huge_memory.c 73 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/shrinker.h>
  15. #include <linux/mm_inline.h>
  16. #include <linux/kthread.h>
  17. #include <linux/khugepaged.h>
  18. #include <linux/freezer.h>
  19. #include <linux/mman.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/migrate.h>
  22. #include <linux/hashtable.h>
  23. #include <asm/tlb.h>
  24. #include <asm/pgalloc.h>
  25. #include "internal.h"
  26. /*
  27. * By default transparent hugepage support is enabled for all mappings
  28. * and khugepaged scans all mappings. Defrag is only invoked by
  29. * khugepaged hugepage allocations and by page faults inside
  30. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  31. * allocations.
  32. */
  33. unsigned long transparent_hugepage_flags __read_mostly =
  34. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  35. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  36. #endif
  37. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  38. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  39. #endif
  40. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  41. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  42. (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  43. /* default scan 8*512 pte (or vmas) every 30 second */
  44. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  45. static unsigned int khugepaged_pages_collapsed;
  46. static unsigned int khugepaged_full_scans;
  47. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  48. /* during fragmentation poll the hugepage allocator once every minute */
  49. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  50. static struct task_struct *khugepaged_thread __read_mostly;
  51. static DEFINE_MUTEX(khugepaged_mutex);
  52. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  53. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  54. /*
  55. * default collapse hugepages if there is at least one pte mapped like
  56. * it would have happened if the vma was large enough during page
  57. * fault.
  58. */
  59. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  60. static int khugepaged(void *none);
  61. static int khugepaged_slab_init(void);
  62. #define MM_SLOTS_HASH_BITS 10
  63. static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  64. static struct kmem_cache *mm_slot_cache __read_mostly;
  65. /**
  66. * struct mm_slot - hash lookup from mm to mm_slot
  67. * @hash: hash collision list
  68. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  69. * @mm: the mm that this information is valid for
  70. */
  71. struct mm_slot {
  72. struct hlist_node hash;
  73. struct list_head mm_node;
  74. struct mm_struct *mm;
  75. };
  76. /**
  77. * struct khugepaged_scan - cursor for scanning
  78. * @mm_head: the head of the mm list to scan
  79. * @mm_slot: the current mm_slot we are scanning
  80. * @address: the next address inside that to be scanned
  81. *
  82. * There is only the one khugepaged_scan instance of this cursor structure.
  83. */
  84. struct khugepaged_scan {
  85. struct list_head mm_head;
  86. struct mm_slot *mm_slot;
  87. unsigned long address;
  88. };
  89. static struct khugepaged_scan khugepaged_scan = {
  90. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  91. };
  92. static int set_recommended_min_free_kbytes(void)
  93. {
  94. struct zone *zone;
  95. int nr_zones = 0;
  96. unsigned long recommended_min;
  97. if (!khugepaged_enabled())
  98. return 0;
  99. for_each_populated_zone(zone)
  100. nr_zones++;
  101. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  102. recommended_min = pageblock_nr_pages * nr_zones * 2;
  103. /*
  104. * Make sure that on average at least two pageblocks are almost free
  105. * of another type, one for a migratetype to fall back to and a
  106. * second to avoid subsequent fallbacks of other types There are 3
  107. * MIGRATE_TYPES we care about.
  108. */
  109. recommended_min += pageblock_nr_pages * nr_zones *
  110. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  111. /* don't ever allow to reserve more than 5% of the lowmem */
  112. recommended_min = min(recommended_min,
  113. (unsigned long) nr_free_buffer_pages() / 20);
  114. recommended_min <<= (PAGE_SHIFT-10);
  115. if (recommended_min > min_free_kbytes)
  116. min_free_kbytes = recommended_min;
  117. setup_per_zone_wmarks();
  118. return 0;
  119. }
  120. late_initcall(set_recommended_min_free_kbytes);
  121. static int start_khugepaged(void)
  122. {
  123. int err = 0;
  124. if (khugepaged_enabled()) {
  125. if (!khugepaged_thread)
  126. khugepaged_thread = kthread_run(khugepaged, NULL,
  127. "khugepaged");
  128. if (unlikely(IS_ERR(khugepaged_thread))) {
  129. printk(KERN_ERR
  130. "khugepaged: kthread_run(khugepaged) failed\n");
  131. err = PTR_ERR(khugepaged_thread);
  132. khugepaged_thread = NULL;
  133. }
  134. if (!list_empty(&khugepaged_scan.mm_head))
  135. wake_up_interruptible(&khugepaged_wait);
  136. set_recommended_min_free_kbytes();
  137. } else if (khugepaged_thread) {
  138. kthread_stop(khugepaged_thread);
  139. khugepaged_thread = NULL;
  140. }
  141. return err;
  142. }
  143. static atomic_t huge_zero_refcount;
  144. static struct page *huge_zero_page __read_mostly;
  145. static inline bool is_huge_zero_page(struct page *page)
  146. {
  147. return ACCESS_ONCE(huge_zero_page) == page;
  148. }
  149. static inline bool is_huge_zero_pmd(pmd_t pmd)
  150. {
  151. return is_huge_zero_page(pmd_page(pmd));
  152. }
  153. static struct page *get_huge_zero_page(void)
  154. {
  155. struct page *zero_page;
  156. retry:
  157. if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  158. return ACCESS_ONCE(huge_zero_page);
  159. zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  160. HPAGE_PMD_ORDER);
  161. if (!zero_page) {
  162. count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  163. return NULL;
  164. }
  165. count_vm_event(THP_ZERO_PAGE_ALLOC);
  166. preempt_disable();
  167. if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  168. preempt_enable();
  169. __free_page(zero_page);
  170. goto retry;
  171. }
  172. /* We take additional reference here. It will be put back by shrinker */
  173. atomic_set(&huge_zero_refcount, 2);
  174. preempt_enable();
  175. return ACCESS_ONCE(huge_zero_page);
  176. }
  177. static void put_huge_zero_page(void)
  178. {
  179. /*
  180. * Counter should never go to zero here. Only shrinker can put
  181. * last reference.
  182. */
  183. BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  184. }
  185. static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
  186. struct shrink_control *sc)
  187. {
  188. /* we can free zero page only if last reference remains */
  189. return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
  190. }
  191. static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
  192. struct shrink_control *sc)
  193. {
  194. if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
  195. struct page *zero_page = xchg(&huge_zero_page, NULL);
  196. BUG_ON(zero_page == NULL);
  197. __free_page(zero_page);
  198. return HPAGE_PMD_NR;
  199. }
  200. return 0;
  201. }
  202. static struct shrinker huge_zero_page_shrinker = {
  203. .count_objects = shrink_huge_zero_page_count,
  204. .scan_objects = shrink_huge_zero_page_scan,
  205. .seeks = DEFAULT_SEEKS,
  206. };
  207. #ifdef CONFIG_SYSFS
  208. static ssize_t double_flag_show(struct kobject *kobj,
  209. struct kobj_attribute *attr, char *buf,
  210. enum transparent_hugepage_flag enabled,
  211. enum transparent_hugepage_flag req_madv)
  212. {
  213. if (test_bit(enabled, &transparent_hugepage_flags)) {
  214. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  215. return sprintf(buf, "[always] madvise never\n");
  216. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  217. return sprintf(buf, "always [madvise] never\n");
  218. else
  219. return sprintf(buf, "always madvise [never]\n");
  220. }
  221. static ssize_t double_flag_store(struct kobject *kobj,
  222. struct kobj_attribute *attr,
  223. const char *buf, size_t count,
  224. enum transparent_hugepage_flag enabled,
  225. enum transparent_hugepage_flag req_madv)
  226. {
  227. if (!memcmp("always", buf,
  228. min(sizeof("always")-1, count))) {
  229. set_bit(enabled, &transparent_hugepage_flags);
  230. clear_bit(req_madv, &transparent_hugepage_flags);
  231. } else if (!memcmp("madvise", buf,
  232. min(sizeof("madvise")-1, count))) {
  233. clear_bit(enabled, &transparent_hugepage_flags);
  234. set_bit(req_madv, &transparent_hugepage_flags);
  235. } else if (!memcmp("never", buf,
  236. min(sizeof("never")-1, count))) {
  237. clear_bit(enabled, &transparent_hugepage_flags);
  238. clear_bit(req_madv, &transparent_hugepage_flags);
  239. } else
  240. return -EINVAL;
  241. return count;
  242. }
  243. static ssize_t enabled_show(struct kobject *kobj,
  244. struct kobj_attribute *attr, char *buf)
  245. {
  246. return double_flag_show(kobj, attr, buf,
  247. TRANSPARENT_HUGEPAGE_FLAG,
  248. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  249. }
  250. static ssize_t enabled_store(struct kobject *kobj,
  251. struct kobj_attribute *attr,
  252. const char *buf, size_t count)
  253. {
  254. ssize_t ret;
  255. ret = double_flag_store(kobj, attr, buf, count,
  256. TRANSPARENT_HUGEPAGE_FLAG,
  257. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  258. if (ret > 0) {
  259. int err;
  260. mutex_lock(&khugepaged_mutex);
  261. err = start_khugepaged();
  262. mutex_unlock(&khugepaged_mutex);
  263. if (err)
  264. ret = err;
  265. }
  266. return ret;
  267. }
  268. static struct kobj_attribute enabled_attr =
  269. __ATTR(enabled, 0644, enabled_show, enabled_store);
  270. static ssize_t single_flag_show(struct kobject *kobj,
  271. struct kobj_attribute *attr, char *buf,
  272. enum transparent_hugepage_flag flag)
  273. {
  274. return sprintf(buf, "%d\n",
  275. !!test_bit(flag, &transparent_hugepage_flags));
  276. }
  277. static ssize_t single_flag_store(struct kobject *kobj,
  278. struct kobj_attribute *attr,
  279. const char *buf, size_t count,
  280. enum transparent_hugepage_flag flag)
  281. {
  282. unsigned long value;
  283. int ret;
  284. ret = kstrtoul(buf, 10, &value);
  285. if (ret < 0)
  286. return ret;
  287. if (value > 1)
  288. return -EINVAL;
  289. if (value)
  290. set_bit(flag, &transparent_hugepage_flags);
  291. else
  292. clear_bit(flag, &transparent_hugepage_flags);
  293. return count;
  294. }
  295. /*
  296. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  297. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  298. * memory just to allocate one more hugepage.
  299. */
  300. static ssize_t defrag_show(struct kobject *kobj,
  301. struct kobj_attribute *attr, char *buf)
  302. {
  303. return double_flag_show(kobj, attr, buf,
  304. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  305. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  306. }
  307. static ssize_t defrag_store(struct kobject *kobj,
  308. struct kobj_attribute *attr,
  309. const char *buf, size_t count)
  310. {
  311. return double_flag_store(kobj, attr, buf, count,
  312. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  313. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  314. }
  315. static struct kobj_attribute defrag_attr =
  316. __ATTR(defrag, 0644, defrag_show, defrag_store);
  317. static ssize_t use_zero_page_show(struct kobject *kobj,
  318. struct kobj_attribute *attr, char *buf)
  319. {
  320. return single_flag_show(kobj, attr, buf,
  321. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  322. }
  323. static ssize_t use_zero_page_store(struct kobject *kobj,
  324. struct kobj_attribute *attr, const char *buf, size_t count)
  325. {
  326. return single_flag_store(kobj, attr, buf, count,
  327. TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  328. }
  329. static struct kobj_attribute use_zero_page_attr =
  330. __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
  331. #ifdef CONFIG_DEBUG_VM
  332. static ssize_t debug_cow_show(struct kobject *kobj,
  333. struct kobj_attribute *attr, char *buf)
  334. {
  335. return single_flag_show(kobj, attr, buf,
  336. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  337. }
  338. static ssize_t debug_cow_store(struct kobject *kobj,
  339. struct kobj_attribute *attr,
  340. const char *buf, size_t count)
  341. {
  342. return single_flag_store(kobj, attr, buf, count,
  343. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  344. }
  345. static struct kobj_attribute debug_cow_attr =
  346. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  347. #endif /* CONFIG_DEBUG_VM */
  348. static struct attribute *hugepage_attr[] = {
  349. &enabled_attr.attr,
  350. &defrag_attr.attr,
  351. &use_zero_page_attr.attr,
  352. #ifdef CONFIG_DEBUG_VM
  353. &debug_cow_attr.attr,
  354. #endif
  355. NULL,
  356. };
  357. static struct attribute_group hugepage_attr_group = {
  358. .attrs = hugepage_attr,
  359. };
  360. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  361. struct kobj_attribute *attr,
  362. char *buf)
  363. {
  364. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  365. }
  366. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  367. struct kobj_attribute *attr,
  368. const char *buf, size_t count)
  369. {
  370. unsigned long msecs;
  371. int err;
  372. err = kstrtoul(buf, 10, &msecs);
  373. if (err || msecs > UINT_MAX)
  374. return -EINVAL;
  375. khugepaged_scan_sleep_millisecs = msecs;
  376. wake_up_interruptible(&khugepaged_wait);
  377. return count;
  378. }
  379. static struct kobj_attribute scan_sleep_millisecs_attr =
  380. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  381. scan_sleep_millisecs_store);
  382. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  383. struct kobj_attribute *attr,
  384. char *buf)
  385. {
  386. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  387. }
  388. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  389. struct kobj_attribute *attr,
  390. const char *buf, size_t count)
  391. {
  392. unsigned long msecs;
  393. int err;
  394. err = kstrtoul(buf, 10, &msecs);
  395. if (err || msecs > UINT_MAX)
  396. return -EINVAL;
  397. khugepaged_alloc_sleep_millisecs = msecs;
  398. wake_up_interruptible(&khugepaged_wait);
  399. return count;
  400. }
  401. static struct kobj_attribute alloc_sleep_millisecs_attr =
  402. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  403. alloc_sleep_millisecs_store);
  404. static ssize_t pages_to_scan_show(struct kobject *kobj,
  405. struct kobj_attribute *attr,
  406. char *buf)
  407. {
  408. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  409. }
  410. static ssize_t pages_to_scan_store(struct kobject *kobj,
  411. struct kobj_attribute *attr,
  412. const char *buf, size_t count)
  413. {
  414. int err;
  415. unsigned long pages;
  416. err = kstrtoul(buf, 10, &pages);
  417. if (err || !pages || pages > UINT_MAX)
  418. return -EINVAL;
  419. khugepaged_pages_to_scan = pages;
  420. return count;
  421. }
  422. static struct kobj_attribute pages_to_scan_attr =
  423. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  424. pages_to_scan_store);
  425. static ssize_t pages_collapsed_show(struct kobject *kobj,
  426. struct kobj_attribute *attr,
  427. char *buf)
  428. {
  429. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  430. }
  431. static struct kobj_attribute pages_collapsed_attr =
  432. __ATTR_RO(pages_collapsed);
  433. static ssize_t full_scans_show(struct kobject *kobj,
  434. struct kobj_attribute *attr,
  435. char *buf)
  436. {
  437. return sprintf(buf, "%u\n", khugepaged_full_scans);
  438. }
  439. static struct kobj_attribute full_scans_attr =
  440. __ATTR_RO(full_scans);
  441. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  442. struct kobj_attribute *attr, char *buf)
  443. {
  444. return single_flag_show(kobj, attr, buf,
  445. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  446. }
  447. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  448. struct kobj_attribute *attr,
  449. const char *buf, size_t count)
  450. {
  451. return single_flag_store(kobj, attr, buf, count,
  452. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  453. }
  454. static struct kobj_attribute khugepaged_defrag_attr =
  455. __ATTR(defrag, 0644, khugepaged_defrag_show,
  456. khugepaged_defrag_store);
  457. /*
  458. * max_ptes_none controls if khugepaged should collapse hugepages over
  459. * any unmapped ptes in turn potentially increasing the memory
  460. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  461. * reduce the available free memory in the system as it
  462. * runs. Increasing max_ptes_none will instead potentially reduce the
  463. * free memory in the system during the khugepaged scan.
  464. */
  465. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  466. struct kobj_attribute *attr,
  467. char *buf)
  468. {
  469. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  470. }
  471. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  472. struct kobj_attribute *attr,
  473. const char *buf, size_t count)
  474. {
  475. int err;
  476. unsigned long max_ptes_none;
  477. err = kstrtoul(buf, 10, &max_ptes_none);
  478. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  479. return -EINVAL;
  480. khugepaged_max_ptes_none = max_ptes_none;
  481. return count;
  482. }
  483. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  484. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  485. khugepaged_max_ptes_none_store);
  486. static struct attribute *khugepaged_attr[] = {
  487. &khugepaged_defrag_attr.attr,
  488. &khugepaged_max_ptes_none_attr.attr,
  489. &pages_to_scan_attr.attr,
  490. &pages_collapsed_attr.attr,
  491. &full_scans_attr.attr,
  492. &scan_sleep_millisecs_attr.attr,
  493. &alloc_sleep_millisecs_attr.attr,
  494. NULL,
  495. };
  496. static struct attribute_group khugepaged_attr_group = {
  497. .attrs = khugepaged_attr,
  498. .name = "khugepaged",
  499. };
  500. static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
  501. {
  502. int err;
  503. *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  504. if (unlikely(!*hugepage_kobj)) {
  505. printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
  506. return -ENOMEM;
  507. }
  508. err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
  509. if (err) {
  510. printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
  511. goto delete_obj;
  512. }
  513. err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
  514. if (err) {
  515. printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
  516. goto remove_hp_group;
  517. }
  518. return 0;
  519. remove_hp_group:
  520. sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
  521. delete_obj:
  522. kobject_put(*hugepage_kobj);
  523. return err;
  524. }
  525. static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  526. {
  527. sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
  528. sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
  529. kobject_put(hugepage_kobj);
  530. }
  531. #else
  532. static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
  533. {
  534. return 0;
  535. }
  536. static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
  537. {
  538. }
  539. #endif /* CONFIG_SYSFS */
  540. static int __init hugepage_init(void)
  541. {
  542. int err;
  543. struct kobject *hugepage_kobj;
  544. if (!has_transparent_hugepage()) {
  545. transparent_hugepage_flags = 0;
  546. return -EINVAL;
  547. }
  548. err = hugepage_init_sysfs(&hugepage_kobj);
  549. if (err)
  550. return err;
  551. err = khugepaged_slab_init();
  552. if (err)
  553. goto out;
  554. register_shrinker(&huge_zero_page_shrinker);
  555. /*
  556. * By default disable transparent hugepages on smaller systems,
  557. * where the extra memory used could hurt more than TLB overhead
  558. * is likely to save. The admin can still enable it through /sys.
  559. */
  560. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  561. transparent_hugepage_flags = 0;
  562. start_khugepaged();
  563. return 0;
  564. out:
  565. hugepage_exit_sysfs(hugepage_kobj);
  566. return err;
  567. }
  568. module_init(hugepage_init)
  569. static int __init setup_transparent_hugepage(char *str)
  570. {
  571. int ret = 0;
  572. if (!str)
  573. goto out;
  574. if (!strcmp(str, "always")) {
  575. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  576. &transparent_hugepage_flags);
  577. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  578. &transparent_hugepage_flags);
  579. ret = 1;
  580. } else if (!strcmp(str, "madvise")) {
  581. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  582. &transparent_hugepage_flags);
  583. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  584. &transparent_hugepage_flags);
  585. ret = 1;
  586. } else if (!strcmp(str, "never")) {
  587. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  588. &transparent_hugepage_flags);
  589. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  590. &transparent_hugepage_flags);
  591. ret = 1;
  592. }
  593. out:
  594. if (!ret)
  595. printk(KERN_WARNING
  596. "transparent_hugepage= cannot parse, ignored\n");
  597. return ret;
  598. }
  599. __setup("transparent_hugepage=", setup_transparent_hugepage);
  600. pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  601. {
  602. if (likely(vma->vm_flags & VM_WRITE))
  603. pmd = pmd_mkwrite(pmd);
  604. return pmd;
  605. }
  606. static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
  607. {
  608. pmd_t entry;
  609. entry = mk_pmd(page, prot);
  610. entry = pmd_mkhuge(entry);
  611. return entry;
  612. }
  613. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  614. struct vm_area_struct *vma,
  615. unsigned long haddr, pmd_t *pmd,
  616. struct page *page)
  617. {
  618. pgtable_t pgtable;
  619. VM_BUG_ON(!PageCompound(page));
  620. pgtable = pte_alloc_one(mm, haddr);
  621. if (unlikely(!pgtable))
  622. return VM_FAULT_OOM;
  623. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  624. /*
  625. * The memory barrier inside __SetPageUptodate makes sure that
  626. * clear_huge_page writes become visible before the set_pmd_at()
  627. * write.
  628. */
  629. __SetPageUptodate(page);
  630. spin_lock(&mm->page_table_lock);
  631. if (unlikely(!pmd_none(*pmd))) {
  632. spin_unlock(&mm->page_table_lock);
  633. mem_cgroup_uncharge_page(page);
  634. put_page(page);
  635. pte_free(mm, pgtable);
  636. } else {
  637. pmd_t entry;
  638. entry = mk_huge_pmd(page, vma->vm_page_prot);
  639. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  640. page_add_new_anon_rmap(page, vma, haddr);
  641. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  642. set_pmd_at(mm, haddr, pmd, entry);
  643. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  644. mm->nr_ptes++;
  645. spin_unlock(&mm->page_table_lock);
  646. }
  647. return 0;
  648. }
  649. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  650. {
  651. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  652. }
  653. static inline struct page *alloc_hugepage_vma(int defrag,
  654. struct vm_area_struct *vma,
  655. unsigned long haddr, int nd,
  656. gfp_t extra_gfp)
  657. {
  658. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  659. HPAGE_PMD_ORDER, vma, haddr, nd);
  660. }
  661. #ifndef CONFIG_NUMA
  662. static inline struct page *alloc_hugepage(int defrag)
  663. {
  664. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  665. HPAGE_PMD_ORDER);
  666. }
  667. #endif
  668. static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
  669. struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
  670. struct page *zero_page)
  671. {
  672. pmd_t entry;
  673. if (!pmd_none(*pmd))
  674. return false;
  675. entry = mk_pmd(zero_page, vma->vm_page_prot);
  676. entry = pmd_wrprotect(entry);
  677. entry = pmd_mkhuge(entry);
  678. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  679. set_pmd_at(mm, haddr, pmd, entry);
  680. mm->nr_ptes++;
  681. return true;
  682. }
  683. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  684. unsigned long address, pmd_t *pmd,
  685. unsigned int flags)
  686. {
  687. struct page *page;
  688. unsigned long haddr = address & HPAGE_PMD_MASK;
  689. if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
  690. return VM_FAULT_FALLBACK;
  691. if (unlikely(anon_vma_prepare(vma)))
  692. return VM_FAULT_OOM;
  693. if (unlikely(khugepaged_enter(vma)))
  694. return VM_FAULT_OOM;
  695. if (!(flags & FAULT_FLAG_WRITE) &&
  696. transparent_hugepage_use_zero_page()) {
  697. pgtable_t pgtable;
  698. struct page *zero_page;
  699. bool set;
  700. pgtable = pte_alloc_one(mm, haddr);
  701. if (unlikely(!pgtable))
  702. return VM_FAULT_OOM;
  703. zero_page = get_huge_zero_page();
  704. if (unlikely(!zero_page)) {
  705. pte_free(mm, pgtable);
  706. count_vm_event(THP_FAULT_FALLBACK);
  707. return VM_FAULT_FALLBACK;
  708. }
  709. spin_lock(&mm->page_table_lock);
  710. set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
  711. zero_page);
  712. spin_unlock(&mm->page_table_lock);
  713. if (!set) {
  714. pte_free(mm, pgtable);
  715. put_huge_zero_page();
  716. }
  717. return 0;
  718. }
  719. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  720. vma, haddr, numa_node_id(), 0);
  721. if (unlikely(!page)) {
  722. count_vm_event(THP_FAULT_FALLBACK);
  723. return VM_FAULT_FALLBACK;
  724. }
  725. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  726. put_page(page);
  727. count_vm_event(THP_FAULT_FALLBACK);
  728. return VM_FAULT_FALLBACK;
  729. }
  730. if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
  731. mem_cgroup_uncharge_page(page);
  732. put_page(page);
  733. count_vm_event(THP_FAULT_FALLBACK);
  734. return VM_FAULT_FALLBACK;
  735. }
  736. count_vm_event(THP_FAULT_ALLOC);
  737. return 0;
  738. }
  739. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  740. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  741. struct vm_area_struct *vma)
  742. {
  743. struct page *src_page;
  744. pmd_t pmd;
  745. pgtable_t pgtable;
  746. int ret;
  747. ret = -ENOMEM;
  748. pgtable = pte_alloc_one(dst_mm, addr);
  749. if (unlikely(!pgtable))
  750. goto out;
  751. spin_lock(&dst_mm->page_table_lock);
  752. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  753. ret = -EAGAIN;
  754. pmd = *src_pmd;
  755. if (unlikely(!pmd_trans_huge(pmd))) {
  756. pte_free(dst_mm, pgtable);
  757. goto out_unlock;
  758. }
  759. /*
  760. * mm->page_table_lock is enough to be sure that huge zero pmd is not
  761. * under splitting since we don't split the page itself, only pmd to
  762. * a page table.
  763. */
  764. if (is_huge_zero_pmd(pmd)) {
  765. struct page *zero_page;
  766. bool set;
  767. /*
  768. * get_huge_zero_page() will never allocate a new page here,
  769. * since we already have a zero page to copy. It just takes a
  770. * reference.
  771. */
  772. zero_page = get_huge_zero_page();
  773. set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
  774. zero_page);
  775. BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
  776. ret = 0;
  777. goto out_unlock;
  778. }
  779. if (unlikely(pmd_trans_splitting(pmd))) {
  780. /* split huge page running from under us */
  781. spin_unlock(&src_mm->page_table_lock);
  782. spin_unlock(&dst_mm->page_table_lock);
  783. pte_free(dst_mm, pgtable);
  784. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  785. goto out;
  786. }
  787. src_page = pmd_page(pmd);
  788. VM_BUG_ON(!PageHead(src_page));
  789. get_page(src_page);
  790. page_dup_rmap(src_page);
  791. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  792. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  793. pmd = pmd_mkold(pmd_wrprotect(pmd));
  794. pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
  795. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  796. dst_mm->nr_ptes++;
  797. ret = 0;
  798. out_unlock:
  799. spin_unlock(&src_mm->page_table_lock);
  800. spin_unlock(&dst_mm->page_table_lock);
  801. out:
  802. return ret;
  803. }
  804. void huge_pmd_set_accessed(struct mm_struct *mm,
  805. struct vm_area_struct *vma,
  806. unsigned long address,
  807. pmd_t *pmd, pmd_t orig_pmd,
  808. int dirty)
  809. {
  810. pmd_t entry;
  811. unsigned long haddr;
  812. spin_lock(&mm->page_table_lock);
  813. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  814. goto unlock;
  815. entry = pmd_mkyoung(orig_pmd);
  816. haddr = address & HPAGE_PMD_MASK;
  817. if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
  818. update_mmu_cache_pmd(vma, address, pmd);
  819. unlock:
  820. spin_unlock(&mm->page_table_lock);
  821. }
  822. static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
  823. struct vm_area_struct *vma, unsigned long address,
  824. pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
  825. {
  826. pgtable_t pgtable;
  827. pmd_t _pmd;
  828. struct page *page;
  829. int i, ret = 0;
  830. unsigned long mmun_start; /* For mmu_notifiers */
  831. unsigned long mmun_end; /* For mmu_notifiers */
  832. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  833. if (!page) {
  834. ret |= VM_FAULT_OOM;
  835. goto out;
  836. }
  837. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  838. put_page(page);
  839. ret |= VM_FAULT_OOM;
  840. goto out;
  841. }
  842. clear_user_highpage(page, address);
  843. __SetPageUptodate(page);
  844. mmun_start = haddr;
  845. mmun_end = haddr + HPAGE_PMD_SIZE;
  846. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  847. spin_lock(&mm->page_table_lock);
  848. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  849. goto out_free_page;
  850. pmdp_clear_flush(vma, haddr, pmd);
  851. /* leave pmd empty until pte is filled */
  852. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  853. pmd_populate(mm, &_pmd, pgtable);
  854. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  855. pte_t *pte, entry;
  856. if (haddr == (address & PAGE_MASK)) {
  857. entry = mk_pte(page, vma->vm_page_prot);
  858. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  859. page_add_new_anon_rmap(page, vma, haddr);
  860. } else {
  861. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  862. entry = pte_mkspecial(entry);
  863. }
  864. pte = pte_offset_map(&_pmd, haddr);
  865. VM_BUG_ON(!pte_none(*pte));
  866. set_pte_at(mm, haddr, pte, entry);
  867. pte_unmap(pte);
  868. }
  869. smp_wmb(); /* make pte visible before pmd */
  870. pmd_populate(mm, pmd, pgtable);
  871. spin_unlock(&mm->page_table_lock);
  872. put_huge_zero_page();
  873. inc_mm_counter(mm, MM_ANONPAGES);
  874. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  875. ret |= VM_FAULT_WRITE;
  876. out:
  877. return ret;
  878. out_free_page:
  879. spin_unlock(&mm->page_table_lock);
  880. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  881. mem_cgroup_uncharge_page(page);
  882. put_page(page);
  883. goto out;
  884. }
  885. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  886. struct vm_area_struct *vma,
  887. unsigned long address,
  888. pmd_t *pmd, pmd_t orig_pmd,
  889. struct page *page,
  890. unsigned long haddr)
  891. {
  892. pgtable_t pgtable;
  893. pmd_t _pmd;
  894. int ret = 0, i;
  895. struct page **pages;
  896. unsigned long mmun_start; /* For mmu_notifiers */
  897. unsigned long mmun_end; /* For mmu_notifiers */
  898. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  899. GFP_KERNEL);
  900. if (unlikely(!pages)) {
  901. ret |= VM_FAULT_OOM;
  902. goto out;
  903. }
  904. for (i = 0; i < HPAGE_PMD_NR; i++) {
  905. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  906. __GFP_OTHER_NODE,
  907. vma, address, page_to_nid(page));
  908. if (unlikely(!pages[i] ||
  909. mem_cgroup_newpage_charge(pages[i], mm,
  910. GFP_KERNEL))) {
  911. if (pages[i])
  912. put_page(pages[i]);
  913. mem_cgroup_uncharge_start();
  914. while (--i >= 0) {
  915. mem_cgroup_uncharge_page(pages[i]);
  916. put_page(pages[i]);
  917. }
  918. mem_cgroup_uncharge_end();
  919. kfree(pages);
  920. ret |= VM_FAULT_OOM;
  921. goto out;
  922. }
  923. }
  924. for (i = 0; i < HPAGE_PMD_NR; i++) {
  925. copy_user_highpage(pages[i], page + i,
  926. haddr + PAGE_SIZE * i, vma);
  927. __SetPageUptodate(pages[i]);
  928. cond_resched();
  929. }
  930. mmun_start = haddr;
  931. mmun_end = haddr + HPAGE_PMD_SIZE;
  932. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  933. spin_lock(&mm->page_table_lock);
  934. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  935. goto out_free_pages;
  936. VM_BUG_ON(!PageHead(page));
  937. pmdp_clear_flush(vma, haddr, pmd);
  938. /* leave pmd empty until pte is filled */
  939. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  940. pmd_populate(mm, &_pmd, pgtable);
  941. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  942. pte_t *pte, entry;
  943. entry = mk_pte(pages[i], vma->vm_page_prot);
  944. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  945. page_add_new_anon_rmap(pages[i], vma, haddr);
  946. pte = pte_offset_map(&_pmd, haddr);
  947. VM_BUG_ON(!pte_none(*pte));
  948. set_pte_at(mm, haddr, pte, entry);
  949. pte_unmap(pte);
  950. }
  951. kfree(pages);
  952. smp_wmb(); /* make pte visible before pmd */
  953. pmd_populate(mm, pmd, pgtable);
  954. page_remove_rmap(page);
  955. spin_unlock(&mm->page_table_lock);
  956. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  957. ret |= VM_FAULT_WRITE;
  958. put_page(page);
  959. out:
  960. return ret;
  961. out_free_pages:
  962. spin_unlock(&mm->page_table_lock);
  963. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  964. mem_cgroup_uncharge_start();
  965. for (i = 0; i < HPAGE_PMD_NR; i++) {
  966. mem_cgroup_uncharge_page(pages[i]);
  967. put_page(pages[i]);
  968. }
  969. mem_cgroup_uncharge_end();
  970. kfree(pages);
  971. goto out;
  972. }
  973. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  974. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  975. {
  976. int ret = 0;
  977. struct page *page = NULL, *new_page;
  978. unsigned long haddr;
  979. unsigned long mmun_start; /* For mmu_notifiers */
  980. unsigned long mmun_end; /* For mmu_notifiers */
  981. VM_BUG_ON(!vma->anon_vma);
  982. haddr = address & HPAGE_PMD_MASK;
  983. if (is_huge_zero_pmd(orig_pmd))
  984. goto alloc;
  985. spin_lock(&mm->page_table_lock);
  986. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  987. goto out_unlock;
  988. page = pmd_page(orig_pmd);
  989. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  990. if (page_mapcount(page) == 1) {
  991. pmd_t entry;
  992. entry = pmd_mkyoung(orig_pmd);
  993. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  994. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  995. update_mmu_cache_pmd(vma, address, pmd);
  996. ret |= VM_FAULT_WRITE;
  997. goto out_unlock;
  998. }
  999. get_page(page);
  1000. spin_unlock(&mm->page_table_lock);
  1001. alloc:
  1002. if (transparent_hugepage_enabled(vma) &&
  1003. !transparent_hugepage_debug_cow())
  1004. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  1005. vma, haddr, numa_node_id(), 0);
  1006. else
  1007. new_page = NULL;
  1008. if (unlikely(!new_page)) {
  1009. if (is_huge_zero_pmd(orig_pmd)) {
  1010. ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
  1011. address, pmd, orig_pmd, haddr);
  1012. } else {
  1013. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  1014. pmd, orig_pmd, page, haddr);
  1015. if (ret & VM_FAULT_OOM)
  1016. split_huge_page(page);
  1017. put_page(page);
  1018. }
  1019. count_vm_event(THP_FAULT_FALLBACK);
  1020. goto out;
  1021. }
  1022. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  1023. put_page(new_page);
  1024. if (page) {
  1025. split_huge_page(page);
  1026. put_page(page);
  1027. }
  1028. count_vm_event(THP_FAULT_FALLBACK);
  1029. ret |= VM_FAULT_OOM;
  1030. goto out;
  1031. }
  1032. count_vm_event(THP_FAULT_ALLOC);
  1033. if (is_huge_zero_pmd(orig_pmd))
  1034. clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
  1035. else
  1036. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  1037. __SetPageUptodate(new_page);
  1038. mmun_start = haddr;
  1039. mmun_end = haddr + HPAGE_PMD_SIZE;
  1040. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1041. spin_lock(&mm->page_table_lock);
  1042. if (page)
  1043. put_page(page);
  1044. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  1045. spin_unlock(&mm->page_table_lock);
  1046. mem_cgroup_uncharge_page(new_page);
  1047. put_page(new_page);
  1048. goto out_mn;
  1049. } else {
  1050. pmd_t entry;
  1051. entry = mk_huge_pmd(new_page, vma->vm_page_prot);
  1052. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  1053. pmdp_clear_flush(vma, haddr, pmd);
  1054. page_add_new_anon_rmap(new_page, vma, haddr);
  1055. set_pmd_at(mm, haddr, pmd, entry);
  1056. update_mmu_cache_pmd(vma, address, pmd);
  1057. if (is_huge_zero_pmd(orig_pmd)) {
  1058. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  1059. put_huge_zero_page();
  1060. } else {
  1061. VM_BUG_ON(!PageHead(page));
  1062. page_remove_rmap(page);
  1063. put_page(page);
  1064. }
  1065. ret |= VM_FAULT_WRITE;
  1066. }
  1067. spin_unlock(&mm->page_table_lock);
  1068. out_mn:
  1069. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1070. out:
  1071. return ret;
  1072. out_unlock:
  1073. spin_unlock(&mm->page_table_lock);
  1074. return ret;
  1075. }
  1076. struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
  1077. unsigned long addr,
  1078. pmd_t *pmd,
  1079. unsigned int flags)
  1080. {
  1081. struct mm_struct *mm = vma->vm_mm;
  1082. struct page *page = NULL;
  1083. assert_spin_locked(&mm->page_table_lock);
  1084. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  1085. goto out;
  1086. /* Avoid dumping huge zero page */
  1087. if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
  1088. return ERR_PTR(-EFAULT);
  1089. page = pmd_page(*pmd);
  1090. VM_BUG_ON(!PageHead(page));
  1091. if (flags & FOLL_TOUCH) {
  1092. pmd_t _pmd;
  1093. /*
  1094. * We should set the dirty bit only for FOLL_WRITE but
  1095. * for now the dirty bit in the pmd is meaningless.
  1096. * And if the dirty bit will become meaningful and
  1097. * we'll only set it with FOLL_WRITE, an atomic
  1098. * set_bit will be required on the pmd to set the
  1099. * young bit, instead of the current set_pmd_at.
  1100. */
  1101. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  1102. if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
  1103. pmd, _pmd, 1))
  1104. update_mmu_cache_pmd(vma, addr, pmd);
  1105. }
  1106. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1107. if (page->mapping && trylock_page(page)) {
  1108. lru_add_drain();
  1109. if (page->mapping)
  1110. mlock_vma_page(page);
  1111. unlock_page(page);
  1112. }
  1113. }
  1114. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  1115. VM_BUG_ON(!PageCompound(page));
  1116. if (flags & FOLL_GET)
  1117. get_page_foll(page);
  1118. out:
  1119. return page;
  1120. }
  1121. /* NUMA hinting page fault entry point for trans huge pmds */
  1122. int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  1123. unsigned long addr, pmd_t pmd, pmd_t *pmdp)
  1124. {
  1125. struct page *page;
  1126. unsigned long haddr = addr & HPAGE_PMD_MASK;
  1127. int target_nid;
  1128. int current_nid = -1;
  1129. bool migrated;
  1130. spin_lock(&mm->page_table_lock);
  1131. if (unlikely(!pmd_same(pmd, *pmdp)))
  1132. goto out_unlock;
  1133. page = pmd_page(pmd);
  1134. get_page(page);
  1135. current_nid = page_to_nid(page);
  1136. count_vm_numa_event(NUMA_HINT_FAULTS);
  1137. if (current_nid == numa_node_id())
  1138. count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
  1139. target_nid = mpol_misplaced(page, vma, haddr);
  1140. if (target_nid == -1) {
  1141. put_page(page);
  1142. goto clear_pmdnuma;
  1143. }
  1144. /* Acquire the page lock to serialise THP migrations */
  1145. spin_unlock(&mm->page_table_lock);
  1146. lock_page(page);
  1147. /* Confirm the PTE did not while locked */
  1148. spin_lock(&mm->page_table_lock);
  1149. if (unlikely(!pmd_same(pmd, *pmdp))) {
  1150. unlock_page(page);
  1151. put_page(page);
  1152. goto out_unlock;
  1153. }
  1154. spin_unlock(&mm->page_table_lock);
  1155. /* Migrate the THP to the requested node */
  1156. migrated = migrate_misplaced_transhuge_page(mm, vma,
  1157. pmdp, pmd, addr, page, target_nid);
  1158. if (!migrated)
  1159. goto check_same;
  1160. task_numa_fault(target_nid, HPAGE_PMD_NR, true);
  1161. return 0;
  1162. check_same:
  1163. spin_lock(&mm->page_table_lock);
  1164. if (unlikely(!pmd_same(pmd, *pmdp)))
  1165. goto out_unlock;
  1166. clear_pmdnuma:
  1167. pmd = pmd_mknonnuma(pmd);
  1168. set_pmd_at(mm, haddr, pmdp, pmd);
  1169. VM_BUG_ON(pmd_numa(*pmdp));
  1170. update_mmu_cache_pmd(vma, addr, pmdp);
  1171. out_unlock:
  1172. spin_unlock(&mm->page_table_lock);
  1173. if (current_nid != -1)
  1174. task_numa_fault(current_nid, HPAGE_PMD_NR, false);
  1175. return 0;
  1176. }
  1177. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  1178. pmd_t *pmd, unsigned long addr)
  1179. {
  1180. int ret = 0;
  1181. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1182. struct page *page;
  1183. pgtable_t pgtable;
  1184. pmd_t orig_pmd;
  1185. /*
  1186. * For architectures like ppc64 we look at deposited pgtable
  1187. * when calling pmdp_get_and_clear. So do the
  1188. * pgtable_trans_huge_withdraw after finishing pmdp related
  1189. * operations.
  1190. */
  1191. orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
  1192. tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
  1193. pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
  1194. if (is_huge_zero_pmd(orig_pmd)) {
  1195. tlb->mm->nr_ptes--;
  1196. spin_unlock(&tlb->mm->page_table_lock);
  1197. put_huge_zero_page();
  1198. } else {
  1199. page = pmd_page(orig_pmd);
  1200. page_remove_rmap(page);
  1201. VM_BUG_ON(page_mapcount(page) < 0);
  1202. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  1203. VM_BUG_ON(!PageHead(page));
  1204. tlb->mm->nr_ptes--;
  1205. spin_unlock(&tlb->mm->page_table_lock);
  1206. tlb_remove_page(tlb, page);
  1207. }
  1208. pte_free(tlb->mm, pgtable);
  1209. ret = 1;
  1210. }
  1211. return ret;
  1212. }
  1213. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1214. unsigned long addr, unsigned long end,
  1215. unsigned char *vec)
  1216. {
  1217. int ret = 0;
  1218. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1219. /*
  1220. * All logical pages in the range are present
  1221. * if backed by a huge page.
  1222. */
  1223. spin_unlock(&vma->vm_mm->page_table_lock);
  1224. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  1225. ret = 1;
  1226. }
  1227. return ret;
  1228. }
  1229. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  1230. unsigned long old_addr,
  1231. unsigned long new_addr, unsigned long old_end,
  1232. pmd_t *old_pmd, pmd_t *new_pmd)
  1233. {
  1234. int ret = 0;
  1235. pmd_t pmd;
  1236. struct mm_struct *mm = vma->vm_mm;
  1237. if ((old_addr & ~HPAGE_PMD_MASK) ||
  1238. (new_addr & ~HPAGE_PMD_MASK) ||
  1239. old_end - old_addr < HPAGE_PMD_SIZE ||
  1240. (new_vma->vm_flags & VM_NOHUGEPAGE))
  1241. goto out;
  1242. /*
  1243. * The destination pmd shouldn't be established, free_pgtables()
  1244. * should have release it.
  1245. */
  1246. if (WARN_ON(!pmd_none(*new_pmd))) {
  1247. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  1248. goto out;
  1249. }
  1250. ret = __pmd_trans_huge_lock(old_pmd, vma);
  1251. if (ret == 1) {
  1252. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  1253. VM_BUG_ON(!pmd_none(*new_pmd));
  1254. set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
  1255. spin_unlock(&mm->page_table_lock);
  1256. }
  1257. out:
  1258. return ret;
  1259. }
  1260. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  1261. unsigned long addr, pgprot_t newprot, int prot_numa)
  1262. {
  1263. struct mm_struct *mm = vma->vm_mm;
  1264. int ret = 0;
  1265. if (__pmd_trans_huge_lock(pmd, vma) == 1) {
  1266. pmd_t entry;
  1267. entry = pmdp_get_and_clear(mm, addr, pmd);
  1268. if (!prot_numa) {
  1269. entry = pmd_modify(entry, newprot);
  1270. BUG_ON(pmd_write(entry));
  1271. } else {
  1272. struct page *page = pmd_page(*pmd);
  1273. /* only check non-shared pages */
  1274. if (page_mapcount(page) == 1 &&
  1275. !pmd_numa(*pmd)) {
  1276. entry = pmd_mknuma(entry);
  1277. }
  1278. }
  1279. set_pmd_at(mm, addr, pmd, entry);
  1280. spin_unlock(&vma->vm_mm->page_table_lock);
  1281. ret = 1;
  1282. }
  1283. return ret;
  1284. }
  1285. /*
  1286. * Returns 1 if a given pmd maps a stable (not under splitting) thp.
  1287. * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
  1288. *
  1289. * Note that if it returns 1, this routine returns without unlocking page
  1290. * table locks. So callers must unlock them.
  1291. */
  1292. int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
  1293. {
  1294. spin_lock(&vma->vm_mm->page_table_lock);
  1295. if (likely(pmd_trans_huge(*pmd))) {
  1296. if (unlikely(pmd_trans_splitting(*pmd))) {
  1297. spin_unlock(&vma->vm_mm->page_table_lock);
  1298. wait_split_huge_page(vma->anon_vma, pmd);
  1299. return -1;
  1300. } else {
  1301. /* Thp mapped by 'pmd' is stable, so we can
  1302. * handle it as it is. */
  1303. return 1;
  1304. }
  1305. }
  1306. spin_unlock(&vma->vm_mm->page_table_lock);
  1307. return 0;
  1308. }
  1309. pmd_t *page_check_address_pmd(struct page *page,
  1310. struct mm_struct *mm,
  1311. unsigned long address,
  1312. enum page_check_address_pmd_flag flag)
  1313. {
  1314. pmd_t *pmd, *ret = NULL;
  1315. if (address & ~HPAGE_PMD_MASK)
  1316. goto out;
  1317. pmd = mm_find_pmd(mm, address);
  1318. if (!pmd)
  1319. goto out;
  1320. if (pmd_none(*pmd))
  1321. goto out;
  1322. if (pmd_page(*pmd) != page)
  1323. goto out;
  1324. /*
  1325. * split_vma() may create temporary aliased mappings. There is
  1326. * no risk as long as all huge pmd are found and have their
  1327. * splitting bit set before __split_huge_page_refcount
  1328. * runs. Finding the same huge pmd more than once during the
  1329. * same rmap walk is not a problem.
  1330. */
  1331. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1332. pmd_trans_splitting(*pmd))
  1333. goto out;
  1334. if (pmd_trans_huge(*pmd)) {
  1335. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1336. !pmd_trans_splitting(*pmd));
  1337. ret = pmd;
  1338. }
  1339. out:
  1340. return ret;
  1341. }
  1342. static int __split_huge_page_splitting(struct page *page,
  1343. struct vm_area_struct *vma,
  1344. unsigned long address)
  1345. {
  1346. struct mm_struct *mm = vma->vm_mm;
  1347. pmd_t *pmd;
  1348. int ret = 0;
  1349. /* For mmu_notifiers */
  1350. const unsigned long mmun_start = address;
  1351. const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
  1352. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1353. spin_lock(&mm->page_table_lock);
  1354. pmd = page_check_address_pmd(page, mm, address,
  1355. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1356. if (pmd) {
  1357. /*
  1358. * We can't temporarily set the pmd to null in order
  1359. * to split it, the pmd must remain marked huge at all
  1360. * times or the VM won't take the pmd_trans_huge paths
  1361. * and it won't wait on the anon_vma->root->rwsem to
  1362. * serialize against split_huge_page*.
  1363. */
  1364. pmdp_splitting_flush(vma, address, pmd);
  1365. ret = 1;
  1366. }
  1367. spin_unlock(&mm->page_table_lock);
  1368. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1369. return ret;
  1370. }
  1371. static void __split_huge_page_refcount(struct page *page,
  1372. struct list_head *list)
  1373. {
  1374. int i;
  1375. struct zone *zone = page_zone(page);
  1376. struct lruvec *lruvec;
  1377. int tail_count = 0;
  1378. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1379. spin_lock_irq(&zone->lru_lock);
  1380. lruvec = mem_cgroup_page_lruvec(page, zone);
  1381. compound_lock(page);
  1382. /* complete memcg works before add pages to LRU */
  1383. mem_cgroup_split_huge_fixup(page);
  1384. for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
  1385. struct page *page_tail = page + i;
  1386. /* tail_page->_mapcount cannot change */
  1387. BUG_ON(page_mapcount(page_tail) < 0);
  1388. tail_count += page_mapcount(page_tail);
  1389. /* check for overflow */
  1390. BUG_ON(tail_count < 0);
  1391. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1392. /*
  1393. * tail_page->_count is zero and not changing from
  1394. * under us. But get_page_unless_zero() may be running
  1395. * from under us on the tail_page. If we used
  1396. * atomic_set() below instead of atomic_add(), we
  1397. * would then run atomic_set() concurrently with
  1398. * get_page_unless_zero(), and atomic_set() is
  1399. * implemented in C not using locked ops. spin_unlock
  1400. * on x86 sometime uses locked ops because of PPro
  1401. * errata 66, 92, so unless somebody can guarantee
  1402. * atomic_set() here would be safe on all archs (and
  1403. * not only on x86), it's safer to use atomic_add().
  1404. */
  1405. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1406. &page_tail->_count);
  1407. /* after clearing PageTail the gup refcount can be released */
  1408. smp_mb();
  1409. /*
  1410. * retain hwpoison flag of the poisoned tail page:
  1411. * fix for the unsuitable process killed on Guest Machine(KVM)
  1412. * by the memory-failure.
  1413. */
  1414. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1415. page_tail->flags |= (page->flags &
  1416. ((1L << PG_referenced) |
  1417. (1L << PG_swapbacked) |
  1418. (1L << PG_mlocked) |
  1419. (1L << PG_uptodate) |
  1420. (1L << PG_active) |
  1421. (1L << PG_unevictable)));
  1422. page_tail->flags |= (1L << PG_dirty);
  1423. /* clear PageTail before overwriting first_page */
  1424. smp_wmb();
  1425. /*
  1426. * __split_huge_page_splitting() already set the
  1427. * splitting bit in all pmd that could map this
  1428. * hugepage, that will ensure no CPU can alter the
  1429. * mapcount on the head page. The mapcount is only
  1430. * accounted in the head page and it has to be
  1431. * transferred to all tail pages in the below code. So
  1432. * for this code to be safe, the split the mapcount
  1433. * can't change. But that doesn't mean userland can't
  1434. * keep changing and reading the page contents while
  1435. * we transfer the mapcount, so the pmd splitting
  1436. * status is achieved setting a reserved bit in the
  1437. * pmd, not by clearing the present bit.
  1438. */
  1439. page_tail->_mapcount = page->_mapcount;
  1440. BUG_ON(page_tail->mapping);
  1441. page_tail->mapping = page->mapping;
  1442. page_tail->index = page->index + i;
  1443. page_nid_xchg_last(page_tail, page_nid_last(page));
  1444. BUG_ON(!PageAnon(page_tail));
  1445. BUG_ON(!PageUptodate(page_tail));
  1446. BUG_ON(!PageDirty(page_tail));
  1447. BUG_ON(!PageSwapBacked(page_tail));
  1448. lru_add_page_tail(page, page_tail, lruvec, list);
  1449. }
  1450. atomic_sub(tail_count, &page->_count);
  1451. BUG_ON(atomic_read(&page->_count) <= 0);
  1452. __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
  1453. ClearPageCompound(page);
  1454. compound_unlock(page);
  1455. spin_unlock_irq(&zone->lru_lock);
  1456. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1457. struct page *page_tail = page + i;
  1458. BUG_ON(page_count(page_tail) <= 0);
  1459. /*
  1460. * Tail pages may be freed if there wasn't any mapping
  1461. * like if add_to_swap() is running on a lru page that
  1462. * had its mapping zapped. And freeing these pages
  1463. * requires taking the lru_lock so we do the put_page
  1464. * of the tail pages after the split is complete.
  1465. */
  1466. put_page(page_tail);
  1467. }
  1468. /*
  1469. * Only the head page (now become a regular page) is required
  1470. * to be pinned by the caller.
  1471. */
  1472. BUG_ON(page_count(page) <= 0);
  1473. }
  1474. static int __split_huge_page_map(struct page *page,
  1475. struct vm_area_struct *vma,
  1476. unsigned long address)
  1477. {
  1478. struct mm_struct *mm = vma->vm_mm;
  1479. pmd_t *pmd, _pmd;
  1480. int ret = 0, i;
  1481. pgtable_t pgtable;
  1482. unsigned long haddr;
  1483. spin_lock(&mm->page_table_lock);
  1484. pmd = page_check_address_pmd(page, mm, address,
  1485. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1486. if (pmd) {
  1487. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  1488. pmd_populate(mm, &_pmd, pgtable);
  1489. haddr = address;
  1490. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  1491. pte_t *pte, entry;
  1492. BUG_ON(PageCompound(page+i));
  1493. entry = mk_pte(page + i, vma->vm_page_prot);
  1494. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1495. if (!pmd_write(*pmd))
  1496. entry = pte_wrprotect(entry);
  1497. else
  1498. BUG_ON(page_mapcount(page) != 1);
  1499. if (!pmd_young(*pmd))
  1500. entry = pte_mkold(entry);
  1501. if (pmd_numa(*pmd))
  1502. entry = pte_mknuma(entry);
  1503. pte = pte_offset_map(&_pmd, haddr);
  1504. BUG_ON(!pte_none(*pte));
  1505. set_pte_at(mm, haddr, pte, entry);
  1506. pte_unmap(pte);
  1507. }
  1508. smp_wmb(); /* make pte visible before pmd */
  1509. /*
  1510. * Up to this point the pmd is present and huge and
  1511. * userland has the whole access to the hugepage
  1512. * during the split (which happens in place). If we
  1513. * overwrite the pmd with the not-huge version
  1514. * pointing to the pte here (which of course we could
  1515. * if all CPUs were bug free), userland could trigger
  1516. * a small page size TLB miss on the small sized TLB
  1517. * while the hugepage TLB entry is still established
  1518. * in the huge TLB. Some CPU doesn't like that. See
  1519. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1520. * Erratum 383 on page 93. Intel should be safe but is
  1521. * also warns that it's only safe if the permission
  1522. * and cache attributes of the two entries loaded in
  1523. * the two TLB is identical (which should be the case
  1524. * here). But it is generally safer to never allow
  1525. * small and huge TLB entries for the same virtual
  1526. * address to be loaded simultaneously. So instead of
  1527. * doing "pmd_populate(); flush_tlb_range();" we first
  1528. * mark the current pmd notpresent (atomically because
  1529. * here the pmd_trans_huge and pmd_trans_splitting
  1530. * must remain set at all times on the pmd until the
  1531. * split is complete for this pmd), then we flush the
  1532. * SMP TLB and finally we write the non-huge version
  1533. * of the pmd entry with pmd_populate.
  1534. */
  1535. pmdp_invalidate(vma, address, pmd);
  1536. pmd_populate(mm, pmd, pgtable);
  1537. ret = 1;
  1538. }
  1539. spin_unlock(&mm->page_table_lock);
  1540. return ret;
  1541. }
  1542. /* must be called with anon_vma->root->rwsem held */
  1543. static void __split_huge_page(struct page *page,
  1544. struct anon_vma *anon_vma,
  1545. struct list_head *list)
  1546. {
  1547. int mapcount, mapcount2;
  1548. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1549. struct anon_vma_chain *avc;
  1550. BUG_ON(!PageHead(page));
  1551. BUG_ON(PageTail(page));
  1552. mapcount = 0;
  1553. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1554. struct vm_area_struct *vma = avc->vma;
  1555. unsigned long addr = vma_address(page, vma);
  1556. BUG_ON(is_vma_temporary_stack(vma));
  1557. mapcount += __split_huge_page_splitting(page, vma, addr);
  1558. }
  1559. /*
  1560. * It is critical that new vmas are added to the tail of the
  1561. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1562. * and establishes a child pmd before
  1563. * __split_huge_page_splitting() freezes the parent pmd (so if
  1564. * we fail to prevent copy_huge_pmd() from running until the
  1565. * whole __split_huge_page() is complete), we will still see
  1566. * the newly established pmd of the child later during the
  1567. * walk, to be able to set it as pmd_trans_splitting too.
  1568. */
  1569. if (mapcount != page_mapcount(page))
  1570. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1571. mapcount, page_mapcount(page));
  1572. BUG_ON(mapcount != page_mapcount(page));
  1573. __split_huge_page_refcount(page, list);
  1574. mapcount2 = 0;
  1575. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1576. struct vm_area_struct *vma = avc->vma;
  1577. unsigned long addr = vma_address(page, vma);
  1578. BUG_ON(is_vma_temporary_stack(vma));
  1579. mapcount2 += __split_huge_page_map(page, vma, addr);
  1580. }
  1581. if (mapcount != mapcount2)
  1582. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1583. mapcount, mapcount2, page_mapcount(page));
  1584. BUG_ON(mapcount != mapcount2);
  1585. }
  1586. /*
  1587. * Split a hugepage into normal pages. This doesn't change the position of head
  1588. * page. If @list is null, tail pages will be added to LRU list, otherwise, to
  1589. * @list. Both head page and tail pages will inherit mapping, flags, and so on
  1590. * from the hugepage.
  1591. * Return 0 if the hugepage is split successfully otherwise return 1.
  1592. */
  1593. int split_huge_page_to_list(struct page *page, struct list_head *list)
  1594. {
  1595. struct anon_vma *anon_vma;
  1596. int ret = 1;
  1597. BUG_ON(is_huge_zero_page(page));
  1598. BUG_ON(!PageAnon(page));
  1599. /*
  1600. * The caller does not necessarily hold an mmap_sem that would prevent
  1601. * the anon_vma disappearing so we first we take a reference to it
  1602. * and then lock the anon_vma for write. This is similar to
  1603. * page_lock_anon_vma_read except the write lock is taken to serialise
  1604. * against parallel split or collapse operations.
  1605. */
  1606. anon_vma = page_get_anon_vma(page);
  1607. if (!anon_vma)
  1608. goto out;
  1609. anon_vma_lock_write(anon_vma);
  1610. ret = 0;
  1611. if (!PageCompound(page))
  1612. goto out_unlock;
  1613. BUG_ON(!PageSwapBacked(page));
  1614. __split_huge_page(page, anon_vma, list);
  1615. count_vm_event(THP_SPLIT);
  1616. BUG_ON(PageCompound(page));
  1617. out_unlock:
  1618. anon_vma_unlock_write(anon_vma);
  1619. put_anon_vma(anon_vma);
  1620. out:
  1621. return ret;
  1622. }
  1623. #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
  1624. int hugepage_madvise(struct vm_area_struct *vma,
  1625. unsigned long *vm_flags, int advice)
  1626. {
  1627. struct mm_struct *mm = vma->vm_mm;
  1628. switch (advice) {
  1629. case MADV_HUGEPAGE:
  1630. /*
  1631. * Be somewhat over-protective like KSM for now!
  1632. */
  1633. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1634. return -EINVAL;
  1635. if (mm->def_flags & VM_NOHUGEPAGE)
  1636. return -EINVAL;
  1637. *vm_flags &= ~VM_NOHUGEPAGE;
  1638. *vm_flags |= VM_HUGEPAGE;
  1639. /*
  1640. * If the vma become good for khugepaged to scan,
  1641. * register it here without waiting a page fault that
  1642. * may not happen any time soon.
  1643. */
  1644. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1645. return -ENOMEM;
  1646. break;
  1647. case MADV_NOHUGEPAGE:
  1648. /*
  1649. * Be somewhat over-protective like KSM for now!
  1650. */
  1651. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1652. return -EINVAL;
  1653. *vm_flags &= ~VM_HUGEPAGE;
  1654. *vm_flags |= VM_NOHUGEPAGE;
  1655. /*
  1656. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1657. * this vma even if we leave the mm registered in khugepaged if
  1658. * it got registered before VM_NOHUGEPAGE was set.
  1659. */
  1660. break;
  1661. }
  1662. return 0;
  1663. }
  1664. static int __init khugepaged_slab_init(void)
  1665. {
  1666. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1667. sizeof(struct mm_slot),
  1668. __alignof__(struct mm_slot), 0, NULL);
  1669. if (!mm_slot_cache)
  1670. return -ENOMEM;
  1671. return 0;
  1672. }
  1673. static inline struct mm_slot *alloc_mm_slot(void)
  1674. {
  1675. if (!mm_slot_cache) /* initialization failed */
  1676. return NULL;
  1677. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1678. }
  1679. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1680. {
  1681. kmem_cache_free(mm_slot_cache, mm_slot);
  1682. }
  1683. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1684. {
  1685. struct mm_slot *mm_slot;
  1686. hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
  1687. if (mm == mm_slot->mm)
  1688. return mm_slot;
  1689. return NULL;
  1690. }
  1691. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1692. struct mm_slot *mm_slot)
  1693. {
  1694. mm_slot->mm = mm;
  1695. hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
  1696. }
  1697. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1698. {
  1699. return atomic_read(&mm->mm_users) == 0;
  1700. }
  1701. int __khugepaged_enter(struct mm_struct *mm)
  1702. {
  1703. struct mm_slot *mm_slot;
  1704. int wakeup;
  1705. mm_slot = alloc_mm_slot();
  1706. if (!mm_slot)
  1707. return -ENOMEM;
  1708. /* __khugepaged_exit() must not run from under us */
  1709. VM_BUG_ON(khugepaged_test_exit(mm));
  1710. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1711. free_mm_slot(mm_slot);
  1712. return 0;
  1713. }
  1714. spin_lock(&khugepaged_mm_lock);
  1715. insert_to_mm_slots_hash(mm, mm_slot);
  1716. /*
  1717. * Insert just behind the scanning cursor, to let the area settle
  1718. * down a little.
  1719. */
  1720. wakeup = list_empty(&khugepaged_scan.mm_head);
  1721. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1722. spin_unlock(&khugepaged_mm_lock);
  1723. atomic_inc(&mm->mm_count);
  1724. if (wakeup)
  1725. wake_up_interruptible(&khugepaged_wait);
  1726. return 0;
  1727. }
  1728. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1729. {
  1730. unsigned long hstart, hend;
  1731. if (!vma->anon_vma)
  1732. /*
  1733. * Not yet faulted in so we will register later in the
  1734. * page fault if needed.
  1735. */
  1736. return 0;
  1737. if (vma->vm_ops)
  1738. /* khugepaged not yet working on file or special mappings */
  1739. return 0;
  1740. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1741. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1742. hend = vma->vm_end & HPAGE_PMD_MASK;
  1743. if (hstart < hend)
  1744. return khugepaged_enter(vma);
  1745. return 0;
  1746. }
  1747. void __khugepaged_exit(struct mm_struct *mm)
  1748. {
  1749. struct mm_slot *mm_slot;
  1750. int free = 0;
  1751. spin_lock(&khugepaged_mm_lock);
  1752. mm_slot = get_mm_slot(mm);
  1753. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1754. hash_del(&mm_slot->hash);
  1755. list_del(&mm_slot->mm_node);
  1756. free = 1;
  1757. }
  1758. spin_unlock(&khugepaged_mm_lock);
  1759. if (free) {
  1760. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1761. free_mm_slot(mm_slot);
  1762. mmdrop(mm);
  1763. } else if (mm_slot) {
  1764. /*
  1765. * This is required to serialize against
  1766. * khugepaged_test_exit() (which is guaranteed to run
  1767. * under mmap sem read mode). Stop here (after we
  1768. * return all pagetables will be destroyed) until
  1769. * khugepaged has finished working on the pagetables
  1770. * under the mmap_sem.
  1771. */
  1772. down_write(&mm->mmap_sem);
  1773. up_write(&mm->mmap_sem);
  1774. }
  1775. }
  1776. static void release_pte_page(struct page *page)
  1777. {
  1778. /* 0 stands for page_is_file_cache(page) == false */
  1779. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1780. unlock_page(page);
  1781. putback_lru_page(page);
  1782. }
  1783. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1784. {
  1785. while (--_pte >= pte) {
  1786. pte_t pteval = *_pte;
  1787. if (!pte_none(pteval))
  1788. release_pte_page(pte_page(pteval));
  1789. }
  1790. }
  1791. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1792. unsigned long address,
  1793. pte_t *pte)
  1794. {
  1795. struct page *page;
  1796. pte_t *_pte;
  1797. int referenced = 0, none = 0;
  1798. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1799. _pte++, address += PAGE_SIZE) {
  1800. pte_t pteval = *_pte;
  1801. if (pte_none(pteval)) {
  1802. if (++none <= khugepaged_max_ptes_none)
  1803. continue;
  1804. else
  1805. goto out;
  1806. }
  1807. if (!pte_present(pteval) || !pte_write(pteval))
  1808. goto out;
  1809. page = vm_normal_page(vma, address, pteval);
  1810. if (unlikely(!page))
  1811. goto out;
  1812. VM_BUG_ON(PageCompound(page));
  1813. BUG_ON(!PageAnon(page));
  1814. VM_BUG_ON(!PageSwapBacked(page));
  1815. /* cannot use mapcount: can't collapse if there's a gup pin */
  1816. if (page_count(page) != 1)
  1817. goto out;
  1818. /*
  1819. * We can do it before isolate_lru_page because the
  1820. * page can't be freed from under us. NOTE: PG_lock
  1821. * is needed to serialize against split_huge_page
  1822. * when invoked from the VM.
  1823. */
  1824. if (!trylock_page(page))
  1825. goto out;
  1826. /*
  1827. * Isolate the page to avoid collapsing an hugepage
  1828. * currently in use by the VM.
  1829. */
  1830. if (isolate_lru_page(page)) {
  1831. unlock_page(page);
  1832. goto out;
  1833. }
  1834. /* 0 stands for page_is_file_cache(page) == false */
  1835. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1836. VM_BUG_ON(!PageLocked(page));
  1837. VM_BUG_ON(PageLRU(page));
  1838. /* If there is no mapped pte young don't collapse the page */
  1839. if (pte_young(pteval) || PageReferenced(page) ||
  1840. mmu_notifier_test_young(vma->vm_mm, address))
  1841. referenced = 1;
  1842. }
  1843. if (likely(referenced))
  1844. return 1;
  1845. out:
  1846. release_pte_pages(pte, _pte);
  1847. return 0;
  1848. }
  1849. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1850. struct vm_area_struct *vma,
  1851. unsigned long address,
  1852. spinlock_t *ptl)
  1853. {
  1854. pte_t *_pte;
  1855. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1856. pte_t pteval = *_pte;
  1857. struct page *src_page;
  1858. if (pte_none(pteval)) {
  1859. clear_user_highpage(page, address);
  1860. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1861. } else {
  1862. src_page = pte_page(pteval);
  1863. copy_user_highpage(page, src_page, address, vma);
  1864. VM_BUG_ON(page_mapcount(src_page) != 1);
  1865. release_pte_page(src_page);
  1866. /*
  1867. * ptl mostly unnecessary, but preempt has to
  1868. * be disabled to update the per-cpu stats
  1869. * inside page_remove_rmap().
  1870. */
  1871. spin_lock(ptl);
  1872. /*
  1873. * paravirt calls inside pte_clear here are
  1874. * superfluous.
  1875. */
  1876. pte_clear(vma->vm_mm, address, _pte);
  1877. page_remove_rmap(src_page);
  1878. spin_unlock(ptl);
  1879. free_page_and_swap_cache(src_page);
  1880. }
  1881. address += PAGE_SIZE;
  1882. page++;
  1883. }
  1884. }
  1885. static void khugepaged_alloc_sleep(void)
  1886. {
  1887. wait_event_freezable_timeout(khugepaged_wait, false,
  1888. msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
  1889. }
  1890. #ifdef CONFIG_NUMA
  1891. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1892. {
  1893. if (IS_ERR(*hpage)) {
  1894. if (!*wait)
  1895. return false;
  1896. *wait = false;
  1897. *hpage = NULL;
  1898. khugepaged_alloc_sleep();
  1899. } else if (*hpage) {
  1900. put_page(*hpage);
  1901. *hpage = NULL;
  1902. }
  1903. return true;
  1904. }
  1905. static struct page
  1906. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1907. struct vm_area_struct *vma, unsigned long address,
  1908. int node)
  1909. {
  1910. VM_BUG_ON(*hpage);
  1911. /*
  1912. * Allocate the page while the vma is still valid and under
  1913. * the mmap_sem read mode so there is no memory allocation
  1914. * later when we take the mmap_sem in write mode. This is more
  1915. * friendly behavior (OTOH it may actually hide bugs) to
  1916. * filesystems in userland with daemons allocating memory in
  1917. * the userland I/O paths. Allocating memory with the
  1918. * mmap_sem in read mode is good idea also to allow greater
  1919. * scalability.
  1920. */
  1921. *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
  1922. node, __GFP_OTHER_NODE);
  1923. /*
  1924. * After allocating the hugepage, release the mmap_sem read lock in
  1925. * preparation for taking it in write mode.
  1926. */
  1927. up_read(&mm->mmap_sem);
  1928. if (unlikely(!*hpage)) {
  1929. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1930. *hpage = ERR_PTR(-ENOMEM);
  1931. return NULL;
  1932. }
  1933. count_vm_event(THP_COLLAPSE_ALLOC);
  1934. return *hpage;
  1935. }
  1936. #else
  1937. static struct page *khugepaged_alloc_hugepage(bool *wait)
  1938. {
  1939. struct page *hpage;
  1940. do {
  1941. hpage = alloc_hugepage(khugepaged_defrag());
  1942. if (!hpage) {
  1943. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1944. if (!*wait)
  1945. return NULL;
  1946. *wait = false;
  1947. khugepaged_alloc_sleep();
  1948. } else
  1949. count_vm_event(THP_COLLAPSE_ALLOC);
  1950. } while (unlikely(!hpage) && likely(khugepaged_enabled()));
  1951. return hpage;
  1952. }
  1953. static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
  1954. {
  1955. if (!*hpage)
  1956. *hpage = khugepaged_alloc_hugepage(wait);
  1957. if (unlikely(!*hpage))
  1958. return false;
  1959. return true;
  1960. }
  1961. static struct page
  1962. *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
  1963. struct vm_area_struct *vma, unsigned long address,
  1964. int node)
  1965. {
  1966. up_read(&mm->mmap_sem);
  1967. VM_BUG_ON(!*hpage);
  1968. return *hpage;
  1969. }
  1970. #endif
  1971. static bool hugepage_vma_check(struct vm_area_struct *vma)
  1972. {
  1973. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  1974. (vma->vm_flags & VM_NOHUGEPAGE))
  1975. return false;
  1976. if (!vma->anon_vma || vma->vm_ops)
  1977. return false;
  1978. if (is_vma_temporary_stack(vma))
  1979. return false;
  1980. VM_BUG_ON(vma->vm_flags & VM_NO_THP);
  1981. return true;
  1982. }
  1983. static void collapse_huge_page(struct mm_struct *mm,
  1984. unsigned long address,
  1985. struct page **hpage,
  1986. struct vm_area_struct *vma,
  1987. int node)
  1988. {
  1989. pmd_t *pmd, _pmd;
  1990. pte_t *pte;
  1991. pgtable_t pgtable;
  1992. struct page *new_page;
  1993. spinlock_t *ptl;
  1994. int isolated;
  1995. unsigned long hstart, hend;
  1996. unsigned long mmun_start; /* For mmu_notifiers */
  1997. unsigned long mmun_end; /* For mmu_notifiers */
  1998. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1999. /* release the mmap_sem read lock. */
  2000. new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
  2001. if (!new_page)
  2002. return;
  2003. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
  2004. return;
  2005. /*
  2006. * Prevent all access to pagetables with the exception of
  2007. * gup_fast later hanlded by the ptep_clear_flush and the VM
  2008. * handled by the anon_vma lock + PG_lock.
  2009. */
  2010. down_write(&mm->mmap_sem);
  2011. if (unlikely(khugepaged_test_exit(mm)))
  2012. goto out;
  2013. vma = find_vma(mm, address);
  2014. if (!vma)
  2015. goto out;
  2016. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2017. hend = vma->vm_end & HPAGE_PMD_MASK;
  2018. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  2019. goto out;
  2020. if (!hugepage_vma_check(vma))
  2021. goto out;
  2022. pmd = mm_find_pmd(mm, address);
  2023. if (!pmd)
  2024. goto out;
  2025. if (pmd_trans_huge(*pmd))
  2026. goto out;
  2027. anon_vma_lock_write(vma->anon_vma);
  2028. pte = pte_offset_map(pmd, address);
  2029. ptl = pte_lockptr(mm, pmd);
  2030. mmun_start = address;
  2031. mmun_end = address + HPAGE_PMD_SIZE;
  2032. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2033. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  2034. /*
  2035. * After this gup_fast can't run anymore. This also removes
  2036. * any huge TLB entry from the CPU so we won't allow
  2037. * huge and small TLB entries for the same virtual address
  2038. * to avoid the risk of CPU bugs in that area.
  2039. */
  2040. _pmd = pmdp_clear_flush(vma, address, pmd);
  2041. spin_unlock(&mm->page_table_lock);
  2042. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2043. spin_lock(ptl);
  2044. isolated = __collapse_huge_page_isolate(vma, address, pte);
  2045. spin_unlock(ptl);
  2046. if (unlikely(!isolated)) {
  2047. pte_unmap(pte);
  2048. spin_lock(&mm->page_table_lock);
  2049. BUG_ON(!pmd_none(*pmd));
  2050. /*
  2051. * We can only use set_pmd_at when establishing
  2052. * hugepmds and never for establishing regular pmds that
  2053. * points to regular pagetables. Use pmd_populate for that
  2054. */
  2055. pmd_populate(mm, pmd, pmd_pgtable(_pmd));
  2056. spin_unlock(&mm->page_table_lock);
  2057. anon_vma_unlock_write(vma->anon_vma);
  2058. goto out;
  2059. }
  2060. /*
  2061. * All pages are isolated and locked so anon_vma rmap
  2062. * can't run anymore.
  2063. */
  2064. anon_vma_unlock_write(vma->anon_vma);
  2065. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  2066. pte_unmap(pte);
  2067. __SetPageUptodate(new_page);
  2068. pgtable = pmd_pgtable(_pmd);
  2069. _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
  2070. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  2071. /*
  2072. * spin_lock() below is not the equivalent of smp_wmb(), so
  2073. * this is needed to avoid the copy_huge_page writes to become
  2074. * visible after the set_pmd_at() write.
  2075. */
  2076. smp_wmb();
  2077. spin_lock(&mm->page_table_lock);
  2078. BUG_ON(!pmd_none(*pmd));
  2079. page_add_new_anon_rmap(new_page, vma, address);
  2080. pgtable_trans_huge_deposit(mm, pmd, pgtable);
  2081. set_pmd_at(mm, address, pmd, _pmd);
  2082. update_mmu_cache_pmd(vma, address, pmd);
  2083. spin_unlock(&mm->page_table_lock);
  2084. *hpage = NULL;
  2085. khugepaged_pages_collapsed++;
  2086. out_up_write:
  2087. up_write(&mm->mmap_sem);
  2088. return;
  2089. out:
  2090. mem_cgroup_uncharge_page(new_page);
  2091. goto out_up_write;
  2092. }
  2093. static int khugepaged_scan_pmd(struct mm_struct *mm,
  2094. struct vm_area_struct *vma,
  2095. unsigned long address,
  2096. struct page **hpage)
  2097. {
  2098. pmd_t *pmd;
  2099. pte_t *pte, *_pte;
  2100. int ret = 0, referenced = 0, none = 0;
  2101. struct page *page;
  2102. unsigned long _address;
  2103. spinlock_t *ptl;
  2104. int node = NUMA_NO_NODE;
  2105. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  2106. pmd = mm_find_pmd(mm, address);
  2107. if (!pmd)
  2108. goto out;
  2109. if (pmd_trans_huge(*pmd))
  2110. goto out;
  2111. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  2112. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  2113. _pte++, _address += PAGE_SIZE) {
  2114. pte_t pteval = *_pte;
  2115. if (pte_none(pteval)) {
  2116. if (++none <= khugepaged_max_ptes_none)
  2117. continue;
  2118. else
  2119. goto out_unmap;
  2120. }
  2121. if (!pte_present(pteval) || !pte_write(pteval))
  2122. goto out_unmap;
  2123. page = vm_normal_page(vma, _address, pteval);
  2124. if (unlikely(!page))
  2125. goto out_unmap;
  2126. /*
  2127. * Chose the node of the first page. This could
  2128. * be more sophisticated and look at more pages,
  2129. * but isn't for now.
  2130. */
  2131. if (node == NUMA_NO_NODE)
  2132. node = page_to_nid(page);
  2133. VM_BUG_ON(PageCompound(page));
  2134. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  2135. goto out_unmap;
  2136. /* cannot use mapcount: can't collapse if there's a gup pin */
  2137. if (page_count(page) != 1)
  2138. goto out_unmap;
  2139. if (pte_young(pteval) || PageReferenced(page) ||
  2140. mmu_notifier_test_young(vma->vm_mm, address))
  2141. referenced = 1;
  2142. }
  2143. if (referenced)
  2144. ret = 1;
  2145. out_unmap:
  2146. pte_unmap_unlock(pte, ptl);
  2147. if (ret)
  2148. /* collapse_huge_page will return with the mmap_sem released */
  2149. collapse_huge_page(mm, address, hpage, vma, node);
  2150. out:
  2151. return ret;
  2152. }
  2153. static void collect_mm_slot(struct mm_slot *mm_slot)
  2154. {
  2155. struct mm_struct *mm = mm_slot->mm;
  2156. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2157. if (khugepaged_test_exit(mm)) {
  2158. /* free mm_slot */
  2159. hash_del(&mm_slot->hash);
  2160. list_del(&mm_slot->mm_node);
  2161. /*
  2162. * Not strictly needed because the mm exited already.
  2163. *
  2164. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  2165. */
  2166. /* khugepaged_mm_lock actually not necessary for the below */
  2167. free_mm_slot(mm_slot);
  2168. mmdrop(mm);
  2169. }
  2170. }
  2171. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  2172. struct page **hpage)
  2173. __releases(&khugepaged_mm_lock)
  2174. __acquires(&khugepaged_mm_lock)
  2175. {
  2176. struct mm_slot *mm_slot;
  2177. struct mm_struct *mm;
  2178. struct vm_area_struct *vma;
  2179. int progress = 0;
  2180. VM_BUG_ON(!pages);
  2181. VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
  2182. if (khugepaged_scan.mm_slot)
  2183. mm_slot = khugepaged_scan.mm_slot;
  2184. else {
  2185. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  2186. struct mm_slot, mm_node);
  2187. khugepaged_scan.address = 0;
  2188. khugepaged_scan.mm_slot = mm_slot;
  2189. }
  2190. spin_unlock(&khugepaged_mm_lock);
  2191. mm = mm_slot->mm;
  2192. down_read(&mm->mmap_sem);
  2193. if (unlikely(khugepaged_test_exit(mm)))
  2194. vma = NULL;
  2195. else
  2196. vma = find_vma(mm, khugepaged_scan.address);
  2197. progress++;
  2198. for (; vma; vma = vma->vm_next) {
  2199. unsigned long hstart, hend;
  2200. cond_resched();
  2201. if (unlikely(khugepaged_test_exit(mm))) {
  2202. progress++;
  2203. break;
  2204. }
  2205. if (!hugepage_vma_check(vma)) {
  2206. skip:
  2207. progress++;
  2208. continue;
  2209. }
  2210. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  2211. hend = vma->vm_end & HPAGE_PMD_MASK;
  2212. if (hstart >= hend)
  2213. goto skip;
  2214. if (khugepaged_scan.address > hend)
  2215. goto skip;
  2216. if (khugepaged_scan.address < hstart)
  2217. khugepaged_scan.address = hstart;
  2218. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  2219. while (khugepaged_scan.address < hend) {
  2220. int ret;
  2221. cond_resched();
  2222. if (unlikely(khugepaged_test_exit(mm)))
  2223. goto breakouterloop;
  2224. VM_BUG_ON(khugepaged_scan.address < hstart ||
  2225. khugepaged_scan.address + HPAGE_PMD_SIZE >
  2226. hend);
  2227. ret = khugepaged_scan_pmd(mm, vma,
  2228. khugepaged_scan.address,
  2229. hpage);
  2230. /* move to next address */
  2231. khugepaged_scan.address += HPAGE_PMD_SIZE;
  2232. progress += HPAGE_PMD_NR;
  2233. if (ret)
  2234. /* we released mmap_sem so break loop */
  2235. goto breakouterloop_mmap_sem;
  2236. if (progress >= pages)
  2237. goto breakouterloop;
  2238. }
  2239. }
  2240. breakouterloop:
  2241. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  2242. breakouterloop_mmap_sem:
  2243. spin_lock(&khugepaged_mm_lock);
  2244. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  2245. /*
  2246. * Release the current mm_slot if this mm is about to die, or
  2247. * if we scanned all vmas of this mm.
  2248. */
  2249. if (khugepaged_test_exit(mm) || !vma) {
  2250. /*
  2251. * Make sure that if mm_users is reaching zero while
  2252. * khugepaged runs here, khugepaged_exit will find
  2253. * mm_slot not pointing to the exiting mm.
  2254. */
  2255. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  2256. khugepaged_scan.mm_slot = list_entry(
  2257. mm_slot->mm_node.next,
  2258. struct mm_slot, mm_node);
  2259. khugepaged_scan.address = 0;
  2260. } else {
  2261. khugepaged_scan.mm_slot = NULL;
  2262. khugepaged_full_scans++;
  2263. }
  2264. collect_mm_slot(mm_slot);
  2265. }
  2266. return progress;
  2267. }
  2268. static int khugepaged_has_work(void)
  2269. {
  2270. return !list_empty(&khugepaged_scan.mm_head) &&
  2271. khugepaged_enabled();
  2272. }
  2273. static int khugepaged_wait_event(void)
  2274. {
  2275. return !list_empty(&khugepaged_scan.mm_head) ||
  2276. kthread_should_stop();
  2277. }
  2278. static void khugepaged_do_scan(void)
  2279. {
  2280. struct page *hpage = NULL;
  2281. unsigned int progress = 0, pass_through_head = 0;
  2282. unsigned int pages = khugepaged_pages_to_scan;
  2283. bool wait = true;
  2284. barrier(); /* write khugepaged_pages_to_scan to local stack */
  2285. while (progress < pages) {
  2286. if (!khugepaged_prealloc_page(&hpage, &wait))
  2287. break;
  2288. cond_resched();
  2289. if (unlikely(kthread_should_stop() || freezing(current)))
  2290. break;
  2291. spin_lock(&khugepaged_mm_lock);
  2292. if (!khugepaged_scan.mm_slot)
  2293. pass_through_head++;
  2294. if (khugepaged_has_work() &&
  2295. pass_through_head < 2)
  2296. progress += khugepaged_scan_mm_slot(pages - progress,
  2297. &hpage);
  2298. else
  2299. progress = pages;
  2300. spin_unlock(&khugepaged_mm_lock);
  2301. }
  2302. if (!IS_ERR_OR_NULL(hpage))
  2303. put_page(hpage);
  2304. }
  2305. static void khugepaged_wait_work(void)
  2306. {
  2307. try_to_freeze();
  2308. if (khugepaged_has_work()) {
  2309. if (!khugepaged_scan_sleep_millisecs)
  2310. return;
  2311. wait_event_freezable_timeout(khugepaged_wait,
  2312. kthread_should_stop(),
  2313. msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
  2314. return;
  2315. }
  2316. if (khugepaged_enabled())
  2317. wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
  2318. }
  2319. static int khugepaged(void *none)
  2320. {
  2321. struct mm_slot *mm_slot;
  2322. set_freezable();
  2323. set_user_nice(current, 19);
  2324. while (!kthread_should_stop()) {
  2325. khugepaged_do_scan();
  2326. khugepaged_wait_work();
  2327. }
  2328. spin_lock(&khugepaged_mm_lock);
  2329. mm_slot = khugepaged_scan.mm_slot;
  2330. khugepaged_scan.mm_slot = NULL;
  2331. if (mm_slot)
  2332. collect_mm_slot(mm_slot);
  2333. spin_unlock(&khugepaged_mm_lock);
  2334. return 0;
  2335. }
  2336. static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
  2337. unsigned long haddr, pmd_t *pmd)
  2338. {
  2339. struct mm_struct *mm = vma->vm_mm;
  2340. pgtable_t pgtable;
  2341. pmd_t _pmd;
  2342. int i;
  2343. pmdp_clear_flush(vma, haddr, pmd);
  2344. /* leave pmd empty until pte is filled */
  2345. pgtable = pgtable_trans_huge_withdraw(mm, pmd);
  2346. pmd_populate(mm, &_pmd, pgtable);
  2347. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  2348. pte_t *pte, entry;
  2349. entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
  2350. entry = pte_mkspecial(entry);
  2351. pte = pte_offset_map(&_pmd, haddr);
  2352. VM_BUG_ON(!pte_none(*pte));
  2353. set_pte_at(mm, haddr, pte, entry);
  2354. pte_unmap(pte);
  2355. }
  2356. smp_wmb(); /* make pte visible before pmd */
  2357. pmd_populate(mm, pmd, pgtable);
  2358. put_huge_zero_page();
  2359. }
  2360. void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
  2361. pmd_t *pmd)
  2362. {
  2363. struct page *page;
  2364. struct mm_struct *mm = vma->vm_mm;
  2365. unsigned long haddr = address & HPAGE_PMD_MASK;
  2366. unsigned long mmun_start; /* For mmu_notifiers */
  2367. unsigned long mmun_end; /* For mmu_notifiers */
  2368. BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
  2369. mmun_start = haddr;
  2370. mmun_end = haddr + HPAGE_PMD_SIZE;
  2371. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2372. spin_lock(&mm->page_table_lock);
  2373. if (unlikely(!pmd_trans_huge(*pmd))) {
  2374. spin_unlock(&mm->page_table_lock);
  2375. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2376. return;
  2377. }
  2378. if (is_huge_zero_pmd(*pmd)) {
  2379. __split_huge_zero_page_pmd(vma, haddr, pmd);
  2380. spin_unlock(&mm->page_table_lock);
  2381. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2382. return;
  2383. }
  2384. page = pmd_page(*pmd);
  2385. VM_BUG_ON(!page_count(page));
  2386. get_page(page);
  2387. spin_unlock(&mm->page_table_lock);
  2388. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2389. split_huge_page(page);
  2390. put_page(page);
  2391. BUG_ON(pmd_trans_huge(*pmd));
  2392. }
  2393. void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
  2394. pmd_t *pmd)
  2395. {
  2396. struct vm_area_struct *vma;
  2397. vma = find_vma(mm, address);
  2398. BUG_ON(vma == NULL);
  2399. split_huge_page_pmd(vma, address, pmd);
  2400. }
  2401. static void split_huge_page_address(struct mm_struct *mm,
  2402. unsigned long address)
  2403. {
  2404. pmd_t *pmd;
  2405. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2406. pmd = mm_find_pmd(mm, address);
  2407. if (!pmd)
  2408. return;
  2409. /*
  2410. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2411. * materialize from under us.
  2412. */
  2413. split_huge_page_pmd_mm(mm, address, pmd);
  2414. }
  2415. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2416. unsigned long start,
  2417. unsigned long end,
  2418. long adjust_next)
  2419. {
  2420. /*
  2421. * If the new start address isn't hpage aligned and it could
  2422. * previously contain an hugepage: check if we need to split
  2423. * an huge pmd.
  2424. */
  2425. if (start & ~HPAGE_PMD_MASK &&
  2426. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2427. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2428. split_huge_page_address(vma->vm_mm, start);
  2429. /*
  2430. * If the new end address isn't hpage aligned and it could
  2431. * previously contain an hugepage: check if we need to split
  2432. * an huge pmd.
  2433. */
  2434. if (end & ~HPAGE_PMD_MASK &&
  2435. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2436. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2437. split_huge_page_address(vma->vm_mm, end);
  2438. /*
  2439. * If we're also updating the vma->vm_next->vm_start, if the new
  2440. * vm_next->vm_start isn't page aligned and it could previously
  2441. * contain an hugepage: check if we need to split an huge pmd.
  2442. */
  2443. if (adjust_next > 0) {
  2444. struct vm_area_struct *next = vma->vm_next;
  2445. unsigned long nstart = next->vm_start;
  2446. nstart += adjust_next << PAGE_SHIFT;
  2447. if (nstart & ~HPAGE_PMD_MASK &&
  2448. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2449. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2450. split_huge_page_address(next->vm_mm, nstart);
  2451. }
  2452. }