hugetlb.c 92 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522
  1. /*
  2. * Generic hugetlb support.
  3. * (C) Nadia Yvette Chambers, April 2004
  4. */
  5. #include <linux/list.h>
  6. #include <linux/init.h>
  7. #include <linux/module.h>
  8. #include <linux/mm.h>
  9. #include <linux/seq_file.h>
  10. #include <linux/sysctl.h>
  11. #include <linux/highmem.h>
  12. #include <linux/mmu_notifier.h>
  13. #include <linux/nodemask.h>
  14. #include <linux/pagemap.h>
  15. #include <linux/mempolicy.h>
  16. #include <linux/cpuset.h>
  17. #include <linux/mutex.h>
  18. #include <linux/bootmem.h>
  19. #include <linux/sysfs.h>
  20. #include <linux/slab.h>
  21. #include <linux/rmap.h>
  22. #include <linux/swap.h>
  23. #include <linux/swapops.h>
  24. #include <linux/page-isolation.h>
  25. #include <asm/page.h>
  26. #include <asm/pgtable.h>
  27. #include <asm/tlb.h>
  28. #include <linux/io.h>
  29. #include <linux/hugetlb.h>
  30. #include <linux/hugetlb_cgroup.h>
  31. #include <linux/node.h>
  32. #include "internal.h"
  33. const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
  34. unsigned long hugepages_treat_as_movable;
  35. int hugetlb_max_hstate __read_mostly;
  36. unsigned int default_hstate_idx;
  37. struct hstate hstates[HUGE_MAX_HSTATE];
  38. __initdata LIST_HEAD(huge_boot_pages);
  39. /* for command line parsing */
  40. static struct hstate * __initdata parsed_hstate;
  41. static unsigned long __initdata default_hstate_max_huge_pages;
  42. static unsigned long __initdata default_hstate_size;
  43. /*
  44. * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  45. * free_huge_pages, and surplus_huge_pages.
  46. */
  47. DEFINE_SPINLOCK(hugetlb_lock);
  48. static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  49. {
  50. bool free = (spool->count == 0) && (spool->used_hpages == 0);
  51. spin_unlock(&spool->lock);
  52. /* If no pages are used, and no other handles to the subpool
  53. * remain, free the subpool the subpool remain */
  54. if (free)
  55. kfree(spool);
  56. }
  57. struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
  58. {
  59. struct hugepage_subpool *spool;
  60. spool = kmalloc(sizeof(*spool), GFP_KERNEL);
  61. if (!spool)
  62. return NULL;
  63. spin_lock_init(&spool->lock);
  64. spool->count = 1;
  65. spool->max_hpages = nr_blocks;
  66. spool->used_hpages = 0;
  67. return spool;
  68. }
  69. void hugepage_put_subpool(struct hugepage_subpool *spool)
  70. {
  71. spin_lock(&spool->lock);
  72. BUG_ON(!spool->count);
  73. spool->count--;
  74. unlock_or_release_subpool(spool);
  75. }
  76. static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
  77. long delta)
  78. {
  79. int ret = 0;
  80. if (!spool)
  81. return 0;
  82. spin_lock(&spool->lock);
  83. if ((spool->used_hpages + delta) <= spool->max_hpages) {
  84. spool->used_hpages += delta;
  85. } else {
  86. ret = -ENOMEM;
  87. }
  88. spin_unlock(&spool->lock);
  89. return ret;
  90. }
  91. static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
  92. long delta)
  93. {
  94. if (!spool)
  95. return;
  96. spin_lock(&spool->lock);
  97. spool->used_hpages -= delta;
  98. /* If hugetlbfs_put_super couldn't free spool due to
  99. * an outstanding quota reference, free it now. */
  100. unlock_or_release_subpool(spool);
  101. }
  102. static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
  103. {
  104. return HUGETLBFS_SB(inode->i_sb)->spool;
  105. }
  106. static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
  107. {
  108. return subpool_inode(file_inode(vma->vm_file));
  109. }
  110. /*
  111. * Region tracking -- allows tracking of reservations and instantiated pages
  112. * across the pages in a mapping.
  113. *
  114. * The region data structures are protected by a combination of the mmap_sem
  115. * and the hugetlb_instantiation_mutex. To access or modify a region the caller
  116. * must either hold the mmap_sem for write, or the mmap_sem for read and
  117. * the hugetlb_instantiation_mutex:
  118. *
  119. * down_write(&mm->mmap_sem);
  120. * or
  121. * down_read(&mm->mmap_sem);
  122. * mutex_lock(&hugetlb_instantiation_mutex);
  123. */
  124. struct file_region {
  125. struct list_head link;
  126. long from;
  127. long to;
  128. };
  129. static long region_add(struct list_head *head, long f, long t)
  130. {
  131. struct file_region *rg, *nrg, *trg;
  132. /* Locate the region we are either in or before. */
  133. list_for_each_entry(rg, head, link)
  134. if (f <= rg->to)
  135. break;
  136. /* Round our left edge to the current segment if it encloses us. */
  137. if (f > rg->from)
  138. f = rg->from;
  139. /* Check for and consume any regions we now overlap with. */
  140. nrg = rg;
  141. list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
  142. if (&rg->link == head)
  143. break;
  144. if (rg->from > t)
  145. break;
  146. /* If this area reaches higher then extend our area to
  147. * include it completely. If this is not the first area
  148. * which we intend to reuse, free it. */
  149. if (rg->to > t)
  150. t = rg->to;
  151. if (rg != nrg) {
  152. list_del(&rg->link);
  153. kfree(rg);
  154. }
  155. }
  156. nrg->from = f;
  157. nrg->to = t;
  158. return 0;
  159. }
  160. static long region_chg(struct list_head *head, long f, long t)
  161. {
  162. struct file_region *rg, *nrg;
  163. long chg = 0;
  164. /* Locate the region we are before or in. */
  165. list_for_each_entry(rg, head, link)
  166. if (f <= rg->to)
  167. break;
  168. /* If we are below the current region then a new region is required.
  169. * Subtle, allocate a new region at the position but make it zero
  170. * size such that we can guarantee to record the reservation. */
  171. if (&rg->link == head || t < rg->from) {
  172. nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
  173. if (!nrg)
  174. return -ENOMEM;
  175. nrg->from = f;
  176. nrg->to = f;
  177. INIT_LIST_HEAD(&nrg->link);
  178. list_add(&nrg->link, rg->link.prev);
  179. return t - f;
  180. }
  181. /* Round our left edge to the current segment if it encloses us. */
  182. if (f > rg->from)
  183. f = rg->from;
  184. chg = t - f;
  185. /* Check for and consume any regions we now overlap with. */
  186. list_for_each_entry(rg, rg->link.prev, link) {
  187. if (&rg->link == head)
  188. break;
  189. if (rg->from > t)
  190. return chg;
  191. /* We overlap with this area, if it extends further than
  192. * us then we must extend ourselves. Account for its
  193. * existing reservation. */
  194. if (rg->to > t) {
  195. chg += rg->to - t;
  196. t = rg->to;
  197. }
  198. chg -= rg->to - rg->from;
  199. }
  200. return chg;
  201. }
  202. static long region_truncate(struct list_head *head, long end)
  203. {
  204. struct file_region *rg, *trg;
  205. long chg = 0;
  206. /* Locate the region we are either in or before. */
  207. list_for_each_entry(rg, head, link)
  208. if (end <= rg->to)
  209. break;
  210. if (&rg->link == head)
  211. return 0;
  212. /* If we are in the middle of a region then adjust it. */
  213. if (end > rg->from) {
  214. chg = rg->to - end;
  215. rg->to = end;
  216. rg = list_entry(rg->link.next, typeof(*rg), link);
  217. }
  218. /* Drop any remaining regions. */
  219. list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
  220. if (&rg->link == head)
  221. break;
  222. chg += rg->to - rg->from;
  223. list_del(&rg->link);
  224. kfree(rg);
  225. }
  226. return chg;
  227. }
  228. static long region_count(struct list_head *head, long f, long t)
  229. {
  230. struct file_region *rg;
  231. long chg = 0;
  232. /* Locate each segment we overlap with, and count that overlap. */
  233. list_for_each_entry(rg, head, link) {
  234. long seg_from;
  235. long seg_to;
  236. if (rg->to <= f)
  237. continue;
  238. if (rg->from >= t)
  239. break;
  240. seg_from = max(rg->from, f);
  241. seg_to = min(rg->to, t);
  242. chg += seg_to - seg_from;
  243. }
  244. return chg;
  245. }
  246. /*
  247. * Convert the address within this vma to the page offset within
  248. * the mapping, in pagecache page units; huge pages here.
  249. */
  250. static pgoff_t vma_hugecache_offset(struct hstate *h,
  251. struct vm_area_struct *vma, unsigned long address)
  252. {
  253. return ((address - vma->vm_start) >> huge_page_shift(h)) +
  254. (vma->vm_pgoff >> huge_page_order(h));
  255. }
  256. pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
  257. unsigned long address)
  258. {
  259. return vma_hugecache_offset(hstate_vma(vma), vma, address);
  260. }
  261. /*
  262. * Return the size of the pages allocated when backing a VMA. In the majority
  263. * cases this will be same size as used by the page table entries.
  264. */
  265. unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
  266. {
  267. struct hstate *hstate;
  268. if (!is_vm_hugetlb_page(vma))
  269. return PAGE_SIZE;
  270. hstate = hstate_vma(vma);
  271. return 1UL << huge_page_shift(hstate);
  272. }
  273. EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
  274. /*
  275. * Return the page size being used by the MMU to back a VMA. In the majority
  276. * of cases, the page size used by the kernel matches the MMU size. On
  277. * architectures where it differs, an architecture-specific version of this
  278. * function is required.
  279. */
  280. #ifndef vma_mmu_pagesize
  281. unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
  282. {
  283. return vma_kernel_pagesize(vma);
  284. }
  285. #endif
  286. /*
  287. * Flags for MAP_PRIVATE reservations. These are stored in the bottom
  288. * bits of the reservation map pointer, which are always clear due to
  289. * alignment.
  290. */
  291. #define HPAGE_RESV_OWNER (1UL << 0)
  292. #define HPAGE_RESV_UNMAPPED (1UL << 1)
  293. #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
  294. /*
  295. * These helpers are used to track how many pages are reserved for
  296. * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
  297. * is guaranteed to have their future faults succeed.
  298. *
  299. * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
  300. * the reserve counters are updated with the hugetlb_lock held. It is safe
  301. * to reset the VMA at fork() time as it is not in use yet and there is no
  302. * chance of the global counters getting corrupted as a result of the values.
  303. *
  304. * The private mapping reservation is represented in a subtly different
  305. * manner to a shared mapping. A shared mapping has a region map associated
  306. * with the underlying file, this region map represents the backing file
  307. * pages which have ever had a reservation assigned which this persists even
  308. * after the page is instantiated. A private mapping has a region map
  309. * associated with the original mmap which is attached to all VMAs which
  310. * reference it, this region map represents those offsets which have consumed
  311. * reservation ie. where pages have been instantiated.
  312. */
  313. static unsigned long get_vma_private_data(struct vm_area_struct *vma)
  314. {
  315. return (unsigned long)vma->vm_private_data;
  316. }
  317. static void set_vma_private_data(struct vm_area_struct *vma,
  318. unsigned long value)
  319. {
  320. vma->vm_private_data = (void *)value;
  321. }
  322. struct resv_map {
  323. struct kref refs;
  324. struct list_head regions;
  325. };
  326. static struct resv_map *resv_map_alloc(void)
  327. {
  328. struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
  329. if (!resv_map)
  330. return NULL;
  331. kref_init(&resv_map->refs);
  332. INIT_LIST_HEAD(&resv_map->regions);
  333. return resv_map;
  334. }
  335. static void resv_map_release(struct kref *ref)
  336. {
  337. struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
  338. /* Clear out any active regions before we release the map. */
  339. region_truncate(&resv_map->regions, 0);
  340. kfree(resv_map);
  341. }
  342. static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
  343. {
  344. VM_BUG_ON(!is_vm_hugetlb_page(vma));
  345. if (!(vma->vm_flags & VM_MAYSHARE))
  346. return (struct resv_map *)(get_vma_private_data(vma) &
  347. ~HPAGE_RESV_MASK);
  348. return NULL;
  349. }
  350. static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
  351. {
  352. VM_BUG_ON(!is_vm_hugetlb_page(vma));
  353. VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
  354. set_vma_private_data(vma, (get_vma_private_data(vma) &
  355. HPAGE_RESV_MASK) | (unsigned long)map);
  356. }
  357. static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
  358. {
  359. VM_BUG_ON(!is_vm_hugetlb_page(vma));
  360. VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
  361. set_vma_private_data(vma, get_vma_private_data(vma) | flags);
  362. }
  363. static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
  364. {
  365. VM_BUG_ON(!is_vm_hugetlb_page(vma));
  366. return (get_vma_private_data(vma) & flag) != 0;
  367. }
  368. /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
  369. void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
  370. {
  371. VM_BUG_ON(!is_vm_hugetlb_page(vma));
  372. if (!(vma->vm_flags & VM_MAYSHARE))
  373. vma->vm_private_data = (void *)0;
  374. }
  375. /* Returns true if the VMA has associated reserve pages */
  376. static int vma_has_reserves(struct vm_area_struct *vma, long chg)
  377. {
  378. if (vma->vm_flags & VM_NORESERVE) {
  379. /*
  380. * This address is already reserved by other process(chg == 0),
  381. * so, we should decrement reserved count. Without decrementing,
  382. * reserve count remains after releasing inode, because this
  383. * allocated page will go into page cache and is regarded as
  384. * coming from reserved pool in releasing step. Currently, we
  385. * don't have any other solution to deal with this situation
  386. * properly, so add work-around here.
  387. */
  388. if (vma->vm_flags & VM_MAYSHARE && chg == 0)
  389. return 1;
  390. else
  391. return 0;
  392. }
  393. /* Shared mappings always use reserves */
  394. if (vma->vm_flags & VM_MAYSHARE)
  395. return 1;
  396. /*
  397. * Only the process that called mmap() has reserves for
  398. * private mappings.
  399. */
  400. if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
  401. return 1;
  402. return 0;
  403. }
  404. static void copy_gigantic_page(struct page *dst, struct page *src)
  405. {
  406. int i;
  407. struct hstate *h = page_hstate(src);
  408. struct page *dst_base = dst;
  409. struct page *src_base = src;
  410. for (i = 0; i < pages_per_huge_page(h); ) {
  411. cond_resched();
  412. copy_highpage(dst, src);
  413. i++;
  414. dst = mem_map_next(dst, dst_base, i);
  415. src = mem_map_next(src, src_base, i);
  416. }
  417. }
  418. void copy_huge_page(struct page *dst, struct page *src)
  419. {
  420. int i;
  421. struct hstate *h = page_hstate(src);
  422. if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
  423. copy_gigantic_page(dst, src);
  424. return;
  425. }
  426. might_sleep();
  427. for (i = 0; i < pages_per_huge_page(h); i++) {
  428. cond_resched();
  429. copy_highpage(dst + i, src + i);
  430. }
  431. }
  432. static void enqueue_huge_page(struct hstate *h, struct page *page)
  433. {
  434. int nid = page_to_nid(page);
  435. list_move(&page->lru, &h->hugepage_freelists[nid]);
  436. h->free_huge_pages++;
  437. h->free_huge_pages_node[nid]++;
  438. }
  439. static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
  440. {
  441. struct page *page;
  442. list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
  443. if (!is_migrate_isolate_page(page))
  444. break;
  445. /*
  446. * if 'non-isolated free hugepage' not found on the list,
  447. * the allocation fails.
  448. */
  449. if (&h->hugepage_freelists[nid] == &page->lru)
  450. return NULL;
  451. list_move(&page->lru, &h->hugepage_activelist);
  452. set_page_refcounted(page);
  453. h->free_huge_pages--;
  454. h->free_huge_pages_node[nid]--;
  455. return page;
  456. }
  457. /* Movability of hugepages depends on migration support. */
  458. static inline gfp_t htlb_alloc_mask(struct hstate *h)
  459. {
  460. if (hugepages_treat_as_movable || hugepage_migration_support(h))
  461. return GFP_HIGHUSER_MOVABLE;
  462. else
  463. return GFP_HIGHUSER;
  464. }
  465. static struct page *dequeue_huge_page_vma(struct hstate *h,
  466. struct vm_area_struct *vma,
  467. unsigned long address, int avoid_reserve,
  468. long chg)
  469. {
  470. struct page *page = NULL;
  471. struct mempolicy *mpol;
  472. nodemask_t *nodemask;
  473. struct zonelist *zonelist;
  474. struct zone *zone;
  475. struct zoneref *z;
  476. unsigned int cpuset_mems_cookie;
  477. /*
  478. * A child process with MAP_PRIVATE mappings created by their parent
  479. * have no page reserves. This check ensures that reservations are
  480. * not "stolen". The child may still get SIGKILLed
  481. */
  482. if (!vma_has_reserves(vma, chg) &&
  483. h->free_huge_pages - h->resv_huge_pages == 0)
  484. goto err;
  485. /* If reserves cannot be used, ensure enough pages are in the pool */
  486. if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
  487. goto err;
  488. retry_cpuset:
  489. cpuset_mems_cookie = get_mems_allowed();
  490. zonelist = huge_zonelist(vma, address,
  491. htlb_alloc_mask(h), &mpol, &nodemask);
  492. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  493. MAX_NR_ZONES - 1, nodemask) {
  494. if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
  495. page = dequeue_huge_page_node(h, zone_to_nid(zone));
  496. if (page) {
  497. if (avoid_reserve)
  498. break;
  499. if (!vma_has_reserves(vma, chg))
  500. break;
  501. SetPagePrivate(page);
  502. h->resv_huge_pages--;
  503. break;
  504. }
  505. }
  506. }
  507. mpol_cond_put(mpol);
  508. if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
  509. goto retry_cpuset;
  510. return page;
  511. err:
  512. return NULL;
  513. }
  514. static void update_and_free_page(struct hstate *h, struct page *page)
  515. {
  516. int i;
  517. VM_BUG_ON(h->order >= MAX_ORDER);
  518. h->nr_huge_pages--;
  519. h->nr_huge_pages_node[page_to_nid(page)]--;
  520. for (i = 0; i < pages_per_huge_page(h); i++) {
  521. page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
  522. 1 << PG_referenced | 1 << PG_dirty |
  523. 1 << PG_active | 1 << PG_reserved |
  524. 1 << PG_private | 1 << PG_writeback);
  525. }
  526. VM_BUG_ON(hugetlb_cgroup_from_page(page));
  527. set_compound_page_dtor(page, NULL);
  528. set_page_refcounted(page);
  529. arch_release_hugepage(page);
  530. __free_pages(page, huge_page_order(h));
  531. }
  532. struct hstate *size_to_hstate(unsigned long size)
  533. {
  534. struct hstate *h;
  535. for_each_hstate(h) {
  536. if (huge_page_size(h) == size)
  537. return h;
  538. }
  539. return NULL;
  540. }
  541. static void free_huge_page(struct page *page)
  542. {
  543. /*
  544. * Can't pass hstate in here because it is called from the
  545. * compound page destructor.
  546. */
  547. struct hstate *h = page_hstate(page);
  548. int nid = page_to_nid(page);
  549. struct hugepage_subpool *spool =
  550. (struct hugepage_subpool *)page_private(page);
  551. bool restore_reserve;
  552. set_page_private(page, 0);
  553. page->mapping = NULL;
  554. BUG_ON(page_count(page));
  555. BUG_ON(page_mapcount(page));
  556. restore_reserve = PagePrivate(page);
  557. spin_lock(&hugetlb_lock);
  558. hugetlb_cgroup_uncharge_page(hstate_index(h),
  559. pages_per_huge_page(h), page);
  560. if (restore_reserve)
  561. h->resv_huge_pages++;
  562. if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
  563. /* remove the page from active list */
  564. list_del(&page->lru);
  565. update_and_free_page(h, page);
  566. h->surplus_huge_pages--;
  567. h->surplus_huge_pages_node[nid]--;
  568. } else {
  569. arch_clear_hugepage_flags(page);
  570. enqueue_huge_page(h, page);
  571. }
  572. spin_unlock(&hugetlb_lock);
  573. hugepage_subpool_put_pages(spool, 1);
  574. }
  575. static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
  576. {
  577. INIT_LIST_HEAD(&page->lru);
  578. set_compound_page_dtor(page, free_huge_page);
  579. spin_lock(&hugetlb_lock);
  580. set_hugetlb_cgroup(page, NULL);
  581. h->nr_huge_pages++;
  582. h->nr_huge_pages_node[nid]++;
  583. spin_unlock(&hugetlb_lock);
  584. put_page(page); /* free it into the hugepage allocator */
  585. }
  586. static void prep_compound_gigantic_page(struct page *page, unsigned long order)
  587. {
  588. int i;
  589. int nr_pages = 1 << order;
  590. struct page *p = page + 1;
  591. /* we rely on prep_new_huge_page to set the destructor */
  592. set_compound_order(page, order);
  593. __SetPageHead(page);
  594. for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
  595. __SetPageTail(p);
  596. set_page_count(p, 0);
  597. p->first_page = page;
  598. }
  599. }
  600. /*
  601. * PageHuge() only returns true for hugetlbfs pages, but not for normal or
  602. * transparent huge pages. See the PageTransHuge() documentation for more
  603. * details.
  604. */
  605. int PageHuge(struct page *page)
  606. {
  607. compound_page_dtor *dtor;
  608. if (!PageCompound(page))
  609. return 0;
  610. page = compound_head(page);
  611. dtor = get_compound_page_dtor(page);
  612. return dtor == free_huge_page;
  613. }
  614. EXPORT_SYMBOL_GPL(PageHuge);
  615. pgoff_t __basepage_index(struct page *page)
  616. {
  617. struct page *page_head = compound_head(page);
  618. pgoff_t index = page_index(page_head);
  619. unsigned long compound_idx;
  620. if (!PageHuge(page_head))
  621. return page_index(page);
  622. if (compound_order(page_head) >= MAX_ORDER)
  623. compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
  624. else
  625. compound_idx = page - page_head;
  626. return (index << compound_order(page_head)) + compound_idx;
  627. }
  628. static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
  629. {
  630. struct page *page;
  631. if (h->order >= MAX_ORDER)
  632. return NULL;
  633. page = alloc_pages_exact_node(nid,
  634. htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
  635. __GFP_REPEAT|__GFP_NOWARN,
  636. huge_page_order(h));
  637. if (page) {
  638. if (arch_prepare_hugepage(page)) {
  639. __free_pages(page, huge_page_order(h));
  640. return NULL;
  641. }
  642. prep_new_huge_page(h, page, nid);
  643. }
  644. return page;
  645. }
  646. /*
  647. * common helper functions for hstate_next_node_to_{alloc|free}.
  648. * We may have allocated or freed a huge page based on a different
  649. * nodes_allowed previously, so h->next_node_to_{alloc|free} might
  650. * be outside of *nodes_allowed. Ensure that we use an allowed
  651. * node for alloc or free.
  652. */
  653. static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
  654. {
  655. nid = next_node(nid, *nodes_allowed);
  656. if (nid == MAX_NUMNODES)
  657. nid = first_node(*nodes_allowed);
  658. VM_BUG_ON(nid >= MAX_NUMNODES);
  659. return nid;
  660. }
  661. static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
  662. {
  663. if (!node_isset(nid, *nodes_allowed))
  664. nid = next_node_allowed(nid, nodes_allowed);
  665. return nid;
  666. }
  667. /*
  668. * returns the previously saved node ["this node"] from which to
  669. * allocate a persistent huge page for the pool and advance the
  670. * next node from which to allocate, handling wrap at end of node
  671. * mask.
  672. */
  673. static int hstate_next_node_to_alloc(struct hstate *h,
  674. nodemask_t *nodes_allowed)
  675. {
  676. int nid;
  677. VM_BUG_ON(!nodes_allowed);
  678. nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
  679. h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
  680. return nid;
  681. }
  682. /*
  683. * helper for free_pool_huge_page() - return the previously saved
  684. * node ["this node"] from which to free a huge page. Advance the
  685. * next node id whether or not we find a free huge page to free so
  686. * that the next attempt to free addresses the next node.
  687. */
  688. static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
  689. {
  690. int nid;
  691. VM_BUG_ON(!nodes_allowed);
  692. nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
  693. h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
  694. return nid;
  695. }
  696. #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
  697. for (nr_nodes = nodes_weight(*mask); \
  698. nr_nodes > 0 && \
  699. ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
  700. nr_nodes--)
  701. #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
  702. for (nr_nodes = nodes_weight(*mask); \
  703. nr_nodes > 0 && \
  704. ((node = hstate_next_node_to_free(hs, mask)) || 1); \
  705. nr_nodes--)
  706. static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
  707. {
  708. struct page *page;
  709. int nr_nodes, node;
  710. int ret = 0;
  711. for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
  712. page = alloc_fresh_huge_page_node(h, node);
  713. if (page) {
  714. ret = 1;
  715. break;
  716. }
  717. }
  718. if (ret)
  719. count_vm_event(HTLB_BUDDY_PGALLOC);
  720. else
  721. count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
  722. return ret;
  723. }
  724. /*
  725. * Free huge page from pool from next node to free.
  726. * Attempt to keep persistent huge pages more or less
  727. * balanced over allowed nodes.
  728. * Called with hugetlb_lock locked.
  729. */
  730. static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
  731. bool acct_surplus)
  732. {
  733. int nr_nodes, node;
  734. int ret = 0;
  735. for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
  736. /*
  737. * If we're returning unused surplus pages, only examine
  738. * nodes with surplus pages.
  739. */
  740. if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
  741. !list_empty(&h->hugepage_freelists[node])) {
  742. struct page *page =
  743. list_entry(h->hugepage_freelists[node].next,
  744. struct page, lru);
  745. list_del(&page->lru);
  746. h->free_huge_pages--;
  747. h->free_huge_pages_node[node]--;
  748. if (acct_surplus) {
  749. h->surplus_huge_pages--;
  750. h->surplus_huge_pages_node[node]--;
  751. }
  752. update_and_free_page(h, page);
  753. ret = 1;
  754. break;
  755. }
  756. }
  757. return ret;
  758. }
  759. /*
  760. * Dissolve a given free hugepage into free buddy pages. This function does
  761. * nothing for in-use (including surplus) hugepages.
  762. */
  763. static void dissolve_free_huge_page(struct page *page)
  764. {
  765. spin_lock(&hugetlb_lock);
  766. if (PageHuge(page) && !page_count(page)) {
  767. struct hstate *h = page_hstate(page);
  768. int nid = page_to_nid(page);
  769. list_del(&page->lru);
  770. h->free_huge_pages--;
  771. h->free_huge_pages_node[nid]--;
  772. update_and_free_page(h, page);
  773. }
  774. spin_unlock(&hugetlb_lock);
  775. }
  776. /*
  777. * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
  778. * make specified memory blocks removable from the system.
  779. * Note that start_pfn should aligned with (minimum) hugepage size.
  780. */
  781. void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
  782. {
  783. unsigned int order = 8 * sizeof(void *);
  784. unsigned long pfn;
  785. struct hstate *h;
  786. /* Set scan step to minimum hugepage size */
  787. for_each_hstate(h)
  788. if (order > huge_page_order(h))
  789. order = huge_page_order(h);
  790. VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
  791. for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
  792. dissolve_free_huge_page(pfn_to_page(pfn));
  793. }
  794. static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
  795. {
  796. struct page *page;
  797. unsigned int r_nid;
  798. if (h->order >= MAX_ORDER)
  799. return NULL;
  800. /*
  801. * Assume we will successfully allocate the surplus page to
  802. * prevent racing processes from causing the surplus to exceed
  803. * overcommit
  804. *
  805. * This however introduces a different race, where a process B
  806. * tries to grow the static hugepage pool while alloc_pages() is
  807. * called by process A. B will only examine the per-node
  808. * counters in determining if surplus huge pages can be
  809. * converted to normal huge pages in adjust_pool_surplus(). A
  810. * won't be able to increment the per-node counter, until the
  811. * lock is dropped by B, but B doesn't drop hugetlb_lock until
  812. * no more huge pages can be converted from surplus to normal
  813. * state (and doesn't try to convert again). Thus, we have a
  814. * case where a surplus huge page exists, the pool is grown, and
  815. * the surplus huge page still exists after, even though it
  816. * should just have been converted to a normal huge page. This
  817. * does not leak memory, though, as the hugepage will be freed
  818. * once it is out of use. It also does not allow the counters to
  819. * go out of whack in adjust_pool_surplus() as we don't modify
  820. * the node values until we've gotten the hugepage and only the
  821. * per-node value is checked there.
  822. */
  823. spin_lock(&hugetlb_lock);
  824. if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
  825. spin_unlock(&hugetlb_lock);
  826. return NULL;
  827. } else {
  828. h->nr_huge_pages++;
  829. h->surplus_huge_pages++;
  830. }
  831. spin_unlock(&hugetlb_lock);
  832. if (nid == NUMA_NO_NODE)
  833. page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
  834. __GFP_REPEAT|__GFP_NOWARN,
  835. huge_page_order(h));
  836. else
  837. page = alloc_pages_exact_node(nid,
  838. htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
  839. __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
  840. if (page && arch_prepare_hugepage(page)) {
  841. __free_pages(page, huge_page_order(h));
  842. page = NULL;
  843. }
  844. spin_lock(&hugetlb_lock);
  845. if (page) {
  846. INIT_LIST_HEAD(&page->lru);
  847. r_nid = page_to_nid(page);
  848. set_compound_page_dtor(page, free_huge_page);
  849. set_hugetlb_cgroup(page, NULL);
  850. /*
  851. * We incremented the global counters already
  852. */
  853. h->nr_huge_pages_node[r_nid]++;
  854. h->surplus_huge_pages_node[r_nid]++;
  855. __count_vm_event(HTLB_BUDDY_PGALLOC);
  856. } else {
  857. h->nr_huge_pages--;
  858. h->surplus_huge_pages--;
  859. __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
  860. }
  861. spin_unlock(&hugetlb_lock);
  862. return page;
  863. }
  864. /*
  865. * This allocation function is useful in the context where vma is irrelevant.
  866. * E.g. soft-offlining uses this function because it only cares physical
  867. * address of error page.
  868. */
  869. struct page *alloc_huge_page_node(struct hstate *h, int nid)
  870. {
  871. struct page *page = NULL;
  872. spin_lock(&hugetlb_lock);
  873. if (h->free_huge_pages - h->resv_huge_pages > 0)
  874. page = dequeue_huge_page_node(h, nid);
  875. spin_unlock(&hugetlb_lock);
  876. if (!page)
  877. page = alloc_buddy_huge_page(h, nid);
  878. return page;
  879. }
  880. /*
  881. * Increase the hugetlb pool such that it can accommodate a reservation
  882. * of size 'delta'.
  883. */
  884. static int gather_surplus_pages(struct hstate *h, int delta)
  885. {
  886. struct list_head surplus_list;
  887. struct page *page, *tmp;
  888. int ret, i;
  889. int needed, allocated;
  890. bool alloc_ok = true;
  891. needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
  892. if (needed <= 0) {
  893. h->resv_huge_pages += delta;
  894. return 0;
  895. }
  896. allocated = 0;
  897. INIT_LIST_HEAD(&surplus_list);
  898. ret = -ENOMEM;
  899. retry:
  900. spin_unlock(&hugetlb_lock);
  901. for (i = 0; i < needed; i++) {
  902. page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
  903. if (!page) {
  904. alloc_ok = false;
  905. break;
  906. }
  907. list_add(&page->lru, &surplus_list);
  908. }
  909. allocated += i;
  910. /*
  911. * After retaking hugetlb_lock, we need to recalculate 'needed'
  912. * because either resv_huge_pages or free_huge_pages may have changed.
  913. */
  914. spin_lock(&hugetlb_lock);
  915. needed = (h->resv_huge_pages + delta) -
  916. (h->free_huge_pages + allocated);
  917. if (needed > 0) {
  918. if (alloc_ok)
  919. goto retry;
  920. /*
  921. * We were not able to allocate enough pages to
  922. * satisfy the entire reservation so we free what
  923. * we've allocated so far.
  924. */
  925. goto free;
  926. }
  927. /*
  928. * The surplus_list now contains _at_least_ the number of extra pages
  929. * needed to accommodate the reservation. Add the appropriate number
  930. * of pages to the hugetlb pool and free the extras back to the buddy
  931. * allocator. Commit the entire reservation here to prevent another
  932. * process from stealing the pages as they are added to the pool but
  933. * before they are reserved.
  934. */
  935. needed += allocated;
  936. h->resv_huge_pages += delta;
  937. ret = 0;
  938. /* Free the needed pages to the hugetlb pool */
  939. list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
  940. if ((--needed) < 0)
  941. break;
  942. /*
  943. * This page is now managed by the hugetlb allocator and has
  944. * no users -- drop the buddy allocator's reference.
  945. */
  946. put_page_testzero(page);
  947. VM_BUG_ON(page_count(page));
  948. enqueue_huge_page(h, page);
  949. }
  950. free:
  951. spin_unlock(&hugetlb_lock);
  952. /* Free unnecessary surplus pages to the buddy allocator */
  953. list_for_each_entry_safe(page, tmp, &surplus_list, lru)
  954. put_page(page);
  955. spin_lock(&hugetlb_lock);
  956. return ret;
  957. }
  958. /*
  959. * When releasing a hugetlb pool reservation, any surplus pages that were
  960. * allocated to satisfy the reservation must be explicitly freed if they were
  961. * never used.
  962. * Called with hugetlb_lock held.
  963. */
  964. static void return_unused_surplus_pages(struct hstate *h,
  965. unsigned long unused_resv_pages)
  966. {
  967. unsigned long nr_pages;
  968. /* Uncommit the reservation */
  969. h->resv_huge_pages -= unused_resv_pages;
  970. /* Cannot return gigantic pages currently */
  971. if (h->order >= MAX_ORDER)
  972. return;
  973. nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
  974. /*
  975. * We want to release as many surplus pages as possible, spread
  976. * evenly across all nodes with memory. Iterate across these nodes
  977. * until we can no longer free unreserved surplus pages. This occurs
  978. * when the nodes with surplus pages have no free pages.
  979. * free_pool_huge_page() will balance the the freed pages across the
  980. * on-line nodes with memory and will handle the hstate accounting.
  981. */
  982. while (nr_pages--) {
  983. if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
  984. break;
  985. }
  986. }
  987. /*
  988. * Determine if the huge page at addr within the vma has an associated
  989. * reservation. Where it does not we will need to logically increase
  990. * reservation and actually increase subpool usage before an allocation
  991. * can occur. Where any new reservation would be required the
  992. * reservation change is prepared, but not committed. Once the page
  993. * has been allocated from the subpool and instantiated the change should
  994. * be committed via vma_commit_reservation. No action is required on
  995. * failure.
  996. */
  997. static long vma_needs_reservation(struct hstate *h,
  998. struct vm_area_struct *vma, unsigned long addr)
  999. {
  1000. struct address_space *mapping = vma->vm_file->f_mapping;
  1001. struct inode *inode = mapping->host;
  1002. if (vma->vm_flags & VM_MAYSHARE) {
  1003. pgoff_t idx = vma_hugecache_offset(h, vma, addr);
  1004. return region_chg(&inode->i_mapping->private_list,
  1005. idx, idx + 1);
  1006. } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
  1007. return 1;
  1008. } else {
  1009. long err;
  1010. pgoff_t idx = vma_hugecache_offset(h, vma, addr);
  1011. struct resv_map *resv = vma_resv_map(vma);
  1012. err = region_chg(&resv->regions, idx, idx + 1);
  1013. if (err < 0)
  1014. return err;
  1015. return 0;
  1016. }
  1017. }
  1018. static void vma_commit_reservation(struct hstate *h,
  1019. struct vm_area_struct *vma, unsigned long addr)
  1020. {
  1021. struct address_space *mapping = vma->vm_file->f_mapping;
  1022. struct inode *inode = mapping->host;
  1023. if (vma->vm_flags & VM_MAYSHARE) {
  1024. pgoff_t idx = vma_hugecache_offset(h, vma, addr);
  1025. region_add(&inode->i_mapping->private_list, idx, idx + 1);
  1026. } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
  1027. pgoff_t idx = vma_hugecache_offset(h, vma, addr);
  1028. struct resv_map *resv = vma_resv_map(vma);
  1029. /* Mark this page used in the map. */
  1030. region_add(&resv->regions, idx, idx + 1);
  1031. }
  1032. }
  1033. static struct page *alloc_huge_page(struct vm_area_struct *vma,
  1034. unsigned long addr, int avoid_reserve)
  1035. {
  1036. struct hugepage_subpool *spool = subpool_vma(vma);
  1037. struct hstate *h = hstate_vma(vma);
  1038. struct page *page;
  1039. long chg;
  1040. int ret, idx;
  1041. struct hugetlb_cgroup *h_cg;
  1042. idx = hstate_index(h);
  1043. /*
  1044. * Processes that did not create the mapping will have no
  1045. * reserves and will not have accounted against subpool
  1046. * limit. Check that the subpool limit can be made before
  1047. * satisfying the allocation MAP_NORESERVE mappings may also
  1048. * need pages and subpool limit allocated allocated if no reserve
  1049. * mapping overlaps.
  1050. */
  1051. chg = vma_needs_reservation(h, vma, addr);
  1052. if (chg < 0)
  1053. return ERR_PTR(-ENOMEM);
  1054. if (chg || avoid_reserve)
  1055. if (hugepage_subpool_get_pages(spool, 1))
  1056. return ERR_PTR(-ENOSPC);
  1057. ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
  1058. if (ret) {
  1059. if (chg || avoid_reserve)
  1060. hugepage_subpool_put_pages(spool, 1);
  1061. return ERR_PTR(-ENOSPC);
  1062. }
  1063. spin_lock(&hugetlb_lock);
  1064. page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
  1065. if (!page) {
  1066. spin_unlock(&hugetlb_lock);
  1067. page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
  1068. if (!page) {
  1069. hugetlb_cgroup_uncharge_cgroup(idx,
  1070. pages_per_huge_page(h),
  1071. h_cg);
  1072. if (chg || avoid_reserve)
  1073. hugepage_subpool_put_pages(spool, 1);
  1074. return ERR_PTR(-ENOSPC);
  1075. }
  1076. spin_lock(&hugetlb_lock);
  1077. list_move(&page->lru, &h->hugepage_activelist);
  1078. /* Fall through */
  1079. }
  1080. hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
  1081. spin_unlock(&hugetlb_lock);
  1082. set_page_private(page, (unsigned long)spool);
  1083. vma_commit_reservation(h, vma, addr);
  1084. return page;
  1085. }
  1086. /*
  1087. * alloc_huge_page()'s wrapper which simply returns the page if allocation
  1088. * succeeds, otherwise NULL. This function is called from new_vma_page(),
  1089. * where no ERR_VALUE is expected to be returned.
  1090. */
  1091. struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
  1092. unsigned long addr, int avoid_reserve)
  1093. {
  1094. struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
  1095. if (IS_ERR(page))
  1096. page = NULL;
  1097. return page;
  1098. }
  1099. int __weak alloc_bootmem_huge_page(struct hstate *h)
  1100. {
  1101. struct huge_bootmem_page *m;
  1102. int nr_nodes, node;
  1103. for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
  1104. void *addr;
  1105. addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
  1106. huge_page_size(h), huge_page_size(h), 0);
  1107. if (addr) {
  1108. /*
  1109. * Use the beginning of the huge page to store the
  1110. * huge_bootmem_page struct (until gather_bootmem
  1111. * puts them into the mem_map).
  1112. */
  1113. m = addr;
  1114. goto found;
  1115. }
  1116. }
  1117. return 0;
  1118. found:
  1119. BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
  1120. /* Put them into a private list first because mem_map is not up yet */
  1121. list_add(&m->list, &huge_boot_pages);
  1122. m->hstate = h;
  1123. return 1;
  1124. }
  1125. static void prep_compound_huge_page(struct page *page, int order)
  1126. {
  1127. if (unlikely(order > (MAX_ORDER - 1)))
  1128. prep_compound_gigantic_page(page, order);
  1129. else
  1130. prep_compound_page(page, order);
  1131. }
  1132. /* Put bootmem huge pages into the standard lists after mem_map is up */
  1133. static void __init gather_bootmem_prealloc(void)
  1134. {
  1135. struct huge_bootmem_page *m;
  1136. list_for_each_entry(m, &huge_boot_pages, list) {
  1137. struct hstate *h = m->hstate;
  1138. struct page *page;
  1139. #ifdef CONFIG_HIGHMEM
  1140. page = pfn_to_page(m->phys >> PAGE_SHIFT);
  1141. free_bootmem_late((unsigned long)m,
  1142. sizeof(struct huge_bootmem_page));
  1143. #else
  1144. page = virt_to_page(m);
  1145. #endif
  1146. __ClearPageReserved(page);
  1147. WARN_ON(page_count(page) != 1);
  1148. prep_compound_huge_page(page, h->order);
  1149. prep_new_huge_page(h, page, page_to_nid(page));
  1150. /*
  1151. * If we had gigantic hugepages allocated at boot time, we need
  1152. * to restore the 'stolen' pages to totalram_pages in order to
  1153. * fix confusing memory reports from free(1) and another
  1154. * side-effects, like CommitLimit going negative.
  1155. */
  1156. if (h->order > (MAX_ORDER - 1))
  1157. adjust_managed_page_count(page, 1 << h->order);
  1158. }
  1159. }
  1160. static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
  1161. {
  1162. unsigned long i;
  1163. for (i = 0; i < h->max_huge_pages; ++i) {
  1164. if (h->order >= MAX_ORDER) {
  1165. if (!alloc_bootmem_huge_page(h))
  1166. break;
  1167. } else if (!alloc_fresh_huge_page(h,
  1168. &node_states[N_MEMORY]))
  1169. break;
  1170. }
  1171. h->max_huge_pages = i;
  1172. }
  1173. static void __init hugetlb_init_hstates(void)
  1174. {
  1175. struct hstate *h;
  1176. for_each_hstate(h) {
  1177. /* oversize hugepages were init'ed in early boot */
  1178. if (h->order < MAX_ORDER)
  1179. hugetlb_hstate_alloc_pages(h);
  1180. }
  1181. }
  1182. static char * __init memfmt(char *buf, unsigned long n)
  1183. {
  1184. if (n >= (1UL << 30))
  1185. sprintf(buf, "%lu GB", n >> 30);
  1186. else if (n >= (1UL << 20))
  1187. sprintf(buf, "%lu MB", n >> 20);
  1188. else
  1189. sprintf(buf, "%lu KB", n >> 10);
  1190. return buf;
  1191. }
  1192. static void __init report_hugepages(void)
  1193. {
  1194. struct hstate *h;
  1195. for_each_hstate(h) {
  1196. char buf[32];
  1197. pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
  1198. memfmt(buf, huge_page_size(h)),
  1199. h->free_huge_pages);
  1200. }
  1201. }
  1202. #ifdef CONFIG_HIGHMEM
  1203. static void try_to_free_low(struct hstate *h, unsigned long count,
  1204. nodemask_t *nodes_allowed)
  1205. {
  1206. int i;
  1207. if (h->order >= MAX_ORDER)
  1208. return;
  1209. for_each_node_mask(i, *nodes_allowed) {
  1210. struct page *page, *next;
  1211. struct list_head *freel = &h->hugepage_freelists[i];
  1212. list_for_each_entry_safe(page, next, freel, lru) {
  1213. if (count >= h->nr_huge_pages)
  1214. return;
  1215. if (PageHighMem(page))
  1216. continue;
  1217. list_del(&page->lru);
  1218. update_and_free_page(h, page);
  1219. h->free_huge_pages--;
  1220. h->free_huge_pages_node[page_to_nid(page)]--;
  1221. }
  1222. }
  1223. }
  1224. #else
  1225. static inline void try_to_free_low(struct hstate *h, unsigned long count,
  1226. nodemask_t *nodes_allowed)
  1227. {
  1228. }
  1229. #endif
  1230. /*
  1231. * Increment or decrement surplus_huge_pages. Keep node-specific counters
  1232. * balanced by operating on them in a round-robin fashion.
  1233. * Returns 1 if an adjustment was made.
  1234. */
  1235. static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
  1236. int delta)
  1237. {
  1238. int nr_nodes, node;
  1239. VM_BUG_ON(delta != -1 && delta != 1);
  1240. if (delta < 0) {
  1241. for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
  1242. if (h->surplus_huge_pages_node[node])
  1243. goto found;
  1244. }
  1245. } else {
  1246. for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
  1247. if (h->surplus_huge_pages_node[node] <
  1248. h->nr_huge_pages_node[node])
  1249. goto found;
  1250. }
  1251. }
  1252. return 0;
  1253. found:
  1254. h->surplus_huge_pages += delta;
  1255. h->surplus_huge_pages_node[node] += delta;
  1256. return 1;
  1257. }
  1258. #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
  1259. static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
  1260. nodemask_t *nodes_allowed)
  1261. {
  1262. unsigned long min_count, ret;
  1263. if (h->order >= MAX_ORDER)
  1264. return h->max_huge_pages;
  1265. /*
  1266. * Increase the pool size
  1267. * First take pages out of surplus state. Then make up the
  1268. * remaining difference by allocating fresh huge pages.
  1269. *
  1270. * We might race with alloc_buddy_huge_page() here and be unable
  1271. * to convert a surplus huge page to a normal huge page. That is
  1272. * not critical, though, it just means the overall size of the
  1273. * pool might be one hugepage larger than it needs to be, but
  1274. * within all the constraints specified by the sysctls.
  1275. */
  1276. spin_lock(&hugetlb_lock);
  1277. while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
  1278. if (!adjust_pool_surplus(h, nodes_allowed, -1))
  1279. break;
  1280. }
  1281. while (count > persistent_huge_pages(h)) {
  1282. /*
  1283. * If this allocation races such that we no longer need the
  1284. * page, free_huge_page will handle it by freeing the page
  1285. * and reducing the surplus.
  1286. */
  1287. spin_unlock(&hugetlb_lock);
  1288. ret = alloc_fresh_huge_page(h, nodes_allowed);
  1289. spin_lock(&hugetlb_lock);
  1290. if (!ret)
  1291. goto out;
  1292. /* Bail for signals. Probably ctrl-c from user */
  1293. if (signal_pending(current))
  1294. goto out;
  1295. }
  1296. /*
  1297. * Decrease the pool size
  1298. * First return free pages to the buddy allocator (being careful
  1299. * to keep enough around to satisfy reservations). Then place
  1300. * pages into surplus state as needed so the pool will shrink
  1301. * to the desired size as pages become free.
  1302. *
  1303. * By placing pages into the surplus state independent of the
  1304. * overcommit value, we are allowing the surplus pool size to
  1305. * exceed overcommit. There are few sane options here. Since
  1306. * alloc_buddy_huge_page() is checking the global counter,
  1307. * though, we'll note that we're not allowed to exceed surplus
  1308. * and won't grow the pool anywhere else. Not until one of the
  1309. * sysctls are changed, or the surplus pages go out of use.
  1310. */
  1311. min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
  1312. min_count = max(count, min_count);
  1313. try_to_free_low(h, min_count, nodes_allowed);
  1314. while (min_count < persistent_huge_pages(h)) {
  1315. if (!free_pool_huge_page(h, nodes_allowed, 0))
  1316. break;
  1317. }
  1318. while (count < persistent_huge_pages(h)) {
  1319. if (!adjust_pool_surplus(h, nodes_allowed, 1))
  1320. break;
  1321. }
  1322. out:
  1323. ret = persistent_huge_pages(h);
  1324. spin_unlock(&hugetlb_lock);
  1325. return ret;
  1326. }
  1327. #define HSTATE_ATTR_RO(_name) \
  1328. static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
  1329. #define HSTATE_ATTR(_name) \
  1330. static struct kobj_attribute _name##_attr = \
  1331. __ATTR(_name, 0644, _name##_show, _name##_store)
  1332. static struct kobject *hugepages_kobj;
  1333. static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
  1334. static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
  1335. static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
  1336. {
  1337. int i;
  1338. for (i = 0; i < HUGE_MAX_HSTATE; i++)
  1339. if (hstate_kobjs[i] == kobj) {
  1340. if (nidp)
  1341. *nidp = NUMA_NO_NODE;
  1342. return &hstates[i];
  1343. }
  1344. return kobj_to_node_hstate(kobj, nidp);
  1345. }
  1346. static ssize_t nr_hugepages_show_common(struct kobject *kobj,
  1347. struct kobj_attribute *attr, char *buf)
  1348. {
  1349. struct hstate *h;
  1350. unsigned long nr_huge_pages;
  1351. int nid;
  1352. h = kobj_to_hstate(kobj, &nid);
  1353. if (nid == NUMA_NO_NODE)
  1354. nr_huge_pages = h->nr_huge_pages;
  1355. else
  1356. nr_huge_pages = h->nr_huge_pages_node[nid];
  1357. return sprintf(buf, "%lu\n", nr_huge_pages);
  1358. }
  1359. static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
  1360. struct kobject *kobj, struct kobj_attribute *attr,
  1361. const char *buf, size_t len)
  1362. {
  1363. int err;
  1364. int nid;
  1365. unsigned long count;
  1366. struct hstate *h;
  1367. NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
  1368. err = kstrtoul(buf, 10, &count);
  1369. if (err)
  1370. goto out;
  1371. h = kobj_to_hstate(kobj, &nid);
  1372. if (h->order >= MAX_ORDER) {
  1373. err = -EINVAL;
  1374. goto out;
  1375. }
  1376. if (nid == NUMA_NO_NODE) {
  1377. /*
  1378. * global hstate attribute
  1379. */
  1380. if (!(obey_mempolicy &&
  1381. init_nodemask_of_mempolicy(nodes_allowed))) {
  1382. NODEMASK_FREE(nodes_allowed);
  1383. nodes_allowed = &node_states[N_MEMORY];
  1384. }
  1385. } else if (nodes_allowed) {
  1386. /*
  1387. * per node hstate attribute: adjust count to global,
  1388. * but restrict alloc/free to the specified node.
  1389. */
  1390. count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
  1391. init_nodemask_of_node(nodes_allowed, nid);
  1392. } else
  1393. nodes_allowed = &node_states[N_MEMORY];
  1394. h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
  1395. if (nodes_allowed != &node_states[N_MEMORY])
  1396. NODEMASK_FREE(nodes_allowed);
  1397. return len;
  1398. out:
  1399. NODEMASK_FREE(nodes_allowed);
  1400. return err;
  1401. }
  1402. static ssize_t nr_hugepages_show(struct kobject *kobj,
  1403. struct kobj_attribute *attr, char *buf)
  1404. {
  1405. return nr_hugepages_show_common(kobj, attr, buf);
  1406. }
  1407. static ssize_t nr_hugepages_store(struct kobject *kobj,
  1408. struct kobj_attribute *attr, const char *buf, size_t len)
  1409. {
  1410. return nr_hugepages_store_common(false, kobj, attr, buf, len);
  1411. }
  1412. HSTATE_ATTR(nr_hugepages);
  1413. #ifdef CONFIG_NUMA
  1414. /*
  1415. * hstate attribute for optionally mempolicy-based constraint on persistent
  1416. * huge page alloc/free.
  1417. */
  1418. static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
  1419. struct kobj_attribute *attr, char *buf)
  1420. {
  1421. return nr_hugepages_show_common(kobj, attr, buf);
  1422. }
  1423. static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
  1424. struct kobj_attribute *attr, const char *buf, size_t len)
  1425. {
  1426. return nr_hugepages_store_common(true, kobj, attr, buf, len);
  1427. }
  1428. HSTATE_ATTR(nr_hugepages_mempolicy);
  1429. #endif
  1430. static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
  1431. struct kobj_attribute *attr, char *buf)
  1432. {
  1433. struct hstate *h = kobj_to_hstate(kobj, NULL);
  1434. return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
  1435. }
  1436. static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
  1437. struct kobj_attribute *attr, const char *buf, size_t count)
  1438. {
  1439. int err;
  1440. unsigned long input;
  1441. struct hstate *h = kobj_to_hstate(kobj, NULL);
  1442. if (h->order >= MAX_ORDER)
  1443. return -EINVAL;
  1444. err = kstrtoul(buf, 10, &input);
  1445. if (err)
  1446. return err;
  1447. spin_lock(&hugetlb_lock);
  1448. h->nr_overcommit_huge_pages = input;
  1449. spin_unlock(&hugetlb_lock);
  1450. return count;
  1451. }
  1452. HSTATE_ATTR(nr_overcommit_hugepages);
  1453. static ssize_t free_hugepages_show(struct kobject *kobj,
  1454. struct kobj_attribute *attr, char *buf)
  1455. {
  1456. struct hstate *h;
  1457. unsigned long free_huge_pages;
  1458. int nid;
  1459. h = kobj_to_hstate(kobj, &nid);
  1460. if (nid == NUMA_NO_NODE)
  1461. free_huge_pages = h->free_huge_pages;
  1462. else
  1463. free_huge_pages = h->free_huge_pages_node[nid];
  1464. return sprintf(buf, "%lu\n", free_huge_pages);
  1465. }
  1466. HSTATE_ATTR_RO(free_hugepages);
  1467. static ssize_t resv_hugepages_show(struct kobject *kobj,
  1468. struct kobj_attribute *attr, char *buf)
  1469. {
  1470. struct hstate *h = kobj_to_hstate(kobj, NULL);
  1471. return sprintf(buf, "%lu\n", h->resv_huge_pages);
  1472. }
  1473. HSTATE_ATTR_RO(resv_hugepages);
  1474. static ssize_t surplus_hugepages_show(struct kobject *kobj,
  1475. struct kobj_attribute *attr, char *buf)
  1476. {
  1477. struct hstate *h;
  1478. unsigned long surplus_huge_pages;
  1479. int nid;
  1480. h = kobj_to_hstate(kobj, &nid);
  1481. if (nid == NUMA_NO_NODE)
  1482. surplus_huge_pages = h->surplus_huge_pages;
  1483. else
  1484. surplus_huge_pages = h->surplus_huge_pages_node[nid];
  1485. return sprintf(buf, "%lu\n", surplus_huge_pages);
  1486. }
  1487. HSTATE_ATTR_RO(surplus_hugepages);
  1488. static struct attribute *hstate_attrs[] = {
  1489. &nr_hugepages_attr.attr,
  1490. &nr_overcommit_hugepages_attr.attr,
  1491. &free_hugepages_attr.attr,
  1492. &resv_hugepages_attr.attr,
  1493. &surplus_hugepages_attr.attr,
  1494. #ifdef CONFIG_NUMA
  1495. &nr_hugepages_mempolicy_attr.attr,
  1496. #endif
  1497. NULL,
  1498. };
  1499. static struct attribute_group hstate_attr_group = {
  1500. .attrs = hstate_attrs,
  1501. };
  1502. static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
  1503. struct kobject **hstate_kobjs,
  1504. struct attribute_group *hstate_attr_group)
  1505. {
  1506. int retval;
  1507. int hi = hstate_index(h);
  1508. hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
  1509. if (!hstate_kobjs[hi])
  1510. return -ENOMEM;
  1511. retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
  1512. if (retval)
  1513. kobject_put(hstate_kobjs[hi]);
  1514. return retval;
  1515. }
  1516. static void __init hugetlb_sysfs_init(void)
  1517. {
  1518. struct hstate *h;
  1519. int err;
  1520. hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
  1521. if (!hugepages_kobj)
  1522. return;
  1523. for_each_hstate(h) {
  1524. err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
  1525. hstate_kobjs, &hstate_attr_group);
  1526. if (err)
  1527. pr_err("Hugetlb: Unable to add hstate %s", h->name);
  1528. }
  1529. }
  1530. #ifdef CONFIG_NUMA
  1531. /*
  1532. * node_hstate/s - associate per node hstate attributes, via their kobjects,
  1533. * with node devices in node_devices[] using a parallel array. The array
  1534. * index of a node device or _hstate == node id.
  1535. * This is here to avoid any static dependency of the node device driver, in
  1536. * the base kernel, on the hugetlb module.
  1537. */
  1538. struct node_hstate {
  1539. struct kobject *hugepages_kobj;
  1540. struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
  1541. };
  1542. struct node_hstate node_hstates[MAX_NUMNODES];
  1543. /*
  1544. * A subset of global hstate attributes for node devices
  1545. */
  1546. static struct attribute *per_node_hstate_attrs[] = {
  1547. &nr_hugepages_attr.attr,
  1548. &free_hugepages_attr.attr,
  1549. &surplus_hugepages_attr.attr,
  1550. NULL,
  1551. };
  1552. static struct attribute_group per_node_hstate_attr_group = {
  1553. .attrs = per_node_hstate_attrs,
  1554. };
  1555. /*
  1556. * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
  1557. * Returns node id via non-NULL nidp.
  1558. */
  1559. static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
  1560. {
  1561. int nid;
  1562. for (nid = 0; nid < nr_node_ids; nid++) {
  1563. struct node_hstate *nhs = &node_hstates[nid];
  1564. int i;
  1565. for (i = 0; i < HUGE_MAX_HSTATE; i++)
  1566. if (nhs->hstate_kobjs[i] == kobj) {
  1567. if (nidp)
  1568. *nidp = nid;
  1569. return &hstates[i];
  1570. }
  1571. }
  1572. BUG();
  1573. return NULL;
  1574. }
  1575. /*
  1576. * Unregister hstate attributes from a single node device.
  1577. * No-op if no hstate attributes attached.
  1578. */
  1579. static void hugetlb_unregister_node(struct node *node)
  1580. {
  1581. struct hstate *h;
  1582. struct node_hstate *nhs = &node_hstates[node->dev.id];
  1583. if (!nhs->hugepages_kobj)
  1584. return; /* no hstate attributes */
  1585. for_each_hstate(h) {
  1586. int idx = hstate_index(h);
  1587. if (nhs->hstate_kobjs[idx]) {
  1588. kobject_put(nhs->hstate_kobjs[idx]);
  1589. nhs->hstate_kobjs[idx] = NULL;
  1590. }
  1591. }
  1592. kobject_put(nhs->hugepages_kobj);
  1593. nhs->hugepages_kobj = NULL;
  1594. }
  1595. /*
  1596. * hugetlb module exit: unregister hstate attributes from node devices
  1597. * that have them.
  1598. */
  1599. static void hugetlb_unregister_all_nodes(void)
  1600. {
  1601. int nid;
  1602. /*
  1603. * disable node device registrations.
  1604. */
  1605. register_hugetlbfs_with_node(NULL, NULL);
  1606. /*
  1607. * remove hstate attributes from any nodes that have them.
  1608. */
  1609. for (nid = 0; nid < nr_node_ids; nid++)
  1610. hugetlb_unregister_node(node_devices[nid]);
  1611. }
  1612. /*
  1613. * Register hstate attributes for a single node device.
  1614. * No-op if attributes already registered.
  1615. */
  1616. static void hugetlb_register_node(struct node *node)
  1617. {
  1618. struct hstate *h;
  1619. struct node_hstate *nhs = &node_hstates[node->dev.id];
  1620. int err;
  1621. if (nhs->hugepages_kobj)
  1622. return; /* already allocated */
  1623. nhs->hugepages_kobj = kobject_create_and_add("hugepages",
  1624. &node->dev.kobj);
  1625. if (!nhs->hugepages_kobj)
  1626. return;
  1627. for_each_hstate(h) {
  1628. err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
  1629. nhs->hstate_kobjs,
  1630. &per_node_hstate_attr_group);
  1631. if (err) {
  1632. pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
  1633. h->name, node->dev.id);
  1634. hugetlb_unregister_node(node);
  1635. break;
  1636. }
  1637. }
  1638. }
  1639. /*
  1640. * hugetlb init time: register hstate attributes for all registered node
  1641. * devices of nodes that have memory. All on-line nodes should have
  1642. * registered their associated device by this time.
  1643. */
  1644. static void hugetlb_register_all_nodes(void)
  1645. {
  1646. int nid;
  1647. for_each_node_state(nid, N_MEMORY) {
  1648. struct node *node = node_devices[nid];
  1649. if (node->dev.id == nid)
  1650. hugetlb_register_node(node);
  1651. }
  1652. /*
  1653. * Let the node device driver know we're here so it can
  1654. * [un]register hstate attributes on node hotplug.
  1655. */
  1656. register_hugetlbfs_with_node(hugetlb_register_node,
  1657. hugetlb_unregister_node);
  1658. }
  1659. #else /* !CONFIG_NUMA */
  1660. static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
  1661. {
  1662. BUG();
  1663. if (nidp)
  1664. *nidp = -1;
  1665. return NULL;
  1666. }
  1667. static void hugetlb_unregister_all_nodes(void) { }
  1668. static void hugetlb_register_all_nodes(void) { }
  1669. #endif
  1670. static void __exit hugetlb_exit(void)
  1671. {
  1672. struct hstate *h;
  1673. hugetlb_unregister_all_nodes();
  1674. for_each_hstate(h) {
  1675. kobject_put(hstate_kobjs[hstate_index(h)]);
  1676. }
  1677. kobject_put(hugepages_kobj);
  1678. }
  1679. module_exit(hugetlb_exit);
  1680. static int __init hugetlb_init(void)
  1681. {
  1682. /* Some platform decide whether they support huge pages at boot
  1683. * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
  1684. * there is no such support
  1685. */
  1686. if (HPAGE_SHIFT == 0)
  1687. return 0;
  1688. if (!size_to_hstate(default_hstate_size)) {
  1689. default_hstate_size = HPAGE_SIZE;
  1690. if (!size_to_hstate(default_hstate_size))
  1691. hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
  1692. }
  1693. default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
  1694. if (default_hstate_max_huge_pages)
  1695. default_hstate.max_huge_pages = default_hstate_max_huge_pages;
  1696. hugetlb_init_hstates();
  1697. gather_bootmem_prealloc();
  1698. report_hugepages();
  1699. hugetlb_sysfs_init();
  1700. hugetlb_register_all_nodes();
  1701. hugetlb_cgroup_file_init();
  1702. return 0;
  1703. }
  1704. module_init(hugetlb_init);
  1705. /* Should be called on processing a hugepagesz=... option */
  1706. void __init hugetlb_add_hstate(unsigned order)
  1707. {
  1708. struct hstate *h;
  1709. unsigned long i;
  1710. if (size_to_hstate(PAGE_SIZE << order)) {
  1711. pr_warning("hugepagesz= specified twice, ignoring\n");
  1712. return;
  1713. }
  1714. BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
  1715. BUG_ON(order == 0);
  1716. h = &hstates[hugetlb_max_hstate++];
  1717. h->order = order;
  1718. h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
  1719. h->nr_huge_pages = 0;
  1720. h->free_huge_pages = 0;
  1721. for (i = 0; i < MAX_NUMNODES; ++i)
  1722. INIT_LIST_HEAD(&h->hugepage_freelists[i]);
  1723. INIT_LIST_HEAD(&h->hugepage_activelist);
  1724. h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
  1725. h->next_nid_to_free = first_node(node_states[N_MEMORY]);
  1726. snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
  1727. huge_page_size(h)/1024);
  1728. parsed_hstate = h;
  1729. }
  1730. static int __init hugetlb_nrpages_setup(char *s)
  1731. {
  1732. unsigned long *mhp;
  1733. static unsigned long *last_mhp;
  1734. /*
  1735. * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
  1736. * so this hugepages= parameter goes to the "default hstate".
  1737. */
  1738. if (!hugetlb_max_hstate)
  1739. mhp = &default_hstate_max_huge_pages;
  1740. else
  1741. mhp = &parsed_hstate->max_huge_pages;
  1742. if (mhp == last_mhp) {
  1743. pr_warning("hugepages= specified twice without "
  1744. "interleaving hugepagesz=, ignoring\n");
  1745. return 1;
  1746. }
  1747. if (sscanf(s, "%lu", mhp) <= 0)
  1748. *mhp = 0;
  1749. /*
  1750. * Global state is always initialized later in hugetlb_init.
  1751. * But we need to allocate >= MAX_ORDER hstates here early to still
  1752. * use the bootmem allocator.
  1753. */
  1754. if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
  1755. hugetlb_hstate_alloc_pages(parsed_hstate);
  1756. last_mhp = mhp;
  1757. return 1;
  1758. }
  1759. __setup("hugepages=", hugetlb_nrpages_setup);
  1760. static int __init hugetlb_default_setup(char *s)
  1761. {
  1762. default_hstate_size = memparse(s, &s);
  1763. return 1;
  1764. }
  1765. __setup("default_hugepagesz=", hugetlb_default_setup);
  1766. static unsigned int cpuset_mems_nr(unsigned int *array)
  1767. {
  1768. int node;
  1769. unsigned int nr = 0;
  1770. for_each_node_mask(node, cpuset_current_mems_allowed)
  1771. nr += array[node];
  1772. return nr;
  1773. }
  1774. #ifdef CONFIG_SYSCTL
  1775. static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
  1776. struct ctl_table *table, int write,
  1777. void __user *buffer, size_t *length, loff_t *ppos)
  1778. {
  1779. struct hstate *h = &default_hstate;
  1780. unsigned long tmp;
  1781. int ret;
  1782. tmp = h->max_huge_pages;
  1783. if (write && h->order >= MAX_ORDER)
  1784. return -EINVAL;
  1785. table->data = &tmp;
  1786. table->maxlen = sizeof(unsigned long);
  1787. ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
  1788. if (ret)
  1789. goto out;
  1790. if (write) {
  1791. NODEMASK_ALLOC(nodemask_t, nodes_allowed,
  1792. GFP_KERNEL | __GFP_NORETRY);
  1793. if (!(obey_mempolicy &&
  1794. init_nodemask_of_mempolicy(nodes_allowed))) {
  1795. NODEMASK_FREE(nodes_allowed);
  1796. nodes_allowed = &node_states[N_MEMORY];
  1797. }
  1798. h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
  1799. if (nodes_allowed != &node_states[N_MEMORY])
  1800. NODEMASK_FREE(nodes_allowed);
  1801. }
  1802. out:
  1803. return ret;
  1804. }
  1805. int hugetlb_sysctl_handler(struct ctl_table *table, int write,
  1806. void __user *buffer, size_t *length, loff_t *ppos)
  1807. {
  1808. return hugetlb_sysctl_handler_common(false, table, write,
  1809. buffer, length, ppos);
  1810. }
  1811. #ifdef CONFIG_NUMA
  1812. int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
  1813. void __user *buffer, size_t *length, loff_t *ppos)
  1814. {
  1815. return hugetlb_sysctl_handler_common(true, table, write,
  1816. buffer, length, ppos);
  1817. }
  1818. #endif /* CONFIG_NUMA */
  1819. int hugetlb_overcommit_handler(struct ctl_table *table, int write,
  1820. void __user *buffer,
  1821. size_t *length, loff_t *ppos)
  1822. {
  1823. struct hstate *h = &default_hstate;
  1824. unsigned long tmp;
  1825. int ret;
  1826. tmp = h->nr_overcommit_huge_pages;
  1827. if (write && h->order >= MAX_ORDER)
  1828. return -EINVAL;
  1829. table->data = &tmp;
  1830. table->maxlen = sizeof(unsigned long);
  1831. ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
  1832. if (ret)
  1833. goto out;
  1834. if (write) {
  1835. spin_lock(&hugetlb_lock);
  1836. h->nr_overcommit_huge_pages = tmp;
  1837. spin_unlock(&hugetlb_lock);
  1838. }
  1839. out:
  1840. return ret;
  1841. }
  1842. #endif /* CONFIG_SYSCTL */
  1843. void hugetlb_report_meminfo(struct seq_file *m)
  1844. {
  1845. struct hstate *h = &default_hstate;
  1846. seq_printf(m,
  1847. "HugePages_Total: %5lu\n"
  1848. "HugePages_Free: %5lu\n"
  1849. "HugePages_Rsvd: %5lu\n"
  1850. "HugePages_Surp: %5lu\n"
  1851. "Hugepagesize: %8lu kB\n",
  1852. h->nr_huge_pages,
  1853. h->free_huge_pages,
  1854. h->resv_huge_pages,
  1855. h->surplus_huge_pages,
  1856. 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
  1857. }
  1858. int hugetlb_report_node_meminfo(int nid, char *buf)
  1859. {
  1860. struct hstate *h = &default_hstate;
  1861. return sprintf(buf,
  1862. "Node %d HugePages_Total: %5u\n"
  1863. "Node %d HugePages_Free: %5u\n"
  1864. "Node %d HugePages_Surp: %5u\n",
  1865. nid, h->nr_huge_pages_node[nid],
  1866. nid, h->free_huge_pages_node[nid],
  1867. nid, h->surplus_huge_pages_node[nid]);
  1868. }
  1869. void hugetlb_show_meminfo(void)
  1870. {
  1871. struct hstate *h;
  1872. int nid;
  1873. for_each_node_state(nid, N_MEMORY)
  1874. for_each_hstate(h)
  1875. pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
  1876. nid,
  1877. h->nr_huge_pages_node[nid],
  1878. h->free_huge_pages_node[nid],
  1879. h->surplus_huge_pages_node[nid],
  1880. 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
  1881. }
  1882. /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
  1883. unsigned long hugetlb_total_pages(void)
  1884. {
  1885. struct hstate *h;
  1886. unsigned long nr_total_pages = 0;
  1887. for_each_hstate(h)
  1888. nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
  1889. return nr_total_pages;
  1890. }
  1891. static int hugetlb_acct_memory(struct hstate *h, long delta)
  1892. {
  1893. int ret = -ENOMEM;
  1894. spin_lock(&hugetlb_lock);
  1895. /*
  1896. * When cpuset is configured, it breaks the strict hugetlb page
  1897. * reservation as the accounting is done on a global variable. Such
  1898. * reservation is completely rubbish in the presence of cpuset because
  1899. * the reservation is not checked against page availability for the
  1900. * current cpuset. Application can still potentially OOM'ed by kernel
  1901. * with lack of free htlb page in cpuset that the task is in.
  1902. * Attempt to enforce strict accounting with cpuset is almost
  1903. * impossible (or too ugly) because cpuset is too fluid that
  1904. * task or memory node can be dynamically moved between cpusets.
  1905. *
  1906. * The change of semantics for shared hugetlb mapping with cpuset is
  1907. * undesirable. However, in order to preserve some of the semantics,
  1908. * we fall back to check against current free page availability as
  1909. * a best attempt and hopefully to minimize the impact of changing
  1910. * semantics that cpuset has.
  1911. */
  1912. if (delta > 0) {
  1913. if (gather_surplus_pages(h, delta) < 0)
  1914. goto out;
  1915. if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
  1916. return_unused_surplus_pages(h, delta);
  1917. goto out;
  1918. }
  1919. }
  1920. ret = 0;
  1921. if (delta < 0)
  1922. return_unused_surplus_pages(h, (unsigned long) -delta);
  1923. out:
  1924. spin_unlock(&hugetlb_lock);
  1925. return ret;
  1926. }
  1927. static void hugetlb_vm_op_open(struct vm_area_struct *vma)
  1928. {
  1929. struct resv_map *resv = vma_resv_map(vma);
  1930. /*
  1931. * This new VMA should share its siblings reservation map if present.
  1932. * The VMA will only ever have a valid reservation map pointer where
  1933. * it is being copied for another still existing VMA. As that VMA
  1934. * has a reference to the reservation map it cannot disappear until
  1935. * after this open call completes. It is therefore safe to take a
  1936. * new reference here without additional locking.
  1937. */
  1938. if (resv)
  1939. kref_get(&resv->refs);
  1940. }
  1941. static void resv_map_put(struct vm_area_struct *vma)
  1942. {
  1943. struct resv_map *resv = vma_resv_map(vma);
  1944. if (!resv)
  1945. return;
  1946. kref_put(&resv->refs, resv_map_release);
  1947. }
  1948. static void hugetlb_vm_op_close(struct vm_area_struct *vma)
  1949. {
  1950. struct hstate *h = hstate_vma(vma);
  1951. struct resv_map *resv = vma_resv_map(vma);
  1952. struct hugepage_subpool *spool = subpool_vma(vma);
  1953. unsigned long reserve;
  1954. unsigned long start;
  1955. unsigned long end;
  1956. if (resv) {
  1957. start = vma_hugecache_offset(h, vma, vma->vm_start);
  1958. end = vma_hugecache_offset(h, vma, vma->vm_end);
  1959. reserve = (end - start) -
  1960. region_count(&resv->regions, start, end);
  1961. resv_map_put(vma);
  1962. if (reserve) {
  1963. hugetlb_acct_memory(h, -reserve);
  1964. hugepage_subpool_put_pages(spool, reserve);
  1965. }
  1966. }
  1967. }
  1968. /*
  1969. * We cannot handle pagefaults against hugetlb pages at all. They cause
  1970. * handle_mm_fault() to try to instantiate regular-sized pages in the
  1971. * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
  1972. * this far.
  1973. */
  1974. static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1975. {
  1976. BUG();
  1977. return 0;
  1978. }
  1979. const struct vm_operations_struct hugetlb_vm_ops = {
  1980. .fault = hugetlb_vm_op_fault,
  1981. .open = hugetlb_vm_op_open,
  1982. .close = hugetlb_vm_op_close,
  1983. };
  1984. static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
  1985. int writable)
  1986. {
  1987. pte_t entry;
  1988. if (writable) {
  1989. entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
  1990. vma->vm_page_prot)));
  1991. } else {
  1992. entry = huge_pte_wrprotect(mk_huge_pte(page,
  1993. vma->vm_page_prot));
  1994. }
  1995. entry = pte_mkyoung(entry);
  1996. entry = pte_mkhuge(entry);
  1997. entry = arch_make_huge_pte(entry, vma, page, writable);
  1998. return entry;
  1999. }
  2000. static void set_huge_ptep_writable(struct vm_area_struct *vma,
  2001. unsigned long address, pte_t *ptep)
  2002. {
  2003. pte_t entry;
  2004. entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
  2005. if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
  2006. update_mmu_cache(vma, address, ptep);
  2007. }
  2008. int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
  2009. struct vm_area_struct *vma)
  2010. {
  2011. pte_t *src_pte, *dst_pte, entry;
  2012. struct page *ptepage;
  2013. unsigned long addr;
  2014. int cow;
  2015. struct hstate *h = hstate_vma(vma);
  2016. unsigned long sz = huge_page_size(h);
  2017. cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  2018. for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
  2019. src_pte = huge_pte_offset(src, addr);
  2020. if (!src_pte)
  2021. continue;
  2022. dst_pte = huge_pte_alloc(dst, addr, sz);
  2023. if (!dst_pte)
  2024. goto nomem;
  2025. /* If the pagetables are shared don't copy or take references */
  2026. if (dst_pte == src_pte)
  2027. continue;
  2028. spin_lock(&dst->page_table_lock);
  2029. spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
  2030. if (!huge_pte_none(huge_ptep_get(src_pte))) {
  2031. if (cow)
  2032. huge_ptep_set_wrprotect(src, addr, src_pte);
  2033. entry = huge_ptep_get(src_pte);
  2034. ptepage = pte_page(entry);
  2035. get_page(ptepage);
  2036. page_dup_rmap(ptepage);
  2037. set_huge_pte_at(dst, addr, dst_pte, entry);
  2038. }
  2039. spin_unlock(&src->page_table_lock);
  2040. spin_unlock(&dst->page_table_lock);
  2041. }
  2042. return 0;
  2043. nomem:
  2044. return -ENOMEM;
  2045. }
  2046. static int is_hugetlb_entry_migration(pte_t pte)
  2047. {
  2048. swp_entry_t swp;
  2049. if (huge_pte_none(pte) || pte_present(pte))
  2050. return 0;
  2051. swp = pte_to_swp_entry(pte);
  2052. if (non_swap_entry(swp) && is_migration_entry(swp))
  2053. return 1;
  2054. else
  2055. return 0;
  2056. }
  2057. static int is_hugetlb_entry_hwpoisoned(pte_t pte)
  2058. {
  2059. swp_entry_t swp;
  2060. if (huge_pte_none(pte) || pte_present(pte))
  2061. return 0;
  2062. swp = pte_to_swp_entry(pte);
  2063. if (non_swap_entry(swp) && is_hwpoison_entry(swp))
  2064. return 1;
  2065. else
  2066. return 0;
  2067. }
  2068. void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
  2069. unsigned long start, unsigned long end,
  2070. struct page *ref_page)
  2071. {
  2072. int force_flush = 0;
  2073. struct mm_struct *mm = vma->vm_mm;
  2074. unsigned long address;
  2075. pte_t *ptep;
  2076. pte_t pte;
  2077. struct page *page;
  2078. struct hstate *h = hstate_vma(vma);
  2079. unsigned long sz = huge_page_size(h);
  2080. const unsigned long mmun_start = start; /* For mmu_notifiers */
  2081. const unsigned long mmun_end = end; /* For mmu_notifiers */
  2082. WARN_ON(!is_vm_hugetlb_page(vma));
  2083. BUG_ON(start & ~huge_page_mask(h));
  2084. BUG_ON(end & ~huge_page_mask(h));
  2085. tlb_start_vma(tlb, vma);
  2086. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2087. again:
  2088. spin_lock(&mm->page_table_lock);
  2089. for (address = start; address < end; address += sz) {
  2090. ptep = huge_pte_offset(mm, address);
  2091. if (!ptep)
  2092. continue;
  2093. if (huge_pmd_unshare(mm, &address, ptep))
  2094. continue;
  2095. pte = huge_ptep_get(ptep);
  2096. if (huge_pte_none(pte))
  2097. continue;
  2098. /*
  2099. * HWPoisoned hugepage is already unmapped and dropped reference
  2100. */
  2101. if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
  2102. huge_pte_clear(mm, address, ptep);
  2103. continue;
  2104. }
  2105. page = pte_page(pte);
  2106. /*
  2107. * If a reference page is supplied, it is because a specific
  2108. * page is being unmapped, not a range. Ensure the page we
  2109. * are about to unmap is the actual page of interest.
  2110. */
  2111. if (ref_page) {
  2112. if (page != ref_page)
  2113. continue;
  2114. /*
  2115. * Mark the VMA as having unmapped its page so that
  2116. * future faults in this VMA will fail rather than
  2117. * looking like data was lost
  2118. */
  2119. set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
  2120. }
  2121. pte = huge_ptep_get_and_clear(mm, address, ptep);
  2122. tlb_remove_tlb_entry(tlb, ptep, address);
  2123. if (huge_pte_dirty(pte))
  2124. set_page_dirty(page);
  2125. page_remove_rmap(page);
  2126. force_flush = !__tlb_remove_page(tlb, page);
  2127. if (force_flush)
  2128. break;
  2129. /* Bail out after unmapping reference page if supplied */
  2130. if (ref_page)
  2131. break;
  2132. }
  2133. spin_unlock(&mm->page_table_lock);
  2134. /*
  2135. * mmu_gather ran out of room to batch pages, we break out of
  2136. * the PTE lock to avoid doing the potential expensive TLB invalidate
  2137. * and page-free while holding it.
  2138. */
  2139. if (force_flush) {
  2140. force_flush = 0;
  2141. tlb_flush_mmu(tlb);
  2142. if (address < end && !ref_page)
  2143. goto again;
  2144. }
  2145. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2146. tlb_end_vma(tlb, vma);
  2147. }
  2148. void __unmap_hugepage_range_final(struct mmu_gather *tlb,
  2149. struct vm_area_struct *vma, unsigned long start,
  2150. unsigned long end, struct page *ref_page)
  2151. {
  2152. __unmap_hugepage_range(tlb, vma, start, end, ref_page);
  2153. /*
  2154. * Clear this flag so that x86's huge_pmd_share page_table_shareable
  2155. * test will fail on a vma being torn down, and not grab a page table
  2156. * on its way out. We're lucky that the flag has such an appropriate
  2157. * name, and can in fact be safely cleared here. We could clear it
  2158. * before the __unmap_hugepage_range above, but all that's necessary
  2159. * is to clear it before releasing the i_mmap_mutex. This works
  2160. * because in the context this is called, the VMA is about to be
  2161. * destroyed and the i_mmap_mutex is held.
  2162. */
  2163. vma->vm_flags &= ~VM_MAYSHARE;
  2164. }
  2165. void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
  2166. unsigned long end, struct page *ref_page)
  2167. {
  2168. struct mm_struct *mm;
  2169. struct mmu_gather tlb;
  2170. mm = vma->vm_mm;
  2171. tlb_gather_mmu(&tlb, mm, start, end);
  2172. __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
  2173. tlb_finish_mmu(&tlb, start, end);
  2174. }
  2175. /*
  2176. * This is called when the original mapper is failing to COW a MAP_PRIVATE
  2177. * mappping it owns the reserve page for. The intention is to unmap the page
  2178. * from other VMAs and let the children be SIGKILLed if they are faulting the
  2179. * same region.
  2180. */
  2181. static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
  2182. struct page *page, unsigned long address)
  2183. {
  2184. struct hstate *h = hstate_vma(vma);
  2185. struct vm_area_struct *iter_vma;
  2186. struct address_space *mapping;
  2187. pgoff_t pgoff;
  2188. /*
  2189. * vm_pgoff is in PAGE_SIZE units, hence the different calculation
  2190. * from page cache lookup which is in HPAGE_SIZE units.
  2191. */
  2192. address = address & huge_page_mask(h);
  2193. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
  2194. vma->vm_pgoff;
  2195. mapping = file_inode(vma->vm_file)->i_mapping;
  2196. /*
  2197. * Take the mapping lock for the duration of the table walk. As
  2198. * this mapping should be shared between all the VMAs,
  2199. * __unmap_hugepage_range() is called as the lock is already held
  2200. */
  2201. mutex_lock(&mapping->i_mmap_mutex);
  2202. vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
  2203. /* Do not unmap the current VMA */
  2204. if (iter_vma == vma)
  2205. continue;
  2206. /*
  2207. * Unmap the page from other VMAs without their own reserves.
  2208. * They get marked to be SIGKILLed if they fault in these
  2209. * areas. This is because a future no-page fault on this VMA
  2210. * could insert a zeroed page instead of the data existing
  2211. * from the time of fork. This would look like data corruption
  2212. */
  2213. if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
  2214. unmap_hugepage_range(iter_vma, address,
  2215. address + huge_page_size(h), page);
  2216. }
  2217. mutex_unlock(&mapping->i_mmap_mutex);
  2218. return 1;
  2219. }
  2220. /*
  2221. * Hugetlb_cow() should be called with page lock of the original hugepage held.
  2222. * Called with hugetlb_instantiation_mutex held and pte_page locked so we
  2223. * cannot race with other handlers or page migration.
  2224. * Keep the pte_same checks anyway to make transition from the mutex easier.
  2225. */
  2226. static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
  2227. unsigned long address, pte_t *ptep, pte_t pte,
  2228. struct page *pagecache_page)
  2229. {
  2230. struct hstate *h = hstate_vma(vma);
  2231. struct page *old_page, *new_page;
  2232. int outside_reserve = 0;
  2233. unsigned long mmun_start; /* For mmu_notifiers */
  2234. unsigned long mmun_end; /* For mmu_notifiers */
  2235. old_page = pte_page(pte);
  2236. retry_avoidcopy:
  2237. /* If no-one else is actually using this page, avoid the copy
  2238. * and just make the page writable */
  2239. if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
  2240. page_move_anon_rmap(old_page, vma, address);
  2241. set_huge_ptep_writable(vma, address, ptep);
  2242. return 0;
  2243. }
  2244. /*
  2245. * If the process that created a MAP_PRIVATE mapping is about to
  2246. * perform a COW due to a shared page count, attempt to satisfy
  2247. * the allocation without using the existing reserves. The pagecache
  2248. * page is used to determine if the reserve at this address was
  2249. * consumed or not. If reserves were used, a partial faulted mapping
  2250. * at the time of fork() could consume its reserves on COW instead
  2251. * of the full address range.
  2252. */
  2253. if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
  2254. old_page != pagecache_page)
  2255. outside_reserve = 1;
  2256. page_cache_get(old_page);
  2257. /* Drop page_table_lock as buddy allocator may be called */
  2258. spin_unlock(&mm->page_table_lock);
  2259. new_page = alloc_huge_page(vma, address, outside_reserve);
  2260. if (IS_ERR(new_page)) {
  2261. long err = PTR_ERR(new_page);
  2262. page_cache_release(old_page);
  2263. /*
  2264. * If a process owning a MAP_PRIVATE mapping fails to COW,
  2265. * it is due to references held by a child and an insufficient
  2266. * huge page pool. To guarantee the original mappers
  2267. * reliability, unmap the page from child processes. The child
  2268. * may get SIGKILLed if it later faults.
  2269. */
  2270. if (outside_reserve) {
  2271. BUG_ON(huge_pte_none(pte));
  2272. if (unmap_ref_private(mm, vma, old_page, address)) {
  2273. BUG_ON(huge_pte_none(pte));
  2274. spin_lock(&mm->page_table_lock);
  2275. ptep = huge_pte_offset(mm, address & huge_page_mask(h));
  2276. if (likely(pte_same(huge_ptep_get(ptep), pte)))
  2277. goto retry_avoidcopy;
  2278. /*
  2279. * race occurs while re-acquiring page_table_lock, and
  2280. * our job is done.
  2281. */
  2282. return 0;
  2283. }
  2284. WARN_ON_ONCE(1);
  2285. }
  2286. /* Caller expects lock to be held */
  2287. spin_lock(&mm->page_table_lock);
  2288. if (err == -ENOMEM)
  2289. return VM_FAULT_OOM;
  2290. else
  2291. return VM_FAULT_SIGBUS;
  2292. }
  2293. /*
  2294. * When the original hugepage is shared one, it does not have
  2295. * anon_vma prepared.
  2296. */
  2297. if (unlikely(anon_vma_prepare(vma))) {
  2298. page_cache_release(new_page);
  2299. page_cache_release(old_page);
  2300. /* Caller expects lock to be held */
  2301. spin_lock(&mm->page_table_lock);
  2302. return VM_FAULT_OOM;
  2303. }
  2304. copy_user_huge_page(new_page, old_page, address, vma,
  2305. pages_per_huge_page(h));
  2306. __SetPageUptodate(new_page);
  2307. mmun_start = address & huge_page_mask(h);
  2308. mmun_end = mmun_start + huge_page_size(h);
  2309. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2310. /*
  2311. * Retake the page_table_lock to check for racing updates
  2312. * before the page tables are altered
  2313. */
  2314. spin_lock(&mm->page_table_lock);
  2315. ptep = huge_pte_offset(mm, address & huge_page_mask(h));
  2316. if (likely(pte_same(huge_ptep_get(ptep), pte))) {
  2317. ClearPagePrivate(new_page);
  2318. /* Break COW */
  2319. huge_ptep_clear_flush(vma, address, ptep);
  2320. set_huge_pte_at(mm, address, ptep,
  2321. make_huge_pte(vma, new_page, 1));
  2322. page_remove_rmap(old_page);
  2323. hugepage_add_new_anon_rmap(new_page, vma, address);
  2324. /* Make the old page be freed below */
  2325. new_page = old_page;
  2326. }
  2327. spin_unlock(&mm->page_table_lock);
  2328. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2329. page_cache_release(new_page);
  2330. page_cache_release(old_page);
  2331. /* Caller expects lock to be held */
  2332. spin_lock(&mm->page_table_lock);
  2333. return 0;
  2334. }
  2335. /* Return the pagecache page at a given address within a VMA */
  2336. static struct page *hugetlbfs_pagecache_page(struct hstate *h,
  2337. struct vm_area_struct *vma, unsigned long address)
  2338. {
  2339. struct address_space *mapping;
  2340. pgoff_t idx;
  2341. mapping = vma->vm_file->f_mapping;
  2342. idx = vma_hugecache_offset(h, vma, address);
  2343. return find_lock_page(mapping, idx);
  2344. }
  2345. /*
  2346. * Return whether there is a pagecache page to back given address within VMA.
  2347. * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
  2348. */
  2349. static bool hugetlbfs_pagecache_present(struct hstate *h,
  2350. struct vm_area_struct *vma, unsigned long address)
  2351. {
  2352. struct address_space *mapping;
  2353. pgoff_t idx;
  2354. struct page *page;
  2355. mapping = vma->vm_file->f_mapping;
  2356. idx = vma_hugecache_offset(h, vma, address);
  2357. page = find_get_page(mapping, idx);
  2358. if (page)
  2359. put_page(page);
  2360. return page != NULL;
  2361. }
  2362. static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2363. unsigned long address, pte_t *ptep, unsigned int flags)
  2364. {
  2365. struct hstate *h = hstate_vma(vma);
  2366. int ret = VM_FAULT_SIGBUS;
  2367. int anon_rmap = 0;
  2368. pgoff_t idx;
  2369. unsigned long size;
  2370. struct page *page;
  2371. struct address_space *mapping;
  2372. pte_t new_pte;
  2373. /*
  2374. * Currently, we are forced to kill the process in the event the
  2375. * original mapper has unmapped pages from the child due to a failed
  2376. * COW. Warn that such a situation has occurred as it may not be obvious
  2377. */
  2378. if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
  2379. pr_warning("PID %d killed due to inadequate hugepage pool\n",
  2380. current->pid);
  2381. return ret;
  2382. }
  2383. mapping = vma->vm_file->f_mapping;
  2384. idx = vma_hugecache_offset(h, vma, address);
  2385. /*
  2386. * Use page lock to guard against racing truncation
  2387. * before we get page_table_lock.
  2388. */
  2389. retry:
  2390. page = find_lock_page(mapping, idx);
  2391. if (!page) {
  2392. size = i_size_read(mapping->host) >> huge_page_shift(h);
  2393. if (idx >= size)
  2394. goto out;
  2395. page = alloc_huge_page(vma, address, 0);
  2396. if (IS_ERR(page)) {
  2397. ret = PTR_ERR(page);
  2398. if (ret == -ENOMEM)
  2399. ret = VM_FAULT_OOM;
  2400. else
  2401. ret = VM_FAULT_SIGBUS;
  2402. goto out;
  2403. }
  2404. clear_huge_page(page, address, pages_per_huge_page(h));
  2405. __SetPageUptodate(page);
  2406. if (vma->vm_flags & VM_MAYSHARE) {
  2407. int err;
  2408. struct inode *inode = mapping->host;
  2409. err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
  2410. if (err) {
  2411. put_page(page);
  2412. if (err == -EEXIST)
  2413. goto retry;
  2414. goto out;
  2415. }
  2416. ClearPagePrivate(page);
  2417. spin_lock(&inode->i_lock);
  2418. inode->i_blocks += blocks_per_huge_page(h);
  2419. spin_unlock(&inode->i_lock);
  2420. } else {
  2421. lock_page(page);
  2422. if (unlikely(anon_vma_prepare(vma))) {
  2423. ret = VM_FAULT_OOM;
  2424. goto backout_unlocked;
  2425. }
  2426. anon_rmap = 1;
  2427. }
  2428. } else {
  2429. /*
  2430. * If memory error occurs between mmap() and fault, some process
  2431. * don't have hwpoisoned swap entry for errored virtual address.
  2432. * So we need to block hugepage fault by PG_hwpoison bit check.
  2433. */
  2434. if (unlikely(PageHWPoison(page))) {
  2435. ret = VM_FAULT_HWPOISON |
  2436. VM_FAULT_SET_HINDEX(hstate_index(h));
  2437. goto backout_unlocked;
  2438. }
  2439. }
  2440. /*
  2441. * If we are going to COW a private mapping later, we examine the
  2442. * pending reservations for this page now. This will ensure that
  2443. * any allocations necessary to record that reservation occur outside
  2444. * the spinlock.
  2445. */
  2446. if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
  2447. if (vma_needs_reservation(h, vma, address) < 0) {
  2448. ret = VM_FAULT_OOM;
  2449. goto backout_unlocked;
  2450. }
  2451. spin_lock(&mm->page_table_lock);
  2452. size = i_size_read(mapping->host) >> huge_page_shift(h);
  2453. if (idx >= size)
  2454. goto backout;
  2455. ret = 0;
  2456. if (!huge_pte_none(huge_ptep_get(ptep)))
  2457. goto backout;
  2458. if (anon_rmap) {
  2459. ClearPagePrivate(page);
  2460. hugepage_add_new_anon_rmap(page, vma, address);
  2461. }
  2462. else
  2463. page_dup_rmap(page);
  2464. new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
  2465. && (vma->vm_flags & VM_SHARED)));
  2466. set_huge_pte_at(mm, address, ptep, new_pte);
  2467. if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
  2468. /* Optimization, do the COW without a second fault */
  2469. ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
  2470. }
  2471. spin_unlock(&mm->page_table_lock);
  2472. unlock_page(page);
  2473. out:
  2474. return ret;
  2475. backout:
  2476. spin_unlock(&mm->page_table_lock);
  2477. backout_unlocked:
  2478. unlock_page(page);
  2479. put_page(page);
  2480. goto out;
  2481. }
  2482. int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2483. unsigned long address, unsigned int flags)
  2484. {
  2485. pte_t *ptep;
  2486. pte_t entry;
  2487. int ret;
  2488. struct page *page = NULL;
  2489. struct page *pagecache_page = NULL;
  2490. static DEFINE_MUTEX(hugetlb_instantiation_mutex);
  2491. struct hstate *h = hstate_vma(vma);
  2492. address &= huge_page_mask(h);
  2493. ptep = huge_pte_offset(mm, address);
  2494. if (ptep) {
  2495. entry = huge_ptep_get(ptep);
  2496. if (unlikely(is_hugetlb_entry_migration(entry))) {
  2497. migration_entry_wait_huge(mm, ptep);
  2498. return 0;
  2499. } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
  2500. return VM_FAULT_HWPOISON_LARGE |
  2501. VM_FAULT_SET_HINDEX(hstate_index(h));
  2502. }
  2503. ptep = huge_pte_alloc(mm, address, huge_page_size(h));
  2504. if (!ptep)
  2505. return VM_FAULT_OOM;
  2506. /*
  2507. * Serialize hugepage allocation and instantiation, so that we don't
  2508. * get spurious allocation failures if two CPUs race to instantiate
  2509. * the same page in the page cache.
  2510. */
  2511. mutex_lock(&hugetlb_instantiation_mutex);
  2512. entry = huge_ptep_get(ptep);
  2513. if (huge_pte_none(entry)) {
  2514. ret = hugetlb_no_page(mm, vma, address, ptep, flags);
  2515. goto out_mutex;
  2516. }
  2517. ret = 0;
  2518. /*
  2519. * If we are going to COW the mapping later, we examine the pending
  2520. * reservations for this page now. This will ensure that any
  2521. * allocations necessary to record that reservation occur outside the
  2522. * spinlock. For private mappings, we also lookup the pagecache
  2523. * page now as it is used to determine if a reservation has been
  2524. * consumed.
  2525. */
  2526. if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
  2527. if (vma_needs_reservation(h, vma, address) < 0) {
  2528. ret = VM_FAULT_OOM;
  2529. goto out_mutex;
  2530. }
  2531. if (!(vma->vm_flags & VM_MAYSHARE))
  2532. pagecache_page = hugetlbfs_pagecache_page(h,
  2533. vma, address);
  2534. }
  2535. /*
  2536. * hugetlb_cow() requires page locks of pte_page(entry) and
  2537. * pagecache_page, so here we need take the former one
  2538. * when page != pagecache_page or !pagecache_page.
  2539. * Note that locking order is always pagecache_page -> page,
  2540. * so no worry about deadlock.
  2541. */
  2542. page = pte_page(entry);
  2543. get_page(page);
  2544. if (page != pagecache_page)
  2545. lock_page(page);
  2546. spin_lock(&mm->page_table_lock);
  2547. /* Check for a racing update before calling hugetlb_cow */
  2548. if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
  2549. goto out_page_table_lock;
  2550. if (flags & FAULT_FLAG_WRITE) {
  2551. if (!huge_pte_write(entry)) {
  2552. ret = hugetlb_cow(mm, vma, address, ptep, entry,
  2553. pagecache_page);
  2554. goto out_page_table_lock;
  2555. }
  2556. entry = huge_pte_mkdirty(entry);
  2557. }
  2558. entry = pte_mkyoung(entry);
  2559. if (huge_ptep_set_access_flags(vma, address, ptep, entry,
  2560. flags & FAULT_FLAG_WRITE))
  2561. update_mmu_cache(vma, address, ptep);
  2562. out_page_table_lock:
  2563. spin_unlock(&mm->page_table_lock);
  2564. if (pagecache_page) {
  2565. unlock_page(pagecache_page);
  2566. put_page(pagecache_page);
  2567. }
  2568. if (page != pagecache_page)
  2569. unlock_page(page);
  2570. put_page(page);
  2571. out_mutex:
  2572. mutex_unlock(&hugetlb_instantiation_mutex);
  2573. return ret;
  2574. }
  2575. long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2576. struct page **pages, struct vm_area_struct **vmas,
  2577. unsigned long *position, unsigned long *nr_pages,
  2578. long i, unsigned int flags)
  2579. {
  2580. unsigned long pfn_offset;
  2581. unsigned long vaddr = *position;
  2582. unsigned long remainder = *nr_pages;
  2583. struct hstate *h = hstate_vma(vma);
  2584. spin_lock(&mm->page_table_lock);
  2585. while (vaddr < vma->vm_end && remainder) {
  2586. pte_t *pte;
  2587. int absent;
  2588. struct page *page;
  2589. /*
  2590. * Some archs (sparc64, sh*) have multiple pte_ts to
  2591. * each hugepage. We have to make sure we get the
  2592. * first, for the page indexing below to work.
  2593. */
  2594. pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
  2595. absent = !pte || huge_pte_none(huge_ptep_get(pte));
  2596. /*
  2597. * When coredumping, it suits get_dump_page if we just return
  2598. * an error where there's an empty slot with no huge pagecache
  2599. * to back it. This way, we avoid allocating a hugepage, and
  2600. * the sparse dumpfile avoids allocating disk blocks, but its
  2601. * huge holes still show up with zeroes where they need to be.
  2602. */
  2603. if (absent && (flags & FOLL_DUMP) &&
  2604. !hugetlbfs_pagecache_present(h, vma, vaddr)) {
  2605. remainder = 0;
  2606. break;
  2607. }
  2608. /*
  2609. * We need call hugetlb_fault for both hugepages under migration
  2610. * (in which case hugetlb_fault waits for the migration,) and
  2611. * hwpoisoned hugepages (in which case we need to prevent the
  2612. * caller from accessing to them.) In order to do this, we use
  2613. * here is_swap_pte instead of is_hugetlb_entry_migration and
  2614. * is_hugetlb_entry_hwpoisoned. This is because it simply covers
  2615. * both cases, and because we can't follow correct pages
  2616. * directly from any kind of swap entries.
  2617. */
  2618. if (absent || is_swap_pte(huge_ptep_get(pte)) ||
  2619. ((flags & FOLL_WRITE) &&
  2620. !huge_pte_write(huge_ptep_get(pte)))) {
  2621. int ret;
  2622. spin_unlock(&mm->page_table_lock);
  2623. ret = hugetlb_fault(mm, vma, vaddr,
  2624. (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
  2625. spin_lock(&mm->page_table_lock);
  2626. if (!(ret & VM_FAULT_ERROR))
  2627. continue;
  2628. remainder = 0;
  2629. break;
  2630. }
  2631. pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
  2632. page = pte_page(huge_ptep_get(pte));
  2633. same_page:
  2634. if (pages) {
  2635. pages[i] = mem_map_offset(page, pfn_offset);
  2636. get_page(pages[i]);
  2637. }
  2638. if (vmas)
  2639. vmas[i] = vma;
  2640. vaddr += PAGE_SIZE;
  2641. ++pfn_offset;
  2642. --remainder;
  2643. ++i;
  2644. if (vaddr < vma->vm_end && remainder &&
  2645. pfn_offset < pages_per_huge_page(h)) {
  2646. /*
  2647. * We use pfn_offset to avoid touching the pageframes
  2648. * of this compound page.
  2649. */
  2650. goto same_page;
  2651. }
  2652. }
  2653. spin_unlock(&mm->page_table_lock);
  2654. *nr_pages = remainder;
  2655. *position = vaddr;
  2656. return i ? i : -EFAULT;
  2657. }
  2658. unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
  2659. unsigned long address, unsigned long end, pgprot_t newprot)
  2660. {
  2661. struct mm_struct *mm = vma->vm_mm;
  2662. unsigned long start = address;
  2663. pte_t *ptep;
  2664. pte_t pte;
  2665. struct hstate *h = hstate_vma(vma);
  2666. unsigned long pages = 0;
  2667. BUG_ON(address >= end);
  2668. flush_cache_range(vma, address, end);
  2669. mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
  2670. spin_lock(&mm->page_table_lock);
  2671. for (; address < end; address += huge_page_size(h)) {
  2672. ptep = huge_pte_offset(mm, address);
  2673. if (!ptep)
  2674. continue;
  2675. if (huge_pmd_unshare(mm, &address, ptep)) {
  2676. pages++;
  2677. continue;
  2678. }
  2679. if (!huge_pte_none(huge_ptep_get(ptep))) {
  2680. pte = huge_ptep_get_and_clear(mm, address, ptep);
  2681. pte = pte_mkhuge(huge_pte_modify(pte, newprot));
  2682. pte = arch_make_huge_pte(pte, vma, NULL, 0);
  2683. set_huge_pte_at(mm, address, ptep, pte);
  2684. pages++;
  2685. }
  2686. }
  2687. spin_unlock(&mm->page_table_lock);
  2688. /*
  2689. * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
  2690. * may have cleared our pud entry and done put_page on the page table:
  2691. * once we release i_mmap_mutex, another task can do the final put_page
  2692. * and that page table be reused and filled with junk.
  2693. */
  2694. flush_tlb_range(vma, start, end);
  2695. mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
  2696. return pages << h->order;
  2697. }
  2698. int hugetlb_reserve_pages(struct inode *inode,
  2699. long from, long to,
  2700. struct vm_area_struct *vma,
  2701. vm_flags_t vm_flags)
  2702. {
  2703. long ret, chg;
  2704. struct hstate *h = hstate_inode(inode);
  2705. struct hugepage_subpool *spool = subpool_inode(inode);
  2706. /*
  2707. * Only apply hugepage reservation if asked. At fault time, an
  2708. * attempt will be made for VM_NORESERVE to allocate a page
  2709. * without using reserves
  2710. */
  2711. if (vm_flags & VM_NORESERVE)
  2712. return 0;
  2713. /*
  2714. * Shared mappings base their reservation on the number of pages that
  2715. * are already allocated on behalf of the file. Private mappings need
  2716. * to reserve the full area even if read-only as mprotect() may be
  2717. * called to make the mapping read-write. Assume !vma is a shm mapping
  2718. */
  2719. if (!vma || vma->vm_flags & VM_MAYSHARE)
  2720. chg = region_chg(&inode->i_mapping->private_list, from, to);
  2721. else {
  2722. struct resv_map *resv_map = resv_map_alloc();
  2723. if (!resv_map)
  2724. return -ENOMEM;
  2725. chg = to - from;
  2726. set_vma_resv_map(vma, resv_map);
  2727. set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
  2728. }
  2729. if (chg < 0) {
  2730. ret = chg;
  2731. goto out_err;
  2732. }
  2733. /* There must be enough pages in the subpool for the mapping */
  2734. if (hugepage_subpool_get_pages(spool, chg)) {
  2735. ret = -ENOSPC;
  2736. goto out_err;
  2737. }
  2738. /*
  2739. * Check enough hugepages are available for the reservation.
  2740. * Hand the pages back to the subpool if there are not
  2741. */
  2742. ret = hugetlb_acct_memory(h, chg);
  2743. if (ret < 0) {
  2744. hugepage_subpool_put_pages(spool, chg);
  2745. goto out_err;
  2746. }
  2747. /*
  2748. * Account for the reservations made. Shared mappings record regions
  2749. * that have reservations as they are shared by multiple VMAs.
  2750. * When the last VMA disappears, the region map says how much
  2751. * the reservation was and the page cache tells how much of
  2752. * the reservation was consumed. Private mappings are per-VMA and
  2753. * only the consumed reservations are tracked. When the VMA
  2754. * disappears, the original reservation is the VMA size and the
  2755. * consumed reservations are stored in the map. Hence, nothing
  2756. * else has to be done for private mappings here
  2757. */
  2758. if (!vma || vma->vm_flags & VM_MAYSHARE)
  2759. region_add(&inode->i_mapping->private_list, from, to);
  2760. return 0;
  2761. out_err:
  2762. if (vma)
  2763. resv_map_put(vma);
  2764. return ret;
  2765. }
  2766. void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
  2767. {
  2768. struct hstate *h = hstate_inode(inode);
  2769. long chg = region_truncate(&inode->i_mapping->private_list, offset);
  2770. struct hugepage_subpool *spool = subpool_inode(inode);
  2771. spin_lock(&inode->i_lock);
  2772. inode->i_blocks -= (blocks_per_huge_page(h) * freed);
  2773. spin_unlock(&inode->i_lock);
  2774. hugepage_subpool_put_pages(spool, (chg - freed));
  2775. hugetlb_acct_memory(h, -(chg - freed));
  2776. }
  2777. #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
  2778. static unsigned long page_table_shareable(struct vm_area_struct *svma,
  2779. struct vm_area_struct *vma,
  2780. unsigned long addr, pgoff_t idx)
  2781. {
  2782. unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
  2783. svma->vm_start;
  2784. unsigned long sbase = saddr & PUD_MASK;
  2785. unsigned long s_end = sbase + PUD_SIZE;
  2786. /* Allow segments to share if only one is marked locked */
  2787. unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
  2788. unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
  2789. /*
  2790. * match the virtual addresses, permission and the alignment of the
  2791. * page table page.
  2792. */
  2793. if (pmd_index(addr) != pmd_index(saddr) ||
  2794. vm_flags != svm_flags ||
  2795. sbase < svma->vm_start || svma->vm_end < s_end)
  2796. return 0;
  2797. return saddr;
  2798. }
  2799. static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
  2800. {
  2801. unsigned long base = addr & PUD_MASK;
  2802. unsigned long end = base + PUD_SIZE;
  2803. /*
  2804. * check on proper vm_flags and page table alignment
  2805. */
  2806. if (vma->vm_flags & VM_MAYSHARE &&
  2807. vma->vm_start <= base && end <= vma->vm_end)
  2808. return 1;
  2809. return 0;
  2810. }
  2811. /*
  2812. * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
  2813. * and returns the corresponding pte. While this is not necessary for the
  2814. * !shared pmd case because we can allocate the pmd later as well, it makes the
  2815. * code much cleaner. pmd allocation is essential for the shared case because
  2816. * pud has to be populated inside the same i_mmap_mutex section - otherwise
  2817. * racing tasks could either miss the sharing (see huge_pte_offset) or select a
  2818. * bad pmd for sharing.
  2819. */
  2820. pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
  2821. {
  2822. struct vm_area_struct *vma = find_vma(mm, addr);
  2823. struct address_space *mapping = vma->vm_file->f_mapping;
  2824. pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  2825. vma->vm_pgoff;
  2826. struct vm_area_struct *svma;
  2827. unsigned long saddr;
  2828. pte_t *spte = NULL;
  2829. pte_t *pte;
  2830. if (!vma_shareable(vma, addr))
  2831. return (pte_t *)pmd_alloc(mm, pud, addr);
  2832. mutex_lock(&mapping->i_mmap_mutex);
  2833. vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
  2834. if (svma == vma)
  2835. continue;
  2836. saddr = page_table_shareable(svma, vma, addr, idx);
  2837. if (saddr) {
  2838. spte = huge_pte_offset(svma->vm_mm, saddr);
  2839. if (spte) {
  2840. get_page(virt_to_page(spte));
  2841. break;
  2842. }
  2843. }
  2844. }
  2845. if (!spte)
  2846. goto out;
  2847. spin_lock(&mm->page_table_lock);
  2848. if (pud_none(*pud))
  2849. pud_populate(mm, pud,
  2850. (pmd_t *)((unsigned long)spte & PAGE_MASK));
  2851. else
  2852. put_page(virt_to_page(spte));
  2853. spin_unlock(&mm->page_table_lock);
  2854. out:
  2855. pte = (pte_t *)pmd_alloc(mm, pud, addr);
  2856. mutex_unlock(&mapping->i_mmap_mutex);
  2857. return pte;
  2858. }
  2859. /*
  2860. * unmap huge page backed by shared pte.
  2861. *
  2862. * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
  2863. * indicated by page_count > 1, unmap is achieved by clearing pud and
  2864. * decrementing the ref count. If count == 1, the pte page is not shared.
  2865. *
  2866. * called with vma->vm_mm->page_table_lock held.
  2867. *
  2868. * returns: 1 successfully unmapped a shared pte page
  2869. * 0 the underlying pte page is not shared, or it is the last user
  2870. */
  2871. int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
  2872. {
  2873. pgd_t *pgd = pgd_offset(mm, *addr);
  2874. pud_t *pud = pud_offset(pgd, *addr);
  2875. BUG_ON(page_count(virt_to_page(ptep)) == 0);
  2876. if (page_count(virt_to_page(ptep)) == 1)
  2877. return 0;
  2878. pud_clear(pud);
  2879. put_page(virt_to_page(ptep));
  2880. *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
  2881. return 1;
  2882. }
  2883. #define want_pmd_share() (1)
  2884. #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
  2885. pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
  2886. {
  2887. return NULL;
  2888. }
  2889. #define want_pmd_share() (0)
  2890. #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
  2891. #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
  2892. pte_t *huge_pte_alloc(struct mm_struct *mm,
  2893. unsigned long addr, unsigned long sz)
  2894. {
  2895. pgd_t *pgd;
  2896. pud_t *pud;
  2897. pte_t *pte = NULL;
  2898. pgd = pgd_offset(mm, addr);
  2899. pud = pud_alloc(mm, pgd, addr);
  2900. if (pud) {
  2901. if (sz == PUD_SIZE) {
  2902. pte = (pte_t *)pud;
  2903. } else {
  2904. BUG_ON(sz != PMD_SIZE);
  2905. if (want_pmd_share() && pud_none(*pud))
  2906. pte = huge_pmd_share(mm, addr, pud);
  2907. else
  2908. pte = (pte_t *)pmd_alloc(mm, pud, addr);
  2909. }
  2910. }
  2911. BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
  2912. return pte;
  2913. }
  2914. pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
  2915. {
  2916. pgd_t *pgd;
  2917. pud_t *pud;
  2918. pmd_t *pmd = NULL;
  2919. pgd = pgd_offset(mm, addr);
  2920. if (pgd_present(*pgd)) {
  2921. pud = pud_offset(pgd, addr);
  2922. if (pud_present(*pud)) {
  2923. if (pud_huge(*pud))
  2924. return (pte_t *)pud;
  2925. pmd = pmd_offset(pud, addr);
  2926. }
  2927. }
  2928. return (pte_t *) pmd;
  2929. }
  2930. struct page *
  2931. follow_huge_pmd(struct mm_struct *mm, unsigned long address,
  2932. pmd_t *pmd, int write)
  2933. {
  2934. struct page *page;
  2935. page = pte_page(*(pte_t *)pmd);
  2936. if (page)
  2937. page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
  2938. return page;
  2939. }
  2940. struct page *
  2941. follow_huge_pud(struct mm_struct *mm, unsigned long address,
  2942. pud_t *pud, int write)
  2943. {
  2944. struct page *page;
  2945. page = pte_page(*(pte_t *)pud);
  2946. if (page)
  2947. page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
  2948. return page;
  2949. }
  2950. #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
  2951. /* Can be overriden by architectures */
  2952. __attribute__((weak)) struct page *
  2953. follow_huge_pud(struct mm_struct *mm, unsigned long address,
  2954. pud_t *pud, int write)
  2955. {
  2956. BUG();
  2957. return NULL;
  2958. }
  2959. #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
  2960. #ifdef CONFIG_MEMORY_FAILURE
  2961. /* Should be called in hugetlb_lock */
  2962. static int is_hugepage_on_freelist(struct page *hpage)
  2963. {
  2964. struct page *page;
  2965. struct page *tmp;
  2966. struct hstate *h = page_hstate(hpage);
  2967. int nid = page_to_nid(hpage);
  2968. list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
  2969. if (page == hpage)
  2970. return 1;
  2971. return 0;
  2972. }
  2973. /*
  2974. * This function is called from memory failure code.
  2975. * Assume the caller holds page lock of the head page.
  2976. */
  2977. int dequeue_hwpoisoned_huge_page(struct page *hpage)
  2978. {
  2979. struct hstate *h = page_hstate(hpage);
  2980. int nid = page_to_nid(hpage);
  2981. int ret = -EBUSY;
  2982. spin_lock(&hugetlb_lock);
  2983. if (is_hugepage_on_freelist(hpage)) {
  2984. /*
  2985. * Hwpoisoned hugepage isn't linked to activelist or freelist,
  2986. * but dangling hpage->lru can trigger list-debug warnings
  2987. * (this happens when we call unpoison_memory() on it),
  2988. * so let it point to itself with list_del_init().
  2989. */
  2990. list_del_init(&hpage->lru);
  2991. set_page_refcounted(hpage);
  2992. h->free_huge_pages--;
  2993. h->free_huge_pages_node[nid]--;
  2994. ret = 0;
  2995. }
  2996. spin_unlock(&hugetlb_lock);
  2997. return ret;
  2998. }
  2999. #endif
  3000. bool isolate_huge_page(struct page *page, struct list_head *list)
  3001. {
  3002. VM_BUG_ON(!PageHead(page));
  3003. if (!get_page_unless_zero(page))
  3004. return false;
  3005. spin_lock(&hugetlb_lock);
  3006. list_move_tail(&page->lru, list);
  3007. spin_unlock(&hugetlb_lock);
  3008. return true;
  3009. }
  3010. void putback_active_hugepage(struct page *page)
  3011. {
  3012. VM_BUG_ON(!PageHead(page));
  3013. spin_lock(&hugetlb_lock);
  3014. list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
  3015. spin_unlock(&hugetlb_lock);
  3016. put_page(page);
  3017. }
  3018. bool is_hugepage_active(struct page *page)
  3019. {
  3020. VM_BUG_ON(!PageHuge(page));
  3021. /*
  3022. * This function can be called for a tail page because the caller,
  3023. * scan_movable_pages, scans through a given pfn-range which typically
  3024. * covers one memory block. In systems using gigantic hugepage (1GB
  3025. * for x86_64,) a hugepage is larger than a memory block, and we don't
  3026. * support migrating such large hugepages for now, so return false
  3027. * when called for tail pages.
  3028. */
  3029. if (PageTail(page))
  3030. return false;
  3031. /*
  3032. * Refcount of a hwpoisoned hugepages is 1, but they are not active,
  3033. * so we should return false for them.
  3034. */
  3035. if (unlikely(PageHWPoison(page)))
  3036. return false;
  3037. return page_count(page) > 0;
  3038. }