may
  1126. * depart considerably at some time. Especially if task_ratelimit goes
  1127. * below dirty_ratelimit/2 and the target pause is max_pause, the next
  1128. * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
  1129. * result task_ratelimit won't be executed faithfully, which could
  1130. * eventually bring down dirty_ratelimit.
  1131. *
  1132. * We apply two rules to fix it up:
  1133. * 1) try to estimate the next pause time and if necessary, use a lower
  1134. * nr_dirtied_pause so as not to exceed max_pause. When this happens,
  1135. * nr_dirtied_pause will be "dancing" with task_ratelimit.
  1136. * 2) limit the target pause time to max_pause/2, so that the normal
  1137. * small fluctuations of task_ratelimit won't trigger rule (1) and
  1138. * nr_dirtied_pause will remain as stable as dirty_ratelimit.
  1139. */
  1140. t = min(t, 1 + max_pause / 2);
  1141. pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
  1142. /*
  1143. * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
  1144. * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
  1145. * When the 16 consecutive reads are often interrupted by some dirty
  1146. * throttling pause during the async writes, cfq will go into idles
  1147. * (deadline is fine). So push nr_dirtied_pause as high as possible
  1148. * until reaches DIRTY_POLL_THRESH=32 pages.
  1149. */
  1150. if (pages < DIRTY_POLL_THRESH) {
  1151. t = max_pause;
  1152. pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
  1153. if (pages > DIRTY_POLL_THRESH) {
  1154. pages = DIRTY_POLL_THRESH;
  1155. t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
  1156. }
  1157. }
  1158. pause = HZ * pages / (task_ratelimit + 1);
  1159. if (pause > max_pause) {
  1160. t = max_pause;
  1161. pages = task_ratelimit * t / roundup_pow_of_two(HZ);
  1162. }
  1163. *nr_dirtied_pause = pages;
  1164. /*
  1165. * The minimal pause time will normally be half the target pause time.
  1166. */
  1167. return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
  1168. }
  1169. static inline void bdi_dirty_limits(struct backing_dev_info *bdi,
  1170. unsigned long dirty_thresh,
  1171. unsigned long background_thresh,
  1172. unsigned long *bdi_dirty,
  1173. unsigned long *bdi_thresh,
  1174. unsigned long *bdi_bg_thresh)
  1175. {
  1176. unsigned long bdi_reclaimable;
  1177. /*
  1178. * bdi_thresh is not treated as some limiting factor as
  1179. * dirty_thresh, due to reasons
  1180. * - in JBOD setup, bdi_thresh can fluctuate a lot
  1181. * - in a system with HDD and USB key, the USB key may somehow
  1182. * go into state (bdi_dirty >> bdi_thresh) either because
  1183. * bdi_dirty starts high, or because bdi_thresh drops low.
  1184. * In this case we don't want to hard throttle the USB key
  1185. * dirtiers for 100 seconds until bdi_dirty drops under
  1186. * bdi_thresh. Instead the auxiliary bdi control line in
  1187. * bdi_position_ratio() will let the dirtier task progress
  1188. * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
  1189. */
  1190. *bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
  1191. if (bdi_bg_thresh)
  1192. *bdi_bg_thresh = div_u64((u64)*bdi_thresh *
  1193. background_thresh,
  1194. dirty_thresh);
  1195. /*
  1196. * In order to avoid the stacked BDI deadlock we need
  1197. * to ensure we accurately count the 'dirty' pages when
  1198. * the threshold is low.
  1199. *
  1200. * Otherwise it would be possible to get thresh+n pages
  1201. * reported dirty, even though there are thresh-m pages
  1202. * actually dirty; with m+n sitting in the percpu
  1203. * deltas.
  1204. */
  1205. if (*bdi_thresh < 2 * bdi_stat_error(bdi)) {
  1206. bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
  1207. *bdi_dirty = bdi_reclaimable +
  1208. bdi_stat_sum(bdi, BDI_WRITEBACK);
  1209. } else {
  1210. bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
  1211. *bdi_dirty = bdi_reclaimable +
  1212. bdi_stat(bdi, BDI_WRITEBACK);
  1213. }
  1214. }
  1215. /*
  1216. * balance_dirty_pages() must be called by processes which are generating dirty
  1217. * data. It looks at the number of dirty pages in the machine and will force
  1218. * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
  1219. * If we're over `background_thresh' then the writeback threads are woken to
  1220. * perform some writeout.
  1221. */
  1222. static void balance_dirty_pages(struct address_space *mapping,
  1223. unsigned long pages_dirtied)
  1224. {
  1225. unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
  1226. unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
  1227. unsigned long background_thresh;
  1228. unsigned long dirty_thresh;
  1229. long period;
  1230. long pause;
  1231. long max_pause;
  1232. long min_pause;
  1233. int nr_dirtied_pause;
  1234. bool dirty_exceeded = false;
  1235. unsigned long task_ratelimit;
  1236. unsigned long dirty_ratelimit;
  1237. unsigned long pos_ratio;
  1238. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1239. bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
  1240. unsigned long start_time = jiffies;
  1241. for (;;) {
  1242. unsigned long now = jiffies;
  1243. unsigned long uninitialized_var(bdi_thresh);
  1244. unsigned long thresh;
  1245. unsigned long uninitialized_var(bdi_dirty);
  1246. unsigned long dirty;
  1247. unsigned long bg_thresh;
  1248. /*
  1249. * Unstable writes are a feature of certain networked
  1250. * filesystems (i.e. NFS) in which data may have been
  1251. * written to the server's write cache, but has not yet
  1252. * been flushed to permanent storage.
  1253. */
  1254. nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
  1255. global_page_state(NR_UNSTABLE_NFS);
  1256. nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
  1257. global_dirty_limits(&background_thresh, &dirty_thresh);
  1258. if (unlikely(strictlimit)) {
  1259. bdi_dirty_limits(bdi, dirty_thresh, background_thresh,
  1260. &bdi_dirty, &bdi_thresh, &bg_thresh);
  1261. dirty = bdi_dirty;
  1262. thresh = bdi_thresh;
  1263. } else {
  1264. dirty = nr_dirty;
  1265. thresh = dirty_thresh;
  1266. bg_thresh = background_thresh;
  1267. }
  1268. /*
  1269. * Throttle it only when the background writeback cannot
  1270. * catch-up. This avoids (excessively) small writeouts
  1271. * when the bdi limits are ramping up in case of !strictlimit.
  1272. *
  1273. * In strictlimit case make decision based on the bdi counters
  1274. * and limits. Small writeouts when the bdi limits are ramping
  1275. * up are the price we consciously pay for strictlimit-ing.
  1276. */
  1277. if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
  1278. current->dirty_paused_when = now;
  1279. current->nr_dirtied = 0;
  1280. current->nr_dirtied_pause =
  1281. dirty_poll_interval(dirty, thresh);
  1282. break;
  1283. }
  1284. if (unlikely(!writeback_in_progress(bdi)))
  1285. bdi_start_background_writeback(bdi);
  1286. if (!strictlimit)
  1287. bdi_dirty_limits(bdi, dirty_thresh, background_thresh,
  1288. &bdi_dirty, &bdi_thresh, NULL);
  1289. dirty_exceeded = (bdi_dirty > bdi_thresh) &&
  1290. ((nr_dirty > dirty_thresh) || strictlimit);
  1291. if (dirty_exceeded && !bdi->dirty_exceeded)
  1292. bdi->dirty_exceeded = 1;
  1293. bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
  1294. nr_dirty, bdi_thresh, bdi_dirty,
  1295. start_time);
  1296. dirty_ratelimit = bdi->dirty_ratelimit;
  1297. pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
  1298. background_thresh, nr_dirty,
  1299. bdi_thresh, bdi_dirty);
  1300. task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
  1301. RATELIMIT_CALC_SHIFT;
  1302. max_pause = bdi_max_pause(bdi, bdi_dirty);
  1303. min_pause = bdi_min_pause(bdi, max_pause,
  1304. task_ratelimit, dirty_ratelimit,
  1305. &nr_dirtied_pause);
  1306. if (unlikely(task_ratelimit == 0)) {
  1307. period = max_pause;
  1308. pause = max_pause;
  1309. goto pause;
  1310. }
  1311. period = HZ * pages_dirtied / task_ratelimit;
  1312. pause = period;
  1313. if (current->dirty_paused_when)
  1314. pause -= now - current->dirty_paused_when;
  1315. /*
  1316. * For less than 1s think time (ext3/4 may block the dirtier
  1317. * for up to 800ms from time to time on 1-HDD; so does xfs,
  1318. * however at much less frequency), try to compensate it in
  1319. * future periods by updating the virtual time; otherwise just
  1320. * do a reset, as it may be a light dirtier.
  1321. */
  1322. if (pause < min_pause) {
  1323. trace_balance_dirty_pages(bdi,
  1324. dirty_thresh,
  1325. background_thresh,
  1326. nr_dirty,
  1327. bdi_thresh,
  1328. bdi_dirty,
  1329. dirty_ratelimit,
  1330. task_ratelimit,
  1331. pages_dirtied,
  1332. period,
  1333. min(pause, 0L),
  1334. start_time);
  1335. if (pause < -HZ) {
  1336. current->dirty_paused_when = now;
  1337. current->nr_dirtied = 0;
  1338. } else if (period) {
  1339. current->dirty_paused_when += period;
  1340. current->nr_dirtied = 0;
  1341. } else if (current->nr_dirtied_pause <= pages_dirtied)
  1342. current->nr_dirtied_pause += pages_dirtied;
  1343. break;
  1344. }
  1345. if (unlikely(pause > max_pause)) {
  1346. /* for occasional dropped task_ratelimit */
  1347. now += min(pause - max_pause, max_pause);
  1348. pause = max_pause;
  1349. }
  1350. pause:
  1351. trace_balance_dirty_pages(bdi,
  1352. dirty_thresh,
  1353. background_thresh,
  1354. nr_dirty,
  1355. bdi_thresh,
  1356. bdi_dirty,
  1357. dirty_ratelimit,
  1358. task_ratelimit,
  1359. pages_dirtied,
  1360. period,
  1361. pause,
  1362. start_time);
  1363. __set_current_state(TASK_KILLABLE);
  1364. io_schedule_timeout(pause);
  1365. current->dirty_paused_when = now + pause;
  1366. current->nr_dirtied = 0;
  1367. current->nr_dirtied_pause = nr_dirtied_pause;
  1368. /*
  1369. * This is typically equal to (nr_dirty < dirty_thresh) and can
  1370. * also keep "1000+ dd on a slow USB stick" under control.
  1371. */
  1372. if (task_ratelimit)
  1373. break;
  1374. /*
  1375. * In the case of an unresponding NFS server and the NFS dirty
  1376. * pages exceeds dirty_thresh, give the other good bdi's a pipe
  1377. * to go through, so that tasks on them still remain responsive.
  1378. *
  1379. * In theory 1 page is enough to keep the comsumer-producer
  1380. * pipe going: the flusher cleans 1 page => the task dirties 1
  1381. * more page. However bdi_dirty has accounting errors. So use
  1382. * the larger and more IO friendly bdi_stat_error.
  1383. */
  1384. if (bdi_dirty <= bdi_stat_error(bdi))
  1385. break;
  1386. if (fatal_signal_pending(current))
  1387. break;
  1388. }
  1389. if (!dirty_exceeded && bdi->dirty_exceeded)
  1390. bdi->dirty_exceeded = 0;
  1391. if (writeback_in_progress(bdi))
  1392. return;
  1393. /*
  1394. * In laptop mode, we wait until hitting the higher threshold before
  1395. * starting background writeout, and then write out all the way down
  1396. * to the lower threshold. So slow writers cause minimal disk activity.
  1397. *
  1398. * In normal mode, we start background writeout at the lower
  1399. * background_thresh, to keep the amount of dirty memory low.
  1400. */
  1401. if (laptop_mode)
  1402. return;
  1403. if (nr_reclaimable > background_thresh)
  1404. bdi_start_background_writeback(bdi);
  1405. }
  1406. void set_page_dirty_balance(struct page *page, int page_mkwrite)
  1407. {
  1408. if (set_page_dirty(page) || page_mkwrite) {
  1409. struct address_space *mapping = page_mapping(page);
  1410. if (mapping)
  1411. balance_dirty_pages_ratelimited(mapping);
  1412. }
  1413. }
  1414. static DEFINE_PER_CPU(int, bdp_ratelimits);
  1415. /*
  1416. * Normal tasks are throttled by
  1417. * loop {
  1418. * dirty tsk->nr_dirtied_pause pages;
  1419. * take a snap in balance_dirty_pages();
  1420. * }
  1421. * However there is a worst case. If every task exit immediately when dirtied
  1422. * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
  1423. * called to throttle the page dirties. The solution is to save the not yet
  1424. * throttled page dirties in dirty_throttle_leaks on task exit and charge them
  1425. * randomly into the running tasks. This works well for the above worst case,
  1426. * as the new task will pick up and accumulate the old task's leaked dirty
  1427. * count and eventually get throttled.
  1428. */
  1429. DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
  1430. /**
  1431. * balance_dirty_pages_ratelimited - balance dirty memory state
  1432. * @mapping: address_space which was dirtied
  1433. *
  1434. * Processes which are dirtying memory should call in here once for each page
  1435. * which was newly dirtied. The function will periodically check the system's
  1436. * dirty state and will initiate writeback if needed.
  1437. *
  1438. * On really big machines, get_writeback_state is expensive, so try to avoid
  1439. * calling it too often (ratelimiting). But once we're over the dirty memory
  1440. * limit we decrease the ratelimiting by a lot, to prevent individual processes
  1441. * from overshooting the limit by (ratelimit_pages) each.
  1442. */
  1443. void balance_dirty_pages_ratelimited(struct address_space *mapping)
  1444. {
  1445. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1446. int ratelimit;
  1447. int *p;
  1448. if (!bdi_cap_account_dirty(bdi))
  1449. return;
  1450. ratelimit = current->nr_dirtied_pause;
  1451. if (bdi->dirty_exceeded)
  1452. ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
  1453. preempt_disable();
  1454. /*
  1455. * This prevents one CPU to accumulate too many dirtied pages without
  1456. * calling into balance_dirty_pages(), which can happen when there are
  1457. * 1000+ tasks, all of them start dirtying pages at exactly the same
  1458. * time, hence all honoured too large initial task->nr_dirtied_pause.
  1459. */
  1460. p = &__get_cpu_var(bdp_ratelimits);
  1461. if (unlikely(current->nr_dirtied >= ratelimit))
  1462. *p = 0;
  1463. else if (unlikely(*p >= ratelimit_pages)) {
  1464. *p = 0;
  1465. ratelimit = 0;
  1466. }
  1467. /*
  1468. * Pick up the dirtied pages by the exited tasks. This avoids lots of
  1469. * short-lived tasks (eg. gcc invocations in a kernel build) escaping
  1470. * the dirty throttling and livelock other long-run dirtiers.
  1471. */
  1472. p = &__get_cpu_var(dirty_throttle_leaks);
  1473. if (*p > 0 && current->nr_dirtied < ratelimit) {
  1474. unsigned long nr_pages_dirtied;
  1475. nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
  1476. *p -= nr_pages_dirtied;
  1477. current->nr_dirtied += nr_pages_dirtied;
  1478. }
  1479. preempt_enable();
  1480. if (unlikely(current->nr_dirtied >= ratelimit))
  1481. balance_dirty_pages(mapping, current->nr_dirtied);
  1482. }
  1483. EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
  1484. void throttle_vm_writeout(gfp_t gfp_mask)
  1485. {
  1486. unsigned long background_thresh;
  1487. unsigned long dirty_thresh;
  1488. for ( ; ; ) {
  1489. global_dirty_limits(&background_thresh, &dirty_thresh);
  1490. dirty_thresh = hard_dirty_limit(dirty_thresh);
  1491. /*
  1492. * Boost the allowable dirty threshold a bit for page
  1493. * allocators so they don't get DoS'ed by heavy writers
  1494. */
  1495. dirty_thresh += dirty_thresh / 10; /* wheeee... */
  1496. if (global_page_state(NR_UNSTABLE_NFS) +
  1497. global_page_state(NR_WRITEBACK) <= dirty_thresh)
  1498. break;
  1499. congestion_wait(BLK_RW_ASYNC, HZ/10);
  1500. /*
  1501. * The caller might hold locks which can prevent IO completion
  1502. * or progress in the filesystem. So we cannot just sit here
  1503. * waiting for IO to complete.
  1504. */
  1505. if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
  1506. break;
  1507. }
  1508. }
  1509. /*
  1510. * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
  1511. */
  1512. int dirty_writeback_centisecs_handler(ctl_table *table, int write,
  1513. void __user *buffer, size_t *length, loff_t *ppos)
  1514. {
  1515. proc_dointvec(table, write, buffer, length, ppos);
  1516. return 0;
  1517. }
  1518. #ifdef CONFIG_BLOCK
  1519. void laptop_mode_timer_fn(unsigned long data)
  1520. {
  1521. struct request_queue *q = (struct request_queue *)data;
  1522. int nr_pages = global_page_state(NR_FILE_DIRTY) +
  1523. global_page_state(NR_UNSTABLE_NFS);
  1524. /*
  1525. * We want to write everything out, not just down to the dirty
  1526. * threshold
  1527. */
  1528. if (bdi_has_dirty_io(&q->backing_dev_info))
  1529. bdi_start_writeback(&q->backing_dev_info, nr_pages,
  1530. WB_REASON_LAPTOP_TIMER);
  1531. }
  1532. /*
  1533. * We've spun up the disk and we're in laptop mode: schedule writeback
  1534. * of all dirty data a few seconds from now. If the flush is already scheduled
  1535. * then push it back - the user is still using the disk.
  1536. */
  1537. void laptop_io_completion(struct backing_dev_info *info)
  1538. {
  1539. mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
  1540. }
  1541. /*
  1542. * We're in laptop mode and we've just synced. The sync's writes will have
  1543. * caused another writeback to be scheduled by laptop_io_completion.
  1544. * Nothing needs to be written back anymore, so we unschedule the writeback.
  1545. */
  1546. void laptop_sync_completion(void)
  1547. {
  1548. struct backing_dev_info *bdi;
  1549. rcu_read_lock();
  1550. list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
  1551. del_timer(&bdi->laptop_mode_wb_timer);
  1552. rcu_read_unlock();
  1553. }
  1554. #endif
  1555. /*
  1556. * If ratelimit_pages is too high then we can get into dirty-data overload
  1557. * if a large number of processes all perform writes at the same time.
  1558. * If it is too low then SMP machines will call the (expensive)
  1559. * get_writeback_state too often.
  1560. *
  1561. * Here we set ratelimit_pages to a level which ensures that when all CPUs are
  1562. * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
  1563. * thresholds.
  1564. */
  1565. void writeback_set_ratelimit(void)
  1566. {
  1567. unsigned long background_thresh;
  1568. unsigned long dirty_thresh;
  1569. global_dirty_limits(&background_thresh, &dirty_thresh);
  1570. global_dirty_limit = dirty_thresh;
  1571. ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
  1572. if (ratelimit_pages < 16)
  1573. ratelimit_pages = 16;
  1574. }
  1575. static int
  1576. ratelimit_handler(struct notifier_block *self, unsigned long action,
  1577. void *hcpu)
  1578. {
  1579. switch (action & ~CPU_TASKS_FROZEN) {
  1580. case CPU_ONLINE:
  1581. case CPU_DEAD:
  1582. writeback_set_ratelimit();
  1583. return NOTIFY_OK;
  1584. default:
  1585. return NOTIFY_DONE;
  1586. }
  1587. }
  1588. static struct notifier_block ratelimit_nb = {
  1589. .notifier_call = ratelimit_handler,
  1590. .next = NULL,
  1591. };
  1592. /*
  1593. * Called early on to tune the page writeback dirty limits.
  1594. *
  1595. * We used to scale dirty pages according to how total memory
  1596. * related to pages that could be allocated for buffers (by
  1597. * comparing nr_free_buffer_pages() to vm_total_pages.
  1598. *
  1599. * However, that was when we used "dirty_ratio" to scale with
  1600. * all memory, and we don't do that any more. "dirty_ratio"
  1601. * is now applied to total non-HIGHPAGE memory (by subtracting
  1602. * totalhigh_pages from vm_total_pages), and as such we can't
  1603. * get into the old insane situation any more where we had
  1604. * large amounts of dirty pages compared to a small amount of
  1605. * non-HIGHMEM memory.
  1606. *
  1607. * But we might still want to scale the dirty_ratio by how
  1608. * much memory the box has..
  1609. */
  1610. void __init page_writeback_init(void)
  1611. {
  1612. writeback_set_ratelimit();
  1613. register_cpu_notifier(&ratelimit_nb);
  1614. fprop_global_init(&writeout_completions);
  1615. }
  1616. /**
  1617. * tag_pages_for_writeback - tag pages to be written by write_cache_pages
  1618. * @mapping: address space structure to write
  1619. * @start: starting page index
  1620. * @end: ending page index (inclusive)
  1621. *
  1622. * This function scans the page range from @start to @end (inclusive) and tags
  1623. * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
  1624. * that write_cache_pages (or whoever calls this function) will then use
  1625. * TOWRITE tag to identify pages eligible for writeback. This mechanism is
  1626. * used to avoid livelocking of writeback by a process steadily creating new
  1627. * dirty pages in the file (thus it is important for this function to be quick
  1628. * so that it can tag pages faster than a dirtying process can create them).
  1629. */
  1630. /*
  1631. * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
  1632. */
  1633. void tag_pages_for_writeback(struct address_space *mapping,
  1634. pgoff_t start, pgoff_t end)
  1635. {
  1636. #define WRITEBACK_TAG_BATCH 4096
  1637. unsigned long tagged;
  1638. do {
  1639. spin_lock_irq(&mapping->tree_lock);
  1640. tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
  1641. &start, end, WRITEBACK_TAG_BATCH,
  1642. PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
  1643. spin_unlock_irq(&mapping->tree_lock);
  1644. WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
  1645. cond_resched();
  1646. /* We check 'start' to handle wrapping when end == ~0UL */
  1647. } while (tagged >= WRITEBACK_TAG_BATCH && start);
  1648. }
  1649. EXPORT_SYMBOL(tag_pages_for_writeback);
  1650. /**
  1651. * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
  1652. * @mapping: address space structure to write
  1653. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1654. * @writepage: function called for each page
  1655. * @data: data passed to writepage function
  1656. *
  1657. * If a page is already under I/O, write_cache_pages() skips it, even
  1658. * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
  1659. * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
  1660. * and msync() need to guarantee that all the data which was dirty at the time
  1661. * the call was made get new I/O started against them. If wbc->sync_mode is
  1662. * WB_SYNC_ALL then we were called for data integrity and we must wait for
  1663. * existing IO to complete.
  1664. *
  1665. * To avoid livelocks (when other process dirties new pages), we first tag
  1666. * pages which should be written back with TOWRITE tag and only then start
  1667. * writing them. For data-integrity sync we have to be careful so that we do
  1668. * not miss some pages (e.g., because some other process has cleared TOWRITE
  1669. * tag we set). The rule we follow is that TOWRITE tag can be cleared only
  1670. * by the process clearing the DIRTY tag (and submitting the page for IO).
  1671. */
  1672. int write_cache_pages(struct address_space *mapping,
  1673. struct writeback_control *wbc, writepage_t writepage,
  1674. void *data)
  1675. {
  1676. int ret = 0;
  1677. int done = 0;
  1678. struct pagevec pvec;
  1679. int nr_pages;
  1680. pgoff_t uninitialized_var(writeback_index);
  1681. pgoff_t index;
  1682. pgoff_t end; /* Inclusive */
  1683. pgoff_t done_index;
  1684. int cycled;
  1685. int range_whole = 0;
  1686. int tag;
  1687. pagevec_init(&pvec, 0);
  1688. if (wbc->range_cyclic) {
  1689. writeback_index = mapping->writeback_index; /* prev offset */
  1690. index = writeback_index;
  1691. if (index == 0)
  1692. cycled = 1;
  1693. else
  1694. cycled = 0;
  1695. end = -1;
  1696. } else {
  1697. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  1698. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  1699. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  1700. range_whole = 1;
  1701. cycled = 1; /* ignore range_cyclic tests */
  1702. }
  1703. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1704. tag = PAGECACHE_TAG_TOWRITE;
  1705. else
  1706. tag = PAGECACHE_TAG_DIRTY;
  1707. retry:
  1708. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1709. tag_pages_for_writeback(mapping, index, end);
  1710. done_index = index;
  1711. while (!done && (index <= end)) {
  1712. int i;
  1713. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
  1714. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1715. if (nr_pages == 0)
  1716. break;
  1717. for (i = 0; i < nr_pages; i++) {
  1718. struct page *page = pvec.pages[i];
  1719. /*
  1720. * At this point, the page may be truncated or
  1721. * invalidated (changing page->mapping to NULL), or
  1722. * even swizzled back from swapper_space to tmpfs file
  1723. * mapping. However, page->index will not change
  1724. * because we have a reference on the page.
  1725. */
  1726. if (page->index > end) {
  1727. /*
  1728. * can't be range_cyclic (1st pass) because
  1729. * end == -1 in that case.
  1730. */
  1731. done = 1;
  1732. break;
  1733. }
  1734. done_index = page->index;
  1735. lock_page(page);
  1736. /*
  1737. * Page truncated or invalidated. We can freely skip it
  1738. * then, even for data integrity operations: the page
  1739. * has disappeared concurrently, so there could be no
  1740. * real expectation of this data interity operation
  1741. * even if there is now a new, dirty page at the same
  1742. * pagecache address.
  1743. */
  1744. if (unlikely(page->mapping != mapping)) {
  1745. continue_unlock:
  1746. unlock_page(page);
  1747. continue;
  1748. }
  1749. if (!PageDirty(page)) {
  1750. /* someone wrote it for us */
  1751. goto continue_unlock;
  1752. }
  1753. if (PageWriteback(page)) {
  1754. if (wbc->sync_mode != WB_SYNC_NONE)
  1755. wait_on_page_writeback(page);
  1756. else
  1757. goto continue_unlock;
  1758. }
  1759. BUG_ON(PageWriteback(page));
  1760. if (!clear_page_dirty_for_io(page))
  1761. goto continue_unlock;
  1762. trace_wbc_writepage(wbc, mapping->backing_dev_info);
  1763. ret = (*writepage)(page, wbc, data);
  1764. if (unlikely(ret)) {
  1765. if (ret == AOP_WRITEPAGE_ACTIVATE) {
  1766. unlock_page(page);
  1767. ret = 0;
  1768. } else {
  1769. /*
  1770. * done_index is set past this page,
  1771. * so media errors will not choke
  1772. * background writeout for the entire
  1773. * file. This has consequences for
  1774. * range_cyclic semantics (ie. it may
  1775. * not be suitable for data integrity
  1776. * writeout).
  1777. */
  1778. done_index = page->index + 1;
  1779. done = 1;
  1780. break;
  1781. }
  1782. }
  1783. /*
  1784. * We stop writing back only if we are not doing
  1785. * integrity sync. In case of integrity sync we have to
  1786. * keep going until we have written all the pages
  1787. * we tagged for writeback prior to entering this loop.
  1788. */
  1789. if (--wbc->nr_to_write <= 0 &&
  1790. wbc->sync_mode == WB_SYNC_NONE) {
  1791. done = 1;
  1792. break;
  1793. }
  1794. }
  1795. pagevec_release(&pvec);
  1796. cond_resched();
  1797. }
  1798. if (!cycled && !done) {
  1799. /*
  1800. * range_cyclic:
  1801. * We hit the last page and there is more work to be done: wrap
  1802. * back to the start of the file
  1803. */
  1804. cycled = 1;
  1805. index = 0;
  1806. end = writeback_index - 1;
  1807. goto retry;
  1808. }
  1809. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  1810. mapping->writeback_index = done_index;
  1811. return ret;
  1812. }
  1813. EXPORT_SYMBOL(write_cache_pages);
  1814. /*
  1815. * Function used by generic_writepages to call the real writepage
  1816. * function and set the mapping flags on error
  1817. */
  1818. static int __writepage(struct page *page, struct writeback_control *wbc,
  1819. void *data)
  1820. {
  1821. struct address_space *mapping = data;
  1822. int ret = mapping->a_ops->writepage(page, wbc);
  1823. mapping_set_error(mapping, ret);
  1824. return ret;
  1825. }
  1826. /**
  1827. * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
  1828. * @mapping: address space structure to write
  1829. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1830. *
  1831. * This is a library function, which implements the writepages()
  1832. * address_space_operation.
  1833. */
  1834. int generic_writepages(struct address_space *mapping,
  1835. struct writeback_control *wbc)
  1836. {
  1837. struct blk_plug plug;
  1838. int ret;
  1839. /* deal with chardevs and other special file */
  1840. if (!mapping->a_ops->writepage)
  1841. return 0;
  1842. blk_start_plug(&plug);
  1843. ret = write_cache_pages(mapping, wbc, __writepage, mapping);
  1844. blk_finish_plug(&plug);
  1845. return ret;
  1846. }
  1847. EXPORT_SYMBOL(generic_writepages);
  1848. int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
  1849. {
  1850. int ret;
  1851. if (wbc->nr_to_write <= 0)
  1852. return 0;
  1853. if (mapping->a_ops->writepages)
  1854. ret = mapping->a_ops->writepages(mapping, wbc);
  1855. else
  1856. ret = generic_writepages(mapping, wbc);
  1857. return ret;
  1858. }
  1859. /**
  1860. * write_one_page - write out a single page and optionally wait on I/O
  1861. * @page: the page to write
  1862. * @wait: if true, wait on writeout
  1863. *
  1864. * The page must be locked by the caller and will be unlocked upon return.
  1865. *
  1866. * write_one_page() returns a negative error code if I/O failed.
  1867. */
  1868. int write_one_page(struct page *page, int wait)
  1869. {
  1870. struct address_space *mapping = page->mapping;
  1871. int ret = 0;
  1872. struct writeback_control wbc = {
  1873. .sync_mode = WB_SYNC_ALL,
  1874. .nr_to_write = 1,
  1875. };
  1876. BUG_ON(!PageLocked(page));
  1877. if (wait)
  1878. wait_on_page_writeback(page);
  1879. if (clear_page_dirty_for_io(page)) {
  1880. page_cache_get(page);
  1881. ret = mapping->a_ops->writepage(page, &wbc);
  1882. if (ret == 0 && wait) {
  1883. wait_on_page_writeback(page);
  1884. if (PageError(page))
  1885. ret = -EIO;
  1886. }
  1887. page_cache_release(page);
  1888. } else {
  1889. unlock_page(page);
  1890. }
  1891. return ret;
  1892. }
  1893. EXPORT_SYMBOL(write_one_page);
  1894. /*
  1895. * For address_spaces which do not use buffers nor write back.
  1896. */
  1897. int __set_page_dirty_no_writeback(struct page *page)
  1898. {
  1899. if (!PageDirty(page))
  1900. return !TestSetPageDirty(page);
  1901. return 0;
  1902. }
  1903. /*
  1904. * Helper function for set_page_dirty family.
  1905. * NOTE: This relies on being atomic wrt interrupts.
  1906. */
  1907. void account_page_dirtied(struct page *page, struct address_space *mapping)
  1908. {
  1909. trace_writeback_dirty_page(page, mapping);
  1910. if (mapping_cap_account_dirty(mapping)) {
  1911. __inc_zone_page_state(page, NR_FILE_DIRTY);
  1912. __inc_zone_page_state(page, NR_DIRTIED);
  1913. __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
  1914. __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
  1915. task_io_account_write(PAGE_CACHE_SIZE);
  1916. current->nr_dirtied++;
  1917. this_cpu_inc(bdp_ratelimits);
  1918. }
  1919. }
  1920. EXPORT_SYMBOL(account_page_dirtied);
  1921. /*
  1922. * Helper function for set_page_writeback family.
  1923. *
  1924. * The caller must hold mem_cgroup_begin/end_update_page_stat() lock
  1925. * while calling this function.
  1926. * See test_set_page_writeback for example.
  1927. *
  1928. * NOTE: Unlike account_page_dirtied this does not rely on being atomic
  1929. * wrt interrupts.
  1930. */
  1931. void account_page_writeback(struct page *page)
  1932. {
  1933. mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
  1934. inc_zone_page_state(page, NR_WRITEBACK);
  1935. }
  1936. EXPORT_SYMBOL(account_page_writeback);
  1937. /*
  1938. * For address_spaces which do not use buffers. Just tag the page as dirty in
  1939. * its radix tree.
  1940. *
  1941. * This is also used when a single buffer is being dirtied: we want to set the
  1942. * page dirty in that case, but not all the buffers. This is a "bottom-up"
  1943. * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
  1944. *
  1945. * Most callers have locked the page, which pins the address_space in memory.
  1946. * But zap_pte_range() does not lock the page, however in that case the
  1947. * mapping is pinned by the vma's ->vm_file reference.
  1948. *
  1949. * We take care to handle the case where the page was truncated from the
  1950. * mapping by re-checking page_mapping() inside tree_lock.
  1951. */
  1952. int __set_page_dirty_nobuffers(struct page *page)
  1953. {
  1954. if (!TestSetPageDirty(page)) {
  1955. struct address_space *mapping = page_mapping(page);
  1956. struct address_space *mapping2;
  1957. if (!mapping)
  1958. return 1;
  1959. spin_lock_irq(&mapping->tree_lock);
  1960. mapping2 = page_mapping(page);
  1961. if (mapping2) { /* Race with truncate? */
  1962. BUG_ON(mapping2 != mapping);
  1963. WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
  1964. account_page_dirtied(page, mapping);
  1965. radix_tree_tag_set(&mapping->page_tree,
  1966. page_index(page), PAGECACHE_TAG_DIRTY);
  1967. }
  1968. spin_unlock_irq(&mapping->tree_lock);
  1969. if (mapping->host) {
  1970. /* !PageAnon && !swapper_space */
  1971. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  1972. }
  1973. return 1;
  1974. }
  1975. return 0;
  1976. }
  1977. EXPORT_SYMBOL(__set_page_dirty_nobuffers);
  1978. /*
  1979. * Call this whenever redirtying a page, to de-account the dirty counters
  1980. * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
  1981. * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
  1982. * systematic errors in balanced_dirty_ratelimit and the dirty pages position
  1983. * control.
  1984. */
  1985. void account_page_redirty(struct page *page)
  1986. {
  1987. struct address_space *mapping = page->mapping;
  1988. if (mapping && mapping_cap_account_dirty(mapping)) {
  1989. current->nr_dirtied--;
  1990. dec_zone_page_state(page, NR_DIRTIED);
  1991. dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
  1992. }
  1993. }
  1994. EXPORT_SYMBOL(account_page_redirty);
  1995. /*
  1996. * When a writepage implementation decides that it doesn't want to write this
  1997. * page for some reason, it should redirty the locked page via
  1998. * redirty_page_for_writepage() and it should then unlock the page and return 0
  1999. */
  2000. int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
  2001. {
  2002. wbc->pages_skipped++;
  2003. account_page_redirty(page);
  2004. return __set_page_dirty_nobuffers(page);
  2005. }
  2006. EXPORT_SYMBOL(redirty_page_for_writepage);
  2007. /*
  2008. * Dirty a page.
  2009. *
  2010. * For pages with a mapping this should be done under the page lock
  2011. * for the benefit of asynchronous memory errors who prefer a consistent
  2012. * dirty state. This rule can be broken in some special cases,
  2013. * but should be better not to.
  2014. *
  2015. * If the mapping doesn't provide a set_page_dirty a_op, then
  2016. * just fall through and assume that it wants buffer_heads.
  2017. */
  2018. int set_page_dirty(struct page *page)
  2019. {
  2020. struct address_space *mapping = page_mapping(page);
  2021. if (likely(mapping)) {
  2022. int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
  2023. /*
  2024. * readahead/lru_deactivate_page could remain
  2025. * PG_readahead/PG_reclaim due to race with end_page_writeback
  2026. * About readahead, if the page is written, the flags would be
  2027. * reset. So no problem.
  2028. * About lru_deactivate_page, if the page is redirty, the flag
  2029. * will be reset. So no problem. but if the page is used by readahead
  2030. * it will confuse readahead and make it restart the size rampup
  2031. * process. But it's a trivial problem.
  2032. */
  2033. ClearPageReclaim(page);
  2034. #ifdef CONFIG_BLOCK
  2035. if (!spd)
  2036. spd = __set_page_dirty_buffers;
  2037. #endif
  2038. return (*spd)(page);
  2039. }
  2040. if (!PageDirty(page)) {
  2041. if (!TestSetPageDirty(page))
  2042. return 1;
  2043. }
  2044. return 0;
  2045. }
  2046. EXPORT_SYMBOL(set_page_dirty);
  2047. /*
  2048. * set_page_dirty() is racy if the caller has no reference against
  2049. * page->mapping->host, and if the page is unlocked. This is because another
  2050. * CPU could truncate the page off the mapping and then free the mapping.
  2051. *
  2052. * Usually, the page _is_ locked, or the caller is a user-space process which
  2053. * holds a reference on the inode by having an open file.
  2054. *
  2055. * In other cases, the page should be locked before running set_page_dirty().
  2056. */
  2057. int set_page_dirty_lock(struct page *page)
  2058. {
  2059. int ret;
  2060. lock_page(page);
  2061. ret = set_page_dirty(page);
  2062. unlock_page(page);
  2063. return ret;
  2064. }
  2065. EXPORT_SYMBOL(set_page_dirty_lock);
  2066. /*
  2067. * Clear a page's dirty flag, while caring for dirty memory accounting.
  2068. * Returns true if the page was previously dirty.
  2069. *
  2070. * This is for preparing to put the page under writeout. We leave the page
  2071. * tagged as dirty in the radix tree so that a concurrent write-for-sync
  2072. * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
  2073. * implementation will run either set_page_writeback() or set_page_dirty(),
  2074. * at which stage we bring the page's dirty flag and radix-tree dirty tag
  2075. * back into sync.
  2076. *
  2077. * This incoherency between the page's dirty flag and radix-tree tag is
  2078. * unfortunate, but it only exists while the page is locked.
  2079. */
  2080. int clear_page_dirty_for_io(struct page *page)
  2081. {
  2082. struct address_space *mapping = page_mapping(page);
  2083. BUG_ON(!PageLocked(page));
  2084. if (mapping && mapping_cap_account_dirty(mapping)) {
  2085. /*
  2086. * Yes, Virginia, this is indeed insane.
  2087. *
  2088. * We use this sequence to make sure that
  2089. * (a) we account for dirty stats properly
  2090. * (b) we tell the low-level filesystem to
  2091. * mark the whole page dirty if it was
  2092. * dirty in a pagetable. Only to then
  2093. * (c) clean the page again and return 1 to
  2094. * cause the writeback.
  2095. *
  2096. * This way we avoid all nasty races with the
  2097. * dirty bit in multiple places and clearing
  2098. * them concurrently from different threads.
  2099. *
  2100. * Note! Normally the "set_page_dirty(page)"
  2101. * has no effect on the actual dirty bit - since
  2102. * that will already usually be set. But we
  2103. * need the side effects, and it can help us
  2104. * avoid races.
  2105. *
  2106. * We basically use the page "master dirty bit"
  2107. * as a serialization point for all the different
  2108. * threads doing their things.
  2109. */
  2110. if (page_mkclean(page))
  2111. set_page_dirty(page);
  2112. /*
  2113. * We carefully synchronise fault handlers against
  2114. * installing a dirty pte and marking the page dirty
  2115. * at this point. We do this by having them hold the
  2116. * page lock at some point after installing their
  2117. * pte, but before marking the page dirty.
  2118. * Pages are always locked coming in here, so we get
  2119. * the desired exclusion. See mm/memory.c:do_wp_page()
  2120. * for more comments.
  2121. */
  2122. if (TestClearPageDirty(page)) {
  2123. dec_zone_page_state(page, NR_FILE_DIRTY);
  2124. dec_bdi_stat(mapping->backing_dev_info,
  2125. BDI_RECLAIMABLE);
  2126. return 1;
  2127. }
  2128. return 0;
  2129. }
  2130. return TestClearPageDirty(page);
  2131. }
  2132. EXPORT_SYMBOL(clear_page_dirty_for_io);
  2133. int test_clear_page_writeback(struct page *page)
  2134. {
  2135. struct address_space *mapping = page_mapping(page);
  2136. int ret;
  2137. bool locked;
  2138. unsigned long memcg_flags;
  2139. mem_cgroup_begin_update_page_stat(page, &locked, &memcg_flags);
  2140. if (mapping) {
  2141. struct backing_dev_info *bdi = mapping->backing_dev_info;
  2142. unsigned long flags;
  2143. spin_lock_irqsave(&mapping->tree_lock, flags);
  2144. ret = TestClearPageWriteback(page);
  2145. if (ret) {
  2146. radix_tree_tag_clear(&mapping->page_tree,
  2147. page_index(page),
  2148. PAGECACHE_TAG_WRITEBACK);
  2149. if (bdi_cap_account_writeback(bdi)) {
  2150. __dec_bdi_stat(bdi, BDI_WRITEBACK);
  2151. __bdi_writeout_inc(bdi);
  2152. }
  2153. }
  2154. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  2155. } else {
  2156. ret = TestClearPageWriteback(page);
  2157. }
  2158. if (ret) {
  2159. mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
  2160. dec_zone_page_state(page, NR_WRITEBACK);
  2161. inc_zone_page_state(page, NR_WRITTEN);
  2162. }
  2163. mem_cgroup_end_update_page_stat(page, &locked, &memcg_flags);
  2164. return ret;
  2165. }
  2166. int test_set_page_writeback(struct page *page)
  2167. {
  2168. struct address_space *mapping = page_mapping(page);
  2169. int ret;
  2170. bool locked;
  2171. unsigned long memcg_flags;
  2172. mem_cgroup_begin_update_page_stat(page, &locked, &memcg_flags);
  2173. if (mapping) {
  2174. struct backing_dev_info *bdi = mapping->backing_dev_info;
  2175. unsigned long flags;
  2176. spin_lock_irqsave(&mapping->tree_lock, flags);
  2177. ret = TestSetPageWriteback(page);
  2178. if (!ret) {
  2179. radix_tree_tag_set(&mapping->page_tree,
  2180. page_index(page),
  2181. PAGECACHE_TAG_WRITEBACK);
  2182. if (bdi_cap_account_writeback(bdi))
  2183. __inc_bdi_stat(bdi, BDI_WRITEBACK);
  2184. }
  2185. if (!PageDirty(page))
  2186. radix_tree_tag_clear(&mapping->page_tree,
  2187. page_index(page),
  2188. PAGECACHE_TAG_DIRTY);
  2189. radix_tree_tag_clear(&mapping->page_tree,
  2190. page_index(page),
  2191. PAGECACHE_TAG_TOWRITE);
  2192. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  2193. } else {
  2194. ret = TestSetPageWriteback(page);
  2195. }
  2196. if (!ret)
  2197. account_page_writeback(page);
  2198. mem_cgroup_end_update_page_stat(page, &locked, &memcg_flags);
  2199. return ret;
  2200. }
  2201. EXPORT_SYMBOL(test_set_page_writeback);
  2202. /*
  2203. * Return true if any of the pages in the mapping are marked with the
  2204. * passed tag.
  2205. */
  2206. int mapping_tagged(struct address_space *mapping, int tag)
  2207. {
  2208. return radix_tree_tagged(&mapping->page_tree, tag);
  2209. }
  2210. EXPORT_SYMBOL(mapping_tagged);
  2211. /**
  2212. * wait_for_stable_page() - wait for writeback to finish, if necessary.
  2213. * @page: The page to wait on.
  2214. *
  2215. * This function determines if the given page is related to a backing device
  2216. * that requires page contents to be held stable during writeback. If so, then
  2217. * it will wait for any pending writeback to complete.
  2218. */
  2219. void wait_for_stable_page(struct page *page)
  2220. {
  2221. struct address_space *mapping = page_mapping(page);
  2222. struct backing_dev_info *bdi = mapping->backing_dev_info;
  2223. if (!bdi_cap_stable_pages_required(bdi))
  2224. return;
  2225. wait_on_page_writeback(page);
  2226. }
  2227. EXPORT_SYMBOL_GPL(wait_for_stable_page);