file.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622
  1. /*
  2. * linux/fs/ext4/file.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/file.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * ext4 fs regular file handling primitives
  16. *
  17. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  18. * (jj@sunsite.ms.mff.cuni.cz)
  19. */
  20. #include <linux/time.h>
  21. #include <linux/fs.h>
  22. #include <linux/jbd2.h>
  23. #include <linux/mount.h>
  24. #include <linux/path.h>
  25. #include <linux/aio.h>
  26. #include <linux/quotaops.h>
  27. #include <linux/pagevec.h>
  28. #include "ext4.h"
  29. #include "ext4_jbd2.h"
  30. #include "xattr.h"
  31. #include "acl.h"
  32. /*
  33. * Called when an inode is released. Note that this is different
  34. * from ext4_file_open: open gets called at every open, but release
  35. * gets called only when /all/ the files are closed.
  36. */
  37. static int ext4_release_file(struct inode *inode, struct file *filp)
  38. {
  39. if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
  40. ext4_alloc_da_blocks(inode);
  41. ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
  42. }
  43. /* if we are the last writer on the inode, drop the block reservation */
  44. if ((filp->f_mode & FMODE_WRITE) &&
  45. (atomic_read(&inode->i_writecount) == 1) &&
  46. !EXT4_I(inode)->i_reserved_data_blocks)
  47. {
  48. down_write(&EXT4_I(inode)->i_data_sem);
  49. ext4_discard_preallocations(inode);
  50. up_write(&EXT4_I(inode)->i_data_sem);
  51. }
  52. if (is_dx(inode) && filp->private_data)
  53. ext4_htree_free_dir_info(filp->private_data);
  54. return 0;
  55. }
  56. void ext4_unwritten_wait(struct inode *inode)
  57. {
  58. wait_queue_head_t *wq = ext4_ioend_wq(inode);
  59. wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
  60. }
  61. /*
  62. * This tests whether the IO in question is block-aligned or not.
  63. * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
  64. * are converted to written only after the IO is complete. Until they are
  65. * mapped, these blocks appear as holes, so dio_zero_block() will assume that
  66. * it needs to zero out portions of the start and/or end block. If 2 AIO
  67. * threads are at work on the same unwritten block, they must be synchronized
  68. * or one thread will zero the other's data, causing corruption.
  69. */
  70. static int
  71. ext4_unaligned_aio(struct inode *inode, const struct iovec *iov,
  72. unsigned long nr_segs, loff_t pos)
  73. {
  74. struct super_block *sb = inode->i_sb;
  75. int blockmask = sb->s_blocksize - 1;
  76. size_t count = iov_length(iov, nr_segs);
  77. loff_t final_size = pos + count;
  78. if (pos >= inode->i_size)
  79. return 0;
  80. if ((pos & blockmask) || (final_size & blockmask))
  81. return 1;
  82. return 0;
  83. }
  84. static ssize_t
  85. ext4_file_dio_write(struct kiocb *iocb, const struct iovec *iov,
  86. unsigned long nr_segs, loff_t pos)
  87. {
  88. struct file *file = iocb->ki_filp;
  89. struct inode *inode = file->f_mapping->host;
  90. struct blk_plug plug;
  91. int unaligned_aio = 0;
  92. ssize_t ret;
  93. int overwrite = 0;
  94. size_t length = iov_length(iov, nr_segs);
  95. if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
  96. !is_sync_kiocb(iocb))
  97. unaligned_aio = ext4_unaligned_aio(inode, iov, nr_segs, pos);
  98. /* Unaligned direct AIO must be serialized; see comment above */
  99. if (unaligned_aio) {
  100. mutex_lock(ext4_aio_mutex(inode));
  101. ext4_unwritten_wait(inode);
  102. }
  103. BUG_ON(iocb->ki_pos != pos);
  104. mutex_lock(&inode->i_mutex);
  105. blk_start_plug(&plug);
  106. iocb->private = &overwrite;
  107. /* check whether we do a DIO overwrite or not */
  108. if (ext4_should_dioread_nolock(inode) && !unaligned_aio &&
  109. !file->f_mapping->nrpages && pos + length <= i_size_read(inode)) {
  110. struct ext4_map_blocks map;
  111. unsigned int blkbits = inode->i_blkbits;
  112. int err, len;
  113. map.m_lblk = pos >> blkbits;
  114. map.m_len = (EXT4_BLOCK_ALIGN(pos + length, blkbits) >> blkbits)
  115. - map.m_lblk;
  116. len = map.m_len;
  117. err = ext4_map_blocks(NULL, inode, &map, 0);
  118. /*
  119. * 'err==len' means that all of blocks has been preallocated no
  120. * matter they are initialized or not. For excluding
  121. * uninitialized extents, we need to check m_flags. There are
  122. * two conditions that indicate for initialized extents.
  123. * 1) If we hit extent cache, EXT4_MAP_MAPPED flag is returned;
  124. * 2) If we do a real lookup, non-flags are returned.
  125. * So we should check these two conditions.
  126. */
  127. if (err == len && (map.m_flags & EXT4_MAP_MAPPED))
  128. overwrite = 1;
  129. }
  130. ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
  131. mutex_unlock(&inode->i_mutex);
  132. if (ret > 0) {
  133. ssize_t err;
  134. err = generic_write_sync(file, pos, ret);
  135. if (err < 0 && ret > 0)
  136. ret = err;
  137. }
  138. blk_finish_plug(&plug);
  139. if (unaligned_aio)
  140. mutex_unlock(ext4_aio_mutex(inode));
  141. return ret;
  142. }
  143. static ssize_t
  144. ext4_file_write(struct kiocb *iocb, const struct iovec *iov,
  145. unsigned long nr_segs, loff_t pos)
  146. {
  147. struct inode *inode = file_inode(iocb->ki_filp);
  148. ssize_t ret;
  149. /*
  150. * If we have encountered a bitmap-format file, the size limit
  151. * is smaller than s_maxbytes, which is for extent-mapped files.
  152. */
  153. if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
  154. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  155. size_t length = iov_length(iov, nr_segs);
  156. if ((pos > sbi->s_bitmap_maxbytes ||
  157. (pos == sbi->s_bitmap_maxbytes && length > 0)))
  158. return -EFBIG;
  159. if (pos + length > sbi->s_bitmap_maxbytes) {
  160. nr_segs = iov_shorten((struct iovec *)iov, nr_segs,
  161. sbi->s_bitmap_maxbytes - pos);
  162. }
  163. }
  164. if (unlikely(iocb->ki_filp->f_flags & O_DIRECT))
  165. ret = ext4_file_dio_write(iocb, iov, nr_segs, pos);
  166. else
  167. ret = generic_file_aio_write(iocb, iov, nr_segs, pos);
  168. return ret;
  169. }
  170. static const struct vm_operations_struct ext4_file_vm_ops = {
  171. .fault = filemap_fault,
  172. .page_mkwrite = ext4_page_mkwrite,
  173. .remap_pages = generic_file_remap_pages,
  174. };
  175. static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
  176. {
  177. struct address_space *mapping = file->f_mapping;
  178. if (!mapping->a_ops->readpage)
  179. return -ENOEXEC;
  180. file_accessed(file);
  181. vma->vm_ops = &ext4_file_vm_ops;
  182. return 0;
  183. }
  184. static int ext4_file_open(struct inode * inode, struct file * filp)
  185. {
  186. struct super_block *sb = inode->i_sb;
  187. struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  188. struct vfsmount *mnt = filp->f_path.mnt;
  189. struct path path;
  190. char buf[64], *cp;
  191. if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
  192. !(sb->s_flags & MS_RDONLY))) {
  193. sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
  194. /*
  195. * Sample where the filesystem has been mounted and
  196. * store it in the superblock for sysadmin convenience
  197. * when trying to sort through large numbers of block
  198. * devices or filesystem images.
  199. */
  200. memset(buf, 0, sizeof(buf));
  201. path.mnt = mnt;
  202. path.dentry = mnt->mnt_root;
  203. cp = d_path(&path, buf, sizeof(buf));
  204. if (!IS_ERR(cp)) {
  205. handle_t *handle;
  206. int err;
  207. handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
  208. if (IS_ERR(handle))
  209. return PTR_ERR(handle);
  210. err = ext4_journal_get_write_access(handle, sbi->s_sbh);
  211. if (err) {
  212. ext4_journal_stop(handle);
  213. return err;
  214. }
  215. strlcpy(sbi->s_es->s_last_mounted, cp,
  216. sizeof(sbi->s_es->s_last_mounted));
  217. ext4_handle_dirty_super(handle, sb);
  218. ext4_journal_stop(handle);
  219. }
  220. }
  221. /*
  222. * Set up the jbd2_inode if we are opening the inode for
  223. * writing and the journal is present
  224. */
  225. if (filp->f_mode & FMODE_WRITE) {
  226. int ret = ext4_inode_attach_jinode(inode);
  227. if (ret < 0)
  228. return ret;
  229. }
  230. return dquot_file_open(inode, filp);
  231. }
  232. /*
  233. * Here we use ext4_map_blocks() to get a block mapping for a extent-based
  234. * file rather than ext4_ext_walk_space() because we can introduce
  235. * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
  236. * function. When extent status tree has been fully implemented, it will
  237. * track all extent status for a file and we can directly use it to
  238. * retrieve the offset for SEEK_DATA/SEEK_HOLE.
  239. */
  240. /*
  241. * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
  242. * lookup page cache to check whether or not there has some data between
  243. * [startoff, endoff] because, if this range contains an unwritten extent,
  244. * we determine this extent as a data or a hole according to whether the
  245. * page cache has data or not.
  246. */
  247. static int ext4_find_unwritten_pgoff(struct inode *inode,
  248. int whence,
  249. struct ext4_map_blocks *map,
  250. loff_t *offset)
  251. {
  252. struct pagevec pvec;
  253. unsigned int blkbits;
  254. pgoff_t index;
  255. pgoff_t end;
  256. loff_t endoff;
  257. loff_t startoff;
  258. loff_t lastoff;
  259. int found = 0;
  260. blkbits = inode->i_sb->s_blocksize_bits;
  261. startoff = *offset;
  262. lastoff = startoff;
  263. endoff = (loff_t)(map->m_lblk + map->m_len) << blkbits;
  264. index = startoff >> PAGE_CACHE_SHIFT;
  265. end = endoff >> PAGE_CACHE_SHIFT;
  266. pagevec_init(&pvec, 0);
  267. do {
  268. int i, num;
  269. unsigned long nr_pages;
  270. num = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
  271. nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
  272. (pgoff_t)num);
  273. if (nr_pages == 0) {
  274. if (whence == SEEK_DATA)
  275. break;
  276. BUG_ON(whence != SEEK_HOLE);
  277. /*
  278. * If this is the first time to go into the loop and
  279. * offset is not beyond the end offset, it will be a
  280. * hole at this offset
  281. */
  282. if (lastoff == startoff || lastoff < endoff)
  283. found = 1;
  284. break;
  285. }
  286. /*
  287. * If this is the first time to go into the loop and
  288. * offset is smaller than the first page offset, it will be a
  289. * hole at this offset.
  290. */
  291. if (lastoff == startoff && whence == SEEK_HOLE &&
  292. lastoff < page_offset(pvec.pages[0])) {
  293. found = 1;
  294. break;
  295. }
  296. for (i = 0; i < nr_pages; i++) {
  297. struct page *page = pvec.pages[i];
  298. struct buffer_head *bh, *head;
  299. /*
  300. * If the current offset is not beyond the end of given
  301. * range, it will be a hole.
  302. */
  303. if (lastoff < endoff && whence == SEEK_HOLE &&
  304. page->index > end) {
  305. found = 1;
  306. *offset = lastoff;
  307. goto out;
  308. }
  309. lock_page(page);
  310. if (unlikely(page->mapping != inode->i_mapping)) {
  311. unlock_page(page);
  312. continue;
  313. }
  314. if (!page_has_buffers(page)) {
  315. unlock_page(page);
  316. continue;
  317. }
  318. if (page_has_buffers(page)) {
  319. lastoff = page_offset(page);
  320. bh = head = page_buffers(page);
  321. do {
  322. if (buffer_uptodate(bh) ||
  323. buffer_unwritten(bh)) {
  324. if (whence == SEEK_DATA)
  325. found = 1;
  326. } else {
  327. if (whence == SEEK_HOLE)
  328. found = 1;
  329. }
  330. if (found) {
  331. *offset = max_t(loff_t,
  332. startoff, lastoff);
  333. unlock_page(page);
  334. goto out;
  335. }
  336. lastoff += bh->b_size;
  337. bh = bh->b_this_page;
  338. } while (bh != head);
  339. }
  340. lastoff = page_offset(page) + PAGE_SIZE;
  341. unlock_page(page);
  342. }
  343. /*
  344. * The no. of pages is less than our desired, that would be a
  345. * hole in there.
  346. */
  347. if (nr_pages < num && whence == SEEK_HOLE) {
  348. found = 1;
  349. *offset = lastoff;
  350. break;
  351. }
  352. index = pvec.pages[i - 1]->index + 1;
  353. pagevec_release(&pvec);
  354. } while (index <= end);
  355. out:
  356. pagevec_release(&pvec);
  357. return found;
  358. }
  359. /*
  360. * ext4_seek_data() retrieves the offset for SEEK_DATA.
  361. */
  362. static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
  363. {
  364. struct inode *inode = file->f_mapping->host;
  365. struct ext4_map_blocks map;
  366. struct extent_status es;
  367. ext4_lblk_t start, last, end;
  368. loff_t dataoff, isize;
  369. int blkbits;
  370. int ret = 0;
  371. mutex_lock(&inode->i_mutex);
  372. isize = i_size_read(inode);
  373. if (offset >= isize) {
  374. mutex_unlock(&inode->i_mutex);
  375. return -ENXIO;
  376. }
  377. blkbits = inode->i_sb->s_blocksize_bits;
  378. start = offset >> blkbits;
  379. last = start;
  380. end = isize >> blkbits;
  381. dataoff = offset;
  382. do {
  383. map.m_lblk = last;
  384. map.m_len = end - last + 1;
  385. ret = ext4_map_blocks(NULL, inode, &map, 0);
  386. if (ret > 0 && !(map.m_flags & EXT4_MAP_UNWRITTEN)) {
  387. if (last != start)
  388. dataoff = (loff_t)last << blkbits;
  389. break;
  390. }
  391. /*
  392. * If there is a delay extent at this offset,
  393. * it will be as a data.
  394. */
  395. ext4_es_find_delayed_extent_range(inode, last, last, &es);
  396. if (es.es_len != 0 && in_range(last, es.es_lblk, es.es_len)) {
  397. if (last != start)
  398. dataoff = (loff_t)last << blkbits;
  399. break;
  400. }
  401. /*
  402. * If there is a unwritten extent at this offset,
  403. * it will be as a data or a hole according to page
  404. * cache that has data or not.
  405. */
  406. if (map.m_flags & EXT4_MAP_UNWRITTEN) {
  407. int unwritten;
  408. unwritten = ext4_find_unwritten_pgoff(inode, SEEK_DATA,
  409. &map, &dataoff);
  410. if (unwritten)
  411. break;
  412. }
  413. last++;
  414. dataoff = (loff_t)last << blkbits;
  415. } while (last <= end);
  416. mutex_unlock(&inode->i_mutex);
  417. if (dataoff > isize)
  418. return -ENXIO;
  419. return vfs_setpos(file, dataoff, maxsize);
  420. }
  421. /*
  422. * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
  423. */
  424. static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
  425. {
  426. struct inode *inode = file->f_mapping->host;
  427. struct ext4_map_blocks map;
  428. struct extent_status es;
  429. ext4_lblk_t start, last, end;
  430. loff_t holeoff, isize;
  431. int blkbits;
  432. int ret = 0;
  433. mutex_lock(&inode->i_mutex);
  434. isize = i_size_read(inode);
  435. if (offset >= isize) {
  436. mutex_unlock(&inode->i_mutex);
  437. return -ENXIO;
  438. }
  439. blkbits = inode->i_sb->s_blocksize_bits;
  440. start = offset >> blkbits;
  441. last = start;
  442. end = isize >> blkbits;
  443. holeoff = offset;
  444. do {
  445. map.m_lblk = last;
  446. map.m_len = end - last + 1;
  447. ret = ext4_map_blocks(NULL, inode, &map, 0);
  448. if (ret > 0 && !(map.m_flags & EXT4_MAP_UNWRITTEN)) {
  449. last += ret;
  450. holeoff = (loff_t)last << blkbits;
  451. continue;
  452. }
  453. /*
  454. * If there is a delay extent at this offset,
  455. * we will skip this extent.
  456. */
  457. ext4_es_find_delayed_extent_range(inode, last, last, &es);
  458. if (es.es_len != 0 && in_range(last, es.es_lblk, es.es_len)) {
  459. last = es.es_lblk + es.es_len;
  460. holeoff = (loff_t)last << blkbits;
  461. continue;
  462. }
  463. /*
  464. * If there is a unwritten extent at this offset,
  465. * it will be as a data or a hole according to page
  466. * cache that has data or not.
  467. */
  468. if (map.m_flags & EXT4_MAP_UNWRITTEN) {
  469. int unwritten;
  470. unwritten = ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
  471. &map, &holeoff);
  472. if (!unwritten) {
  473. last += ret;
  474. holeoff = (loff_t)last << blkbits;
  475. continue;
  476. }
  477. }
  478. /* find a hole */
  479. break;
  480. } while (last <= end);
  481. mutex_unlock(&inode->i_mutex);
  482. if (holeoff > isize)
  483. holeoff = isize;
  484. return vfs_setpos(file, holeoff, maxsize);
  485. }
  486. /*
  487. * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
  488. * by calling generic_file_llseek_size() with the appropriate maxbytes
  489. * value for each.
  490. */
  491. loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
  492. {
  493. struct inode *inode = file->f_mapping->host;
  494. loff_t maxbytes;
  495. if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
  496. maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
  497. else
  498. maxbytes = inode->i_sb->s_maxbytes;
  499. switch (whence) {
  500. case SEEK_SET:
  501. case SEEK_CUR:
  502. case SEEK_END:
  503. return generic_file_llseek_size(file, offset, whence,
  504. maxbytes, i_size_read(inode));
  505. case SEEK_DATA:
  506. return ext4_seek_data(file, offset, maxbytes);
  507. case SEEK_HOLE:
  508. return ext4_seek_hole(file, offset, maxbytes);
  509. }
  510. return -EINVAL;
  511. }
  512. const struct file_operations ext4_file_operations = {
  513. .llseek = ext4_llseek,
  514. .read = do_sync_read,
  515. .write = do_sync_write,
  516. .aio_read = generic_file_aio_read,
  517. .aio_write = ext4_file_write,
  518. .unlocked_ioctl = ext4_ioctl,
  519. #ifdef CONFIG_COMPAT
  520. .compat_ioctl = ext4_compat_ioctl,
  521. #endif
  522. .mmap = ext4_file_mmap,
  523. .open = ext4_file_open,
  524. .release = ext4_release_file,
  525. .fsync = ext4_sync_file,
  526. .splice_read = generic_file_splice_read,
  527. .splice_write = generic_file_splice_write,
  528. .fallocate = ext4_fallocate,
  529. };
  530. const struct inode_operations ext4_file_inode_operations = {
  531. .setattr = ext4_setattr,
  532. .getattr = ext4_getattr,
  533. .setxattr = generic_setxattr,
  534. .getxattr = generic_getxattr,
  535. .listxattr = ext4_listxattr,
  536. .removexattr = generic_removexattr,
  537. .get_acl = ext4_get_acl,
  538. .fiemap = ext4_fiemap,
  539. };