file.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/falloc.h>
  18. #include <linux/types.h>
  19. #include <linux/compat.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/mount.h>
  22. #include "f2fs.h"
  23. #include "node.h"
  24. #include "segment.h"
  25. #include "xattr.h"
  26. #include "acl.h"
  27. #include <trace/events/f2fs.h>
  28. static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
  29. struct vm_fault *vmf)
  30. {
  31. struct page *page = vmf->page;
  32. struct inode *inode = file_inode(vma->vm_file);
  33. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  34. block_t old_blk_addr;
  35. struct dnode_of_data dn;
  36. int err, ilock;
  37. f2fs_balance_fs(sbi);
  38. sb_start_pagefault(inode->i_sb);
  39. /* block allocation */
  40. ilock = mutex_lock_op(sbi);
  41. set_new_dnode(&dn, inode, NULL, NULL, 0);
  42. err = get_dnode_of_data(&dn, page->index, ALLOC_NODE);
  43. if (err) {
  44. mutex_unlock_op(sbi, ilock);
  45. goto out;
  46. }
  47. old_blk_addr = dn.data_blkaddr;
  48. if (old_blk_addr == NULL_ADDR) {
  49. err = reserve_new_block(&dn);
  50. if (err) {
  51. f2fs_put_dnode(&dn);
  52. mutex_unlock_op(sbi, ilock);
  53. goto out;
  54. }
  55. }
  56. f2fs_put_dnode(&dn);
  57. mutex_unlock_op(sbi, ilock);
  58. file_update_time(vma->vm_file);
  59. lock_page(page);
  60. if (page->mapping != inode->i_mapping ||
  61. page_offset(page) > i_size_read(inode) ||
  62. !PageUptodate(page)) {
  63. unlock_page(page);
  64. err = -EFAULT;
  65. goto out;
  66. }
  67. /*
  68. * check to see if the page is mapped already (no holes)
  69. */
  70. if (PageMappedToDisk(page))
  71. goto mapped;
  72. /* page is wholly or partially inside EOF */
  73. if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
  74. unsigned offset;
  75. offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
  76. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  77. }
  78. set_page_dirty(page);
  79. SetPageUptodate(page);
  80. mapped:
  81. /* fill the page */
  82. wait_on_page_writeback(page);
  83. out:
  84. sb_end_pagefault(inode->i_sb);
  85. return block_page_mkwrite_return(err);
  86. }
  87. static const struct vm_operations_struct f2fs_file_vm_ops = {
  88. .fault = filemap_fault,
  89. .page_mkwrite = f2fs_vm_page_mkwrite,
  90. .remap_pages = generic_file_remap_pages,
  91. };
  92. static int get_parent_ino(struct inode *inode, nid_t *pino)
  93. {
  94. struct dentry *dentry;
  95. inode = igrab(inode);
  96. dentry = d_find_any_alias(inode);
  97. iput(inode);
  98. if (!dentry)
  99. return 0;
  100. if (update_dent_inode(inode, &dentry->d_name)) {
  101. dput(dentry);
  102. return 0;
  103. }
  104. *pino = parent_ino(dentry);
  105. dput(dentry);
  106. return 1;
  107. }
  108. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  109. {
  110. struct inode *inode = file->f_mapping->host;
  111. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  112. int ret = 0;
  113. bool need_cp = false;
  114. struct writeback_control wbc = {
  115. .sync_mode = WB_SYNC_ALL,
  116. .nr_to_write = LONG_MAX,
  117. .for_reclaim = 0,
  118. };
  119. if (f2fs_readonly(inode->i_sb))
  120. return 0;
  121. trace_f2fs_sync_file_enter(inode);
  122. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  123. if (ret) {
  124. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  125. return ret;
  126. }
  127. /* guarantee free sections for fsync */
  128. f2fs_balance_fs(sbi);
  129. mutex_lock(&inode->i_mutex);
  130. /*
  131. * Both of fdatasync() and fsync() are able to be recovered from
  132. * sudden-power-off.
  133. */
  134. if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
  135. need_cp = true;
  136. else if (file_wrong_pino(inode))
  137. need_cp = true;
  138. else if (!space_for_roll_forward(sbi))
  139. need_cp = true;
  140. else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
  141. need_cp = true;
  142. else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
  143. need_cp = true;
  144. if (need_cp) {
  145. nid_t pino;
  146. F2FS_I(inode)->xattr_ver = 0;
  147. /* all the dirty node pages should be flushed for POR */
  148. ret = f2fs_sync_fs(inode->i_sb, 1);
  149. if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
  150. get_parent_ino(inode, &pino)) {
  151. F2FS_I(inode)->i_pino = pino;
  152. file_got_pino(inode);
  153. mark_inode_dirty_sync(inode);
  154. ret = f2fs_write_inode(inode, NULL);
  155. if (ret)
  156. goto out;
  157. }
  158. } else {
  159. /* if there is no written node page, write its inode page */
  160. while (!sync_node_pages(sbi, inode->i_ino, &wbc)) {
  161. mark_inode_dirty_sync(inode);
  162. ret = f2fs_write_inode(inode, NULL);
  163. if (ret)
  164. goto out;
  165. }
  166. filemap_fdatawait_range(sbi->node_inode->i_mapping,
  167. 0, LONG_MAX);
  168. ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
  169. }
  170. out:
  171. mutex_unlock(&inode->i_mutex);
  172. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  173. return ret;
  174. }
  175. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  176. {
  177. file_accessed(file);
  178. vma->vm_ops = &f2fs_file_vm_ops;
  179. return 0;
  180. }
  181. int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  182. {
  183. int nr_free = 0, ofs = dn->ofs_in_node;
  184. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  185. struct f2fs_node *raw_node;
  186. __le32 *addr;
  187. raw_node = F2FS_NODE(dn->node_page);
  188. addr = blkaddr_in_node(raw_node) + ofs;
  189. for ( ; count > 0; count--, addr++, dn->ofs_in_node++) {
  190. block_t blkaddr = le32_to_cpu(*addr);
  191. if (blkaddr == NULL_ADDR)
  192. continue;
  193. update_extent_cache(NULL_ADDR, dn);
  194. invalidate_blocks(sbi, blkaddr);
  195. nr_free++;
  196. }
  197. if (nr_free) {
  198. dec_valid_block_count(sbi, dn->inode, nr_free);
  199. set_page_dirty(dn->node_page);
  200. sync_inode_page(dn);
  201. }
  202. dn->ofs_in_node = ofs;
  203. trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
  204. dn->ofs_in_node, nr_free);
  205. return nr_free;
  206. }
  207. void truncate_data_blocks(struct dnode_of_data *dn)
  208. {
  209. truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  210. }
  211. static void truncate_partial_data_page(struct inode *inode, u64 from)
  212. {
  213. unsigned offset = from & (PAGE_CACHE_SIZE - 1);
  214. struct page *page;
  215. if (!offset)
  216. return;
  217. page = find_data_page(inode, from >> PAGE_CACHE_SHIFT, false);
  218. if (IS_ERR(page))
  219. return;
  220. lock_page(page);
  221. if (page->mapping != inode->i_mapping) {
  222. f2fs_put_page(page, 1);
  223. return;
  224. }
  225. wait_on_page_writeback(page);
  226. zero_user(page, offset, PAGE_CACHE_SIZE - offset);
  227. set_page_dirty(page);
  228. f2fs_put_page(page, 1);
  229. }
  230. static int truncate_blocks(struct inode *inode, u64 from)
  231. {
  232. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  233. unsigned int blocksize = inode->i_sb->s_blocksize;
  234. struct dnode_of_data dn;
  235. pgoff_t free_from;
  236. int count = 0, ilock = -1;
  237. int err;
  238. trace_f2fs_truncate_blocks_enter(inode, from);
  239. free_from = (pgoff_t)
  240. ((from + blocksize - 1) >> (sbi->log_blocksize));
  241. ilock = mutex_lock_op(sbi);
  242. set_new_dnode(&dn, inode, NULL, NULL, 0);
  243. err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
  244. if (err) {
  245. if (err == -ENOENT)
  246. goto free_next;
  247. mutex_unlock_op(sbi, ilock);
  248. trace_f2fs_truncate_blocks_exit(inode, err);
  249. return err;
  250. }
  251. if (IS_INODE(dn.node_page))
  252. count = ADDRS_PER_INODE(F2FS_I(inode));
  253. else
  254. count = ADDRS_PER_BLOCK;
  255. count -= dn.ofs_in_node;
  256. BUG_ON(count < 0);
  257. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  258. truncate_data_blocks_range(&dn, count);
  259. free_from += count;
  260. }
  261. f2fs_put_dnode(&dn);
  262. free_next:
  263. err = truncate_inode_blocks(inode, free_from);
  264. mutex_unlock_op(sbi, ilock);
  265. /* lastly zero out the first data page */
  266. truncate_partial_data_page(inode, from);
  267. trace_f2fs_truncate_blocks_exit(inode, err);
  268. return err;
  269. }
  270. void f2fs_truncate(struct inode *inode)
  271. {
  272. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  273. S_ISLNK(inode->i_mode)))
  274. return;
  275. trace_f2fs_truncate(inode);
  276. if (!truncate_blocks(inode, i_size_read(inode))) {
  277. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  278. mark_inode_dirty(inode);
  279. }
  280. }
  281. int f2fs_getattr(struct vfsmount *mnt,
  282. struct dentry *dentry, struct kstat *stat)
  283. {
  284. struct inode *inode = dentry->d_inode;
  285. generic_fillattr(inode, stat);
  286. stat->blocks <<= 3;
  287. return 0;
  288. }
  289. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  290. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  291. {
  292. struct f2fs_inode_info *fi = F2FS_I(inode);
  293. unsigned int ia_valid = attr->ia_valid;
  294. if (ia_valid & ATTR_UID)
  295. inode->i_uid = attr->ia_uid;
  296. if (ia_valid & ATTR_GID)
  297. inode->i_gid = attr->ia_gid;
  298. if (ia_valid & ATTR_ATIME)
  299. inode->i_atime = timespec_trunc(attr->ia_atime,
  300. inode->i_sb->s_time_gran);
  301. if (ia_valid & ATTR_MTIME)
  302. inode->i_mtime = timespec_trunc(attr->ia_mtime,
  303. inode->i_sb->s_time_gran);
  304. if (ia_valid & ATTR_CTIME)
  305. inode->i_ctime = timespec_trunc(attr->ia_ctime,
  306. inode->i_sb->s_time_gran);
  307. if (ia_valid & ATTR_MODE) {
  308. umode_t mode = attr->ia_mode;
  309. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  310. mode &= ~S_ISGID;
  311. set_acl_inode(fi, mode);
  312. }
  313. }
  314. #else
  315. #define __setattr_copy setattr_copy
  316. #endif
  317. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  318. {
  319. struct inode *inode = dentry->d_inode;
  320. struct f2fs_inode_info *fi = F2FS_I(inode);
  321. int err;
  322. err = inode_change_ok(inode, attr);
  323. if (err)
  324. return err;
  325. if ((attr->ia_valid & ATTR_SIZE) &&
  326. attr->ia_size != i_size_read(inode)) {
  327. truncate_setsize(inode, attr->ia_size);
  328. f2fs_truncate(inode);
  329. f2fs_balance_fs(F2FS_SB(inode->i_sb));
  330. }
  331. __setattr_copy(inode, attr);
  332. if (attr->ia_valid & ATTR_MODE) {
  333. err = f2fs_acl_chmod(inode);
  334. if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
  335. inode->i_mode = fi->i_acl_mode;
  336. clear_inode_flag(fi, FI_ACL_MODE);
  337. }
  338. }
  339. mark_inode_dirty(inode);
  340. return err;
  341. }
  342. const struct inode_operations f2fs_file_inode_operations = {
  343. .getattr = f2fs_getattr,
  344. .setattr = f2fs_setattr,
  345. .get_acl = f2fs_get_acl,
  346. #ifdef CONFIG_F2FS_FS_XATTR
  347. .setxattr = generic_setxattr,
  348. .getxattr = generic_getxattr,
  349. .listxattr = f2fs_listxattr,
  350. .removexattr = generic_removexattr,
  351. #endif
  352. };
  353. static void fill_zero(struct inode *inode, pgoff_t index,
  354. loff_t start, loff_t len)
  355. {
  356. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  357. struct page *page;
  358. int ilock;
  359. if (!len)
  360. return;
  361. f2fs_balance_fs(sbi);
  362. ilock = mutex_lock_op(sbi);
  363. page = get_new_data_page(inode, NULL, index, false);
  364. mutex_unlock_op(sbi, ilock);
  365. if (!IS_ERR(page)) {
  366. wait_on_page_writeback(page);
  367. zero_user(page, start, len);
  368. set_page_dirty(page);
  369. f2fs_put_page(page, 1);
  370. }
  371. }
  372. int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  373. {
  374. pgoff_t index;
  375. int err;
  376. for (index = pg_start; index < pg_end; index++) {
  377. struct dnode_of_data dn;
  378. set_new_dnode(&dn, inode, NULL, NULL, 0);
  379. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  380. if (err) {
  381. if (err == -ENOENT)
  382. continue;
  383. return err;
  384. }
  385. if (dn.data_blkaddr != NULL_ADDR)
  386. truncate_data_blocks_range(&dn, 1);
  387. f2fs_put_dnode(&dn);
  388. }
  389. return 0;
  390. }
  391. static int punch_hole(struct inode *inode, loff_t offset, loff_t len, int mode)
  392. {
  393. pgoff_t pg_start, pg_end;
  394. loff_t off_start, off_end;
  395. int ret = 0;
  396. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  397. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  398. off_start = offset & (PAGE_CACHE_SIZE - 1);
  399. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  400. if (pg_start == pg_end) {
  401. fill_zero(inode, pg_start, off_start,
  402. off_end - off_start);
  403. } else {
  404. if (off_start)
  405. fill_zero(inode, pg_start++, off_start,
  406. PAGE_CACHE_SIZE - off_start);
  407. if (off_end)
  408. fill_zero(inode, pg_end, 0, off_end);
  409. if (pg_start < pg_end) {
  410. struct address_space *mapping = inode->i_mapping;
  411. loff_t blk_start, blk_end;
  412. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  413. int ilock;
  414. f2fs_balance_fs(sbi);
  415. blk_start = pg_start << PAGE_CACHE_SHIFT;
  416. blk_end = pg_end << PAGE_CACHE_SHIFT;
  417. truncate_inode_pages_range(mapping, blk_start,
  418. blk_end - 1);
  419. ilock = mutex_lock_op(sbi);
  420. ret = truncate_hole(inode, pg_start, pg_end);
  421. mutex_unlock_op(sbi, ilock);
  422. }
  423. }
  424. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  425. i_size_read(inode) <= (offset + len)) {
  426. i_size_write(inode, offset);
  427. mark_inode_dirty(inode);
  428. }
  429. return ret;
  430. }
  431. static int expand_inode_data(struct inode *inode, loff_t offset,
  432. loff_t len, int mode)
  433. {
  434. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  435. pgoff_t index, pg_start, pg_end;
  436. loff_t new_size = i_size_read(inode);
  437. loff_t off_start, off_end;
  438. int ret = 0;
  439. ret = inode_newsize_ok(inode, (len + offset));
  440. if (ret)
  441. return ret;
  442. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  443. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  444. off_start = offset & (PAGE_CACHE_SIZE - 1);
  445. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  446. for (index = pg_start; index <= pg_end; index++) {
  447. struct dnode_of_data dn;
  448. int ilock;
  449. ilock = mutex_lock_op(sbi);
  450. set_new_dnode(&dn, inode, NULL, NULL, 0);
  451. ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
  452. if (ret) {
  453. mutex_unlock_op(sbi, ilock);
  454. break;
  455. }
  456. if (dn.data_blkaddr == NULL_ADDR) {
  457. ret = reserve_new_block(&dn);
  458. if (ret) {
  459. f2fs_put_dnode(&dn);
  460. mutex_unlock_op(sbi, ilock);
  461. break;
  462. }
  463. }
  464. f2fs_put_dnode(&dn);
  465. mutex_unlock_op(sbi, ilock);
  466. if (pg_start == pg_end)
  467. new_size = offset + len;
  468. else if (index == pg_start && off_start)
  469. new_size = (index + 1) << PAGE_CACHE_SHIFT;
  470. else if (index == pg_end)
  471. new_size = (index << PAGE_CACHE_SHIFT) + off_end;
  472. else
  473. new_size += PAGE_CACHE_SIZE;
  474. }
  475. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  476. i_size_read(inode) < new_size) {
  477. i_size_write(inode, new_size);
  478. mark_inode_dirty(inode);
  479. }
  480. return ret;
  481. }
  482. static long f2fs_fallocate(struct file *file, int mode,
  483. loff_t offset, loff_t len)
  484. {
  485. struct inode *inode = file_inode(file);
  486. long ret;
  487. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
  488. return -EOPNOTSUPP;
  489. if (mode & FALLOC_FL_PUNCH_HOLE)
  490. ret = punch_hole(inode, offset, len, mode);
  491. else
  492. ret = expand_inode_data(inode, offset, len, mode);
  493. if (!ret) {
  494. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  495. mark_inode_dirty(inode);
  496. }
  497. trace_f2fs_fallocate(inode, mode, offset, len, ret);
  498. return ret;
  499. }
  500. #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
  501. #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
  502. static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
  503. {
  504. if (S_ISDIR(mode))
  505. return flags;
  506. else if (S_ISREG(mode))
  507. return flags & F2FS_REG_FLMASK;
  508. else
  509. return flags & F2FS_OTHER_FLMASK;
  510. }
  511. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  512. {
  513. struct inode *inode = file_inode(filp);
  514. struct f2fs_inode_info *fi = F2FS_I(inode);
  515. unsigned int flags;
  516. int ret;
  517. switch (cmd) {
  518. case F2FS_IOC_GETFLAGS:
  519. flags = fi->i_flags & FS_FL_USER_VISIBLE;
  520. return put_user(flags, (int __user *) arg);
  521. case F2FS_IOC_SETFLAGS:
  522. {
  523. unsigned int oldflags;
  524. ret = mnt_want_write_file(filp);
  525. if (ret)
  526. return ret;
  527. if (!inode_owner_or_capable(inode)) {
  528. ret = -EACCES;
  529. goto out;
  530. }
  531. if (get_user(flags, (int __user *) arg)) {
  532. ret = -EFAULT;
  533. goto out;
  534. }
  535. flags = f2fs_mask_flags(inode->i_mode, flags);
  536. mutex_lock(&inode->i_mutex);
  537. oldflags = fi->i_flags;
  538. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
  539. if (!capable(CAP_LINUX_IMMUTABLE)) {
  540. mutex_unlock(&inode->i_mutex);
  541. ret = -EPERM;
  542. goto out;
  543. }
  544. }
  545. flags = flags & FS_FL_USER_MODIFIABLE;
  546. flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
  547. fi->i_flags = flags;
  548. mutex_unlock(&inode->i_mutex);
  549. f2fs_set_inode_flags(inode);
  550. inode->i_ctime = CURRENT_TIME;
  551. mark_inode_dirty(inode);
  552. out:
  553. mnt_drop_write_file(filp);
  554. return ret;
  555. }
  556. default:
  557. return -ENOTTY;
  558. }
  559. }
  560. #ifdef CONFIG_COMPAT
  561. long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  562. {
  563. switch (cmd) {
  564. case F2FS_IOC32_GETFLAGS:
  565. cmd = F2FS_IOC_GETFLAGS;
  566. break;
  567. case F2FS_IOC32_SETFLAGS:
  568. cmd = F2FS_IOC_SETFLAGS;
  569. break;
  570. default:
  571. return -ENOIOCTLCMD;
  572. }
  573. return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
  574. }
  575. #endif
  576. const struct file_operations f2fs_file_operations = {
  577. .llseek = generic_file_llseek,
  578. .read = do_sync_read,
  579. .write = do_sync_write,
  580. .aio_read = generic_file_aio_read,
  581. .aio_write = generic_file_aio_write,
  582. .open = generic_file_open,
  583. .mmap = f2fs_file_mmap,
  584. .fsync = f2fs_sync_file,
  585. .fallocate = f2fs_fallocate,
  586. .unlocked_ioctl = f2fs_ioctl,
  587. #ifdef CONFIG_COMPAT
  588. .compat_ioctl = f2fs_compat_ioctl,
  589. #endif
  590. .splice_read = generic_file_splice_read,
  591. .splice_write = generic_file_splice_write,
  592. };