mmap.c 86 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235
  1. /*
  2. * mm/mmap.c
  3. *
  4. * Written by obz.
  5. *
  6. * Address space accounting code <alan@lxorguk.ukuu.org.uk>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/slab.h>
  10. #include <linux/backing-dev.h>
  11. #include <linux/mm.h>
  12. #include <linux/shm.h>
  13. #include <linux/mman.h>
  14. #include <linux/pagemap.h>
  15. #include <linux/swap.h>
  16. #include <linux/syscalls.h>
  17. #include <linux/capability.h>
  18. #include <linux/init.h>
  19. #include <linux/file.h>
  20. #include <linux/fs.h>
  21. #include <linux/personality.h>
  22. #include <linux/security.h>
  23. #include <linux/hugetlb.h>
  24. #include <linux/profile.h>
  25. #include <linux/export.h>
  26. #include <linux/mount.h>
  27. #include <linux/mempolicy.h>
  28. #include <linux/rmap.h>
  29. #include <linux/mmu_notifier.h>
  30. #include <linux/perf_event.h>
  31. #include <linux/audit.h>
  32. #include <linux/khugepaged.h>
  33. #include <linux/uprobes.h>
  34. #include <linux/rbtree_augmented.h>
  35. #include <linux/sched/sysctl.h>
  36. #include <linux/notifier.h>
  37. #include <linux/memory.h>
  38. #include <asm/uaccess.h>
  39. #include <asm/cacheflush.h>
  40. #include <asm/tlb.h>
  41. #include <asm/mmu_context.h>
  42. #include "internal.h"
  43. #ifndef arch_mmap_check
  44. #define arch_mmap_check(addr, len, flags) (0)
  45. #endif
  46. #ifndef arch_rebalance_pgtables
  47. #define arch_rebalance_pgtables(addr, len) (addr)
  48. #endif
  49. static void unmap_region(struct mm_struct *mm,
  50. struct vm_area_struct *vma, struct vm_area_struct *prev,
  51. unsigned long start, unsigned long end);
  52. /* description of effects of mapping type and prot in current implementation.
  53. * this is due to the limited x86 page protection hardware. The expected
  54. * behavior is in parens:
  55. *
  56. * map_type prot
  57. * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
  58. * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
  59. * w: (no) no w: (no) no w: (yes) yes w: (no) no
  60. * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
  61. *
  62. * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
  63. * w: (no) no w: (no) no w: (copy) copy w: (no) no
  64. * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
  65. *
  66. */
  67. pgprot_t protection_map[16] = {
  68. __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
  69. __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
  70. };
  71. pgprot_t vm_get_page_prot(unsigned long vm_flags)
  72. {
  73. return __pgprot(pgprot_val(protection_map[vm_flags &
  74. (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
  75. pgprot_val(arch_vm_get_page_prot(vm_flags)));
  76. }
  77. EXPORT_SYMBOL(vm_get_page_prot);
  78. int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
  79. int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
  80. int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
  81. unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
  82. unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
  83. /*
  84. * Make sure vm_committed_as in one cacheline and not cacheline shared with
  85. * other variables. It can be updated by several CPUs frequently.
  86. */
  87. struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
  88. /*
  89. * The global memory commitment made in the system can be a metric
  90. * that can be used to drive ballooning decisions when Linux is hosted
  91. * as a guest. On Hyper-V, the host implements a policy engine for dynamically
  92. * balancing memory across competing virtual machines that are hosted.
  93. * Several metrics drive this policy engine including the guest reported
  94. * memory commitment.
  95. */
  96. unsigned long vm_memory_committed(void)
  97. {
  98. return percpu_counter_read_positive(&vm_committed_as);
  99. }
  100. EXPORT_SYMBOL_GPL(vm_memory_committed);
  101. /*
  102. * Check that a process has enough memory to allocate a new virtual
  103. * mapping. 0 means there is enough memory for the allocation to
  104. * succeed and -ENOMEM implies there is not.
  105. *
  106. * We currently support three overcommit policies, which are set via the
  107. * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
  108. *
  109. * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
  110. * Additional code 2002 Jul 20 by Robert Love.
  111. *
  112. * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
  113. *
  114. * Note this is a helper function intended to be used by LSMs which
  115. * wish to use this logic.
  116. */
  117. int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
  118. {
  119. unsigned long free, allowed, reserve;
  120. vm_acct_memory(pages);
  121. /*
  122. * Sometimes we want to use more memory than we have
  123. */
  124. if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
  125. return 0;
  126. if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
  127. free = global_page_state(NR_FREE_PAGES);
  128. free += global_page_state(NR_FILE_PAGES);
  129. /*
  130. * shmem pages shouldn't be counted as free in this
  131. * case, they can't be purged, only swapped out, and
  132. * that won't affect the overall amount of available
  133. * memory in the system.
  134. */
  135. free -= global_page_state(NR_SHMEM);
  136. free += get_nr_swap_pages();
  137. /*
  138. * Any slabs which are created with the
  139. * SLAB_RECLAIM_ACCOUNT flag claim to have contents
  140. * which are reclaimable, under pressure. The dentry
  141. * cache and most inode caches should fall into this
  142. */
  143. free += global_page_state(NR_SLAB_RECLAIMABLE);
  144. /*
  145. * Leave reserved pages. The pages are not for anonymous pages.
  146. */
  147. if (free <= totalreserve_pages)
  148. goto error;
  149. else
  150. free -= totalreserve_pages;
  151. /*
  152. * Reserve some for root
  153. */
  154. if (!cap_sys_admin)
  155. free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
  156. if (free > pages)
  157. return 0;
  158. goto error;
  159. }
  160. allowed = (totalram_pages - hugetlb_total_pages())
  161. * sysctl_overcommit_ratio / 100;
  162. /*
  163. * Reserve some for root
  164. */
  165. if (!cap_sys_admin)
  166. allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
  167. allowed += total_swap_pages;
  168. /*
  169. * Don't let a single process grow so big a user can't recover
  170. */
  171. if (mm) {
  172. reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
  173. allowed -= min(mm->total_vm / 32, reserve);
  174. }
  175. if (percpu_counter_read_positive(&vm_committed_as) < allowed)
  176. return 0;
  177. error:
  178. vm_unacct_memory(pages);
  179. return -ENOMEM;
  180. }
  181. /*
  182. * Requires inode->i_mapping->i_mmap_mutex
  183. */
  184. static void __remove_shared_vm_struct(struct vm_area_struct *vma,
  185. struct file *file, struct address_space *mapping)
  186. {
  187. if (vma->vm_flags & VM_DENYWRITE)
  188. atomic_inc(&file_inode(file)->i_writecount);
  189. if (vma->vm_flags & VM_SHARED)
  190. mapping->i_mmap_writable--;
  191. flush_dcache_mmap_lock(mapping);
  192. if (unlikely(vma->vm_flags & VM_NONLINEAR))
  193. list_del_init(&vma->shared.nonlinear);
  194. else
  195. vma_interval_tree_remove(vma, &mapping->i_mmap);
  196. flush_dcache_mmap_unlock(mapping);
  197. }
  198. /*
  199. * Unlink a file-based vm structure from its interval tree, to hide
  200. * vma from rmap and vmtruncate before freeing its page tables.
  201. */
  202. void unlink_file_vma(struct vm_area_struct *vma)
  203. {
  204. struct file *file = vma->vm_file;
  205. if (file) {
  206. struct address_space *mapping = file->f_mapping;
  207. mutex_lock(&mapping->i_mmap_mutex);
  208. __remove_shared_vm_struct(vma, file, mapping);
  209. mutex_unlock(&mapping->i_mmap_mutex);
  210. }
  211. }
  212. /*
  213. * Close a vm structure and free it, returning the next.
  214. */
  215. static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
  216. {
  217. struct vm_area_struct *next = vma->vm_next;
  218. might_sleep();
  219. if (vma->vm_ops && vma->vm_ops->close)
  220. vma->vm_ops->close(vma);
  221. if (vma->vm_file)
  222. fput(vma->vm_file);
  223. mpol_put(vma_policy(vma));
  224. kmem_cache_free(vm_area_cachep, vma);
  225. return next;
  226. }
  227. static unsigned long do_brk(unsigned long addr, unsigned long len);
  228. SYSCALL_DEFINE1(brk, unsigned long, brk)
  229. {
  230. unsigned long rlim, retval;
  231. unsigned long newbrk, oldbrk;
  232. struct mm_struct *mm = current->mm;
  233. unsigned long min_brk;
  234. bool populate;
  235. down_write(&mm->mmap_sem);
  236. #ifdef CONFIG_COMPAT_BRK
  237. /*
  238. * CONFIG_COMPAT_BRK can still be overridden by setting
  239. * randomize_va_space to 2, which will still cause mm->start_brk
  240. * to be arbitrarily shifted
  241. */
  242. if (current->brk_randomized)
  243. min_brk = mm->start_brk;
  244. else
  245. min_brk = mm->end_data;
  246. #else
  247. min_brk = mm->start_brk;
  248. #endif
  249. if (brk < min_brk)
  250. goto out;
  251. /*
  252. * Check against rlimit here. If this check is done later after the test
  253. * of oldbrk with newbrk then it can escape the test and let the data
  254. * segment grow beyond its set limit the in case where the limit is
  255. * not page aligned -Ram Gupta
  256. */
  257. rlim = rlimit(RLIMIT_DATA);
  258. if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
  259. (mm->end_data - mm->start_data) > rlim)
  260. goto out;
  261. newbrk = PAGE_ALIGN(brk);
  262. oldbrk = PAGE_ALIGN(mm->brk);
  263. if (oldbrk == newbrk)
  264. goto set_brk;
  265. /* Always allow shrinking brk. */
  266. if (brk <= mm->brk) {
  267. if (!do_munmap(mm, newbrk, oldbrk-newbrk))
  268. goto set_brk;
  269. goto out;
  270. }
  271. /* Check against existing mmap mappings. */
  272. if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
  273. goto out;
  274. /* Ok, looks good - let it rip. */
  275. if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
  276. goto out;
  277. set_brk:
  278. mm->brk = brk;
  279. populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
  280. up_write(&mm->mmap_sem);
  281. if (populate)
  282. mm_populate(oldbrk, newbrk - oldbrk);
  283. return brk;
  284. out:
  285. retval = mm->brk;
  286. up_write(&mm->mmap_sem);
  287. return retval;
  288. }
  289. static long vma_compute_subtree_gap(struct vm_area_struct *vma)
  290. {
  291. unsigned long max, subtree_gap;
  292. max = vma->vm_start;
  293. if (vma->vm_prev)
  294. max -= vma->vm_prev->vm_end;
  295. if (vma->vm_rb.rb_left) {
  296. subtree_gap = rb_entry(vma->vm_rb.rb_left,
  297. struct vm_area_struct, vm_rb)->rb_subtree_gap;
  298. if (subtree_gap > max)
  299. max = subtree_gap;
  300. }
  301. if (vma->vm_rb.rb_right) {
  302. subtree_gap = rb_entry(vma->vm_rb.rb_right,
  303. struct vm_area_struct, vm_rb)->rb_subtree_gap;
  304. if (subtree_gap > max)
  305. max = subtree_gap;
  306. }
  307. return max;
  308. }
  309. #ifdef CONFIG_DEBUG_VM_RB
  310. static int browse_rb(struct rb_root *root)
  311. {
  312. int i = 0, j, bug = 0;
  313. struct rb_node *nd, *pn = NULL;
  314. unsigned long prev = 0, pend = 0;
  315. for (nd = rb_first(root); nd; nd = rb_next(nd)) {
  316. struct vm_area_struct *vma;
  317. vma = rb_entry(nd, struct vm_area_struct, vm_rb);
  318. if (vma->vm_start < prev) {
  319. printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
  320. bug = 1;
  321. }
  322. if (vma->vm_start < pend) {
  323. printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
  324. bug = 1;
  325. }
  326. if (vma->vm_start > vma->vm_end) {
  327. printk("vm_end %lx < vm_start %lx\n",
  328. vma->vm_end, vma->vm_start);
  329. bug = 1;
  330. }
  331. if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
  332. printk("free gap %lx, correct %lx\n",
  333. vma->rb_subtree_gap,
  334. vma_compute_subtree_gap(vma));
  335. bug = 1;
  336. }
  337. i++;
  338. pn = nd;
  339. prev = vma->vm_start;
  340. pend = vma->vm_end;
  341. }
  342. j = 0;
  343. for (nd = pn; nd; nd = rb_prev(nd))
  344. j++;
  345. if (i != j) {
  346. printk("backwards %d, forwards %d\n", j, i);
  347. bug = 1;
  348. }
  349. return bug ? -1 : i;
  350. }
  351. static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
  352. {
  353. struct rb_node *nd;
  354. for (nd = rb_first(root); nd; nd = rb_next(nd)) {
  355. struct vm_area_struct *vma;
  356. vma = rb_entry(nd, struct vm_area_struct, vm_rb);
  357. BUG_ON(vma != ignore &&
  358. vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
  359. }
  360. }
  361. void validate_mm(struct mm_struct *mm)
  362. {
  363. int bug = 0;
  364. int i = 0;
  365. unsigned long highest_address = 0;
  366. struct vm_area_struct *vma = mm->mmap;
  367. while (vma) {
  368. struct anon_vma_chain *avc;
  369. vma_lock_anon_vma(vma);
  370. list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
  371. anon_vma_interval_tree_verify(avc);
  372. vma_unlock_anon_vma(vma);
  373. highest_address = vma->vm_end;
  374. vma = vma->vm_next;
  375. i++;
  376. }
  377. if (i != mm->map_count) {
  378. printk("map_count %d vm_next %d\n", mm->map_count, i);
  379. bug = 1;
  380. }
  381. if (highest_address != mm->highest_vm_end) {
  382. printk("mm->highest_vm_end %lx, found %lx\n",
  383. mm->highest_vm_end, highest_address);
  384. bug = 1;
  385. }
  386. i = browse_rb(&mm->mm_rb);
  387. if (i != mm->map_count) {
  388. printk("map_count %d rb %d\n", mm->map_count, i);
  389. bug = 1;
  390. }
  391. BUG_ON(bug);
  392. }
  393. #else
  394. #define validate_mm_rb(root, ignore) do { } while (0)
  395. #define validate_mm(mm) do { } while (0)
  396. #endif
  397. RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
  398. unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
  399. /*
  400. * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
  401. * vma->vm_prev->vm_end values changed, without modifying the vma's position
  402. * in the rbtree.
  403. */
  404. static void vma_gap_update(struct vm_area_struct *vma)
  405. {
  406. /*
  407. * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
  408. * function that does exacltly what we want.
  409. */
  410. vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
  411. }
  412. static inline void vma_rb_insert(struct vm_area_struct *vma,
  413. struct rb_root *root)
  414. {
  415. /* All rb_subtree_gap values must be consistent prior to insertion */
  416. validate_mm_rb(root, NULL);
  417. rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
  418. }
  419. static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
  420. {
  421. /*
  422. * All rb_subtree_gap values must be consistent prior to erase,
  423. * with the possible exception of the vma being erased.
  424. */
  425. validate_mm_rb(root, vma);
  426. /*
  427. * Note rb_erase_augmented is a fairly large inline function,
  428. * so make sure we instantiate it only once with our desired
  429. * augmented rbtree callbacks.
  430. */
  431. rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
  432. }
  433. /*
  434. * vma has some anon_vma assigned, and is already inserted on that
  435. * anon_vma's interval trees.
  436. *
  437. * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
  438. * vma must be removed from the anon_vma's interval trees using
  439. * anon_vma_interval_tree_pre_update_vma().
  440. *
  441. * After the update, the vma will be reinserted using
  442. * anon_vma_interval_tree_post_update_vma().
  443. *
  444. * The entire update must be protected by exclusive mmap_sem and by
  445. * the root anon_vma's mutex.
  446. */
  447. static inline void
  448. anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
  449. {
  450. struct anon_vma_chain *avc;
  451. list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
  452. anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
  453. }
  454. static inline void
  455. anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
  456. {
  457. struct anon_vma_chain *avc;
  458. list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
  459. anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
  460. }
  461. static int find_vma_links(struct mm_struct *mm, unsigned long addr,
  462. unsigned long end, struct vm_area_struct **pprev,
  463. struct rb_node ***rb_link, struct rb_node **rb_parent)
  464. {
  465. struct rb_node **__rb_link, *__rb_parent, *rb_prev;
  466. __rb_link = &mm->mm_rb.rb_node;
  467. rb_prev = __rb_parent = NULL;
  468. while (*__rb_link) {
  469. struct vm_area_struct *vma_tmp;
  470. __rb_parent = *__rb_link;
  471. vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
  472. if (vma_tmp->vm_end > addr) {
  473. /* Fail if an existing vma overlaps the area */
  474. if (vma_tmp->vm_start < end)
  475. return -ENOMEM;
  476. __rb_link = &__rb_parent->rb_left;
  477. } else {
  478. rb_prev = __rb_parent;
  479. __rb_link = &__rb_parent->rb_right;
  480. }
  481. }
  482. *pprev = NULL;
  483. if (rb_prev)
  484. *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
  485. *rb_link = __rb_link;
  486. *rb_parent = __rb_parent;
  487. return 0;
  488. }
  489. static unsigned long count_vma_pages_range(struct mm_struct *mm,
  490. unsigned long addr, unsigned long end)
  491. {
  492. unsigned long nr_pages = 0;
  493. struct vm_area_struct *vma;
  494. /* Find first overlaping mapping */
  495. vma = find_vma_intersection(mm, addr, end);
  496. if (!vma)
  497. return 0;
  498. nr_pages = (min(end, vma->vm_end) -
  499. max(addr, vma->vm_start)) >> PAGE_SHIFT;
  500. /* Iterate over the rest of the overlaps */
  501. for (vma = vma->vm_next; vma; vma = vma->vm_next) {
  502. unsigned long overlap_len;
  503. if (vma->vm_start > end)
  504. break;
  505. overlap_len = min(end, vma->vm_end) - vma->vm_start;
  506. nr_pages += overlap_len >> PAGE_SHIFT;
  507. }
  508. return nr_pages;
  509. }
  510. void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
  511. struct rb_node **rb_link, struct rb_node *rb_parent)
  512. {
  513. /* Update tracking information for the gap following the new vma. */
  514. if (vma->vm_next)
  515. vma_gap_update(vma->vm_next);
  516. else
  517. mm->highest_vm_end = vma->vm_end;
  518. /*
  519. * vma->vm_prev wasn't known when we followed the rbtree to find the
  520. * correct insertion point for that vma. As a result, we could not
  521. * update the vma vm_rb parents rb_subtree_gap values on the way down.
  522. * So, we first insert the vma with a zero rb_subtree_gap value
  523. * (to be consistent with what we did on the way down), and then
  524. * immediately update the gap to the correct value. Finally we
  525. * rebalance the rbtree after all augmented values have been set.
  526. */
  527. rb_link_node(&vma->vm_rb, rb_parent, rb_link);
  528. vma->rb_subtree_gap = 0;
  529. vma_gap_update(vma);
  530. vma_rb_insert(vma, &mm->mm_rb);
  531. }
  532. static void __vma_link_file(struct vm_area_struct *vma)
  533. {
  534. struct file *file;
  535. file = vma->vm_file;
  536. if (file) {
  537. struct address_space *mapping = file->f_mapping;
  538. if (vma->vm_flags & VM_DENYWRITE)
  539. atomic_dec(&file_inode(file)->i_writecount);
  540. if (vma->vm_flags & VM_SHARED)
  541. mapping->i_mmap_writable++;
  542. flush_dcache_mmap_lock(mapping);
  543. if (unlikely(vma->vm_flags & VM_NONLINEAR))
  544. vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
  545. else
  546. vma_interval_tree_insert(vma, &mapping->i_mmap);
  547. flush_dcache_mmap_unlock(mapping);
  548. }
  549. }
  550. static void
  551. __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
  552. struct vm_area_struct *prev, struct rb_node **rb_link,
  553. struct rb_node *rb_parent)
  554. {
  555. __vma_link_list(mm, vma, prev, rb_parent);
  556. __vma_link_rb(mm, vma, rb_link, rb_parent);
  557. }
  558. static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
  559. struct vm_area_struct *prev, struct rb_node **rb_link,
  560. struct rb_node *rb_parent)
  561. {
  562. struct address_space *mapping = NULL;
  563. if (vma->vm_file)
  564. mapping = vma->vm_file->f_mapping;
  565. if (mapping)
  566. mutex_lock(&mapping->i_mmap_mutex);
  567. __vma_link(mm, vma, prev, rb_link, rb_parent);
  568. __vma_link_file(vma);
  569. if (mapping)
  570. mutex_unlock(&mapping->i_mmap_mutex);
  571. mm->map_count++;
  572. validate_mm(mm);
  573. }
  574. /*
  575. * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
  576. * mm's list and rbtree. It has already been inserted into the interval tree.
  577. */
  578. static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
  579. {
  580. struct vm_area_struct *prev;
  581. struct rb_node **rb_link, *rb_parent;
  582. if (find_vma_links(mm, vma->vm_start, vma->vm_end,
  583. &prev, &rb_link, &rb_parent))
  584. BUG();
  585. __vma_link(mm, vma, prev, rb_link, rb_parent);
  586. mm->map_count++;
  587. }
  588. static inline void
  589. __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
  590. struct vm_area_struct *prev)
  591. {
  592. struct vm_area_struct *next;
  593. vma_rb_erase(vma, &mm->mm_rb);
  594. prev->vm_next = next = vma->vm_next;
  595. if (next)
  596. next->vm_prev = prev;
  597. if (mm->mmap_cache == vma)
  598. mm->mmap_cache = prev;
  599. }
  600. /*
  601. * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
  602. * is already present in an i_mmap tree without adjusting the tree.
  603. * The following helper function should be used when such adjustments
  604. * are necessary. The "insert" vma (if any) is to be inserted
  605. * before we drop the necessary locks.
  606. */
  607. int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  608. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
  609. {
  610. struct mm_struct *mm = vma->vm_mm;
  611. struct vm_area_struct *next = vma->vm_next;
  612. struct vm_area_struct *importer = NULL;
  613. struct address_space *mapping = NULL;
  614. struct rb_root *root = NULL;
  615. struct anon_vma *anon_vma = NULL;
  616. struct file *file = vma->vm_file;
  617. bool start_changed = false, end_changed = false;
  618. long adjust_next = 0;
  619. int remove_next = 0;
  620. if (next && !insert) {
  621. struct vm_area_struct *exporter = NULL;
  622. if (end >= next->vm_end) {
  623. /*
  624. * vma expands, overlapping all the next, and
  625. * perhaps the one after too (mprotect case 6).
  626. */
  627. again: remove_next = 1 + (end > next->vm_end);
  628. end = next->vm_end;
  629. exporter = next;
  630. importer = vma;
  631. } else if (end > next->vm_start) {
  632. /*
  633. * vma expands, overlapping part of the next:
  634. * mprotect case 5 shifting the boundary up.
  635. */
  636. adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
  637. exporter = next;
  638. importer = vma;
  639. } else if (end < vma->vm_end) {
  640. /*
  641. * vma shrinks, and !insert tells it's not
  642. * split_vma inserting another: so it must be
  643. * mprotect case 4 shifting the boundary down.
  644. */
  645. adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
  646. exporter = vma;
  647. importer = next;
  648. }
  649. /*
  650. * Easily overlooked: when mprotect shifts the boundary,
  651. * make sure the expanding vma has anon_vma set if the
  652. * shrinking vma had, to cover any anon pages imported.
  653. */
  654. if (exporter && exporter->anon_vma && !importer->anon_vma) {
  655. if (anon_vma_clone(importer, exporter))
  656. return -ENOMEM;
  657. importer->anon_vma = exporter->anon_vma;
  658. }
  659. }
  660. if (file) {
  661. mapping = file->f_mapping;
  662. if (!(vma->vm_flags & VM_NONLINEAR)) {
  663. root = &mapping->i_mmap;
  664. uprobe_munmap(vma, vma->vm_start, vma->vm_end);
  665. if (adjust_next)
  666. uprobe_munmap(next, next->vm_start,
  667. next->vm_end);
  668. }
  669. mutex_lock(&mapping->i_mmap_mutex);
  670. if (insert) {
  671. /*
  672. * Put into interval tree now, so instantiated pages
  673. * are visible to arm/parisc __flush_dcache_page
  674. * throughout; but we cannot insert into address
  675. * space until vma start or end is updated.
  676. */
  677. __vma_link_file(insert);
  678. }
  679. }
  680. vma_adjust_trans_huge(vma, start, end, adjust_next);
  681. anon_vma = vma->anon_vma;
  682. if (!anon_vma && adjust_next)
  683. anon_vma = next->anon_vma;
  684. if (anon_vma) {
  685. VM_BUG_ON(adjust_next && next->anon_vma &&
  686. anon_vma != next->anon_vma);
  687. anon_vma_lock_write(anon_vma);
  688. anon_vma_interval_tree_pre_update_vma(vma);
  689. if (adjust_next)
  690. anon_vma_interval_tree_pre_update_vma(next);
  691. }
  692. if (root) {
  693. flush_dcache_mmap_lock(mapping);
  694. vma_interval_tree_remove(vma, root);
  695. if (adjust_next)
  696. vma_interval_tree_remove(next, root);
  697. }
  698. if (start != vma->vm_start) {
  699. vma->vm_start = start;
  700. start_changed = true;
  701. }
  702. if (end != vma->vm_end) {
  703. vma->vm_end = end;
  704. end_changed = true;
  705. }
  706. vma->vm_pgoff = pgoff;
  707. if (adjust_next) {
  708. next->vm_start += adjust_next << PAGE_SHIFT;
  709. next->vm_pgoff += adjust_next;
  710. }
  711. if (root) {
  712. if (adjust_next)
  713. vma_interval_tree_insert(next, root);
  714. vma_interval_tree_insert(vma, root);
  715. flush_dcache_mmap_unlock(mapping);
  716. }
  717. if (remove_next) {
  718. /*
  719. * vma_merge has merged next into vma, and needs
  720. * us to remove next before dropping the locks.
  721. */
  722. __vma_unlink(mm, next, vma);
  723. if (file)
  724. __remove_shared_vm_struct(next, file, mapping);
  725. } else if (insert) {
  726. /*
  727. * split_vma has split insert from vma, and needs
  728. * us to insert it before dropping the locks
  729. * (it may either follow vma or precede it).
  730. */
  731. __insert_vm_struct(mm, insert);
  732. } else {
  733. if (start_changed)
  734. vma_gap_update(vma);
  735. if (end_changed) {
  736. if (!next)
  737. mm->highest_vm_end = end;
  738. else if (!adjust_next)
  739. vma_gap_update(next);
  740. }
  741. }
  742. if (anon_vma) {
  743. anon_vma_interval_tree_post_update_vma(vma);
  744. if (adjust_next)
  745. anon_vma_interval_tree_post_update_vma(next);
  746. anon_vma_unlock_write(anon_vma);
  747. }
  748. if (mapping)
  749. mutex_unlock(&mapping->i_mmap_mutex);
  750. if (root) {
  751. uprobe_mmap(vma);
  752. if (adjust_next)
  753. uprobe_mmap(next);
  754. }
  755. if (remove_next) {
  756. if (file) {
  757. uprobe_munmap(next, next->vm_start, next->vm_end);
  758. fput(file);
  759. }
  760. if (next->anon_vma)
  761. anon_vma_merge(vma, next);
  762. mm->map_count--;
  763. mpol_put(vma_policy(next));
  764. kmem_cache_free(vm_area_cachep, next);
  765. /*
  766. * In mprotect's case 6 (see comments on vma_merge),
  767. * we must remove another next too. It would clutter
  768. * up the code too much to do both in one go.
  769. */
  770. next = vma->vm_next;
  771. if (remove_next == 2)
  772. goto again;
  773. else if (next)
  774. vma_gap_update(next);
  775. else
  776. mm->highest_vm_end = end;
  777. }
  778. if (insert && file)
  779. uprobe_mmap(insert);
  780. validate_mm(mm);
  781. return 0;
  782. }
  783. /*
  784. * If the vma has a ->close operation then the driver probably needs to release
  785. * per-vma resources, so we don't attempt to merge those.
  786. */
  787. static inline int is_mergeable_vma(struct vm_area_struct *vma,
  788. struct file *file, unsigned long vm_flags)
  789. {
  790. if (vma->vm_flags ^ vm_flags)
  791. return 0;
  792. if (vma->vm_file != file)
  793. return 0;
  794. if (vma->vm_ops && vma->vm_ops->close)
  795. return 0;
  796. return 1;
  797. }
  798. static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
  799. struct anon_vma *anon_vma2,
  800. struct vm_area_struct *vma)
  801. {
  802. /*
  803. * The list_is_singular() test is to avoid merging VMA cloned from
  804. * parents. This can improve scalability caused by anon_vma lock.
  805. */
  806. if ((!anon_vma1 || !anon_vma2) && (!vma ||
  807. list_is_singular(&vma->anon_vma_chain)))
  808. return 1;
  809. return anon_vma1 == anon_vma2;
  810. }
  811. /*
  812. * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
  813. * in front of (at a lower virtual address and file offset than) the vma.
  814. *
  815. * We cannot merge two vmas if they have differently assigned (non-NULL)
  816. * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
  817. *
  818. * We don't check here for the merged mmap wrapping around the end of pagecache
  819. * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
  820. * wrap, nor mmaps which cover the final page at index -1UL.
  821. */
  822. static int
  823. can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
  824. struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
  825. {
  826. if (is_mergeable_vma(vma, file, vm_flags) &&
  827. is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
  828. if (vma->vm_pgoff == vm_pgoff)
  829. return 1;
  830. }
  831. return 0;
  832. }
  833. /*
  834. * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
  835. * beyond (at a higher virtual address and file offset than) the vma.
  836. *
  837. * We cannot merge two vmas if they have differently assigned (non-NULL)
  838. * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
  839. */
  840. static int
  841. can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
  842. struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
  843. {
  844. if (is_mergeable_vma(vma, file, vm_flags) &&
  845. is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
  846. pgoff_t vm_pglen;
  847. vm_pglen = vma_pages(vma);
  848. if (vma->vm_pgoff + vm_pglen == vm_pgoff)
  849. return 1;
  850. }
  851. return 0;
  852. }
  853. /*
  854. * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
  855. * whether that can be merged with its predecessor or its successor.
  856. * Or both (it neatly fills a hole).
  857. *
  858. * In most cases - when called for mmap, brk or mremap - [addr,end) is
  859. * certain not to be mapped by the time vma_merge is called; but when
  860. * called for mprotect, it is certain to be already mapped (either at
  861. * an offset within prev, or at the start of next), and the flags of
  862. * this area are about to be changed to vm_flags - and the no-change
  863. * case has already been eliminated.
  864. *
  865. * The following mprotect cases have to be considered, where AAAA is
  866. * the area passed down from mprotect_fixup, never extending beyond one
  867. * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
  868. *
  869. * AAAA AAAA AAAA AAAA
  870. * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
  871. * cannot merge might become might become might become
  872. * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
  873. * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
  874. * mremap move: PPPPNNNNNNNN 8
  875. * AAAA
  876. * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
  877. * might become case 1 below case 2 below case 3 below
  878. *
  879. * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
  880. * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
  881. */
  882. struct vm_area_struct *vma_merge(struct mm_struct *mm,
  883. struct vm_area_struct *prev, unsigned long addr,
  884. unsigned long end, unsigned long vm_flags,
  885. struct anon_vma *anon_vma, struct file *file,
  886. pgoff_t pgoff, struct mempolicy *policy)
  887. {
  888. pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
  889. struct vm_area_struct *area, *next;
  890. int err;
  891. /*
  892. * We later require that vma->vm_flags == vm_flags,
  893. * so this tests vma->vm_flags & VM_SPECIAL, too.
  894. */
  895. if (vm_flags & VM_SPECIAL)
  896. return NULL;
  897. if (prev)
  898. next = prev->vm_next;
  899. else
  900. next = mm->mmap;
  901. area = next;
  902. if (next && next->vm_end == end) /* cases 6, 7, 8 */
  903. next = next->vm_next;
  904. /*
  905. * Can it merge with the predecessor?
  906. */
  907. if (prev && prev->vm_end == addr &&
  908. mpol_equal(vma_policy(prev), policy) &&
  909. can_vma_merge_after(prev, vm_flags,
  910. anon_vma, file, pgoff)) {
  911. /*
  912. * OK, it can. Can we now merge in the successor as well?
  913. */
  914. if (next && end == next->vm_start &&
  915. mpol_equal(policy, vma_policy(next)) &&
  916. can_vma_merge_before(next, vm_flags,
  917. anon_vma, file, pgoff+pglen) &&
  918. is_mergeable_anon_vma(prev->anon_vma,
  919. next->anon_vma, NULL)) {
  920. /* cases 1, 6 */
  921. err = vma_adjust(prev, prev->vm_start,
  922. next->vm_end, prev->vm_pgoff, NULL);
  923. } else /* cases 2, 5, 7 */
  924. err = vma_adjust(prev, prev->vm_start,
  925. end, prev->vm_pgoff, NULL);
  926. if (err)
  927. return NULL;
  928. khugepaged_enter_vma_merge(prev);
  929. return prev;
  930. }
  931. /*
  932. * Can this new request be merged in front of next?
  933. */
  934. if (next && end == next->vm_start &&
  935. mpol_equal(policy, vma_policy(next)) &&
  936. can_vma_merge_before(next, vm_flags,
  937. anon_vma, file, pgoff+pglen)) {
  938. if (prev && addr < prev->vm_end) /* case 4 */
  939. err = vma_adjust(prev, prev->vm_start,
  940. addr, prev->vm_pgoff, NULL);
  941. else /* cases 3, 8 */
  942. err = vma_adjust(area, addr, next->vm_end,
  943. next->vm_pgoff - pglen, NULL);
  944. if (err)
  945. return NULL;
  946. khugepaged_enter_vma_merge(area);
  947. return area;
  948. }
  949. return NULL;
  950. }
  951. /*
  952. * Rough compatbility check to quickly see if it's even worth looking
  953. * at sharing an anon_vma.
  954. *
  955. * They need to have the same vm_file, and the flags can only differ
  956. * in things that mprotect may change.
  957. *
  958. * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
  959. * we can merge the two vma's. For example, we refuse to merge a vma if
  960. * there is a vm_ops->close() function, because that indicates that the
  961. * driver is doing some kind of reference counting. But that doesn't
  962. * really matter for the anon_vma sharing case.
  963. */
  964. static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
  965. {
  966. return a->vm_end == b->vm_start &&
  967. mpol_equal(vma_policy(a), vma_policy(b)) &&
  968. a->vm_file == b->vm_file &&
  969. !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
  970. b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
  971. }
  972. /*
  973. * Do some basic sanity checking to see if we can re-use the anon_vma
  974. * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
  975. * the same as 'old', the other will be the new one that is trying
  976. * to share the anon_vma.
  977. *
  978. * NOTE! This runs with mm_sem held for reading, so it is possible that
  979. * the anon_vma of 'old' is concurrently in the process of being set up
  980. * by another page fault trying to merge _that_. But that's ok: if it
  981. * is being set up, that automatically means that it will be a singleton
  982. * acceptable for merging, so we can do all of this optimistically. But
  983. * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
  984. *
  985. * IOW: that the "list_is_singular()" test on the anon_vma_chain only
  986. * matters for the 'stable anon_vma' case (ie the thing we want to avoid
  987. * is to return an anon_vma that is "complex" due to having gone through
  988. * a fork).
  989. *
  990. * We also make sure that the two vma's are compatible (adjacent,
  991. * and with the same memory policies). That's all stable, even with just
  992. * a read lock on the mm_sem.
  993. */
  994. static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
  995. {
  996. if (anon_vma_compatible(a, b)) {
  997. struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
  998. if (anon_vma && list_is_singular(&old->anon_vma_chain))
  999. return anon_vma;
  1000. }
  1001. return NULL;
  1002. }
  1003. /*
  1004. * find_mergeable_anon_vma is used by anon_vma_prepare, to check
  1005. * neighbouring vmas for a suitable anon_vma, before it goes off
  1006. * to allocate a new anon_vma. It checks because a repetitive
  1007. * sequence of mprotects and faults may otherwise lead to distinct
  1008. * anon_vmas being allocated, preventing vma merge in subsequent
  1009. * mprotect.
  1010. */
  1011. struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
  1012. {
  1013. struct anon_vma *anon_vma;
  1014. struct vm_area_struct *near;
  1015. near = vma->vm_next;
  1016. if (!near)
  1017. goto try_prev;
  1018. anon_vma = reusable_anon_vma(near, vma, near);
  1019. if (anon_vma)
  1020. return anon_vma;
  1021. try_prev:
  1022. near = vma->vm_prev;
  1023. if (!near)
  1024. goto none;
  1025. anon_vma = reusable_anon_vma(near, near, vma);
  1026. if (anon_vma)
  1027. return anon_vma;
  1028. none:
  1029. /*
  1030. * There's no absolute need to look only at touching neighbours:
  1031. * we could search further afield for "compatible" anon_vmas.
  1032. * But it would probably just be a waste of time searching,
  1033. * or lead to too many vmas hanging off the same anon_vma.
  1034. * We're trying to allow mprotect remerging later on,
  1035. * not trying to minimize memory used for anon_vmas.
  1036. */
  1037. return NULL;
  1038. }
  1039. #ifdef CONFIG_PROC_FS
  1040. void vm_stat_account(struct mm_struct *mm, unsigned long flags,
  1041. struct file *file, long pages)
  1042. {
  1043. const unsigned long stack_flags
  1044. = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
  1045. mm->total_vm += pages;
  1046. if (file) {
  1047. mm->shared_vm += pages;
  1048. if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
  1049. mm->exec_vm += pages;
  1050. } else if (flags & stack_flags)
  1051. mm->stack_vm += pages;
  1052. }
  1053. #endif /* CONFIG_PROC_FS */
  1054. /*
  1055. * If a hint addr is less than mmap_min_addr change hint to be as
  1056. * low as possible but still greater than mmap_min_addr
  1057. */
  1058. static inline unsigned long round_hint_to_min(unsigned long hint)
  1059. {
  1060. hint &= PAGE_MASK;
  1061. if (((void *)hint != NULL) &&
  1062. (hint < mmap_min_addr))
  1063. return PAGE_ALIGN(mmap_min_addr);
  1064. return hint;
  1065. }
  1066. /*
  1067. * The caller must hold down_write(&current->mm->mmap_sem).
  1068. */
  1069. unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
  1070. unsigned long len, unsigned long prot,
  1071. unsigned long flags, unsigned long pgoff,
  1072. unsigned long *populate)
  1073. {
  1074. struct mm_struct * mm = current->mm;
  1075. vm_flags_t vm_flags;
  1076. *populate = 0;
  1077. /*
  1078. * Does the application expect PROT_READ to imply PROT_EXEC?
  1079. *
  1080. * (the exception is when the underlying filesystem is noexec
  1081. * mounted, in which case we dont add PROT_EXEC.)
  1082. */
  1083. if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
  1084. if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
  1085. prot |= PROT_EXEC;
  1086. if (!len)
  1087. return -EINVAL;
  1088. if (!(flags & MAP_FIXED))
  1089. addr = round_hint_to_min(addr);
  1090. /* Careful about overflows.. */
  1091. len = PAGE_ALIGN(len);
  1092. if (!len)
  1093. return -ENOMEM;
  1094. /* offset overflow? */
  1095. if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
  1096. return -EOVERFLOW;
  1097. /* Too many mappings? */
  1098. if (mm->map_count > sysctl_max_map_count)
  1099. return -ENOMEM;
  1100. /* Obtain the address to map to. we verify (or select) it and ensure
  1101. * that it represents a valid section of the address space.
  1102. */
  1103. addr = get_unmapped_area(file, addr, len, pgoff, flags);
  1104. if (addr & ~PAGE_MASK)
  1105. return addr;
  1106. /* Do simple checking here so the lower-level routines won't have
  1107. * to. we assume access permissions have been handled by the open
  1108. * of the memory object, so we don't do any here.
  1109. */
  1110. vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
  1111. mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
  1112. if (flags & MAP_LOCKED)
  1113. if (!can_do_mlock())
  1114. return -EPERM;
  1115. /* mlock MCL_FUTURE? */
  1116. if (vm_flags & VM_LOCKED) {
  1117. unsigned long locked, lock_limit;
  1118. locked = len >> PAGE_SHIFT;
  1119. locked += mm->locked_vm;
  1120. lock_limit = rlimit(RLIMIT_MEMLOCK);
  1121. lock_limit >>= PAGE_SHIFT;
  1122. if (locked > lock_limit && !capable(CAP_IPC_LOCK))
  1123. return -EAGAIN;
  1124. }
  1125. if (file) {
  1126. struct inode *inode = file_inode(file);
  1127. switch (flags & MAP_TYPE) {
  1128. case MAP_SHARED:
  1129. if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
  1130. return -EACCES;
  1131. /*
  1132. * Make sure we don't allow writing to an append-only
  1133. * file..
  1134. */
  1135. if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
  1136. return -EACCES;
  1137. /*
  1138. * Make sure there are no mandatory locks on the file.
  1139. */
  1140. if (locks_verify_locked(inode))
  1141. return -EAGAIN;
  1142. vm_flags |= VM_SHARED | VM_MAYSHARE;
  1143. if (!(file->f_mode & FMODE_WRITE))
  1144. vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
  1145. /* fall through */
  1146. case MAP_PRIVATE:
  1147. if (!(file->f_mode & FMODE_READ))
  1148. return -EACCES;
  1149. if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
  1150. if (vm_flags & VM_EXEC)
  1151. return -EPERM;
  1152. vm_flags &= ~VM_MAYEXEC;
  1153. }
  1154. if (!file->f_op || !file->f_op->mmap)
  1155. return -ENODEV;
  1156. if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
  1157. return -EINVAL;
  1158. break;
  1159. default:
  1160. return -EINVAL;
  1161. }
  1162. } else {
  1163. switch (flags & MAP_TYPE) {
  1164. case MAP_SHARED:
  1165. if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
  1166. return -EINVAL;
  1167. /*
  1168. * Ignore pgoff.
  1169. */
  1170. pgoff = 0;
  1171. vm_flags |= VM_SHARED | VM_MAYSHARE;
  1172. break;
  1173. case MAP_PRIVATE:
  1174. /*
  1175. * Set pgoff according to addr for anon_vma.
  1176. */
  1177. pgoff = addr >> PAGE_SHIFT;
  1178. break;
  1179. default:
  1180. return -EINVAL;
  1181. }
  1182. }
  1183. /*
  1184. * Set 'VM_NORESERVE' if we should not account for the
  1185. * memory use of this mapping.
  1186. */
  1187. if (flags & MAP_NORESERVE) {
  1188. /* We honor MAP_NORESERVE if allowed to overcommit */
  1189. if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
  1190. vm_flags |= VM_NORESERVE;
  1191. /* hugetlb applies strict overcommit unless MAP_NORESERVE */
  1192. if (file && is_file_hugepages(file))
  1193. vm_flags |= VM_NORESERVE;
  1194. }
  1195. addr = mmap_region(file, addr, len, vm_flags, pgoff);
  1196. if (!IS_ERR_VALUE(addr) &&
  1197. ((vm_flags & VM_LOCKED) ||
  1198. (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
  1199. *populate = len;
  1200. return addr;
  1201. }
  1202. SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
  1203. unsigned long, prot, unsigned long, flags,
  1204. unsigned long, fd, unsigned long, pgoff)
  1205. {
  1206. struct file *file = NULL;
  1207. unsigned long retval = -EBADF;
  1208. if (!(flags & MAP_ANONYMOUS)) {
  1209. audit_mmap_fd(fd, flags);
  1210. file = fget(fd);
  1211. if (!file)
  1212. goto out;
  1213. if (is_file_hugepages(file))
  1214. len = ALIGN(len, huge_page_size(hstate_file(file)));
  1215. retval = -EINVAL;
  1216. if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
  1217. goto out_fput;
  1218. } else if (flags & MAP_HUGETLB) {
  1219. struct user_struct *user = NULL;
  1220. struct hstate *hs;
  1221. hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
  1222. if (!hs)
  1223. return -EINVAL;
  1224. len = ALIGN(len, huge_page_size(hs));
  1225. /*
  1226. * VM_NORESERVE is used because the reservations will be
  1227. * taken when vm_ops->mmap() is called
  1228. * A dummy user value is used because we are not locking
  1229. * memory so no accounting is necessary
  1230. */
  1231. file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
  1232. VM_NORESERVE,
  1233. &user, HUGETLB_ANONHUGE_INODE,
  1234. (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
  1235. if (IS_ERR(file))
  1236. return PTR_ERR(file);
  1237. }
  1238. flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
  1239. retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
  1240. out_fput:
  1241. if (file)
  1242. fput(file);
  1243. out:
  1244. return retval;
  1245. }
  1246. #ifdef __ARCH_WANT_SYS_OLD_MMAP
  1247. struct mmap_arg_struct {
  1248. unsigned long addr;
  1249. unsigned long len;
  1250. unsigned long prot;
  1251. unsigned long flags;
  1252. unsigned long fd;
  1253. unsigned long offset;
  1254. };
  1255. SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
  1256. {
  1257. struct mmap_arg_struct a;
  1258. if (copy_from_user(&a, arg, sizeof(a)))
  1259. return -EFAULT;
  1260. if (a.offset & ~PAGE_MASK)
  1261. return -EINVAL;
  1262. return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
  1263. a.offset >> PAGE_SHIFT);
  1264. }
  1265. #endif /* __ARCH_WANT_SYS_OLD_MMAP */
  1266. /*
  1267. * Some shared mappigns will want the pages marked read-only
  1268. * to track write events. If so, we'll downgrade vm_page_prot
  1269. * to the private version (using protection_map[] without the
  1270. * VM_SHARED bit).
  1271. */
  1272. int vma_wants_writenotify(struct vm_area_struct *vma)
  1273. {
  1274. vm_flags_t vm_flags = vma->vm_flags;
  1275. /* If it was private or non-writable, the write bit is already clear */
  1276. if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
  1277. return 0;
  1278. /* The backer wishes to know when pages are first written to? */
  1279. if (vma->vm_ops && vma->vm_ops->page_mkwrite)
  1280. return 1;
  1281. /* The open routine did something to the protections already? */
  1282. if (pgprot_val(vma->vm_page_prot) !=
  1283. pgprot_val(vm_get_page_prot(vm_flags)))
  1284. return 0;
  1285. /* Specialty mapping? */
  1286. if (vm_flags & VM_PFNMAP)
  1287. return 0;
  1288. /* Can the mapping track the dirty pages? */
  1289. return vma->vm_file && vma->vm_file->f_mapping &&
  1290. mapping_cap_account_dirty(vma->vm_file->f_mapping);
  1291. }
  1292. /*
  1293. * We account for memory if it's a private writeable mapping,
  1294. * not hugepages and VM_NORESERVE wasn't set.
  1295. */
  1296. static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
  1297. {
  1298. /*
  1299. * hugetlb has its own accounting separate from the core VM
  1300. * VM_HUGETLB may not be set yet so we cannot check for that flag.
  1301. */
  1302. if (file && is_file_hugepages(file))
  1303. return 0;
  1304. return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
  1305. }
  1306. unsigned long mmap_region(struct file *file, unsigned long addr,
  1307. unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
  1308. {
  1309. struct mm_struct *mm = current->mm;
  1310. struct vm_area_struct *vma, *prev;
  1311. int error;
  1312. struct rb_node **rb_link, *rb_parent;
  1313. unsigned long charged = 0;
  1314. /* Check against address space limit. */
  1315. if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
  1316. unsigned long nr_pages;
  1317. /*
  1318. * MAP_FIXED may remove pages of mappings that intersects with
  1319. * requested mapping. Account for the pages it would unmap.
  1320. */
  1321. if (!(vm_flags & MAP_FIXED))
  1322. return -ENOMEM;
  1323. nr_pages = count_vma_pages_range(mm, addr, addr + len);
  1324. if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
  1325. return -ENOMEM;
  1326. }
  1327. /* Clear old maps */
  1328. error = -ENOMEM;
  1329. munmap_back:
  1330. if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
  1331. if (do_munmap(mm, addr, len))
  1332. return -ENOMEM;
  1333. goto munmap_back;
  1334. }
  1335. /*
  1336. * Private writable mapping: check memory availability
  1337. */
  1338. if (accountable_mapping(file, vm_flags)) {
  1339. charged = len >> PAGE_SHIFT;
  1340. if (security_vm_enough_memory_mm(mm, charged))
  1341. return -ENOMEM;
  1342. vm_flags |= VM_ACCOUNT;
  1343. }
  1344. /*
  1345. * Can we just expand an old mapping?
  1346. */
  1347. vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
  1348. if (vma)
  1349. goto out;
  1350. /*
  1351. * Determine the object being mapped and call the appropriate
  1352. * specific mapper. the address has already been validated, but
  1353. * not unmapped, but the maps are removed from the list.
  1354. */
  1355. vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
  1356. if (!vma) {
  1357. error = -ENOMEM;
  1358. goto unacct_error;
  1359. }
  1360. vma->vm_mm = mm;
  1361. vma->vm_start = addr;
  1362. vma->vm_end = addr + len;
  1363. vma->vm_flags = vm_flags;
  1364. vma->vm_page_prot = vm_get_page_prot(vm_flags);
  1365. vma->vm_pgoff = pgoff;
  1366. INIT_LIST_HEAD(&vma->anon_vma_chain);
  1367. if (file) {
  1368. if (vm_flags & VM_DENYWRITE) {
  1369. error = deny_write_access(file);
  1370. if (error)
  1371. goto free_vma;
  1372. }
  1373. vma->vm_file = get_file(file);
  1374. error = file->f_op->mmap(file, vma);
  1375. if (error)
  1376. goto unmap_and_free_vma;
  1377. /* Can addr have changed??
  1378. *
  1379. * Answer: Yes, several device drivers can do it in their
  1380. * f_op->mmap method. -DaveM
  1381. * Bug: If addr is changed, prev, rb_link, rb_parent should
  1382. * be updated for vma_link()
  1383. */
  1384. WARN_ON_ONCE(addr != vma->vm_start);
  1385. addr = vma->vm_start;
  1386. vm_flags = vma->vm_flags;
  1387. } else if (vm_flags & VM_SHARED) {
  1388. error = shmem_zero_setup(vma);
  1389. if (error)
  1390. goto free_vma;
  1391. }
  1392. if (vma_wants_writenotify(vma)) {
  1393. pgprot_t pprot = vma->vm_page_prot;
  1394. /* Can vma->vm_page_prot have changed??
  1395. *
  1396. * Answer: Yes, drivers may have changed it in their
  1397. * f_op->mmap method.
  1398. *
  1399. * Ensures that vmas marked as uncached stay that way.
  1400. */
  1401. vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
  1402. if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
  1403. vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
  1404. }
  1405. vma_link(mm, vma, prev, rb_link, rb_parent);
  1406. /* Once vma denies write, undo our temporary denial count */
  1407. if (vm_flags & VM_DENYWRITE)
  1408. allow_write_access(file);
  1409. file = vma->vm_file;
  1410. out:
  1411. perf_event_mmap(vma);
  1412. vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
  1413. if (vm_flags & VM_LOCKED) {
  1414. if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
  1415. vma == get_gate_vma(current->mm)))
  1416. mm->locked_vm += (len >> PAGE_SHIFT);
  1417. else
  1418. vma->vm_flags &= ~VM_LOCKED;
  1419. }
  1420. if (file)
  1421. uprobe_mmap(vma);
  1422. /*
  1423. * New (or expanded) vma always get soft dirty status.
  1424. * Otherwise user-space soft-dirty page tracker won't
  1425. * be able to distinguish situation when vma area unmapped,
  1426. * then new mapped in-place (which must be aimed as
  1427. * a completely new data area).
  1428. */
  1429. vma->vm_flags |= VM_SOFTDIRTY;
  1430. return addr;
  1431. unmap_and_free_vma:
  1432. if (vm_flags & VM_DENYWRITE)
  1433. allow_write_access(file);
  1434. vma->vm_file = NULL;
  1435. fput(file);
  1436. /* Undo any partial mapping done by a device driver. */
  1437. unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
  1438. charged = 0;
  1439. free_vma:
  1440. kmem_cache_free(vm_area_cachep, vma);
  1441. unacct_error:
  1442. if (charged)
  1443. vm_unacct_memory(charged);
  1444. return error;
  1445. }
  1446. unsigned long unmapped_area(struct vm_unmapped_area_info *info)
  1447. {
  1448. /*
  1449. * We implement the search by looking for an rbtree node that
  1450. * immediately follows a suitable gap. That is,
  1451. * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
  1452. * - gap_end = vma->vm_start >= info->low_limit + length;
  1453. * - gap_end - gap_start >= length
  1454. */
  1455. struct mm_struct *mm = current->mm;
  1456. struct vm_area_struct *vma;
  1457. unsigned long length, low_limit, high_limit, gap_start, gap_end;
  1458. /* Adjust search length to account for worst case alignment overhead */
  1459. length = info->length + info->align_mask;
  1460. if (length < info->length)
  1461. return -ENOMEM;
  1462. /* Adjust search limits by the desired length */
  1463. if (info->high_limit < length)
  1464. return -ENOMEM;
  1465. high_limit = info->high_limit - length;
  1466. if (info->low_limit > high_limit)
  1467. return -ENOMEM;
  1468. low_limit = info->low_limit + length;
  1469. /* Check if rbtree root looks promising */
  1470. if (RB_EMPTY_ROOT(&mm->mm_rb))
  1471. goto check_highest;
  1472. vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
  1473. if (vma->rb_subtree_gap < length)
  1474. goto check_highest;
  1475. while (true) {
  1476. /* Visit left subtree if it looks promising */
  1477. gap_end = vma->vm_start;
  1478. if (gap_end >= low_limit && vma->vm_rb.rb_left) {
  1479. struct vm_area_struct *left =
  1480. rb_entry(vma->vm_rb.rb_left,
  1481. struct vm_area_struct, vm_rb);
  1482. if (left->rb_subtree_gap >= length) {
  1483. vma = left;
  1484. continue;
  1485. }
  1486. }
  1487. gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
  1488. check_current:
  1489. /* Check if current node has a suitable gap */
  1490. if (gap_start > high_limit)
  1491. return -ENOMEM;
  1492. if (gap_end >= low_limit && gap_end - gap_start >= length)
  1493. goto found;
  1494. /* Visit right subtree if it looks promising */
  1495. if (vma->vm_rb.rb_right) {
  1496. struct vm_area_struct *right =
  1497. rb_entry(vma->vm_rb.rb_right,
  1498. struct vm_area_struct, vm_rb);
  1499. if (right->rb_subtree_gap >= length) {
  1500. vma = right;
  1501. continue;
  1502. }
  1503. }
  1504. /* Go back up the rbtree to find next candidate node */
  1505. while (true) {
  1506. struct rb_node *prev = &vma->vm_rb;
  1507. if (!rb_parent(prev))
  1508. goto check_highest;
  1509. vma = rb_entry(rb_parent(prev),
  1510. struct vm_area_struct, vm_rb);
  1511. if (prev == vma->vm_rb.rb_left) {
  1512. gap_start = vma->vm_prev->vm_end;
  1513. gap_end = vma->vm_start;
  1514. goto check_current;
  1515. }
  1516. }
  1517. }
  1518. check_highest:
  1519. /* Check highest gap, which does not precede any rbtree node */
  1520. gap_start = mm->highest_vm_end;
  1521. gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
  1522. if (gap_start > high_limit)
  1523. return -ENOMEM;
  1524. found:
  1525. /* We found a suitable gap. Clip it with the original low_limit. */
  1526. if (gap_start < info->low_limit)
  1527. gap_start = info->low_limit;
  1528. /* Adjust gap address to the desired alignment */
  1529. gap_start += (info->align_offset - gap_start) & info->align_mask;
  1530. VM_BUG_ON(gap_start + info->length > info->high_limit);
  1531. VM_BUG_ON(gap_start + info->length > gap_end);
  1532. return gap_start;
  1533. }
  1534. unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
  1535. {
  1536. struct mm_struct *mm = current->mm;
  1537. struct vm_area_struct *vma;
  1538. unsigned long length, low_limit, high_limit, gap_start, gap_end;
  1539. /* Adjust search length to account for worst case alignment overhead */
  1540. length = info->length + info->align_mask;
  1541. if (length < info->length)
  1542. return -ENOMEM;
  1543. /*
  1544. * Adjust search limits by the desired length.
  1545. * See implementation comment at top of unmapped_area().
  1546. */
  1547. gap_end = info->high_limit;
  1548. if (gap_end < length)
  1549. return -ENOMEM;
  1550. high_limit = gap_end - length;
  1551. if (info->low_limit > high_limit)
  1552. return -ENOMEM;
  1553. low_limit = info->low_limit + length;
  1554. /* Check highest gap, which does not precede any rbtree node */
  1555. gap_start = mm->highest_vm_end;
  1556. if (gap_start <= high_limit)
  1557. goto found_highest;
  1558. /* Check if rbtree root looks promising */
  1559. if (RB_EMPTY_ROOT(&mm->mm_rb))
  1560. return -ENOMEM;
  1561. vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
  1562. if (vma->rb_subtree_gap < length)
  1563. return -ENOMEM;
  1564. while (true) {
  1565. /* Visit right subtree if it looks promising */
  1566. gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
  1567. if (gap_start <= high_limit && vma->vm_rb.rb_right) {
  1568. struct vm_area_struct *right =
  1569. rb_entry(vma->vm_rb.rb_right,
  1570. struct vm_area_struct, vm_rb);
  1571. if (right->rb_subtree_gap >= length) {
  1572. vma = right;
  1573. continue;
  1574. }
  1575. }
  1576. check_current:
  1577. /* Check if current node has a suitable gap */
  1578. gap_end = vma->vm_start;
  1579. if (gap_end < low_limit)
  1580. return -ENOMEM;
  1581. if (gap_start <= high_limit && gap_end - gap_start >= length)
  1582. goto found;
  1583. /* Visit left subtree if it looks promising */
  1584. if (vma->vm_rb.rb_left) {
  1585. struct vm_area_struct *left =
  1586. rb_entry(vma->vm_rb.rb_left,
  1587. struct vm_area_struct, vm_rb);
  1588. if (left->rb_subtree_gap >= length) {
  1589. vma = left;
  1590. continue;
  1591. }
  1592. }
  1593. /* Go back up the rbtree to find next candidate node */
  1594. while (true) {
  1595. struct rb_node *prev = &vma->vm_rb;
  1596. if (!rb_parent(prev))
  1597. return -ENOMEM;
  1598. vma = rb_entry(rb_parent(prev),
  1599. struct vm_area_struct, vm_rb);
  1600. if (prev == vma->vm_rb.rb_right) {
  1601. gap_start = vma->vm_prev ?
  1602. vma->vm_prev->vm_end : 0;
  1603. goto check_current;
  1604. }
  1605. }
  1606. }
  1607. found:
  1608. /* We found a suitable gap. Clip it with the original high_limit. */
  1609. if (gap_end > info->high_limit)
  1610. gap_end = info->high_limit;
  1611. found_highest:
  1612. /* Compute highest gap address at the desired alignment */
  1613. gap_end -= info->length;
  1614. gap_end -= (gap_end - info->align_offset) & info->align_mask;
  1615. VM_BUG_ON(gap_end < info->low_limit);
  1616. VM_BUG_ON(gap_end < gap_start);
  1617. return gap_end;
  1618. }
  1619. /* Get an address range which is currently unmapped.
  1620. * For shmat() with addr=0.
  1621. *
  1622. * Ugly calling convention alert:
  1623. * Return value with the low bits set means error value,
  1624. * ie
  1625. * if (ret & ~PAGE_MASK)
  1626. * error = ret;
  1627. *
  1628. * This function "knows" that -ENOMEM has the bits set.
  1629. */
  1630. #ifndef HAVE_ARCH_UNMAPPED_AREA
  1631. unsigned long
  1632. arch_get_unmapped_area(struct file *filp, unsigned long addr,
  1633. unsigned long len, unsigned long pgoff, unsigned long flags)
  1634. {
  1635. struct mm_struct *mm = current->mm;
  1636. struct vm_area_struct *vma;
  1637. struct vm_unmapped_area_info info;
  1638. if (len > TASK_SIZE)
  1639. return -ENOMEM;
  1640. if (flags & MAP_FIXED)
  1641. return addr;
  1642. if (addr) {
  1643. addr = PAGE_ALIGN(addr);
  1644. vma = find_vma(mm, addr);
  1645. if (TASK_SIZE - len >= addr &&
  1646. (!vma || addr + len <= vma->vm_start))
  1647. return addr;
  1648. }
  1649. info.flags = 0;
  1650. info.length = len;
  1651. info.low_limit = TASK_UNMAPPED_BASE;
  1652. info.high_limit = TASK_SIZE;
  1653. info.align_mask = 0;
  1654. return vm_unmapped_area(&info);
  1655. }
  1656. #endif
  1657. /*
  1658. * This mmap-allocator allocates new areas top-down from below the
  1659. * stack's low limit (the base):
  1660. */
  1661. #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
  1662. unsigned long
  1663. arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
  1664. const unsigned long len, const unsigned long pgoff,
  1665. const unsigned long flags)
  1666. {
  1667. struct vm_area_struct *vma;
  1668. struct mm_struct *mm = current->mm;
  1669. unsigned long addr = addr0;
  1670. struct vm_unmapped_area_info info;
  1671. /* requested length too big for entire address space */
  1672. if (len > TASK_SIZE)
  1673. return -ENOMEM;
  1674. if (flags & MAP_FIXED)
  1675. return addr;
  1676. /* requesting a specific address */
  1677. if (addr) {
  1678. addr = PAGE_ALIGN(addr);
  1679. vma = find_vma(mm, addr);
  1680. if (TASK_SIZE - len >= addr &&
  1681. (!vma || addr + len <= vma->vm_start))
  1682. return addr;
  1683. }
  1684. info.flags = VM_UNMAPPED_AREA_TOPDOWN;
  1685. info.length = len;
  1686. info.low_limit = PAGE_SIZE;
  1687. info.high_limit = mm->mmap_base;
  1688. info.align_mask = 0;
  1689. addr = vm_unmapped_area(&info);
  1690. /*
  1691. * A failed mmap() very likely causes application failure,
  1692. * so fall back to the bottom-up function here. This scenario
  1693. * can happen with large stack limits and large mmap()
  1694. * allocations.
  1695. */
  1696. if (addr & ~PAGE_MASK) {
  1697. VM_BUG_ON(addr != -ENOMEM);
  1698. info.flags = 0;
  1699. info.low_limit = TASK_UNMAPPED_BASE;
  1700. info.high_limit = TASK_SIZE;
  1701. addr = vm_unmapped_area(&info);
  1702. }
  1703. return addr;
  1704. }
  1705. #endif
  1706. unsigned long
  1707. get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
  1708. unsigned long pgoff, unsigned long flags)
  1709. {
  1710. unsigned long (*get_area)(struct file *, unsigned long,
  1711. unsigned long, unsigned long, unsigned long);
  1712. unsigned long error = arch_mmap_check(addr, len, flags);
  1713. if (error)
  1714. return error;
  1715. /* Careful about overflows.. */
  1716. if (len > TASK_SIZE)
  1717. return -ENOMEM;
  1718. get_area = current->mm->get_unmapped_area;
  1719. if (file && file->f_op && file->f_op->get_unmapped_area)
  1720. get_area = file->f_op->get_unmapped_area;
  1721. addr = get_area(file, addr, len, pgoff, flags);
  1722. if (IS_ERR_VALUE(addr))
  1723. return addr;
  1724. if (addr > TASK_SIZE - len)
  1725. return -ENOMEM;
  1726. if (addr & ~PAGE_MASK)
  1727. return -EINVAL;
  1728. addr = arch_rebalance_pgtables(addr, len);
  1729. error = security_mmap_addr(addr);
  1730. return error ? error : addr;
  1731. }
  1732. EXPORT_SYMBOL(get_unmapped_area);
  1733. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1734. struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
  1735. {
  1736. struct vm_area_struct *vma = NULL;
  1737. /* Check the cache first. */
  1738. /* (Cache hit rate is typically around 35%.) */
  1739. vma = ACCESS_ONCE(mm->mmap_cache);
  1740. if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
  1741. struct rb_node *rb_node;
  1742. rb_node = mm->mm_rb.rb_node;
  1743. vma = NULL;
  1744. while (rb_node) {
  1745. struct vm_area_struct *vma_tmp;
  1746. vma_tmp = rb_entry(rb_node,
  1747. struct vm_area_struct, vm_rb);
  1748. if (vma_tmp->vm_end > addr) {
  1749. vma = vma_tmp;
  1750. if (vma_tmp->vm_start <= addr)
  1751. break;
  1752. rb_node = rb_node->rb_left;
  1753. } else
  1754. rb_node = rb_node->rb_right;
  1755. }
  1756. if (vma)
  1757. mm->mmap_cache = vma;
  1758. }
  1759. return vma;
  1760. }
  1761. EXPORT_SYMBOL(find_vma);
  1762. /*
  1763. * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
  1764. */
  1765. struct vm_area_struct *
  1766. find_vma_prev(struct mm_struct *mm, unsigned long addr,
  1767. struct vm_area_struct **pprev)
  1768. {
  1769. struct vm_area_struct *vma;
  1770. vma = find_vma(mm, addr);
  1771. if (vma) {
  1772. *pprev = vma->vm_prev;
  1773. } else {
  1774. struct rb_node *rb_node = mm->mm_rb.rb_node;
  1775. *pprev = NULL;
  1776. while (rb_node) {
  1777. *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
  1778. rb_node = rb_node->rb_right;
  1779. }
  1780. }
  1781. return vma;
  1782. }
  1783. /*
  1784. * Verify that the stack growth is acceptable and
  1785. * update accounting. This is shared with both the
  1786. * grow-up and grow-down cases.
  1787. */
  1788. static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
  1789. {
  1790. struct mm_struct *mm = vma->vm_mm;
  1791. struct rlimit *rlim = current->signal->rlim;
  1792. unsigned long new_start;
  1793. /* address space limit tests */
  1794. if (!may_expand_vm(mm, grow))
  1795. return -ENOMEM;
  1796. /* Stack limit test */
  1797. if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
  1798. return -ENOMEM;
  1799. /* mlock limit tests */
  1800. if (vma->vm_flags & VM_LOCKED) {
  1801. unsigned long locked;
  1802. unsigned long limit;
  1803. locked = mm->locked_vm + grow;
  1804. limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
  1805. limit >>= PAGE_SHIFT;
  1806. if (locked > limit && !capable(CAP_IPC_LOCK))
  1807. return -ENOMEM;
  1808. }
  1809. /* Check to ensure the stack will not grow into a hugetlb-only region */
  1810. new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
  1811. vma->vm_end - size;
  1812. if (is_hugepage_only_range(vma->vm_mm, new_start, size))
  1813. return -EFAULT;
  1814. /*
  1815. * Overcommit.. This must be the final test, as it will
  1816. * update security statistics.
  1817. */
  1818. if (security_vm_enough_memory_mm(mm, grow))
  1819. return -ENOMEM;
  1820. /* Ok, everything looks good - let it rip */
  1821. if (vma->vm_flags & VM_LOCKED)
  1822. mm->locked_vm += grow;
  1823. vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
  1824. return 0;
  1825. }
  1826. #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
  1827. /*
  1828. * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
  1829. * vma is the last one with address > vma->vm_end. Have to extend vma.
  1830. */
  1831. int expand_upwards(struct vm_area_struct *vma, unsigned long address)
  1832. {
  1833. int error;
  1834. if (!(vma->vm_flags & VM_GROWSUP))
  1835. return -EFAULT;
  1836. /*
  1837. * We must make sure the anon_vma is allocated
  1838. * so that the anon_vma locking is not a noop.
  1839. */
  1840. if (unlikely(anon_vma_prepare(vma)))
  1841. return -ENOMEM;
  1842. vma_lock_anon_vma(vma);
  1843. /*
  1844. * vma->vm_start/vm_end cannot change under us because the caller
  1845. * is required to hold the mmap_sem in read mode. We need the
  1846. * anon_vma lock to serialize against concurrent expand_stacks.
  1847. * Also guard against wrapping around to address 0.
  1848. */
  1849. if (address < PAGE_ALIGN(address+4))
  1850. address = PAGE_ALIGN(address+4);
  1851. else {
  1852. vma_unlock_anon_vma(vma);
  1853. return -ENOMEM;
  1854. }
  1855. error = 0;
  1856. /* Somebody else might have raced and expanded it already */
  1857. if (address > vma->vm_end) {
  1858. unsigned long size, grow;
  1859. size = address - vma->vm_start;
  1860. grow = (address - vma->vm_end) >> PAGE_SHIFT;
  1861. error = -ENOMEM;
  1862. if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
  1863. error = acct_stack_growth(vma, size, grow);
  1864. if (!error) {
  1865. /*
  1866. * vma_gap_update() doesn't support concurrent
  1867. * updates, but we only hold a shared mmap_sem
  1868. * lock here, so we need to protect against
  1869. * concurrent vma expansions.
  1870. * vma_lock_anon_vma() doesn't help here, as
  1871. * we don't guarantee that all growable vmas
  1872. * in a mm share the same root anon vma.
  1873. * So, we reuse mm->page_table_lock to guard
  1874. * against concurrent vma expansions.
  1875. */
  1876. spin_lock(&vma->vm_mm->page_table_lock);
  1877. anon_vma_interval_tree_pre_update_vma(vma);
  1878. vma->vm_end = address;
  1879. anon_vma_interval_tree_post_update_vma(vma);
  1880. if (vma->vm_next)
  1881. vma_gap_update(vma->vm_next);
  1882. else
  1883. vma->vm_mm->highest_vm_end = address;
  1884. spin_unlock(&vma->vm_mm->page_table_lock);
  1885. perf_event_mmap(vma);
  1886. }
  1887. }
  1888. }
  1889. vma_unlock_anon_vma(vma);
  1890. khugepaged_enter_vma_merge(vma);
  1891. validate_mm(vma->vm_mm);
  1892. return error;
  1893. }
  1894. #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
  1895. /*
  1896. * vma is the first one with address < vma->vm_start. Have to extend vma.
  1897. */
  1898. int expand_downwards(struct vm_area_struct *vma,
  1899. unsigned long address)
  1900. {
  1901. int error;
  1902. /*
  1903. * We must make sure the anon_vma is allocated
  1904. * so that the anon_vma locking is not a noop.
  1905. */
  1906. if (unlikely(anon_vma_prepare(vma)))
  1907. return -ENOMEM;
  1908. address &= PAGE_MASK;
  1909. error = security_mmap_addr(address);
  1910. if (error)
  1911. return error;
  1912. vma_lock_anon_vma(vma);
  1913. /*
  1914. * vma->vm_start/vm_end cannot change under us because the caller
  1915. * is required to hold the mmap_sem in read mode. We need the
  1916. * anon_vma lock to serialize against concurrent expand_stacks.
  1917. */
  1918. /* Somebody else might have raced and expanded it already */
  1919. if (address < vma->vm_start) {
  1920. unsigned long size, grow;
  1921. size = vma->vm_end - address;
  1922. grow = (vma->vm_start - address) >> PAGE_SHIFT;
  1923. error = -ENOMEM;
  1924. if (grow <= vma->vm_pgoff) {
  1925. error = acct_stack_growth(vma, size, grow);
  1926. if (!error) {
  1927. /*
  1928. * vma_gap_update() doesn't support concurrent
  1929. * updates, but we only hold a shared mmap_sem
  1930. * lock here, so we need to protect against
  1931. * concurrent vma expansions.
  1932. * vma_lock_anon_vma() doesn't help here, as
  1933. * we don't guarantee that all growable vmas
  1934. * in a mm share the same root anon vma.
  1935. * So, we reuse mm->page_table_lock to guard
  1936. * against concurrent vma expansions.
  1937. */
  1938. spin_lock(&vma->vm_mm->page_table_lock);
  1939. anon_vma_interval_tree_pre_update_vma(vma);
  1940. vma->vm_start = address;
  1941. vma->vm_pgoff -= grow;
  1942. anon_vma_interval_tree_post_update_vma(vma);
  1943. vma_gap_update(vma);
  1944. spin_unlock(&vma->vm_mm->page_table_lock);
  1945. perf_event_mmap(vma);
  1946. }
  1947. }
  1948. }
  1949. vma_unlock_anon_vma(vma);
  1950. khugepaged_enter_vma_merge(vma);
  1951. validate_mm(vma->vm_mm);
  1952. return error;
  1953. }
  1954. /*
  1955. * Note how expand_stack() refuses to expand the stack all the way to
  1956. * abut the next virtual mapping, *unless* that mapping itself is also
  1957. * a stack mapping. We want to leave room for a guard page, after all
  1958. * (the guard page itself is not added here, that is done by the
  1959. * actual page faulting logic)
  1960. *
  1961. * This matches the behavior of the guard page logic (see mm/memory.c:
  1962. * check_stack_guard_page()), which only allows the guard page to be
  1963. * removed under these circumstances.
  1964. */
  1965. #ifdef CONFIG_STACK_GROWSUP
  1966. int expand_stack(struct vm_area_struct *vma, unsigned long address)
  1967. {
  1968. struct vm_area_struct *next;
  1969. address &= PAGE_MASK;
  1970. next = vma->vm_next;
  1971. if (next && next->vm_start == address + PAGE_SIZE) {
  1972. if (!(next->vm_flags & VM_GROWSUP))
  1973. return -ENOMEM;
  1974. }
  1975. return expand_upwards(vma, address);
  1976. }
  1977. struct vm_area_struct *
  1978. find_extend_vma(struct mm_struct *mm, unsigned long addr)
  1979. {
  1980. struct vm_area_struct *vma, *prev;
  1981. addr &= PAGE_MASK;
  1982. vma = find_vma_prev(mm, addr, &prev);
  1983. if (vma && (vma->vm_start <= addr))
  1984. return vma;
  1985. if (!prev || expand_stack(prev, addr))
  1986. return NULL;
  1987. if (prev->vm_flags & VM_LOCKED)
  1988. __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
  1989. return prev;
  1990. }
  1991. #else
  1992. int expand_stack(struct vm_area_struct *vma, unsigned long address)
  1993. {
  1994. struct vm_area_struct *prev;
  1995. address &= PAGE_MASK;
  1996. prev = vma->vm_prev;
  1997. if (prev && prev->vm_end == address) {
  1998. if (!(prev->vm_flags & VM_GROWSDOWN))
  1999. return -ENOMEM;
  2000. }
  2001. return expand_downwards(vma, address);
  2002. }
  2003. struct vm_area_struct *
  2004. find_extend_vma(struct mm_struct * mm, unsigned long addr)
  2005. {
  2006. struct vm_area_struct * vma;
  2007. unsigned long start;
  2008. addr &= PAGE_MASK;
  2009. vma = find_vma(mm,addr);
  2010. if (!vma)
  2011. return NULL;
  2012. if (vma->vm_start <= addr)
  2013. return vma;
  2014. if (!(vma->vm_flags & VM_GROWSDOWN))
  2015. return NULL;
  2016. start = vma->vm_start;
  2017. if (expand_stack(vma, addr))
  2018. return NULL;
  2019. if (vma->vm_flags & VM_LOCKED)
  2020. __mlock_vma_pages_range(vma, addr, start, NULL);
  2021. return vma;
  2022. }
  2023. #endif
  2024. /*
  2025. * Ok - we have the memory areas we should free on the vma list,
  2026. * so release them, and do the vma updates.
  2027. *
  2028. * Called with the mm semaphore held.
  2029. */
  2030. static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
  2031. {
  2032. unsigned long nr_accounted = 0;
  2033. /* Update high watermark before we lower total_vm */
  2034. update_hiwater_vm(mm);
  2035. do {
  2036. long nrpages = vma_pages(vma);
  2037. if (vma->vm_flags & VM_ACCOUNT)
  2038. nr_accounted += nrpages;
  2039. vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
  2040. vma = remove_vma(vma);
  2041. } while (vma);
  2042. vm_unacct_memory(nr_accounted);
  2043. validate_mm(mm);
  2044. }
  2045. /*
  2046. * Get rid of page table information in the indicated region.
  2047. *
  2048. * Called with the mm semaphore held.
  2049. */
  2050. static void unmap_region(struct mm_struct *mm,
  2051. struct vm_area_struct *vma, struct vm_area_struct *prev,
  2052. unsigned long start, unsigned long end)
  2053. {
  2054. struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
  2055. struct mmu_gather tlb;
  2056. lru_add_drain();
  2057. tlb_gather_mmu(&tlb, mm, start, end);
  2058. update_hiwater_rss(mm);
  2059. unmap_vmas(&tlb, vma, start, end);
  2060. free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
  2061. next ? next->vm_start : USER_PGTABLES_CEILING);
  2062. tlb_finish_mmu(&tlb, start, end);
  2063. }
  2064. /*
  2065. * Create a list of vma's touched by the unmap, removing them from the mm's
  2066. * vma list as we go..
  2067. */
  2068. static void
  2069. detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
  2070. struct vm_area_struct *prev, unsigned long end)
  2071. {
  2072. struct vm_area_struct **insertion_point;
  2073. struct vm_area_struct *tail_vma = NULL;
  2074. insertion_point = (prev ? &prev->vm_next : &mm->mmap);
  2075. vma->vm_prev = NULL;
  2076. do {
  2077. vma_rb_erase(vma, &mm->mm_rb);
  2078. mm->map_count--;
  2079. tail_vma = vma;
  2080. vma = vma->vm_next;
  2081. } while (vma && vma->vm_start < end);
  2082. *insertion_point = vma;
  2083. if (vma) {
  2084. vma->vm_prev = prev;
  2085. vma_gap_update(vma);
  2086. } else
  2087. mm->highest_vm_end = prev ? prev->vm_end : 0;
  2088. tail_vma->vm_next = NULL;
  2089. mm->mmap_cache = NULL; /* Kill the cache. */
  2090. }
  2091. /*
  2092. * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
  2093. * munmap path where it doesn't make sense to fail.
  2094. */
  2095. static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
  2096. unsigned long addr, int new_below)
  2097. {
  2098. struct vm_area_struct *new;
  2099. int err = -ENOMEM;
  2100. if (is_vm_hugetlb_page(vma) && (addr &
  2101. ~(huge_page_mask(hstate_vma(vma)))))
  2102. return -EINVAL;
  2103. new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  2104. if (!new)
  2105. goto out_err;
  2106. /* most fields are the same, copy all, and then fixup */
  2107. *new = *vma;
  2108. INIT_LIST_HEAD(&new->anon_vma_chain);
  2109. if (new_below)
  2110. new->vm_end = addr;
  2111. else {
  2112. new->vm_start = addr;
  2113. new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
  2114. }
  2115. err = vma_dup_policy(vma, new);
  2116. if (err)
  2117. goto out_free_vma;
  2118. if (anon_vma_clone(new, vma))
  2119. goto out_free_mpol;
  2120. if (new->vm_file)
  2121. get_file(new->vm_file);
  2122. if (new->vm_ops && new->vm_ops->open)
  2123. new->vm_ops->open(new);
  2124. if (new_below)
  2125. err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
  2126. ((addr - new->vm_start) >> PAGE_SHIFT), new);
  2127. else
  2128. err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
  2129. /* Success. */
  2130. if (!err)
  2131. return 0;
  2132. /* Clean everything up if vma_adjust failed. */
  2133. if (new->vm_ops && new->vm_ops->close)
  2134. new->vm_ops->close(new);
  2135. if (new->vm_file)
  2136. fput(new->vm_file);
  2137. unlink_anon_vmas(new);
  2138. out_free_mpol:
  2139. mpol_put(vma_policy(new));
  2140. out_free_vma:
  2141. kmem_cache_free(vm_area_cachep, new);
  2142. out_err:
  2143. return err;
  2144. }
  2145. /*
  2146. * Split a vma into two pieces at address 'addr', a new vma is allocated
  2147. * either for the first part or the tail.
  2148. */
  2149. int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
  2150. unsigned long addr, int new_below)
  2151. {
  2152. if (mm->map_count >= sysctl_max_map_count)
  2153. return -ENOMEM;
  2154. return __split_vma(mm, vma, addr, new_below);
  2155. }
  2156. /* Munmap is split into 2 main parts -- this part which finds
  2157. * what needs doing, and the areas themselves, which do the
  2158. * work. This now handles partial unmappings.
  2159. * Jeremy Fitzhardinge <jeremy@goop.org>
  2160. */
  2161. int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
  2162. {
  2163. unsigned long end;
  2164. struct vm_area_struct *vma, *prev, *last;
  2165. if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
  2166. return -EINVAL;
  2167. if ((len = PAGE_ALIGN(len)) == 0)
  2168. return -EINVAL;
  2169. /* Find the first overlapping VMA */
  2170. vma = find_vma(mm, start);
  2171. if (!vma)
  2172. return 0;
  2173. prev = vma->vm_prev;
  2174. /* we have start < vma->vm_end */
  2175. /* if it doesn't overlap, we have nothing.. */
  2176. end = start + len;
  2177. if (vma->vm_start >= end)
  2178. return 0;
  2179. /*
  2180. * If we need to split any vma, do it now to save pain later.
  2181. *
  2182. * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
  2183. * unmapped vm_area_struct will remain in use: so lower split_vma
  2184. * places tmp vma above, and higher split_vma places tmp vma below.
  2185. */
  2186. if (start > vma->vm_start) {
  2187. int error;
  2188. /*
  2189. * Make sure that map_count on return from munmap() will
  2190. * not exceed its limit; but let map_count go just above
  2191. * its limit temporarily, to help free resources as expected.
  2192. */
  2193. if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
  2194. return -ENOMEM;
  2195. error = __split_vma(mm, vma, start, 0);
  2196. if (error)
  2197. return error;
  2198. prev = vma;
  2199. }
  2200. /* Does it split the last one? */
  2201. last = find_vma(mm, end);
  2202. if (last && end > last->vm_start) {
  2203. int error = __split_vma(mm, last, end, 1);
  2204. if (error)
  2205. return error;
  2206. }
  2207. vma = prev? prev->vm_next: mm->mmap;
  2208. /*
  2209. * unlock any mlock()ed ranges before detaching vmas
  2210. */
  2211. if (mm->locked_vm) {
  2212. struct vm_area_struct *tmp = vma;
  2213. while (tmp && tmp->vm_start < end) {
  2214. if (tmp->vm_flags & VM_LOCKED) {
  2215. mm->locked_vm -= vma_pages(tmp);
  2216. munlock_vma_pages_all(tmp);
  2217. }
  2218. tmp = tmp->vm_next;
  2219. }
  2220. }
  2221. /*
  2222. * Remove the vma's, and unmap the actual pages
  2223. */
  2224. detach_vmas_to_be_unmapped(mm, vma, prev, end);
  2225. unmap_region(mm, vma, prev, start, end);
  2226. /* Fix up all other VM information */
  2227. remove_vma_list(mm, vma);
  2228. return 0;
  2229. }
  2230. int vm_munmap(unsigned long start, size_t len)
  2231. {
  2232. int ret;
  2233. struct mm_struct *mm = current->mm;
  2234. down_write(&mm->mmap_sem);
  2235. ret = do_munmap(mm, start, len);
  2236. up_write(&mm->mmap_sem);
  2237. return ret;
  2238. }
  2239. EXPORT_SYMBOL(vm_munmap);
  2240. SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
  2241. {
  2242. profile_munmap(addr);
  2243. return vm_munmap(addr, len);
  2244. }
  2245. static inline void verify_mm_writelocked(struct mm_struct *mm)
  2246. {
  2247. #ifdef CONFIG_DEBUG_VM
  2248. if (unlikely(down_read_trylock(&mm->mmap_sem))) {
  2249. WARN_ON(1);
  2250. up_read(&mm->mmap_sem);
  2251. }
  2252. #endif
  2253. }
  2254. /*
  2255. * this is really a simplified "do_mmap". it only handles
  2256. * anonymous maps. eventually we may be able to do some
  2257. * brk-specific accounting here.
  2258. */
  2259. static unsigned long do_brk(unsigned long addr, unsigned long len)
  2260. {
  2261. struct mm_struct * mm = current->mm;
  2262. struct vm_area_struct * vma, * prev;
  2263. unsigned long flags;
  2264. struct rb_node ** rb_link, * rb_parent;
  2265. pgoff_t pgoff = addr >> PAGE_SHIFT;
  2266. int error;
  2267. len = PAGE_ALIGN(len);
  2268. if (!len)
  2269. return addr;
  2270. flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
  2271. error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
  2272. if (error & ~PAGE_MASK)
  2273. return error;
  2274. /*
  2275. * mlock MCL_FUTURE?
  2276. */
  2277. if (mm->def_flags & VM_LOCKED) {
  2278. unsigned long locked, lock_limit;
  2279. locked = len >> PAGE_SHIFT;
  2280. locked += mm->locked_vm;
  2281. lock_limit = rlimit(RLIMIT_MEMLOCK);
  2282. lock_limit >>= PAGE_SHIFT;
  2283. if (locked > lock_limit && !capable(CAP_IPC_LOCK))
  2284. return -EAGAIN;
  2285. }
  2286. /*
  2287. * mm->mmap_sem is required to protect against another thread
  2288. * changing the mappings in case we sleep.
  2289. */
  2290. verify_mm_writelocked(mm);
  2291. /*
  2292. * Clear old maps. this also does some error checking for us
  2293. */
  2294. munmap_back:
  2295. if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
  2296. if (do_munmap(mm, addr, len))
  2297. return -ENOMEM;
  2298. goto munmap_back;
  2299. }
  2300. /* Check against address space limits *after* clearing old maps... */
  2301. if (!may_expand_vm(mm, len >> PAGE_SHIFT))
  2302. return -ENOMEM;
  2303. if (mm->map_count > sysctl_max_map_count)
  2304. return -ENOMEM;
  2305. if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
  2306. return -ENOMEM;
  2307. /* Can we just expand an old private anonymous mapping? */
  2308. vma = vma_merge(mm, prev, addr, addr + len, flags,
  2309. NULL, NULL, pgoff, NULL);
  2310. if (vma)
  2311. goto out;
  2312. /*
  2313. * create a vma struct for an anonymous mapping
  2314. */
  2315. vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
  2316. if (!vma) {
  2317. vm_unacct_memory(len >> PAGE_SHIFT);
  2318. return -ENOMEM;
  2319. }
  2320. INIT_LIST_HEAD(&vma->anon_vma_chain);
  2321. vma->vm_mm = mm;
  2322. vma->vm_start = addr;
  2323. vma->vm_end = addr + len;
  2324. vma->vm_pgoff = pgoff;
  2325. vma->vm_flags = flags;
  2326. vma->vm_page_prot = vm_get_page_prot(flags);
  2327. vma_link(mm, vma, prev, rb_link, rb_parent);
  2328. out:
  2329. perf_event_mmap(vma);
  2330. mm->total_vm += len >> PAGE_SHIFT;
  2331. if (flags & VM_LOCKED)
  2332. mm->locked_vm += (len >> PAGE_SHIFT);
  2333. vma->vm_flags |= VM_SOFTDIRTY;
  2334. return addr;
  2335. }
  2336. unsigned long vm_brk(unsigned long addr, unsigned long len)
  2337. {
  2338. struct mm_struct *mm = current->mm;
  2339. unsigned long ret;
  2340. bool populate;
  2341. down_write(&mm->mmap_sem);
  2342. ret = do_brk(addr, len);
  2343. populate = ((mm->def_flags & VM_LOCKED) != 0);
  2344. up_write(&mm->mmap_sem);
  2345. if (populate)
  2346. mm_populate(addr, len);
  2347. return ret;
  2348. }
  2349. EXPORT_SYMBOL(vm_brk);
  2350. /* Release all mmaps. */
  2351. void exit_mmap(struct mm_struct *mm)
  2352. {
  2353. struct mmu_gather tlb;
  2354. struct vm_area_struct *vma;
  2355. unsigned long nr_accounted = 0;
  2356. /* mm's last user has gone, and its about to be pulled down */
  2357. mmu_notifier_release(mm);
  2358. if (mm->locked_vm) {
  2359. vma = mm->mmap;
  2360. while (vma) {
  2361. if (vma->vm_flags & VM_LOCKED)
  2362. munlock_vma_pages_all(vma);
  2363. vma = vma->vm_next;
  2364. }
  2365. }
  2366. arch_exit_mmap(mm);
  2367. vma = mm->mmap;
  2368. if (!vma) /* Can happen if dup_mmap() received an OOM */
  2369. return;
  2370. lru_add_drain();
  2371. flush_cache_mm(mm);
  2372. tlb_gather_mmu(&tlb, mm, 0, -1);
  2373. /* update_hiwater_rss(mm) here? but nobody should be looking */
  2374. /* Use -1 here to ensure all VMAs in the mm are unmapped */
  2375. unmap_vmas(&tlb, vma, 0, -1);
  2376. free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
  2377. tlb_finish_mmu(&tlb, 0, -1);
  2378. /*
  2379. * Walk the list again, actually closing and freeing it,
  2380. * with preemption enabled, without holding any MM locks.
  2381. */
  2382. while (vma) {
  2383. if (vma->vm_flags & VM_ACCOUNT)
  2384. nr_accounted += vma_pages(vma);
  2385. vma = remove_vma(vma);
  2386. }
  2387. vm_unacct_memory(nr_accounted);
  2388. WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
  2389. }
  2390. /* Insert vm structure into process list sorted by address
  2391. * and into the inode's i_mmap tree. If vm_file is non-NULL
  2392. * then i_mmap_mutex is taken here.
  2393. */
  2394. int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
  2395. {
  2396. struct vm_area_struct *prev;
  2397. struct rb_node **rb_link, *rb_parent;
  2398. /*
  2399. * The vm_pgoff of a purely anonymous vma should be irrelevant
  2400. * until its first write fault, when page's anon_vma and index
  2401. * are set. But now set the vm_pgoff it will almost certainly
  2402. * end up with (unless mremap moves it elsewhere before that
  2403. * first wfault), so /proc/pid/maps tells a consistent story.
  2404. *
  2405. * By setting it to reflect the virtual start address of the
  2406. * vma, merges and splits can happen in a seamless way, just
  2407. * using the existing file pgoff checks and manipulations.
  2408. * Similarly in do_mmap_pgoff and in do_brk.
  2409. */
  2410. if (!vma->vm_file) {
  2411. BUG_ON(vma->anon_vma);
  2412. vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
  2413. }
  2414. if (find_vma_links(mm, vma->vm_start, vma->vm_end,
  2415. &prev, &rb_link, &rb_parent))
  2416. return -ENOMEM;
  2417. if ((vma->vm_flags & VM_ACCOUNT) &&
  2418. security_vm_enough_memory_mm(mm, vma_pages(vma)))
  2419. return -ENOMEM;
  2420. vma_link(mm, vma, prev, rb_link, rb_parent);
  2421. return 0;
  2422. }
  2423. /*
  2424. * Copy the vma structure to a new location in the same mm,
  2425. * prior to moving page table entries, to effect an mremap move.
  2426. */
  2427. struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
  2428. unsigned long addr, unsigned long len, pgoff_t pgoff,
  2429. bool *need_rmap_locks)
  2430. {
  2431. struct vm_area_struct *vma = *vmap;
  2432. unsigned long vma_start = vma->vm_start;
  2433. struct mm_struct *mm = vma->vm_mm;
  2434. struct vm_area_struct *new_vma, *prev;
  2435. struct rb_node **rb_link, *rb_parent;
  2436. bool faulted_in_anon_vma = true;
  2437. /*
  2438. * If anonymous vma has not yet been faulted, update new pgoff
  2439. * to match new location, to increase its chance of merging.
  2440. */
  2441. if (unlikely(!vma->vm_file && !vma->anon_vma)) {
  2442. pgoff = addr >> PAGE_SHIFT;
  2443. faulted_in_anon_vma = false;
  2444. }
  2445. if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
  2446. return NULL; /* should never get here */
  2447. new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
  2448. vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
  2449. if (new_vma) {
  2450. /*
  2451. * Source vma may have been merged into new_vma
  2452. */
  2453. if (unlikely(vma_start >= new_vma->vm_start &&
  2454. vma_start < new_vma->vm_end)) {
  2455. /*
  2456. * The only way we can get a vma_merge with
  2457. * self during an mremap is if the vma hasn't
  2458. * been faulted in yet and we were allowed to
  2459. * reset the dst vma->vm_pgoff to the
  2460. * destination address of the mremap to allow
  2461. * the merge to happen. mremap must change the
  2462. * vm_pgoff linearity between src and dst vmas
  2463. * (in turn preventing a vma_merge) to be
  2464. * safe. It is only safe to keep the vm_pgoff
  2465. * linear if there are no pages mapped yet.
  2466. */
  2467. VM_BUG_ON(faulted_in_anon_vma);
  2468. *vmap = vma = new_vma;
  2469. }
  2470. *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
  2471. } else {
  2472. new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  2473. if (new_vma) {
  2474. *new_vma = *vma;
  2475. new_vma->vm_start = addr;
  2476. new_vma->vm_end = addr + len;
  2477. new_vma->vm_pgoff = pgoff;
  2478. if (vma_dup_policy(vma, new_vma))
  2479. goto out_free_vma;
  2480. INIT_LIST_HEAD(&new_vma->anon_vma_chain);
  2481. if (anon_vma_clone(new_vma, vma))
  2482. goto out_free_mempol;
  2483. if (new_vma->vm_file)
  2484. get_file(new_vma->vm_file);
  2485. if (new_vma->vm_ops && new_vma->vm_ops->open)
  2486. new_vma->vm_ops->open(new_vma);
  2487. vma_link(mm, new_vma, prev, rb_link, rb_parent);
  2488. *need_rmap_locks = false;
  2489. }
  2490. }
  2491. return new_vma;
  2492. out_free_mempol:
  2493. mpol_put(vma_policy(new_vma));
  2494. out_free_vma:
  2495. kmem_cache_free(vm_area_cachep, new_vma);
  2496. return NULL;
  2497. }
  2498. /*
  2499. * Return true if the calling process may expand its vm space by the passed
  2500. * number of pages
  2501. */
  2502. int may_expand_vm(struct mm_struct *mm, unsigned long npages)
  2503. {
  2504. unsigned long cur = mm->total_vm; /* pages */
  2505. unsigned long lim;
  2506. lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
  2507. if (cur + npages > lim)
  2508. return 0;
  2509. return 1;
  2510. }
  2511. static int special_mapping_fault(struct vm_area_struct *vma,
  2512. struct vm_fault *vmf)
  2513. {
  2514. pgoff_t pgoff;
  2515. struct page **pages;
  2516. /*
  2517. * special mappings have no vm_file, and in that case, the mm
  2518. * uses vm_pgoff internally. So we have to subtract it from here.
  2519. * We are allowed to do this because we are the mm; do not copy
  2520. * this code into drivers!
  2521. */
  2522. pgoff = vmf->pgoff - vma->vm_pgoff;
  2523. for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
  2524. pgoff--;
  2525. if (*pages) {
  2526. struct page *page = *pages;
  2527. get_page(page);
  2528. vmf->page = page;
  2529. return 0;
  2530. }
  2531. return VM_FAULT_SIGBUS;
  2532. }
  2533. /*
  2534. * Having a close hook prevents vma merging regardless of flags.
  2535. */
  2536. static void special_mapping_close(struct vm_area_struct *vma)
  2537. {
  2538. }
  2539. static const struct vm_operations_struct special_mapping_vmops = {
  2540. .close = special_mapping_close,
  2541. .fault = special_mapping_fault,
  2542. };
  2543. /*
  2544. * Called with mm->mmap_sem held for writing.
  2545. * Insert a new vma covering the given region, with the given flags.
  2546. * Its pages are supplied by the given array of struct page *.
  2547. * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
  2548. * The region past the last page supplied will always produce SIGBUS.
  2549. * The array pointer and the pages it points to are assumed to stay alive
  2550. * for as long as this mapping might exist.
  2551. */
  2552. int install_special_mapping(struct mm_struct *mm,
  2553. unsigned long addr, unsigned long len,
  2554. unsigned long vm_flags, struct page **pages)
  2555. {
  2556. int ret;
  2557. struct vm_area_struct *vma;
  2558. vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
  2559. if (unlikely(vma == NULL))
  2560. return -ENOMEM;
  2561. INIT_LIST_HEAD(&vma->anon_vma_chain);
  2562. vma->vm_mm = mm;
  2563. vma->vm_start = addr;
  2564. vma->vm_end = addr + len;
  2565. vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
  2566. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  2567. vma->vm_ops = &special_mapping_vmops;
  2568. vma->vm_private_data = pages;
  2569. ret = insert_vm_struct(mm, vma);
  2570. if (ret)
  2571. goto out;
  2572. mm->total_vm += len >> PAGE_SHIFT;
  2573. perf_event_mmap(vma);
  2574. return 0;
  2575. out:
  2576. kmem_cache_free(vm_area_cachep, vma);
  2577. return ret;
  2578. }
  2579. static DEFINE_MUTEX(mm_all_locks_mutex);
  2580. static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
  2581. {
  2582. if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
  2583. /*
  2584. * The LSB of head.next can't change from under us
  2585. * because we hold the mm_all_locks_mutex.
  2586. */
  2587. down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
  2588. /*
  2589. * We can safely modify head.next after taking the
  2590. * anon_vma->root->rwsem. If some other vma in this mm shares
  2591. * the same anon_vma we won't take it again.
  2592. *
  2593. * No need of atomic instructions here, head.next
  2594. * can't change from under us thanks to the
  2595. * anon_vma->root->rwsem.
  2596. */
  2597. if (__test_and_set_bit(0, (unsigned long *)
  2598. &anon_vma->root->rb_root.rb_node))
  2599. BUG();
  2600. }
  2601. }
  2602. static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
  2603. {
  2604. if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
  2605. /*
  2606. * AS_MM_ALL_LOCKS can't change from under us because
  2607. * we hold the mm_all_locks_mutex.
  2608. *
  2609. * Operations on ->flags have to be atomic because
  2610. * even if AS_MM_ALL_LOCKS is stable thanks to the
  2611. * mm_all_locks_mutex, there may be other cpus
  2612. * changing other bitflags in parallel to us.
  2613. */
  2614. if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
  2615. BUG();
  2616. mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
  2617. }
  2618. }
  2619. /*
  2620. * This operation locks against the VM for all pte/vma/mm related
  2621. * operations that could ever happen on a certain mm. This includes
  2622. * vmtruncate, try_to_unmap, and all page faults.
  2623. *
  2624. * The caller must take the mmap_sem in write mode before calling
  2625. * mm_take_all_locks(). The caller isn't allowed to release the
  2626. * mmap_sem until mm_drop_all_locks() returns.
  2627. *
  2628. * mmap_sem in write mode is required in order to block all operations
  2629. * that could modify pagetables and free pages without need of
  2630. * altering the vma layout (for example populate_range() with
  2631. * nonlinear vmas). It's also needed in write mode to avoid new
  2632. * anon_vmas to be associated with existing vmas.
  2633. *
  2634. * A single task can't take more than one mm_take_all_locks() in a row
  2635. * or it would deadlock.
  2636. *
  2637. * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
  2638. * mapping->flags avoid to take the same lock twice, if more than one
  2639. * vma in this mm is backed by the same anon_vma or address_space.
  2640. *
  2641. * We can take all the locks in random order because the VM code
  2642. * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
  2643. * takes more than one of them in a row. Secondly we're protected
  2644. * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
  2645. *
  2646. * mm_take_all_locks() and mm_drop_all_locks are expensive operations
  2647. * that may have to take thousand of locks.
  2648. *
  2649. * mm_take_all_locks() can fail if it's interrupted by signals.
  2650. */
  2651. int mm_take_all_locks(struct mm_struct *mm)
  2652. {
  2653. struct vm_area_struct *vma;
  2654. struct anon_vma_chain *avc;
  2655. BUG_ON(down_read_trylock(&mm->mmap_sem));
  2656. mutex_lock(&mm_all_locks_mutex);
  2657. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  2658. if (signal_pending(current))
  2659. goto out_unlock;
  2660. if (vma->vm_file && vma->vm_file->f_mapping)
  2661. vm_lock_mapping(mm, vma->vm_file->f_mapping);
  2662. }
  2663. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  2664. if (signal_pending(current))
  2665. goto out_unlock;
  2666. if (vma->anon_vma)
  2667. list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
  2668. vm_lock_anon_vma(mm, avc->anon_vma);
  2669. }
  2670. return 0;
  2671. out_unlock:
  2672. mm_drop_all_locks(mm);
  2673. return -EINTR;
  2674. }
  2675. static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
  2676. {
  2677. if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
  2678. /*
  2679. * The LSB of head.next can't change to 0 from under
  2680. * us because we hold the mm_all_locks_mutex.
  2681. *
  2682. * We must however clear the bitflag before unlocking
  2683. * the vma so the users using the anon_vma->rb_root will
  2684. * never see our bitflag.
  2685. *
  2686. * No need of atomic instructions here, head.next
  2687. * can't change from under us until we release the
  2688. * anon_vma->root->rwsem.
  2689. */
  2690. if (!__test_and_clear_bit(0, (unsigned long *)
  2691. &anon_vma->root->rb_root.rb_node))
  2692. BUG();
  2693. anon_vma_unlock_write(anon_vma);
  2694. }
  2695. }
  2696. static void vm_unlock_mapping(struct address_space *mapping)
  2697. {
  2698. if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
  2699. /*
  2700. * AS_MM_ALL_LOCKS can't change to 0 from under us
  2701. * because we hold the mm_all_locks_mutex.
  2702. */
  2703. mutex_unlock(&mapping->i_mmap_mutex);
  2704. if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
  2705. &mapping->flags))
  2706. BUG();
  2707. }
  2708. }
  2709. /*
  2710. * The mmap_sem cannot be released by the caller until
  2711. * mm_drop_all_locks() returns.
  2712. */
  2713. void mm_drop_all_locks(struct mm_struct *mm)
  2714. {
  2715. struct vm_area_struct *vma;
  2716. struct anon_vma_chain *avc;
  2717. BUG_ON(down_read_trylock(&mm->mmap_sem));
  2718. BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
  2719. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  2720. if (vma->anon_vma)
  2721. list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
  2722. vm_unlock_anon_vma(avc->anon_vma);
  2723. if (vma->vm_file && vma->vm_file->f_mapping)
  2724. vm_unlock_mapping(vma->vm_file->f_mapping);
  2725. }
  2726. mutex_unlock(&mm_all_locks_mutex);
  2727. }
  2728. /*
  2729. * initialise the VMA slab
  2730. */
  2731. void __init mmap_init(void)
  2732. {
  2733. int ret;
  2734. ret = percpu_counter_init(&vm_committed_as, 0);
  2735. VM_BUG_ON(ret);
  2736. }
  2737. /*
  2738. * Initialise sysctl_user_reserve_kbytes.
  2739. *
  2740. * This is intended to prevent a user from starting a single memory hogging
  2741. * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
  2742. * mode.
  2743. *
  2744. * The default value is min(3% of free memory, 128MB)
  2745. * 128MB is enough to recover with sshd/login, bash, and top/kill.
  2746. */
  2747. static int init_user_reserve(void)
  2748. {
  2749. unsigned long free_kbytes;
  2750. free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
  2751. sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
  2752. return 0;
  2753. }
  2754. module_init(init_user_reserve)
  2755. /*
  2756. * Initialise sysctl_admin_reserve_kbytes.
  2757. *
  2758. * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
  2759. * to log in and kill a memory hogging process.
  2760. *
  2761. * Systems with more than 256MB will reserve 8MB, enough to recover
  2762. * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
  2763. * only reserve 3% of free pages by default.
  2764. */
  2765. static int init_admin_reserve(void)
  2766. {
  2767. unsigned long free_kbytes;
  2768. free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
  2769. sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
  2770. return 0;
  2771. }
  2772. module_init(init_admin_reserve)
  2773. /*
  2774. * Reinititalise user and admin reserves if memory is added or removed.
  2775. *
  2776. * The default user reserve max is 128MB, and the default max for the
  2777. * admin reserve is 8MB. These are usually, but not always, enough to
  2778. * enable recovery from a memory hogging process using login/sshd, a shell,
  2779. * and tools like top. It may make sense to increase or even disable the
  2780. * reserve depending on the existence of swap or variations in the recovery
  2781. * tools. So, the admin may have changed them.
  2782. *
  2783. * If memory is added and the reserves have been eliminated or increased above
  2784. * the default max, then we'll trust the admin.
  2785. *
  2786. * If memory is removed and there isn't enough free memory, then we
  2787. * need to reset the reserves.
  2788. *
  2789. * Otherwise keep the reserve set by the admin.
  2790. */
  2791. static int reserve_mem_notifier(struct notifier_block *nb,
  2792. unsigned long action, void *data)
  2793. {
  2794. unsigned long tmp, free_kbytes;
  2795. switch (action) {
  2796. case MEM_ONLINE:
  2797. /* Default max is 128MB. Leave alone if modified by operator. */
  2798. tmp = sysctl_user_reserve_kbytes;
  2799. if (0 < tmp && tmp < (1UL << 17))
  2800. init_user_reserve();
  2801. /* Default max is 8MB. Leave alone if modified by operator. */
  2802. tmp = sysctl_admin_reserve_kbytes;
  2803. if (0 < tmp && tmp < (1UL << 13))
  2804. init_admin_reserve();
  2805. break;
  2806. case MEM_OFFLINE:
  2807. free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
  2808. if (sysctl_user_reserve_kbytes > free_kbytes) {
  2809. init_user_reserve();
  2810. pr_info("vm.user_reserve_kbytes reset to %lu\n",
  2811. sysctl_user_reserve_kbytes);
  2812. }
  2813. if (sysctl_admin_reserve_kbytes > free_kbytes) {
  2814. init_admin_reserve();
  2815. pr_info("vm.admin_reserve_kbytes reset to %lu\n",
  2816. sysctl_admin_reserve_kbytes);
  2817. }
  2818. break;
  2819. default:
  2820. break;
  2821. }
  2822. return NOTIFY_OK;
  2823. }
  2824. static struct notifier_block reserve_mem_nb = {
  2825. .notifier_call = reserve_mem_notifier,
  2826. };
  2827. static int __meminit init_reserve_notifier(void)
  2828. {
  2829. if (register_hotmemory_notifier(&reserve_mem_nb))
  2830. printk("Failed registering memory add/remove notifier for admin reserve");
  2831. return 0;
  2832. }
  2833. module_init(init_reserve_notifier)