xfs_buf_item.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154
  1. /*
  2. * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_trans.h"
  24. #include "xfs_sb.h"
  25. #include "xfs_ag.h"
  26. #include "xfs_mount.h"
  27. #include "xfs_buf_item.h"
  28. #include "xfs_trans_priv.h"
  29. #include "xfs_error.h"
  30. #include "xfs_trace.h"
  31. kmem_zone_t *xfs_buf_item_zone;
  32. static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
  33. {
  34. return container_of(lip, struct xfs_buf_log_item, bli_item);
  35. }
  36. STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp);
  37. static inline int
  38. xfs_buf_log_format_size(
  39. struct xfs_buf_log_format *blfp)
  40. {
  41. return offsetof(struct xfs_buf_log_format, blf_data_map) +
  42. (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
  43. }
  44. /*
  45. * This returns the number of log iovecs needed to log the
  46. * given buf log item.
  47. *
  48. * It calculates this as 1 iovec for the buf log format structure
  49. * and 1 for each stretch of non-contiguous chunks to be logged.
  50. * Contiguous chunks are logged in a single iovec.
  51. *
  52. * If the XFS_BLI_STALE flag has been set, then log nothing.
  53. */
  54. STATIC void
  55. xfs_buf_item_size_segment(
  56. struct xfs_buf_log_item *bip,
  57. struct xfs_buf_log_format *blfp,
  58. int *nvecs,
  59. int *nbytes)
  60. {
  61. struct xfs_buf *bp = bip->bli_buf;
  62. int next_bit;
  63. int last_bit;
  64. last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
  65. if (last_bit == -1)
  66. return;
  67. /*
  68. * initial count for a dirty buffer is 2 vectors - the format structure
  69. * and the first dirty region.
  70. */
  71. *nvecs += 2;
  72. *nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
  73. while (last_bit != -1) {
  74. /*
  75. * This takes the bit number to start looking from and
  76. * returns the next set bit from there. It returns -1
  77. * if there are no more bits set or the start bit is
  78. * beyond the end of the bitmap.
  79. */
  80. next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
  81. last_bit + 1);
  82. /*
  83. * If we run out of bits, leave the loop,
  84. * else if we find a new set of bits bump the number of vecs,
  85. * else keep scanning the current set of bits.
  86. */
  87. if (next_bit == -1) {
  88. break;
  89. } else if (next_bit != last_bit + 1) {
  90. last_bit = next_bit;
  91. (*nvecs)++;
  92. } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
  93. (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
  94. XFS_BLF_CHUNK)) {
  95. last_bit = next_bit;
  96. (*nvecs)++;
  97. } else {
  98. last_bit++;
  99. }
  100. *nbytes += XFS_BLF_CHUNK;
  101. }
  102. }
  103. /*
  104. * This returns the number of log iovecs needed to log the given buf log item.
  105. *
  106. * It calculates this as 1 iovec for the buf log format structure and 1 for each
  107. * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
  108. * in a single iovec.
  109. *
  110. * Discontiguous buffers need a format structure per region that that is being
  111. * logged. This makes the changes in the buffer appear to log recovery as though
  112. * they came from separate buffers, just like would occur if multiple buffers
  113. * were used instead of a single discontiguous buffer. This enables
  114. * discontiguous buffers to be in-memory constructs, completely transparent to
  115. * what ends up on disk.
  116. *
  117. * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
  118. * format structures.
  119. */
  120. STATIC void
  121. xfs_buf_item_size(
  122. struct xfs_log_item *lip,
  123. int *nvecs,
  124. int *nbytes)
  125. {
  126. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  127. int i;
  128. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  129. if (bip->bli_flags & XFS_BLI_STALE) {
  130. /*
  131. * The buffer is stale, so all we need to log
  132. * is the buf log format structure with the
  133. * cancel flag in it.
  134. */
  135. trace_xfs_buf_item_size_stale(bip);
  136. ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
  137. *nvecs += bip->bli_format_count;
  138. for (i = 0; i < bip->bli_format_count; i++) {
  139. *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
  140. }
  141. return;
  142. }
  143. ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
  144. if (bip->bli_flags & XFS_BLI_ORDERED) {
  145. /*
  146. * The buffer has been logged just to order it.
  147. * It is not being included in the transaction
  148. * commit, so no vectors are used at all.
  149. */
  150. trace_xfs_buf_item_size_ordered(bip);
  151. *nvecs = XFS_LOG_VEC_ORDERED;
  152. return;
  153. }
  154. /*
  155. * the vector count is based on the number of buffer vectors we have
  156. * dirty bits in. This will only be greater than one when we have a
  157. * compound buffer with more than one segment dirty. Hence for compound
  158. * buffers we need to track which segment the dirty bits correspond to,
  159. * and when we move from one segment to the next increment the vector
  160. * count for the extra buf log format structure that will need to be
  161. * written.
  162. */
  163. for (i = 0; i < bip->bli_format_count; i++) {
  164. xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
  165. nvecs, nbytes);
  166. }
  167. trace_xfs_buf_item_size(bip);
  168. }
  169. static struct xfs_log_iovec *
  170. xfs_buf_item_format_segment(
  171. struct xfs_buf_log_item *bip,
  172. struct xfs_log_iovec *vecp,
  173. uint offset,
  174. struct xfs_buf_log_format *blfp)
  175. {
  176. struct xfs_buf *bp = bip->bli_buf;
  177. uint base_size;
  178. uint nvecs;
  179. int first_bit;
  180. int last_bit;
  181. int next_bit;
  182. uint nbits;
  183. uint buffer_offset;
  184. /* copy the flags across from the base format item */
  185. blfp->blf_flags = bip->__bli_format.blf_flags;
  186. /*
  187. * Base size is the actual size of the ondisk structure - it reflects
  188. * the actual size of the dirty bitmap rather than the size of the in
  189. * memory structure.
  190. */
  191. base_size = xfs_buf_log_format_size(blfp);
  192. nvecs = 0;
  193. first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
  194. if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
  195. /*
  196. * If the map is not be dirty in the transaction, mark
  197. * the size as zero and do not advance the vector pointer.
  198. */
  199. goto out;
  200. }
  201. vecp->i_addr = blfp;
  202. vecp->i_len = base_size;
  203. vecp->i_type = XLOG_REG_TYPE_BFORMAT;
  204. vecp++;
  205. nvecs = 1;
  206. if (bip->bli_flags & XFS_BLI_STALE) {
  207. /*
  208. * The buffer is stale, so all we need to log
  209. * is the buf log format structure with the
  210. * cancel flag in it.
  211. */
  212. trace_xfs_buf_item_format_stale(bip);
  213. ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
  214. goto out;
  215. }
  216. /*
  217. * Fill in an iovec for each set of contiguous chunks.
  218. */
  219. last_bit = first_bit;
  220. nbits = 1;
  221. for (;;) {
  222. /*
  223. * This takes the bit number to start looking from and
  224. * returns the next set bit from there. It returns -1
  225. * if there are no more bits set or the start bit is
  226. * beyond the end of the bitmap.
  227. */
  228. next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
  229. (uint)last_bit + 1);
  230. /*
  231. * If we run out of bits fill in the last iovec and get
  232. * out of the loop.
  233. * Else if we start a new set of bits then fill in the
  234. * iovec for the series we were looking at and start
  235. * counting the bits in the new one.
  236. * Else we're still in the same set of bits so just
  237. * keep counting and scanning.
  238. */
  239. if (next_bit == -1) {
  240. buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
  241. vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
  242. vecp->i_len = nbits * XFS_BLF_CHUNK;
  243. vecp->i_type = XLOG_REG_TYPE_BCHUNK;
  244. nvecs++;
  245. break;
  246. } else if (next_bit != last_bit + 1) {
  247. buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
  248. vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
  249. vecp->i_len = nbits * XFS_BLF_CHUNK;
  250. vecp->i_type = XLOG_REG_TYPE_BCHUNK;
  251. nvecs++;
  252. vecp++;
  253. first_bit = next_bit;
  254. last_bit = next_bit;
  255. nbits = 1;
  256. } else if (xfs_buf_offset(bp, offset +
  257. (next_bit << XFS_BLF_SHIFT)) !=
  258. (xfs_buf_offset(bp, offset +
  259. (last_bit << XFS_BLF_SHIFT)) +
  260. XFS_BLF_CHUNK)) {
  261. buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
  262. vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
  263. vecp->i_len = nbits * XFS_BLF_CHUNK;
  264. vecp->i_type = XLOG_REG_TYPE_BCHUNK;
  265. nvecs++;
  266. vecp++;
  267. first_bit = next_bit;
  268. last_bit = next_bit;
  269. nbits = 1;
  270. } else {
  271. last_bit++;
  272. nbits++;
  273. }
  274. }
  275. out:
  276. blfp->blf_size = nvecs;
  277. return vecp;
  278. }
  279. /*
  280. * This is called to fill in the vector of log iovecs for the
  281. * given log buf item. It fills the first entry with a buf log
  282. * format structure, and the rest point to contiguous chunks
  283. * within the buffer.
  284. */
  285. STATIC void
  286. xfs_buf_item_format(
  287. struct xfs_log_item *lip,
  288. struct xfs_log_iovec *vecp)
  289. {
  290. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  291. struct xfs_buf *bp = bip->bli_buf;
  292. uint offset = 0;
  293. int i;
  294. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  295. ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
  296. (bip->bli_flags & XFS_BLI_STALE));
  297. /*
  298. * If it is an inode buffer, transfer the in-memory state to the
  299. * format flags and clear the in-memory state.
  300. *
  301. * For buffer based inode allocation, we do not transfer
  302. * this state if the inode buffer allocation has not yet been committed
  303. * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
  304. * correct replay of the inode allocation.
  305. *
  306. * For icreate item based inode allocation, the buffers aren't written
  307. * to the journal during allocation, and hence we should always tag the
  308. * buffer as an inode buffer so that the correct unlinked list replay
  309. * occurs during recovery.
  310. */
  311. if (bip->bli_flags & XFS_BLI_INODE_BUF) {
  312. if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) ||
  313. !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
  314. xfs_log_item_in_current_chkpt(lip)))
  315. bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
  316. bip->bli_flags &= ~XFS_BLI_INODE_BUF;
  317. }
  318. if ((bip->bli_flags & (XFS_BLI_ORDERED|XFS_BLI_STALE)) ==
  319. XFS_BLI_ORDERED) {
  320. /*
  321. * The buffer has been logged just to order it. It is not being
  322. * included in the transaction commit, so don't format it.
  323. */
  324. trace_xfs_buf_item_format_ordered(bip);
  325. return;
  326. }
  327. for (i = 0; i < bip->bli_format_count; i++) {
  328. vecp = xfs_buf_item_format_segment(bip, vecp, offset,
  329. &bip->bli_formats[i]);
  330. offset += bp->b_maps[i].bm_len;
  331. }
  332. /*
  333. * Check to make sure everything is consistent.
  334. */
  335. trace_xfs_buf_item_format(bip);
  336. }
  337. /*
  338. * This is called to pin the buffer associated with the buf log item in memory
  339. * so it cannot be written out.
  340. *
  341. * We also always take a reference to the buffer log item here so that the bli
  342. * is held while the item is pinned in memory. This means that we can
  343. * unconditionally drop the reference count a transaction holds when the
  344. * transaction is completed.
  345. */
  346. STATIC void
  347. xfs_buf_item_pin(
  348. struct xfs_log_item *lip)
  349. {
  350. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  351. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  352. ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
  353. (bip->bli_flags & XFS_BLI_ORDERED) ||
  354. (bip->bli_flags & XFS_BLI_STALE));
  355. trace_xfs_buf_item_pin(bip);
  356. atomic_inc(&bip->bli_refcount);
  357. atomic_inc(&bip->bli_buf->b_pin_count);
  358. }
  359. /*
  360. * This is called to unpin the buffer associated with the buf log
  361. * item which was previously pinned with a call to xfs_buf_item_pin().
  362. *
  363. * Also drop the reference to the buf item for the current transaction.
  364. * If the XFS_BLI_STALE flag is set and we are the last reference,
  365. * then free up the buf log item and unlock the buffer.
  366. *
  367. * If the remove flag is set we are called from uncommit in the
  368. * forced-shutdown path. If that is true and the reference count on
  369. * the log item is going to drop to zero we need to free the item's
  370. * descriptor in the transaction.
  371. */
  372. STATIC void
  373. xfs_buf_item_unpin(
  374. struct xfs_log_item *lip,
  375. int remove)
  376. {
  377. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  378. xfs_buf_t *bp = bip->bli_buf;
  379. struct xfs_ail *ailp = lip->li_ailp;
  380. int stale = bip->bli_flags & XFS_BLI_STALE;
  381. int freed;
  382. ASSERT(bp->b_fspriv == bip);
  383. ASSERT(atomic_read(&bip->bli_refcount) > 0);
  384. trace_xfs_buf_item_unpin(bip);
  385. freed = atomic_dec_and_test(&bip->bli_refcount);
  386. if (atomic_dec_and_test(&bp->b_pin_count))
  387. wake_up_all(&bp->b_waiters);
  388. if (freed && stale) {
  389. ASSERT(bip->bli_flags & XFS_BLI_STALE);
  390. ASSERT(xfs_buf_islocked(bp));
  391. ASSERT(XFS_BUF_ISSTALE(bp));
  392. ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
  393. trace_xfs_buf_item_unpin_stale(bip);
  394. if (remove) {
  395. /*
  396. * If we are in a transaction context, we have to
  397. * remove the log item from the transaction as we are
  398. * about to release our reference to the buffer. If we
  399. * don't, the unlock that occurs later in
  400. * xfs_trans_uncommit() will try to reference the
  401. * buffer which we no longer have a hold on.
  402. */
  403. if (lip->li_desc)
  404. xfs_trans_del_item(lip);
  405. /*
  406. * Since the transaction no longer refers to the buffer,
  407. * the buffer should no longer refer to the transaction.
  408. */
  409. bp->b_transp = NULL;
  410. }
  411. /*
  412. * If we get called here because of an IO error, we may
  413. * or may not have the item on the AIL. xfs_trans_ail_delete()
  414. * will take care of that situation.
  415. * xfs_trans_ail_delete() drops the AIL lock.
  416. */
  417. if (bip->bli_flags & XFS_BLI_STALE_INODE) {
  418. xfs_buf_do_callbacks(bp);
  419. bp->b_fspriv = NULL;
  420. bp->b_iodone = NULL;
  421. } else {
  422. spin_lock(&ailp->xa_lock);
  423. xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
  424. xfs_buf_item_relse(bp);
  425. ASSERT(bp->b_fspriv == NULL);
  426. }
  427. xfs_buf_relse(bp);
  428. } else if (freed && remove) {
  429. /*
  430. * There are currently two references to the buffer - the active
  431. * LRU reference and the buf log item. What we are about to do
  432. * here - simulate a failed IO completion - requires 3
  433. * references.
  434. *
  435. * The LRU reference is removed by the xfs_buf_stale() call. The
  436. * buf item reference is removed by the xfs_buf_iodone()
  437. * callback that is run by xfs_buf_do_callbacks() during ioend
  438. * processing (via the bp->b_iodone callback), and then finally
  439. * the ioend processing will drop the IO reference if the buffer
  440. * is marked XBF_ASYNC.
  441. *
  442. * Hence we need to take an additional reference here so that IO
  443. * completion processing doesn't free the buffer prematurely.
  444. */
  445. xfs_buf_lock(bp);
  446. xfs_buf_hold(bp);
  447. bp->b_flags |= XBF_ASYNC;
  448. xfs_buf_ioerror(bp, EIO);
  449. XFS_BUF_UNDONE(bp);
  450. xfs_buf_stale(bp);
  451. xfs_buf_ioend(bp, 0);
  452. }
  453. }
  454. STATIC uint
  455. xfs_buf_item_push(
  456. struct xfs_log_item *lip,
  457. struct list_head *buffer_list)
  458. {
  459. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  460. struct xfs_buf *bp = bip->bli_buf;
  461. uint rval = XFS_ITEM_SUCCESS;
  462. if (xfs_buf_ispinned(bp))
  463. return XFS_ITEM_PINNED;
  464. if (!xfs_buf_trylock(bp)) {
  465. /*
  466. * If we have just raced with a buffer being pinned and it has
  467. * been marked stale, we could end up stalling until someone else
  468. * issues a log force to unpin the stale buffer. Check for the
  469. * race condition here so xfsaild recognizes the buffer is pinned
  470. * and queues a log force to move it along.
  471. */
  472. if (xfs_buf_ispinned(bp))
  473. return XFS_ITEM_PINNED;
  474. return XFS_ITEM_LOCKED;
  475. }
  476. ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
  477. trace_xfs_buf_item_push(bip);
  478. if (!xfs_buf_delwri_queue(bp, buffer_list))
  479. rval = XFS_ITEM_FLUSHING;
  480. xfs_buf_unlock(bp);
  481. return rval;
  482. }
  483. /*
  484. * Release the buffer associated with the buf log item. If there is no dirty
  485. * logged data associated with the buffer recorded in the buf log item, then
  486. * free the buf log item and remove the reference to it in the buffer.
  487. *
  488. * This call ignores the recursion count. It is only called when the buffer
  489. * should REALLY be unlocked, regardless of the recursion count.
  490. *
  491. * We unconditionally drop the transaction's reference to the log item. If the
  492. * item was logged, then another reference was taken when it was pinned, so we
  493. * can safely drop the transaction reference now. This also allows us to avoid
  494. * potential races with the unpin code freeing the bli by not referencing the
  495. * bli after we've dropped the reference count.
  496. *
  497. * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
  498. * if necessary but do not unlock the buffer. This is for support of
  499. * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
  500. * free the item.
  501. */
  502. STATIC void
  503. xfs_buf_item_unlock(
  504. struct xfs_log_item *lip)
  505. {
  506. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  507. struct xfs_buf *bp = bip->bli_buf;
  508. bool clean;
  509. bool aborted;
  510. int flags;
  511. /* Clear the buffer's association with this transaction. */
  512. bp->b_transp = NULL;
  513. /*
  514. * If this is a transaction abort, don't return early. Instead, allow
  515. * the brelse to happen. Normally it would be done for stale
  516. * (cancelled) buffers at unpin time, but we'll never go through the
  517. * pin/unpin cycle if we abort inside commit.
  518. */
  519. aborted = (lip->li_flags & XFS_LI_ABORTED) ? true : false;
  520. /*
  521. * Before possibly freeing the buf item, copy the per-transaction state
  522. * so we can reference it safely later after clearing it from the
  523. * buffer log item.
  524. */
  525. flags = bip->bli_flags;
  526. bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
  527. /*
  528. * If the buf item is marked stale, then don't do anything. We'll
  529. * unlock the buffer and free the buf item when the buffer is unpinned
  530. * for the last time.
  531. */
  532. if (flags & XFS_BLI_STALE) {
  533. trace_xfs_buf_item_unlock_stale(bip);
  534. ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
  535. if (!aborted) {
  536. atomic_dec(&bip->bli_refcount);
  537. return;
  538. }
  539. }
  540. trace_xfs_buf_item_unlock(bip);
  541. /*
  542. * If the buf item isn't tracking any data, free it, otherwise drop the
  543. * reference we hold to it. If we are aborting the transaction, this may
  544. * be the only reference to the buf item, so we free it anyway
  545. * regardless of whether it is dirty or not. A dirty abort implies a
  546. * shutdown, anyway.
  547. *
  548. * Ordered buffers are dirty but may have no recorded changes, so ensure
  549. * we only release clean items here.
  550. */
  551. clean = (flags & XFS_BLI_DIRTY) ? false : true;
  552. if (clean) {
  553. int i;
  554. for (i = 0; i < bip->bli_format_count; i++) {
  555. if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
  556. bip->bli_formats[i].blf_map_size)) {
  557. clean = false;
  558. break;
  559. }
  560. }
  561. }
  562. /*
  563. * Clean buffers, by definition, cannot be in the AIL. However, aborted
  564. * buffers may be dirty and hence in the AIL. Therefore if we are
  565. * aborting a buffer and we've just taken the last refernce away, we
  566. * have to check if it is in the AIL before freeing it. We need to free
  567. * it in this case, because an aborted transaction has already shut the
  568. * filesystem down and this is the last chance we will have to do so.
  569. */
  570. if (atomic_dec_and_test(&bip->bli_refcount)) {
  571. if (clean)
  572. xfs_buf_item_relse(bp);
  573. else if (aborted) {
  574. ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp));
  575. if (lip->li_flags & XFS_LI_IN_AIL) {
  576. spin_lock(&lip->li_ailp->xa_lock);
  577. xfs_trans_ail_delete(lip->li_ailp, lip,
  578. SHUTDOWN_LOG_IO_ERROR);
  579. }
  580. xfs_buf_item_relse(bp);
  581. }
  582. }
  583. if (!(flags & XFS_BLI_HOLD))
  584. xfs_buf_relse(bp);
  585. }
  586. /*
  587. * This is called to find out where the oldest active copy of the
  588. * buf log item in the on disk log resides now that the last log
  589. * write of it completed at the given lsn.
  590. * We always re-log all the dirty data in a buffer, so usually the
  591. * latest copy in the on disk log is the only one that matters. For
  592. * those cases we simply return the given lsn.
  593. *
  594. * The one exception to this is for buffers full of newly allocated
  595. * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
  596. * flag set, indicating that only the di_next_unlinked fields from the
  597. * inodes in the buffers will be replayed during recovery. If the
  598. * original newly allocated inode images have not yet been flushed
  599. * when the buffer is so relogged, then we need to make sure that we
  600. * keep the old images in the 'active' portion of the log. We do this
  601. * by returning the original lsn of that transaction here rather than
  602. * the current one.
  603. */
  604. STATIC xfs_lsn_t
  605. xfs_buf_item_committed(
  606. struct xfs_log_item *lip,
  607. xfs_lsn_t lsn)
  608. {
  609. struct xfs_buf_log_item *bip = BUF_ITEM(lip);
  610. trace_xfs_buf_item_committed(bip);
  611. if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
  612. return lip->li_lsn;
  613. return lsn;
  614. }
  615. STATIC void
  616. xfs_buf_item_committing(
  617. struct xfs_log_item *lip,
  618. xfs_lsn_t commit_lsn)
  619. {
  620. }
  621. /*
  622. * This is the ops vector shared by all buf log items.
  623. */
  624. static const struct xfs_item_ops xfs_buf_item_ops = {
  625. .iop_size = xfs_buf_item_size,
  626. .iop_format = xfs_buf_item_format,
  627. .iop_pin = xfs_buf_item_pin,
  628. .iop_unpin = xfs_buf_item_unpin,
  629. .iop_unlock = xfs_buf_item_unlock,
  630. .iop_committed = xfs_buf_item_committed,
  631. .iop_push = xfs_buf_item_push,
  632. .iop_committing = xfs_buf_item_committing
  633. };
  634. STATIC int
  635. xfs_buf_item_get_format(
  636. struct xfs_buf_log_item *bip,
  637. int count)
  638. {
  639. ASSERT(bip->bli_formats == NULL);
  640. bip->bli_format_count = count;
  641. if (count == 1) {
  642. bip->bli_formats = &bip->__bli_format;
  643. return 0;
  644. }
  645. bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
  646. KM_SLEEP);
  647. if (!bip->bli_formats)
  648. return ENOMEM;
  649. return 0;
  650. }
  651. STATIC void
  652. xfs_buf_item_free_format(
  653. struct xfs_buf_log_item *bip)
  654. {
  655. if (bip->bli_formats != &bip->__bli_format) {
  656. kmem_free(bip->bli_formats);
  657. bip->bli_formats = NULL;
  658. }
  659. }
  660. /*
  661. * Allocate a new buf log item to go with the given buffer.
  662. * Set the buffer's b_fsprivate field to point to the new
  663. * buf log item. If there are other item's attached to the
  664. * buffer (see xfs_buf_attach_iodone() below), then put the
  665. * buf log item at the front.
  666. */
  667. void
  668. xfs_buf_item_init(
  669. xfs_buf_t *bp,
  670. xfs_mount_t *mp)
  671. {
  672. xfs_log_item_t *lip = bp->b_fspriv;
  673. xfs_buf_log_item_t *bip;
  674. int chunks;
  675. int map_size;
  676. int error;
  677. int i;
  678. /*
  679. * Check to see if there is already a buf log item for
  680. * this buffer. If there is, it is guaranteed to be
  681. * the first. If we do already have one, there is
  682. * nothing to do here so return.
  683. */
  684. ASSERT(bp->b_target->bt_mount == mp);
  685. if (lip != NULL && lip->li_type == XFS_LI_BUF)
  686. return;
  687. bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
  688. xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
  689. bip->bli_buf = bp;
  690. xfs_buf_hold(bp);
  691. /*
  692. * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
  693. * can be divided into. Make sure not to truncate any pieces.
  694. * map_size is the size of the bitmap needed to describe the
  695. * chunks of the buffer.
  696. *
  697. * Discontiguous buffer support follows the layout of the underlying
  698. * buffer. This makes the implementation as simple as possible.
  699. */
  700. error = xfs_buf_item_get_format(bip, bp->b_map_count);
  701. ASSERT(error == 0);
  702. for (i = 0; i < bip->bli_format_count; i++) {
  703. chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
  704. XFS_BLF_CHUNK);
  705. map_size = DIV_ROUND_UP(chunks, NBWORD);
  706. bip->bli_formats[i].blf_type = XFS_LI_BUF;
  707. bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
  708. bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
  709. bip->bli_formats[i].blf_map_size = map_size;
  710. }
  711. #ifdef XFS_TRANS_DEBUG
  712. /*
  713. * Allocate the arrays for tracking what needs to be logged
  714. * and what our callers request to be logged. bli_orig
  715. * holds a copy of the original, clean buffer for comparison
  716. * against, and bli_logged keeps a 1 bit flag per byte in
  717. * the buffer to indicate which bytes the callers have asked
  718. * to have logged.
  719. */
  720. bip->bli_orig = kmem_alloc(BBTOB(bp->b_length), KM_SLEEP);
  721. memcpy(bip->bli_orig, bp->b_addr, BBTOB(bp->b_length));
  722. bip->bli_logged = kmem_zalloc(BBTOB(bp->b_length) / NBBY, KM_SLEEP);
  723. #endif
  724. /*
  725. * Put the buf item into the list of items attached to the
  726. * buffer at the front.
  727. */
  728. if (bp->b_fspriv)
  729. bip->bli_item.li_bio_list = bp->b_fspriv;
  730. bp->b_fspriv = bip;
  731. }
  732. /*
  733. * Mark bytes first through last inclusive as dirty in the buf
  734. * item's bitmap.
  735. */
  736. void
  737. xfs_buf_item_log_segment(
  738. struct xfs_buf_log_item *bip,
  739. uint first,
  740. uint last,
  741. uint *map)
  742. {
  743. uint first_bit;
  744. uint last_bit;
  745. uint bits_to_set;
  746. uint bits_set;
  747. uint word_num;
  748. uint *wordp;
  749. uint bit;
  750. uint end_bit;
  751. uint mask;
  752. /*
  753. * Convert byte offsets to bit numbers.
  754. */
  755. first_bit = first >> XFS_BLF_SHIFT;
  756. last_bit = last >> XFS_BLF_SHIFT;
  757. /*
  758. * Calculate the total number of bits to be set.
  759. */
  760. bits_to_set = last_bit - first_bit + 1;
  761. /*
  762. * Get a pointer to the first word in the bitmap
  763. * to set a bit in.
  764. */
  765. word_num = first_bit >> BIT_TO_WORD_SHIFT;
  766. wordp = &map[word_num];
  767. /*
  768. * Calculate the starting bit in the first word.
  769. */
  770. bit = first_bit & (uint)(NBWORD - 1);
  771. /*
  772. * First set any bits in the first word of our range.
  773. * If it starts at bit 0 of the word, it will be
  774. * set below rather than here. That is what the variable
  775. * bit tells us. The variable bits_set tracks the number
  776. * of bits that have been set so far. End_bit is the number
  777. * of the last bit to be set in this word plus one.
  778. */
  779. if (bit) {
  780. end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
  781. mask = ((1 << (end_bit - bit)) - 1) << bit;
  782. *wordp |= mask;
  783. wordp++;
  784. bits_set = end_bit - bit;
  785. } else {
  786. bits_set = 0;
  787. }
  788. /*
  789. * Now set bits a whole word at a time that are between
  790. * first_bit and last_bit.
  791. */
  792. while ((bits_to_set - bits_set) >= NBWORD) {
  793. *wordp |= 0xffffffff;
  794. bits_set += NBWORD;
  795. wordp++;
  796. }
  797. /*
  798. * Finally, set any bits left to be set in one last partial word.
  799. */
  800. end_bit = bits_to_set - bits_set;
  801. if (end_bit) {
  802. mask = (1 << end_bit) - 1;
  803. *wordp |= mask;
  804. }
  805. }
  806. /*
  807. * Mark bytes first through last inclusive as dirty in the buf
  808. * item's bitmap.
  809. */
  810. void
  811. xfs_buf_item_log(
  812. xfs_buf_log_item_t *bip,
  813. uint first,
  814. uint last)
  815. {
  816. int i;
  817. uint start;
  818. uint end;
  819. struct xfs_buf *bp = bip->bli_buf;
  820. /*
  821. * walk each buffer segment and mark them dirty appropriately.
  822. */
  823. start = 0;
  824. for (i = 0; i < bip->bli_format_count; i++) {
  825. if (start > last)
  826. break;
  827. end = start + BBTOB(bp->b_maps[i].bm_len);
  828. if (first > end) {
  829. start += BBTOB(bp->b_maps[i].bm_len);
  830. continue;
  831. }
  832. if (first < start)
  833. first = start;
  834. if (end > last)
  835. end = last;
  836. xfs_buf_item_log_segment(bip, first, end,
  837. &bip->bli_formats[i].blf_data_map[0]);
  838. start += bp->b_maps[i].bm_len;
  839. }
  840. }
  841. /*
  842. * Return 1 if the buffer has been logged or ordered in a transaction (at any
  843. * point, not just the current transaction) and 0 if not.
  844. */
  845. uint
  846. xfs_buf_item_dirty(
  847. xfs_buf_log_item_t *bip)
  848. {
  849. return (bip->bli_flags & XFS_BLI_DIRTY);
  850. }
  851. STATIC void
  852. xfs_buf_item_free(
  853. xfs_buf_log_item_t *bip)
  854. {
  855. #ifdef XFS_TRANS_DEBUG
  856. kmem_free(bip->bli_orig);
  857. kmem_free(bip->bli_logged);
  858. #endif /* XFS_TRANS_DEBUG */
  859. xfs_buf_item_free_format(bip);
  860. kmem_zone_free(xfs_buf_item_zone, bip);
  861. }
  862. /*
  863. * This is called when the buf log item is no longer needed. It should
  864. * free the buf log item associated with the given buffer and clear
  865. * the buffer's pointer to the buf log item. If there are no more
  866. * items in the list, clear the b_iodone field of the buffer (see
  867. * xfs_buf_attach_iodone() below).
  868. */
  869. void
  870. xfs_buf_item_relse(
  871. xfs_buf_t *bp)
  872. {
  873. xfs_buf_log_item_t *bip = bp->b_fspriv;
  874. trace_xfs_buf_item_relse(bp, _RET_IP_);
  875. ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
  876. bp->b_fspriv = bip->bli_item.li_bio_list;
  877. if (bp->b_fspriv == NULL)
  878. bp->b_iodone = NULL;
  879. xfs_buf_rele(bp);
  880. xfs_buf_item_free(bip);
  881. }
  882. /*
  883. * Add the given log item with its callback to the list of callbacks
  884. * to be called when the buffer's I/O completes. If it is not set
  885. * already, set the buffer's b_iodone() routine to be
  886. * xfs_buf_iodone_callbacks() and link the log item into the list of
  887. * items rooted at b_fsprivate. Items are always added as the second
  888. * entry in the list if there is a first, because the buf item code
  889. * assumes that the buf log item is first.
  890. */
  891. void
  892. xfs_buf_attach_iodone(
  893. xfs_buf_t *bp,
  894. void (*cb)(xfs_buf_t *, xfs_log_item_t *),
  895. xfs_log_item_t *lip)
  896. {
  897. xfs_log_item_t *head_lip;
  898. ASSERT(xfs_buf_islocked(bp));
  899. lip->li_cb = cb;
  900. head_lip = bp->b_fspriv;
  901. if (head_lip) {
  902. lip->li_bio_list = head_lip->li_bio_list;
  903. head_lip->li_bio_list = lip;
  904. } else {
  905. bp->b_fspriv = lip;
  906. }
  907. ASSERT(bp->b_iodone == NULL ||
  908. bp->b_iodone == xfs_buf_iodone_callbacks);
  909. bp->b_iodone = xfs_buf_iodone_callbacks;
  910. }
  911. /*
  912. * We can have many callbacks on a buffer. Running the callbacks individually
  913. * can cause a lot of contention on the AIL lock, so we allow for a single
  914. * callback to be able to scan the remaining lip->li_bio_list for other items
  915. * of the same type and callback to be processed in the first call.
  916. *
  917. * As a result, the loop walking the callback list below will also modify the
  918. * list. it removes the first item from the list and then runs the callback.
  919. * The loop then restarts from the new head of the list. This allows the
  920. * callback to scan and modify the list attached to the buffer and we don't
  921. * have to care about maintaining a next item pointer.
  922. */
  923. STATIC void
  924. xfs_buf_do_callbacks(
  925. struct xfs_buf *bp)
  926. {
  927. struct xfs_log_item *lip;
  928. while ((lip = bp->b_fspriv) != NULL) {
  929. bp->b_fspriv = lip->li_bio_list;
  930. ASSERT(lip->li_cb != NULL);
  931. /*
  932. * Clear the next pointer so we don't have any
  933. * confusion if the item is added to another buf.
  934. * Don't touch the log item after calling its
  935. * callback, because it could have freed itself.
  936. */
  937. lip->li_bio_list = NULL;
  938. lip->li_cb(bp, lip);
  939. }
  940. }
  941. /*
  942. * This is the iodone() function for buffers which have had callbacks
  943. * attached to them by xfs_buf_attach_iodone(). It should remove each
  944. * log item from the buffer's list and call the callback of each in turn.
  945. * When done, the buffer's fsprivate field is set to NULL and the buffer
  946. * is unlocked with a call to iodone().
  947. */
  948. void
  949. xfs_buf_iodone_callbacks(
  950. struct xfs_buf *bp)
  951. {
  952. struct xfs_log_item *lip = bp->b_fspriv;
  953. struct xfs_mount *mp = lip->li_mountp;
  954. static ulong lasttime;
  955. static xfs_buftarg_t *lasttarg;
  956. if (likely(!xfs_buf_geterror(bp)))
  957. goto do_callbacks;
  958. /*
  959. * If we've already decided to shutdown the filesystem because of
  960. * I/O errors, there's no point in giving this a retry.
  961. */
  962. if (XFS_FORCED_SHUTDOWN(mp)) {
  963. xfs_buf_stale(bp);
  964. XFS_BUF_DONE(bp);
  965. trace_xfs_buf_item_iodone(bp, _RET_IP_);
  966. goto do_callbacks;
  967. }
  968. if (bp->b_target != lasttarg ||
  969. time_after(jiffies, (lasttime + 5*HZ))) {
  970. lasttime = jiffies;
  971. xfs_buf_ioerror_alert(bp, __func__);
  972. }
  973. lasttarg = bp->b_target;
  974. /*
  975. * If the write was asynchronous then no one will be looking for the
  976. * error. Clear the error state and write the buffer out again.
  977. *
  978. * XXX: This helps against transient write errors, but we need to find
  979. * a way to shut the filesystem down if the writes keep failing.
  980. *
  981. * In practice we'll shut the filesystem down soon as non-transient
  982. * erorrs tend to affect the whole device and a failing log write
  983. * will make us give up. But we really ought to do better here.
  984. */
  985. if (XFS_BUF_ISASYNC(bp)) {
  986. ASSERT(bp->b_iodone != NULL);
  987. trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
  988. xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */
  989. if (!XFS_BUF_ISSTALE(bp)) {
  990. bp->b_flags |= XBF_WRITE | XBF_ASYNC | XBF_DONE;
  991. xfs_buf_iorequest(bp);
  992. } else {
  993. xfs_buf_relse(bp);
  994. }
  995. return;
  996. }
  997. /*
  998. * If the write of the buffer was synchronous, we want to make
  999. * sure to return the error to the caller of xfs_bwrite().
  1000. */
  1001. xfs_buf_stale(bp);
  1002. XFS_BUF_DONE(bp);
  1003. trace_xfs_buf_error_relse(bp, _RET_IP_);
  1004. do_callbacks:
  1005. xfs_buf_do_callbacks(bp);
  1006. bp->b_fspriv = NULL;
  1007. bp->b_iodone = NULL;
  1008. xfs_buf_ioend(bp, 0);
  1009. }
  1010. /*
  1011. * This is the iodone() function for buffers which have been
  1012. * logged. It is called when they are eventually flushed out.
  1013. * It should remove the buf item from the AIL, and free the buf item.
  1014. * It is called by xfs_buf_iodone_callbacks() above which will take
  1015. * care of cleaning up the buffer itself.
  1016. */
  1017. void
  1018. xfs_buf_iodone(
  1019. struct xfs_buf *bp,
  1020. struct xfs_log_item *lip)
  1021. {
  1022. struct xfs_ail *ailp = lip->li_ailp;
  1023. ASSERT(BUF_ITEM(lip)->bli_buf == bp);
  1024. xfs_buf_rele(bp);
  1025. /*
  1026. * If we are forcibly shutting down, this may well be
  1027. * off the AIL already. That's because we simulate the
  1028. * log-committed callbacks to unpin these buffers. Or we may never
  1029. * have put this item on AIL because of the transaction was
  1030. * aborted forcibly. xfs_trans_ail_delete() takes care of these.
  1031. *
  1032. * Either way, AIL is useless if we're forcing a shutdown.
  1033. */
  1034. spin_lock(&ailp->xa_lock);
  1035. xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
  1036. xfs_buf_item_free(BUF_ITEM(lip));
  1037. }