recovery.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449
  1. /*
  2. * fs/f2fs/recovery.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include "f2fs.h"
  14. #include "node.h"
  15. #include "segment.h"
  16. static struct kmem_cache *fsync_entry_slab;
  17. bool space_for_roll_forward(struct f2fs_sb_info *sbi)
  18. {
  19. if (sbi->last_valid_block_count + sbi->alloc_valid_block_count
  20. > sbi->user_block_count)
  21. return false;
  22. return true;
  23. }
  24. static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
  25. nid_t ino)
  26. {
  27. struct list_head *this;
  28. struct fsync_inode_entry *entry;
  29. list_for_each(this, head) {
  30. entry = list_entry(this, struct fsync_inode_entry, list);
  31. if (entry->inode->i_ino == ino)
  32. return entry;
  33. }
  34. return NULL;
  35. }
  36. static int recover_dentry(struct page *ipage, struct inode *inode)
  37. {
  38. struct f2fs_node *raw_node = F2FS_NODE(ipage);
  39. struct f2fs_inode *raw_inode = &(raw_node->i);
  40. nid_t pino = le32_to_cpu(raw_inode->i_pino);
  41. struct f2fs_dir_entry *de;
  42. struct qstr name;
  43. struct page *page;
  44. struct inode *dir, *einode;
  45. int err = 0;
  46. dir = check_dirty_dir_inode(F2FS_SB(inode->i_sb), pino);
  47. if (!dir) {
  48. dir = f2fs_iget(inode->i_sb, pino);
  49. if (IS_ERR(dir)) {
  50. err = PTR_ERR(dir);
  51. goto out;
  52. }
  53. set_inode_flag(F2FS_I(dir), FI_DELAY_IPUT);
  54. add_dirty_dir_inode(dir);
  55. }
  56. name.len = le32_to_cpu(raw_inode->i_namelen);
  57. name.name = raw_inode->i_name;
  58. retry:
  59. de = f2fs_find_entry(dir, &name, &page);
  60. if (de && inode->i_ino == le32_to_cpu(de->ino)) {
  61. kunmap(page);
  62. f2fs_put_page(page, 0);
  63. goto out;
  64. }
  65. if (de) {
  66. einode = f2fs_iget(inode->i_sb, le32_to_cpu(de->ino));
  67. if (IS_ERR(einode)) {
  68. WARN_ON(1);
  69. if (PTR_ERR(einode) == -ENOENT)
  70. err = -EEXIST;
  71. goto out;
  72. }
  73. f2fs_delete_entry(de, page, einode);
  74. iput(einode);
  75. goto retry;
  76. }
  77. err = __f2fs_add_link(dir, &name, inode);
  78. out:
  79. f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode and its dentry: "
  80. "ino = %x, name = %s, dir = %lx, err = %d",
  81. ino_of_node(ipage), raw_inode->i_name,
  82. IS_ERR(dir) ? 0 : dir->i_ino, err);
  83. return err;
  84. }
  85. static int recover_inode(struct inode *inode, struct page *node_page)
  86. {
  87. struct f2fs_node *raw_node = F2FS_NODE(node_page);
  88. struct f2fs_inode *raw_inode = &(raw_node->i);
  89. if (!IS_INODE(node_page))
  90. return 0;
  91. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  92. i_size_write(inode, le64_to_cpu(raw_inode->i_size));
  93. inode->i_atime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
  94. inode->i_ctime.tv_sec = le64_to_cpu(raw_inode->i_ctime);
  95. inode->i_mtime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
  96. inode->i_atime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
  97. inode->i_ctime.tv_nsec = le32_to_cpu(raw_inode->i_ctime_nsec);
  98. inode->i_mtime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
  99. if (is_dent_dnode(node_page))
  100. return recover_dentry(node_page, inode);
  101. f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s",
  102. ino_of_node(node_page), raw_inode->i_name);
  103. return 0;
  104. }
  105. static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
  106. {
  107. unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
  108. struct curseg_info *curseg;
  109. struct page *page;
  110. block_t blkaddr;
  111. int err = 0;
  112. /* get node pages in the current segment */
  113. curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  114. blkaddr = START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff;
  115. /* read node page */
  116. page = alloc_page(GFP_F2FS_ZERO);
  117. if (!page)
  118. return -ENOMEM;
  119. lock_page(page);
  120. while (1) {
  121. struct fsync_inode_entry *entry;
  122. err = f2fs_readpage(sbi, page, blkaddr, READ_SYNC);
  123. if (err)
  124. goto out;
  125. lock_page(page);
  126. if (cp_ver != cpver_of_node(page))
  127. break;
  128. if (!is_fsync_dnode(page))
  129. goto next;
  130. entry = get_fsync_inode(head, ino_of_node(page));
  131. if (entry) {
  132. if (IS_INODE(page) && is_dent_dnode(page))
  133. set_inode_flag(F2FS_I(entry->inode),
  134. FI_INC_LINK);
  135. } else {
  136. if (IS_INODE(page) && is_dent_dnode(page)) {
  137. err = recover_inode_page(sbi, page);
  138. if (err)
  139. break;
  140. }
  141. /* add this fsync inode to the list */
  142. entry = kmem_cache_alloc(fsync_entry_slab, GFP_NOFS);
  143. if (!entry) {
  144. err = -ENOMEM;
  145. break;
  146. }
  147. entry->inode = f2fs_iget(sbi->sb, ino_of_node(page));
  148. if (IS_ERR(entry->inode)) {
  149. err = PTR_ERR(entry->inode);
  150. kmem_cache_free(fsync_entry_slab, entry);
  151. break;
  152. }
  153. list_add_tail(&entry->list, head);
  154. }
  155. entry->blkaddr = blkaddr;
  156. err = recover_inode(entry->inode, page);
  157. if (err && err != -ENOENT)
  158. break;
  159. next:
  160. /* check next segment */
  161. blkaddr = next_blkaddr_of_node(page);
  162. }
  163. unlock_page(page);
  164. out:
  165. __free_pages(page, 0);
  166. return err;
  167. }
  168. static void destroy_fsync_dnodes(struct list_head *head)
  169. {
  170. struct fsync_inode_entry *entry, *tmp;
  171. list_for_each_entry_safe(entry, tmp, head, list) {
  172. iput(entry->inode);
  173. list_del(&entry->list);
  174. kmem_cache_free(fsync_entry_slab, entry);
  175. }
  176. }
  177. static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
  178. block_t blkaddr, struct dnode_of_data *dn)
  179. {
  180. struct seg_entry *sentry;
  181. unsigned int segno = GET_SEGNO(sbi, blkaddr);
  182. unsigned short blkoff = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) &
  183. (sbi->blocks_per_seg - 1);
  184. struct f2fs_summary sum;
  185. nid_t ino, nid;
  186. void *kaddr;
  187. struct inode *inode;
  188. struct page *node_page;
  189. unsigned int offset;
  190. block_t bidx;
  191. int i;
  192. sentry = get_seg_entry(sbi, segno);
  193. if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
  194. return 0;
  195. /* Get the previous summary */
  196. for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) {
  197. struct curseg_info *curseg = CURSEG_I(sbi, i);
  198. if (curseg->segno == segno) {
  199. sum = curseg->sum_blk->entries[blkoff];
  200. break;
  201. }
  202. }
  203. if (i > CURSEG_COLD_DATA) {
  204. struct page *sum_page = get_sum_page(sbi, segno);
  205. struct f2fs_summary_block *sum_node;
  206. kaddr = page_address(sum_page);
  207. sum_node = (struct f2fs_summary_block *)kaddr;
  208. sum = sum_node->entries[blkoff];
  209. f2fs_put_page(sum_page, 1);
  210. }
  211. /* Use the locked dnode page and inode */
  212. nid = le32_to_cpu(sum.nid);
  213. if (dn->inode->i_ino == nid) {
  214. struct dnode_of_data tdn = *dn;
  215. tdn.nid = nid;
  216. tdn.node_page = dn->inode_page;
  217. tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
  218. truncate_data_blocks_range(&tdn, 1);
  219. return 0;
  220. } else if (dn->nid == nid) {
  221. struct dnode_of_data tdn = *dn;
  222. tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
  223. truncate_data_blocks_range(&tdn, 1);
  224. return 0;
  225. }
  226. /* Get the node page */
  227. node_page = get_node_page(sbi, nid);
  228. if (IS_ERR(node_page))
  229. return PTR_ERR(node_page);
  230. offset = ofs_of_node(node_page);
  231. ino = ino_of_node(node_page);
  232. f2fs_put_page(node_page, 1);
  233. /* Deallocate previous index in the node page */
  234. inode = f2fs_iget(sbi->sb, ino);
  235. if (IS_ERR(inode))
  236. return PTR_ERR(inode);
  237. bidx = start_bidx_of_node(offset, F2FS_I(inode)) +
  238. le16_to_cpu(sum.ofs_in_node);
  239. truncate_hole(inode, bidx, bidx + 1);
  240. iput(inode);
  241. return 0;
  242. }
  243. static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
  244. struct page *page, block_t blkaddr)
  245. {
  246. struct f2fs_inode_info *fi = F2FS_I(inode);
  247. unsigned int start, end;
  248. struct dnode_of_data dn;
  249. struct f2fs_summary sum;
  250. struct node_info ni;
  251. int err = 0, recovered = 0;
  252. int ilock;
  253. start = start_bidx_of_node(ofs_of_node(page), fi);
  254. if (IS_INODE(page))
  255. end = start + ADDRS_PER_INODE(fi);
  256. else
  257. end = start + ADDRS_PER_BLOCK;
  258. ilock = mutex_lock_op(sbi);
  259. set_new_dnode(&dn, inode, NULL, NULL, 0);
  260. err = get_dnode_of_data(&dn, start, ALLOC_NODE);
  261. if (err) {
  262. mutex_unlock_op(sbi, ilock);
  263. return err;
  264. }
  265. wait_on_page_writeback(dn.node_page);
  266. get_node_info(sbi, dn.nid, &ni);
  267. BUG_ON(ni.ino != ino_of_node(page));
  268. BUG_ON(ofs_of_node(dn.node_page) != ofs_of_node(page));
  269. for (; start < end; start++) {
  270. block_t src, dest;
  271. src = datablock_addr(dn.node_page, dn.ofs_in_node);
  272. dest = datablock_addr(page, dn.ofs_in_node);
  273. if (src != dest && dest != NEW_ADDR && dest != NULL_ADDR) {
  274. if (src == NULL_ADDR) {
  275. int err = reserve_new_block(&dn);
  276. /* We should not get -ENOSPC */
  277. BUG_ON(err);
  278. }
  279. /* Check the previous node page having this index */
  280. err = check_index_in_prev_nodes(sbi, dest, &dn);
  281. if (err)
  282. goto err;
  283. set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
  284. /* write dummy data page */
  285. recover_data_page(sbi, NULL, &sum, src, dest);
  286. update_extent_cache(dest, &dn);
  287. recovered++;
  288. }
  289. dn.ofs_in_node++;
  290. }
  291. /* write node page in place */
  292. set_summary(&sum, dn.nid, 0, 0);
  293. if (IS_INODE(dn.node_page))
  294. sync_inode_page(&dn);
  295. copy_node_footer(dn.node_page, page);
  296. fill_node_footer(dn.node_page, dn.nid, ni.ino,
  297. ofs_of_node(page), false);
  298. set_page_dirty(dn.node_page);
  299. recover_node_page(sbi, dn.node_page, &sum, &ni, blkaddr);
  300. err:
  301. f2fs_put_dnode(&dn);
  302. mutex_unlock_op(sbi, ilock);
  303. f2fs_msg(sbi->sb, KERN_NOTICE, "recover_data: ino = %lx, "
  304. "recovered_data = %d blocks, err = %d",
  305. inode->i_ino, recovered, err);
  306. return err;
  307. }
  308. static int recover_data(struct f2fs_sb_info *sbi,
  309. struct list_head *head, int type)
  310. {
  311. unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
  312. struct curseg_info *curseg;
  313. struct page *page;
  314. int err = 0;
  315. block_t blkaddr;
  316. /* get node pages in the current segment */
  317. curseg = CURSEG_I(sbi, type);
  318. blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  319. /* read node page */
  320. page = alloc_page(GFP_NOFS | __GFP_ZERO);
  321. if (!page)
  322. return -ENOMEM;
  323. lock_page(page);
  324. while (1) {
  325. struct fsync_inode_entry *entry;
  326. err = f2fs_readpage(sbi, page, blkaddr, READ_SYNC);
  327. if (err)
  328. goto out;
  329. lock_page(page);
  330. if (cp_ver != cpver_of_node(page))
  331. break;
  332. entry = get_fsync_inode(head, ino_of_node(page));
  333. if (!entry)
  334. goto next;
  335. err = do_recover_data(sbi, entry->inode, page, blkaddr);
  336. if (err)
  337. break;
  338. if (entry->blkaddr == blkaddr) {
  339. iput(entry->inode);
  340. list_del(&entry->list);
  341. kmem_cache_free(fsync_entry_slab, entry);
  342. }
  343. next:
  344. /* check next segment */
  345. blkaddr = next_blkaddr_of_node(page);
  346. }
  347. unlock_page(page);
  348. out:
  349. __free_pages(page, 0);
  350. if (!err)
  351. allocate_new_segments(sbi);
  352. return err;
  353. }
  354. int recover_fsync_data(struct f2fs_sb_info *sbi)
  355. {
  356. struct list_head inode_list;
  357. int err;
  358. fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
  359. sizeof(struct fsync_inode_entry), NULL);
  360. if (unlikely(!fsync_entry_slab))
  361. return -ENOMEM;
  362. INIT_LIST_HEAD(&inode_list);
  363. /* step #1: find fsynced inode numbers */
  364. sbi->por_doing = 1;
  365. err = find_fsync_dnodes(sbi, &inode_list);
  366. if (err)
  367. goto out;
  368. if (list_empty(&inode_list))
  369. goto out;
  370. /* step #2: recover data */
  371. err = recover_data(sbi, &inode_list, CURSEG_WARM_NODE);
  372. BUG_ON(!list_empty(&inode_list));
  373. out:
  374. destroy_fsync_dnodes(&inode_list);
  375. kmem_cache_destroy(fsync_entry_slab);
  376. sbi->por_doing = 0;
  377. if (!err)
  378. write_checkpoint(sbi, false);
  379. return err;
  380. }