node.h 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345
  1. /*
  2. * fs/f2fs/node.h
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. /* start node id of a node block dedicated to the given node id */
  12. #define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
  13. /* node block offset on the NAT area dedicated to the given start node id */
  14. #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
  15. /* # of pages to perform readahead before building free nids */
  16. #define FREE_NID_PAGES 4
  17. /* maximum # of free node ids to produce during build_free_nids */
  18. #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
  19. /* maximum readahead size for node during getting data blocks */
  20. #define MAX_RA_NODE 128
  21. /* maximum cached nat entries to manage memory footprint */
  22. #define NM_WOUT_THRESHOLD (64 * NAT_ENTRY_PER_BLOCK)
  23. /* vector size for gang look-up from nat cache that consists of radix tree */
  24. #define NATVEC_SIZE 64
  25. /* return value for read_node_page */
  26. #define LOCKED_PAGE 1
  27. /*
  28. * For node information
  29. */
  30. struct node_info {
  31. nid_t nid; /* node id */
  32. nid_t ino; /* inode number of the node's owner */
  33. block_t blk_addr; /* block address of the node */
  34. unsigned char version; /* version of the node */
  35. };
  36. struct nat_entry {
  37. struct list_head list; /* for clean or dirty nat list */
  38. bool checkpointed; /* whether it is checkpointed or not */
  39. struct node_info ni; /* in-memory node information */
  40. };
  41. #define nat_get_nid(nat) (nat->ni.nid)
  42. #define nat_set_nid(nat, n) (nat->ni.nid = n)
  43. #define nat_get_blkaddr(nat) (nat->ni.blk_addr)
  44. #define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b)
  45. #define nat_get_ino(nat) (nat->ni.ino)
  46. #define nat_set_ino(nat, i) (nat->ni.ino = i)
  47. #define nat_get_version(nat) (nat->ni.version)
  48. #define nat_set_version(nat, v) (nat->ni.version = v)
  49. #define __set_nat_cache_dirty(nm_i, ne) \
  50. list_move_tail(&ne->list, &nm_i->dirty_nat_entries);
  51. #define __clear_nat_cache_dirty(nm_i, ne) \
  52. list_move_tail(&ne->list, &nm_i->nat_entries);
  53. #define inc_node_version(version) (++version)
  54. static inline void node_info_from_raw_nat(struct node_info *ni,
  55. struct f2fs_nat_entry *raw_ne)
  56. {
  57. ni->ino = le32_to_cpu(raw_ne->ino);
  58. ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
  59. ni->version = raw_ne->version;
  60. }
  61. /*
  62. * For free nid mangement
  63. */
  64. enum nid_state {
  65. NID_NEW, /* newly added to free nid list */
  66. NID_ALLOC /* it is allocated */
  67. };
  68. struct free_nid {
  69. struct list_head list; /* for free node id list */
  70. nid_t nid; /* node id */
  71. int state; /* in use or not: NID_NEW or NID_ALLOC */
  72. };
  73. static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
  74. {
  75. struct f2fs_nm_info *nm_i = NM_I(sbi);
  76. struct free_nid *fnid;
  77. if (nm_i->fcnt <= 0)
  78. return -1;
  79. spin_lock(&nm_i->free_nid_list_lock);
  80. fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
  81. *nid = fnid->nid;
  82. spin_unlock(&nm_i->free_nid_list_lock);
  83. return 0;
  84. }
  85. /*
  86. * inline functions
  87. */
  88. static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
  89. {
  90. struct f2fs_nm_info *nm_i = NM_I(sbi);
  91. memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
  92. }
  93. static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
  94. {
  95. struct f2fs_nm_info *nm_i = NM_I(sbi);
  96. pgoff_t block_off;
  97. pgoff_t block_addr;
  98. int seg_off;
  99. block_off = NAT_BLOCK_OFFSET(start);
  100. seg_off = block_off >> sbi->log_blocks_per_seg;
  101. block_addr = (pgoff_t)(nm_i->nat_blkaddr +
  102. (seg_off << sbi->log_blocks_per_seg << 1) +
  103. (block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
  104. if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
  105. block_addr += sbi->blocks_per_seg;
  106. return block_addr;
  107. }
  108. static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
  109. pgoff_t block_addr)
  110. {
  111. struct f2fs_nm_info *nm_i = NM_I(sbi);
  112. block_addr -= nm_i->nat_blkaddr;
  113. if ((block_addr >> sbi->log_blocks_per_seg) % 2)
  114. block_addr -= sbi->blocks_per_seg;
  115. else
  116. block_addr += sbi->blocks_per_seg;
  117. return block_addr + nm_i->nat_blkaddr;
  118. }
  119. static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
  120. {
  121. unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
  122. if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
  123. f2fs_clear_bit(block_off, nm_i->nat_bitmap);
  124. else
  125. f2fs_set_bit(block_off, nm_i->nat_bitmap);
  126. }
  127. static inline void fill_node_footer(struct page *page, nid_t nid,
  128. nid_t ino, unsigned int ofs, bool reset)
  129. {
  130. struct f2fs_node *rn = F2FS_NODE(page);
  131. if (reset)
  132. memset(rn, 0, sizeof(*rn));
  133. rn->footer.nid = cpu_to_le32(nid);
  134. rn->footer.ino = cpu_to_le32(ino);
  135. rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT);
  136. }
  137. static inline void copy_node_footer(struct page *dst, struct page *src)
  138. {
  139. struct f2fs_node *src_rn = F2FS_NODE(src);
  140. struct f2fs_node *dst_rn = F2FS_NODE(dst);
  141. memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
  142. }
  143. static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
  144. {
  145. struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
  146. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  147. struct f2fs_node *rn = F2FS_NODE(page);
  148. rn->footer.cp_ver = ckpt->checkpoint_ver;
  149. rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
  150. }
  151. static inline nid_t ino_of_node(struct page *node_page)
  152. {
  153. struct f2fs_node *rn = F2FS_NODE(node_page);
  154. return le32_to_cpu(rn->footer.ino);
  155. }
  156. static inline nid_t nid_of_node(struct page *node_page)
  157. {
  158. struct f2fs_node *rn = F2FS_NODE(node_page);
  159. return le32_to_cpu(rn->footer.nid);
  160. }
  161. static inline unsigned int ofs_of_node(struct page *node_page)
  162. {
  163. struct f2fs_node *rn = F2FS_NODE(node_page);
  164. unsigned flag = le32_to_cpu(rn->footer.flag);
  165. return flag >> OFFSET_BIT_SHIFT;
  166. }
  167. static inline unsigned long long cpver_of_node(struct page *node_page)
  168. {
  169. struct f2fs_node *rn = F2FS_NODE(node_page);
  170. return le64_to_cpu(rn->footer.cp_ver);
  171. }
  172. static inline block_t next_blkaddr_of_node(struct page *node_page)
  173. {
  174. struct f2fs_node *rn = F2FS_NODE(node_page);
  175. return le32_to_cpu(rn->footer.next_blkaddr);
  176. }
  177. /*
  178. * f2fs assigns the following node offsets described as (num).
  179. * N = NIDS_PER_BLOCK
  180. *
  181. * Inode block (0)
  182. * |- direct node (1)
  183. * |- direct node (2)
  184. * |- indirect node (3)
  185. * | `- direct node (4 => 4 + N - 1)
  186. * |- indirect node (4 + N)
  187. * | `- direct node (5 + N => 5 + 2N - 1)
  188. * `- double indirect node (5 + 2N)
  189. * `- indirect node (6 + 2N)
  190. * `- direct node (x(N + 1))
  191. */
  192. static inline bool IS_DNODE(struct page *node_page)
  193. {
  194. unsigned int ofs = ofs_of_node(node_page);
  195. if (ofs == XATTR_NODE_OFFSET)
  196. return false;
  197. if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
  198. ofs == 5 + 2 * NIDS_PER_BLOCK)
  199. return false;
  200. if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
  201. ofs -= 6 + 2 * NIDS_PER_BLOCK;
  202. if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
  203. return false;
  204. }
  205. return true;
  206. }
  207. static inline void set_nid(struct page *p, int off, nid_t nid, bool i)
  208. {
  209. struct f2fs_node *rn = F2FS_NODE(p);
  210. wait_on_page_writeback(p);
  211. if (i)
  212. rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
  213. else
  214. rn->in.nid[off] = cpu_to_le32(nid);
  215. set_page_dirty(p);
  216. }
  217. static inline nid_t get_nid(struct page *p, int off, bool i)
  218. {
  219. struct f2fs_node *rn = F2FS_NODE(p);
  220. if (i)
  221. return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
  222. return le32_to_cpu(rn->in.nid[off]);
  223. }
  224. /*
  225. * Coldness identification:
  226. * - Mark cold files in f2fs_inode_info
  227. * - Mark cold node blocks in their node footer
  228. * - Mark cold data pages in page cache
  229. */
  230. static inline int is_file(struct inode *inode, int type)
  231. {
  232. return F2FS_I(inode)->i_advise & type;
  233. }
  234. static inline void set_file(struct inode *inode, int type)
  235. {
  236. F2FS_I(inode)->i_advise |= type;
  237. }
  238. static inline void clear_file(struct inode *inode, int type)
  239. {
  240. F2FS_I(inode)->i_advise &= ~type;
  241. }
  242. #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
  243. #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
  244. #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
  245. #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
  246. #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
  247. #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
  248. static inline int is_cold_data(struct page *page)
  249. {
  250. return PageChecked(page);
  251. }
  252. static inline void set_cold_data(struct page *page)
  253. {
  254. SetPageChecked(page);
  255. }
  256. static inline void clear_cold_data(struct page *page)
  257. {
  258. ClearPageChecked(page);
  259. }
  260. static inline int is_node(struct page *page, int type)
  261. {
  262. struct f2fs_node *rn = F2FS_NODE(page);
  263. return le32_to_cpu(rn->footer.flag) & (1 << type);
  264. }
  265. #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
  266. #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
  267. #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
  268. static inline void set_cold_node(struct inode *inode, struct page *page)
  269. {
  270. struct f2fs_node *rn = F2FS_NODE(page);
  271. unsigned int flag = le32_to_cpu(rn->footer.flag);
  272. if (S_ISDIR(inode->i_mode))
  273. flag &= ~(0x1 << COLD_BIT_SHIFT);
  274. else
  275. flag |= (0x1 << COLD_BIT_SHIFT);
  276. rn->footer.flag = cpu_to_le32(flag);
  277. }
  278. static inline void set_mark(struct page *page, int mark, int type)
  279. {
  280. struct f2fs_node *rn = F2FS_NODE(page);
  281. unsigned int flag = le32_to_cpu(rn->footer.flag);
  282. if (mark)
  283. flag |= (0x1 << type);
  284. else
  285. flag &= ~(0x1 << type);
  286. rn->footer.flag = cpu_to_le32(flag);
  287. }
  288. #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
  289. #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)