dir.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687
  1. /*
  2. * fs/f2fs/dir.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include "f2fs.h"
  14. #include "node.h"
  15. #include "acl.h"
  16. #include "xattr.h"
  17. static unsigned long dir_blocks(struct inode *inode)
  18. {
  19. return ((unsigned long long) (i_size_read(inode) + PAGE_CACHE_SIZE - 1))
  20. >> PAGE_CACHE_SHIFT;
  21. }
  22. static unsigned int dir_buckets(unsigned int level)
  23. {
  24. if (level < MAX_DIR_HASH_DEPTH / 2)
  25. return 1 << level;
  26. else
  27. return 1 << ((MAX_DIR_HASH_DEPTH / 2) - 1);
  28. }
  29. static unsigned int bucket_blocks(unsigned int level)
  30. {
  31. if (level < MAX_DIR_HASH_DEPTH / 2)
  32. return 2;
  33. else
  34. return 4;
  35. }
  36. static unsigned char f2fs_filetype_table[F2FS_FT_MAX] = {
  37. [F2FS_FT_UNKNOWN] = DT_UNKNOWN,
  38. [F2FS_FT_REG_FILE] = DT_REG,
  39. [F2FS_FT_DIR] = DT_DIR,
  40. [F2FS_FT_CHRDEV] = DT_CHR,
  41. [F2FS_FT_BLKDEV] = DT_BLK,
  42. [F2FS_FT_FIFO] = DT_FIFO,
  43. [F2FS_FT_SOCK] = DT_SOCK,
  44. [F2FS_FT_SYMLINK] = DT_LNK,
  45. };
  46. #define S_SHIFT 12
  47. static unsigned char f2fs_type_by_mode[S_IFMT >> S_SHIFT] = {
  48. [S_IFREG >> S_SHIFT] = F2FS_FT_REG_FILE,
  49. [S_IFDIR >> S_SHIFT] = F2FS_FT_DIR,
  50. [S_IFCHR >> S_SHIFT] = F2FS_FT_CHRDEV,
  51. [S_IFBLK >> S_SHIFT] = F2FS_FT_BLKDEV,
  52. [S_IFIFO >> S_SHIFT] = F2FS_FT_FIFO,
  53. [S_IFSOCK >> S_SHIFT] = F2FS_FT_SOCK,
  54. [S_IFLNK >> S_SHIFT] = F2FS_FT_SYMLINK,
  55. };
  56. static void set_de_type(struct f2fs_dir_entry *de, struct inode *inode)
  57. {
  58. umode_t mode = inode->i_mode;
  59. de->file_type = f2fs_type_by_mode[(mode & S_IFMT) >> S_SHIFT];
  60. }
  61. static unsigned long dir_block_index(unsigned int level, unsigned int idx)
  62. {
  63. unsigned long i;
  64. unsigned long bidx = 0;
  65. for (i = 0; i < level; i++)
  66. bidx += dir_buckets(i) * bucket_blocks(i);
  67. bidx += idx * bucket_blocks(level);
  68. return bidx;
  69. }
  70. static bool early_match_name(const char *name, size_t namelen,
  71. f2fs_hash_t namehash, struct f2fs_dir_entry *de)
  72. {
  73. if (le16_to_cpu(de->name_len) != namelen)
  74. return false;
  75. if (de->hash_code != namehash)
  76. return false;
  77. return true;
  78. }
  79. static struct f2fs_dir_entry *find_in_block(struct page *dentry_page,
  80. const char *name, size_t namelen, int *max_slots,
  81. f2fs_hash_t namehash, struct page **res_page)
  82. {
  83. struct f2fs_dir_entry *de;
  84. unsigned long bit_pos, end_pos, next_pos;
  85. struct f2fs_dentry_block *dentry_blk = kmap(dentry_page);
  86. int slots;
  87. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  88. NR_DENTRY_IN_BLOCK, 0);
  89. while (bit_pos < NR_DENTRY_IN_BLOCK) {
  90. de = &dentry_blk->dentry[bit_pos];
  91. slots = GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
  92. if (early_match_name(name, namelen, namehash, de)) {
  93. if (!memcmp(dentry_blk->filename[bit_pos],
  94. name, namelen)) {
  95. *res_page = dentry_page;
  96. goto found;
  97. }
  98. }
  99. next_pos = bit_pos + slots;
  100. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  101. NR_DENTRY_IN_BLOCK, next_pos);
  102. if (bit_pos >= NR_DENTRY_IN_BLOCK)
  103. end_pos = NR_DENTRY_IN_BLOCK;
  104. else
  105. end_pos = bit_pos;
  106. if (*max_slots < end_pos - next_pos)
  107. *max_slots = end_pos - next_pos;
  108. }
  109. de = NULL;
  110. kunmap(dentry_page);
  111. found:
  112. return de;
  113. }
  114. static struct f2fs_dir_entry *find_in_level(struct inode *dir,
  115. unsigned int level, const char *name, size_t namelen,
  116. f2fs_hash_t namehash, struct page **res_page)
  117. {
  118. int s = GET_DENTRY_SLOTS(namelen);
  119. unsigned int nbucket, nblock;
  120. unsigned int bidx, end_block;
  121. struct page *dentry_page;
  122. struct f2fs_dir_entry *de = NULL;
  123. bool room = false;
  124. int max_slots = 0;
  125. BUG_ON(level > MAX_DIR_HASH_DEPTH);
  126. nbucket = dir_buckets(level);
  127. nblock = bucket_blocks(level);
  128. bidx = dir_block_index(level, le32_to_cpu(namehash) % nbucket);
  129. end_block = bidx + nblock;
  130. for (; bidx < end_block; bidx++) {
  131. /* no need to allocate new dentry pages to all the indices */
  132. dentry_page = find_data_page(dir, bidx, true);
  133. if (IS_ERR(dentry_page)) {
  134. room = true;
  135. continue;
  136. }
  137. de = find_in_block(dentry_page, name, namelen,
  138. &max_slots, namehash, res_page);
  139. if (de)
  140. break;
  141. if (max_slots >= s)
  142. room = true;
  143. f2fs_put_page(dentry_page, 0);
  144. }
  145. if (!de && room && F2FS_I(dir)->chash != namehash) {
  146. F2FS_I(dir)->chash = namehash;
  147. F2FS_I(dir)->clevel = level;
  148. }
  149. return de;
  150. }
  151. /*
  152. * Find an entry in the specified directory with the wanted name.
  153. * It returns the page where the entry was found (as a parameter - res_page),
  154. * and the entry itself. Page is returned mapped and unlocked.
  155. * Entry is guaranteed to be valid.
  156. */
  157. struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
  158. struct qstr *child, struct page **res_page)
  159. {
  160. const char *name = child->name;
  161. size_t namelen = child->len;
  162. unsigned long npages = dir_blocks(dir);
  163. struct f2fs_dir_entry *de = NULL;
  164. f2fs_hash_t name_hash;
  165. unsigned int max_depth;
  166. unsigned int level;
  167. if (namelen > F2FS_NAME_LEN)
  168. return NULL;
  169. if (npages == 0)
  170. return NULL;
  171. *res_page = NULL;
  172. name_hash = f2fs_dentry_hash(name, namelen);
  173. max_depth = F2FS_I(dir)->i_current_depth;
  174. for (level = 0; level < max_depth; level++) {
  175. de = find_in_level(dir, level, name,
  176. namelen, name_hash, res_page);
  177. if (de)
  178. break;
  179. }
  180. if (!de && F2FS_I(dir)->chash != name_hash) {
  181. F2FS_I(dir)->chash = name_hash;
  182. F2FS_I(dir)->clevel = level - 1;
  183. }
  184. return de;
  185. }
  186. struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p)
  187. {
  188. struct page *page;
  189. struct f2fs_dir_entry *de;
  190. struct f2fs_dentry_block *dentry_blk;
  191. page = get_lock_data_page(dir, 0);
  192. if (IS_ERR(page))
  193. return NULL;
  194. dentry_blk = kmap(page);
  195. de = &dentry_blk->dentry[1];
  196. *p = page;
  197. unlock_page(page);
  198. return de;
  199. }
  200. ino_t f2fs_inode_by_name(struct inode *dir, struct qstr *qstr)
  201. {
  202. ino_t res = 0;
  203. struct f2fs_dir_entry *de;
  204. struct page *page;
  205. de = f2fs_find_entry(dir, qstr, &page);
  206. if (de) {
  207. res = le32_to_cpu(de->ino);
  208. kunmap(page);
  209. f2fs_put_page(page, 0);
  210. }
  211. return res;
  212. }
  213. void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
  214. struct page *page, struct inode *inode)
  215. {
  216. lock_page(page);
  217. wait_on_page_writeback(page);
  218. de->ino = cpu_to_le32(inode->i_ino);
  219. set_de_type(de, inode);
  220. kunmap(page);
  221. set_page_dirty(page);
  222. dir->i_mtime = dir->i_ctime = CURRENT_TIME;
  223. mark_inode_dirty(dir);
  224. /* update parent inode number before releasing dentry page */
  225. F2FS_I(inode)->i_pino = dir->i_ino;
  226. f2fs_put_page(page, 1);
  227. }
  228. static void init_dent_inode(const struct qstr *name, struct page *ipage)
  229. {
  230. struct f2fs_node *rn;
  231. /* copy name info. to this inode page */
  232. rn = F2FS_NODE(ipage);
  233. rn->i.i_namelen = cpu_to_le32(name->len);
  234. memcpy(rn->i.i_name, name->name, name->len);
  235. set_page_dirty(ipage);
  236. }
  237. int update_dent_inode(struct inode *inode, const struct qstr *name)
  238. {
  239. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  240. struct page *page;
  241. page = get_node_page(sbi, inode->i_ino);
  242. if (IS_ERR(page))
  243. return PTR_ERR(page);
  244. init_dent_inode(name, page);
  245. f2fs_put_page(page, 1);
  246. return 0;
  247. }
  248. static int make_empty_dir(struct inode *inode,
  249. struct inode *parent, struct page *page)
  250. {
  251. struct page *dentry_page;
  252. struct f2fs_dentry_block *dentry_blk;
  253. struct f2fs_dir_entry *de;
  254. void *kaddr;
  255. dentry_page = get_new_data_page(inode, page, 0, true);
  256. if (IS_ERR(dentry_page))
  257. return PTR_ERR(dentry_page);
  258. kaddr = kmap_atomic(dentry_page);
  259. dentry_blk = (struct f2fs_dentry_block *)kaddr;
  260. de = &dentry_blk->dentry[0];
  261. de->name_len = cpu_to_le16(1);
  262. de->hash_code = 0;
  263. de->ino = cpu_to_le32(inode->i_ino);
  264. memcpy(dentry_blk->filename[0], ".", 1);
  265. set_de_type(de, inode);
  266. de = &dentry_blk->dentry[1];
  267. de->hash_code = 0;
  268. de->name_len = cpu_to_le16(2);
  269. de->ino = cpu_to_le32(parent->i_ino);
  270. memcpy(dentry_blk->filename[1], "..", 2);
  271. set_de_type(de, inode);
  272. test_and_set_bit_le(0, &dentry_blk->dentry_bitmap);
  273. test_and_set_bit_le(1, &dentry_blk->dentry_bitmap);
  274. kunmap_atomic(kaddr);
  275. set_page_dirty(dentry_page);
  276. f2fs_put_page(dentry_page, 1);
  277. return 0;
  278. }
  279. static struct page *init_inode_metadata(struct inode *inode,
  280. struct inode *dir, const struct qstr *name)
  281. {
  282. struct page *page;
  283. int err;
  284. if (is_inode_flag_set(F2FS_I(inode), FI_NEW_INODE)) {
  285. page = new_inode_page(inode, name);
  286. if (IS_ERR(page))
  287. return page;
  288. if (S_ISDIR(inode->i_mode)) {
  289. err = make_empty_dir(inode, dir, page);
  290. if (err)
  291. goto error;
  292. }
  293. err = f2fs_init_acl(inode, dir);
  294. if (err)
  295. goto error;
  296. err = f2fs_init_security(inode, dir, name, page);
  297. if (err)
  298. goto error;
  299. wait_on_page_writeback(page);
  300. } else {
  301. page = get_node_page(F2FS_SB(dir->i_sb), inode->i_ino);
  302. if (IS_ERR(page))
  303. return page;
  304. wait_on_page_writeback(page);
  305. set_cold_node(inode, page);
  306. }
  307. init_dent_inode(name, page);
  308. /*
  309. * This file should be checkpointed during fsync.
  310. * We lost i_pino from now on.
  311. */
  312. if (is_inode_flag_set(F2FS_I(inode), FI_INC_LINK)) {
  313. file_lost_pino(inode);
  314. inc_nlink(inode);
  315. }
  316. return page;
  317. error:
  318. f2fs_put_page(page, 1);
  319. remove_inode_page(inode);
  320. return ERR_PTR(err);
  321. }
  322. static void update_parent_metadata(struct inode *dir, struct inode *inode,
  323. unsigned int current_depth)
  324. {
  325. if (is_inode_flag_set(F2FS_I(inode), FI_NEW_INODE)) {
  326. if (S_ISDIR(inode->i_mode)) {
  327. inc_nlink(dir);
  328. set_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
  329. }
  330. clear_inode_flag(F2FS_I(inode), FI_NEW_INODE);
  331. }
  332. dir->i_mtime = dir->i_ctime = CURRENT_TIME;
  333. if (F2FS_I(dir)->i_current_depth != current_depth) {
  334. F2FS_I(dir)->i_current_depth = current_depth;
  335. set_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
  336. }
  337. if (is_inode_flag_set(F2FS_I(dir), FI_UPDATE_DIR))
  338. update_inode_page(dir);
  339. else
  340. mark_inode_dirty(dir);
  341. if (is_inode_flag_set(F2FS_I(inode), FI_INC_LINK))
  342. clear_inode_flag(F2FS_I(inode), FI_INC_LINK);
  343. }
  344. static int room_for_filename(struct f2fs_dentry_block *dentry_blk, int slots)
  345. {
  346. int bit_start = 0;
  347. int zero_start, zero_end;
  348. next:
  349. zero_start = find_next_zero_bit_le(&dentry_blk->dentry_bitmap,
  350. NR_DENTRY_IN_BLOCK,
  351. bit_start);
  352. if (zero_start >= NR_DENTRY_IN_BLOCK)
  353. return NR_DENTRY_IN_BLOCK;
  354. zero_end = find_next_bit_le(&dentry_blk->dentry_bitmap,
  355. NR_DENTRY_IN_BLOCK,
  356. zero_start);
  357. if (zero_end - zero_start >= slots)
  358. return zero_start;
  359. bit_start = zero_end + 1;
  360. if (zero_end + 1 >= NR_DENTRY_IN_BLOCK)
  361. return NR_DENTRY_IN_BLOCK;
  362. goto next;
  363. }
  364. /*
  365. * Caller should grab and release a mutex by calling mutex_lock_op() and
  366. * mutex_unlock_op().
  367. */
  368. int __f2fs_add_link(struct inode *dir, const struct qstr *name, struct inode *inode)
  369. {
  370. unsigned int bit_pos;
  371. unsigned int level;
  372. unsigned int current_depth;
  373. unsigned long bidx, block;
  374. f2fs_hash_t dentry_hash;
  375. struct f2fs_dir_entry *de;
  376. unsigned int nbucket, nblock;
  377. size_t namelen = name->len;
  378. struct page *dentry_page = NULL;
  379. struct f2fs_dentry_block *dentry_blk = NULL;
  380. int slots = GET_DENTRY_SLOTS(namelen);
  381. struct page *page;
  382. int err = 0;
  383. int i;
  384. dentry_hash = f2fs_dentry_hash(name->name, name->len);
  385. level = 0;
  386. current_depth = F2FS_I(dir)->i_current_depth;
  387. if (F2FS_I(dir)->chash == dentry_hash) {
  388. level = F2FS_I(dir)->clevel;
  389. F2FS_I(dir)->chash = 0;
  390. }
  391. start:
  392. if (current_depth == MAX_DIR_HASH_DEPTH)
  393. return -ENOSPC;
  394. /* Increase the depth, if required */
  395. if (level == current_depth)
  396. ++current_depth;
  397. nbucket = dir_buckets(level);
  398. nblock = bucket_blocks(level);
  399. bidx = dir_block_index(level, (le32_to_cpu(dentry_hash) % nbucket));
  400. for (block = bidx; block <= (bidx + nblock - 1); block++) {
  401. dentry_page = get_new_data_page(dir, NULL, block, true);
  402. if (IS_ERR(dentry_page))
  403. return PTR_ERR(dentry_page);
  404. dentry_blk = kmap(dentry_page);
  405. bit_pos = room_for_filename(dentry_blk, slots);
  406. if (bit_pos < NR_DENTRY_IN_BLOCK)
  407. goto add_dentry;
  408. kunmap(dentry_page);
  409. f2fs_put_page(dentry_page, 1);
  410. }
  411. /* Move to next level to find the empty slot for new dentry */
  412. ++level;
  413. goto start;
  414. add_dentry:
  415. wait_on_page_writeback(dentry_page);
  416. page = init_inode_metadata(inode, dir, name);
  417. if (IS_ERR(page)) {
  418. err = PTR_ERR(page);
  419. goto fail;
  420. }
  421. de = &dentry_blk->dentry[bit_pos];
  422. de->hash_code = dentry_hash;
  423. de->name_len = cpu_to_le16(namelen);
  424. memcpy(dentry_blk->filename[bit_pos], name->name, name->len);
  425. de->ino = cpu_to_le32(inode->i_ino);
  426. set_de_type(de, inode);
  427. for (i = 0; i < slots; i++)
  428. test_and_set_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
  429. set_page_dirty(dentry_page);
  430. /* we don't need to mark_inode_dirty now */
  431. F2FS_I(inode)->i_pino = dir->i_ino;
  432. update_inode(inode, page);
  433. f2fs_put_page(page, 1);
  434. update_parent_metadata(dir, inode, current_depth);
  435. fail:
  436. clear_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
  437. kunmap(dentry_page);
  438. f2fs_put_page(dentry_page, 1);
  439. return err;
  440. }
  441. /*
  442. * It only removes the dentry from the dentry page,corresponding name
  443. * entry in name page does not need to be touched during deletion.
  444. */
  445. void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
  446. struct inode *inode)
  447. {
  448. struct f2fs_dentry_block *dentry_blk;
  449. unsigned int bit_pos;
  450. struct address_space *mapping = page->mapping;
  451. struct inode *dir = mapping->host;
  452. struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
  453. int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
  454. void *kaddr = page_address(page);
  455. int i;
  456. lock_page(page);
  457. wait_on_page_writeback(page);
  458. dentry_blk = (struct f2fs_dentry_block *)kaddr;
  459. bit_pos = dentry - (struct f2fs_dir_entry *)dentry_blk->dentry;
  460. for (i = 0; i < slots; i++)
  461. test_and_clear_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
  462. /* Let's check and deallocate this dentry page */
  463. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  464. NR_DENTRY_IN_BLOCK,
  465. 0);
  466. kunmap(page); /* kunmap - pair of f2fs_find_entry */
  467. set_page_dirty(page);
  468. dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  469. if (inode && S_ISDIR(inode->i_mode)) {
  470. drop_nlink(dir);
  471. update_inode_page(dir);
  472. } else {
  473. mark_inode_dirty(dir);
  474. }
  475. if (inode) {
  476. inode->i_ctime = CURRENT_TIME;
  477. drop_nlink(inode);
  478. if (S_ISDIR(inode->i_mode)) {
  479. drop_nlink(inode);
  480. i_size_write(inode, 0);
  481. }
  482. update_inode_page(inode);
  483. if (inode->i_nlink == 0)
  484. add_orphan_inode(sbi, inode->i_ino);
  485. else
  486. release_orphan_inode(sbi);
  487. }
  488. if (bit_pos == NR_DENTRY_IN_BLOCK) {
  489. truncate_hole(dir, page->index, page->index + 1);
  490. clear_page_dirty_for_io(page);
  491. ClearPageUptodate(page);
  492. dec_page_count(sbi, F2FS_DIRTY_DENTS);
  493. inode_dec_dirty_dents(dir);
  494. }
  495. f2fs_put_page(page, 1);
  496. }
  497. bool f2fs_empty_dir(struct inode *dir)
  498. {
  499. unsigned long bidx;
  500. struct page *dentry_page;
  501. unsigned int bit_pos;
  502. struct f2fs_dentry_block *dentry_blk;
  503. unsigned long nblock = dir_blocks(dir);
  504. for (bidx = 0; bidx < nblock; bidx++) {
  505. void *kaddr;
  506. dentry_page = get_lock_data_page(dir, bidx);
  507. if (IS_ERR(dentry_page)) {
  508. if (PTR_ERR(dentry_page) == -ENOENT)
  509. continue;
  510. else
  511. return false;
  512. }
  513. kaddr = kmap_atomic(dentry_page);
  514. dentry_blk = (struct f2fs_dentry_block *)kaddr;
  515. if (bidx == 0)
  516. bit_pos = 2;
  517. else
  518. bit_pos = 0;
  519. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  520. NR_DENTRY_IN_BLOCK,
  521. bit_pos);
  522. kunmap_atomic(kaddr);
  523. f2fs_put_page(dentry_page, 1);
  524. if (bit_pos < NR_DENTRY_IN_BLOCK)
  525. return false;
  526. }
  527. return true;
  528. }
  529. static int f2fs_readdir(struct file *file, struct dir_context *ctx)
  530. {
  531. struct inode *inode = file_inode(file);
  532. unsigned long npages = dir_blocks(inode);
  533. unsigned int bit_pos = 0;
  534. struct f2fs_dentry_block *dentry_blk = NULL;
  535. struct f2fs_dir_entry *de = NULL;
  536. struct page *dentry_page = NULL;
  537. unsigned int n = ((unsigned long)ctx->pos / NR_DENTRY_IN_BLOCK);
  538. unsigned char d_type = DT_UNKNOWN;
  539. bit_pos = ((unsigned long)ctx->pos % NR_DENTRY_IN_BLOCK);
  540. for ( ; n < npages; n++) {
  541. dentry_page = get_lock_data_page(inode, n);
  542. if (IS_ERR(dentry_page))
  543. continue;
  544. dentry_blk = kmap(dentry_page);
  545. while (bit_pos < NR_DENTRY_IN_BLOCK) {
  546. bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
  547. NR_DENTRY_IN_BLOCK,
  548. bit_pos);
  549. if (bit_pos >= NR_DENTRY_IN_BLOCK)
  550. break;
  551. de = &dentry_blk->dentry[bit_pos];
  552. if (de->file_type < F2FS_FT_MAX)
  553. d_type = f2fs_filetype_table[de->file_type];
  554. else
  555. d_type = DT_UNKNOWN;
  556. if (!dir_emit(ctx,
  557. dentry_blk->filename[bit_pos],
  558. le16_to_cpu(de->name_len),
  559. le32_to_cpu(de->ino), d_type))
  560. goto stop;
  561. bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
  562. ctx->pos = n * NR_DENTRY_IN_BLOCK + bit_pos;
  563. }
  564. bit_pos = 0;
  565. ctx->pos = (n + 1) * NR_DENTRY_IN_BLOCK;
  566. kunmap(dentry_page);
  567. f2fs_put_page(dentry_page, 1);
  568. dentry_page = NULL;
  569. }
  570. stop:
  571. if (dentry_page && !IS_ERR(dentry_page)) {
  572. kunmap(dentry_page);
  573. f2fs_put_page(dentry_page, 1);
  574. }
  575. return 0;
  576. }
  577. const struct file_operations f2fs_dir_operations = {
  578. .llseek = generic_file_llseek,
  579. .read = generic_read_dir,
  580. .iterate = f2fs_readdir,
  581. .fsync = f2fs_sync_file,
  582. .unlocked_ioctl = f2fs_ioctl,
  583. };