mtd_dataflash.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929
  1. /*
  2. * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework
  3. *
  4. * Largely derived from at91_dataflash.c:
  5. * Copyright (C) 2003-2005 SAN People (Pty) Ltd
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #include <linux/module.h>
  13. #include <linux/init.h>
  14. #include <linux/slab.h>
  15. #include <linux/delay.h>
  16. #include <linux/device.h>
  17. #include <linux/mutex.h>
  18. #include <linux/err.h>
  19. #include <linux/math64.h>
  20. #include <linux/of.h>
  21. #include <linux/of_device.h>
  22. #include <linux/spi/spi.h>
  23. #include <linux/spi/flash.h>
  24. #include <linux/mtd/mtd.h>
  25. #include <linux/mtd/partitions.h>
  26. /*
  27. * DataFlash is a kind of SPI flash. Most AT45 chips have two buffers in
  28. * each chip, which may be used for double buffered I/O; but this driver
  29. * doesn't (yet) use these for any kind of i/o overlap or prefetching.
  30. *
  31. * Sometimes DataFlash is packaged in MMC-format cards, although the
  32. * MMC stack can't (yet?) distinguish between MMC and DataFlash
  33. * protocols during enumeration.
  34. */
  35. /* reads can bypass the buffers */
  36. #define OP_READ_CONTINUOUS 0xE8
  37. #define OP_READ_PAGE 0xD2
  38. /* group B requests can run even while status reports "busy" */
  39. #define OP_READ_STATUS 0xD7 /* group B */
  40. /* move data between host and buffer */
  41. #define OP_READ_BUFFER1 0xD4 /* group B */
  42. #define OP_READ_BUFFER2 0xD6 /* group B */
  43. #define OP_WRITE_BUFFER1 0x84 /* group B */
  44. #define OP_WRITE_BUFFER2 0x87 /* group B */
  45. /* erasing flash */
  46. #define OP_ERASE_PAGE 0x81
  47. #define OP_ERASE_BLOCK 0x50
  48. /* move data between buffer and flash */
  49. #define OP_TRANSFER_BUF1 0x53
  50. #define OP_TRANSFER_BUF2 0x55
  51. #define OP_MREAD_BUFFER1 0xD4
  52. #define OP_MREAD_BUFFER2 0xD6
  53. #define OP_MWERASE_BUFFER1 0x83
  54. #define OP_MWERASE_BUFFER2 0x86
  55. #define OP_MWRITE_BUFFER1 0x88 /* sector must be pre-erased */
  56. #define OP_MWRITE_BUFFER2 0x89 /* sector must be pre-erased */
  57. /* write to buffer, then write-erase to flash */
  58. #define OP_PROGRAM_VIA_BUF1 0x82
  59. #define OP_PROGRAM_VIA_BUF2 0x85
  60. /* compare buffer to flash */
  61. #define OP_COMPARE_BUF1 0x60
  62. #define OP_COMPARE_BUF2 0x61
  63. /* read flash to buffer, then write-erase to flash */
  64. #define OP_REWRITE_VIA_BUF1 0x58
  65. #define OP_REWRITE_VIA_BUF2 0x59
  66. /* newer chips report JEDEC manufacturer and device IDs; chip
  67. * serial number and OTP bits; and per-sector writeprotect.
  68. */
  69. #define OP_READ_ID 0x9F
  70. #define OP_READ_SECURITY 0x77
  71. #define OP_WRITE_SECURITY_REVC 0x9A
  72. #define OP_WRITE_SECURITY 0x9B /* revision D */
  73. struct dataflash {
  74. uint8_t command[4];
  75. char name[24];
  76. unsigned partitioned:1;
  77. unsigned short page_offset; /* offset in flash address */
  78. unsigned int page_size; /* of bytes per page */
  79. struct mutex lock;
  80. struct spi_device *spi;
  81. struct mtd_info mtd;
  82. };
  83. #ifdef CONFIG_OF
  84. static const struct of_device_id dataflash_dt_ids[] = {
  85. { .compatible = "atmel,at45", },
  86. { .compatible = "atmel,dataflash", },
  87. { /* sentinel */ }
  88. };
  89. #endif
  90. /* ......................................................................... */
  91. /*
  92. * Return the status of the DataFlash device.
  93. */
  94. static inline int dataflash_status(struct spi_device *spi)
  95. {
  96. /* NOTE: at45db321c over 25 MHz wants to write
  97. * a dummy byte after the opcode...
  98. */
  99. return spi_w8r8(spi, OP_READ_STATUS);
  100. }
  101. /*
  102. * Poll the DataFlash device until it is READY.
  103. * This usually takes 5-20 msec or so; more for sector erase.
  104. */
  105. static int dataflash_waitready(struct spi_device *spi)
  106. {
  107. int status;
  108. for (;;) {
  109. status = dataflash_status(spi);
  110. if (status < 0) {
  111. pr_debug("%s: status %d?\n",
  112. dev_name(&spi->dev), status);
  113. status = 0;
  114. }
  115. if (status & (1 << 7)) /* RDY/nBSY */
  116. return status;
  117. msleep(3);
  118. }
  119. }
  120. /* ......................................................................... */
  121. /*
  122. * Erase pages of flash.
  123. */
  124. static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr)
  125. {
  126. struct dataflash *priv = mtd->priv;
  127. struct spi_device *spi = priv->spi;
  128. struct spi_transfer x = { .tx_dma = 0, };
  129. struct spi_message msg;
  130. unsigned blocksize = priv->page_size << 3;
  131. uint8_t *command;
  132. uint32_t rem;
  133. pr_debug("%s: erase addr=0x%llx len 0x%llx\n",
  134. dev_name(&spi->dev), (long long)instr->addr,
  135. (long long)instr->len);
  136. div_u64_rem(instr->len, priv->page_size, &rem);
  137. if (rem)
  138. return -EINVAL;
  139. div_u64_rem(instr->addr, priv->page_size, &rem);
  140. if (rem)
  141. return -EINVAL;
  142. spi_message_init(&msg);
  143. x.tx_buf = command = priv->command;
  144. x.len = 4;
  145. spi_message_add_tail(&x, &msg);
  146. mutex_lock(&priv->lock);
  147. while (instr->len > 0) {
  148. unsigned int pageaddr;
  149. int status;
  150. int do_block;
  151. /* Calculate flash page address; use block erase (for speed) if
  152. * we're at a block boundary and need to erase the whole block.
  153. */
  154. pageaddr = div_u64(instr->addr, priv->page_size);
  155. do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize;
  156. pageaddr = pageaddr << priv->page_offset;
  157. command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE;
  158. command[1] = (uint8_t)(pageaddr >> 16);
  159. command[2] = (uint8_t)(pageaddr >> 8);
  160. command[3] = 0;
  161. pr_debug("ERASE %s: (%x) %x %x %x [%i]\n",
  162. do_block ? "block" : "page",
  163. command[0], command[1], command[2], command[3],
  164. pageaddr);
  165. status = spi_sync(spi, &msg);
  166. (void) dataflash_waitready(spi);
  167. if (status < 0) {
  168. printk(KERN_ERR "%s: erase %x, err %d\n",
  169. dev_name(&spi->dev), pageaddr, status);
  170. /* REVISIT: can retry instr->retries times; or
  171. * giveup and instr->fail_addr = instr->addr;
  172. */
  173. continue;
  174. }
  175. if (do_block) {
  176. instr->addr += blocksize;
  177. instr->len -= blocksize;
  178. } else {
  179. instr->addr += priv->page_size;
  180. instr->len -= priv->page_size;
  181. }
  182. }
  183. mutex_unlock(&priv->lock);
  184. /* Inform MTD subsystem that erase is complete */
  185. instr->state = MTD_ERASE_DONE;
  186. mtd_erase_callback(instr);
  187. return 0;
  188. }
  189. /*
  190. * Read from the DataFlash device.
  191. * from : Start offset in flash device
  192. * len : Amount to read
  193. * retlen : About of data actually read
  194. * buf : Buffer containing the data
  195. */
  196. static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len,
  197. size_t *retlen, u_char *buf)
  198. {
  199. struct dataflash *priv = mtd->priv;
  200. struct spi_transfer x[2] = { { .tx_dma = 0, }, };
  201. struct spi_message msg;
  202. unsigned int addr;
  203. uint8_t *command;
  204. int status;
  205. pr_debug("%s: read 0x%x..0x%x\n", dev_name(&priv->spi->dev),
  206. (unsigned)from, (unsigned)(from + len));
  207. /* Calculate flash page/byte address */
  208. addr = (((unsigned)from / priv->page_size) << priv->page_offset)
  209. + ((unsigned)from % priv->page_size);
  210. command = priv->command;
  211. pr_debug("READ: (%x) %x %x %x\n",
  212. command[0], command[1], command[2], command[3]);
  213. spi_message_init(&msg);
  214. x[0].tx_buf = command;
  215. x[0].len = 8;
  216. spi_message_add_tail(&x[0], &msg);
  217. x[1].rx_buf = buf;
  218. x[1].len = len;
  219. spi_message_add_tail(&x[1], &msg);
  220. mutex_lock(&priv->lock);
  221. /* Continuous read, max clock = f(car) which may be less than
  222. * the peak rate available. Some chips support commands with
  223. * fewer "don't care" bytes. Both buffers stay unchanged.
  224. */
  225. command[0] = OP_READ_CONTINUOUS;
  226. command[1] = (uint8_t)(addr >> 16);
  227. command[2] = (uint8_t)(addr >> 8);
  228. command[3] = (uint8_t)(addr >> 0);
  229. /* plus 4 "don't care" bytes */
  230. status = spi_sync(priv->spi, &msg);
  231. mutex_unlock(&priv->lock);
  232. if (status >= 0) {
  233. *retlen = msg.actual_length - 8;
  234. status = 0;
  235. } else
  236. pr_debug("%s: read %x..%x --> %d\n",
  237. dev_name(&priv->spi->dev),
  238. (unsigned)from, (unsigned)(from + len),
  239. status);
  240. return status;
  241. }
  242. /*
  243. * Write to the DataFlash device.
  244. * to : Start offset in flash device
  245. * len : Amount to write
  246. * retlen : Amount of data actually written
  247. * buf : Buffer containing the data
  248. */
  249. static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len,
  250. size_t * retlen, const u_char * buf)
  251. {
  252. struct dataflash *priv = mtd->priv;
  253. struct spi_device *spi = priv->spi;
  254. struct spi_transfer x[2] = { { .tx_dma = 0, }, };
  255. struct spi_message msg;
  256. unsigned int pageaddr, addr, offset, writelen;
  257. size_t remaining = len;
  258. u_char *writebuf = (u_char *) buf;
  259. int status = -EINVAL;
  260. uint8_t *command;
  261. pr_debug("%s: write 0x%x..0x%x\n",
  262. dev_name(&spi->dev), (unsigned)to, (unsigned)(to + len));
  263. spi_message_init(&msg);
  264. x[0].tx_buf = command = priv->command;
  265. x[0].len = 4;
  266. spi_message_add_tail(&x[0], &msg);
  267. pageaddr = ((unsigned)to / priv->page_size);
  268. offset = ((unsigned)to % priv->page_size);
  269. if (offset + len > priv->page_size)
  270. writelen = priv->page_size - offset;
  271. else
  272. writelen = len;
  273. mutex_lock(&priv->lock);
  274. while (remaining > 0) {
  275. pr_debug("write @ %i:%i len=%i\n",
  276. pageaddr, offset, writelen);
  277. /* REVISIT:
  278. * (a) each page in a sector must be rewritten at least
  279. * once every 10K sibling erase/program operations.
  280. * (b) for pages that are already erased, we could
  281. * use WRITE+MWRITE not PROGRAM for ~30% speedup.
  282. * (c) WRITE to buffer could be done while waiting for
  283. * a previous MWRITE/MWERASE to complete ...
  284. * (d) error handling here seems to be mostly missing.
  285. *
  286. * Two persistent bits per page, plus a per-sector counter,
  287. * could support (a) and (b) ... we might consider using
  288. * the second half of sector zero, which is just one block,
  289. * to track that state. (On AT91, that sector should also
  290. * support boot-from-DataFlash.)
  291. */
  292. addr = pageaddr << priv->page_offset;
  293. /* (1) Maybe transfer partial page to Buffer1 */
  294. if (writelen != priv->page_size) {
  295. command[0] = OP_TRANSFER_BUF1;
  296. command[1] = (addr & 0x00FF0000) >> 16;
  297. command[2] = (addr & 0x0000FF00) >> 8;
  298. command[3] = 0;
  299. pr_debug("TRANSFER: (%x) %x %x %x\n",
  300. command[0], command[1], command[2], command[3]);
  301. status = spi_sync(spi, &msg);
  302. if (status < 0)
  303. pr_debug("%s: xfer %u -> %d\n",
  304. dev_name(&spi->dev), addr, status);
  305. (void) dataflash_waitready(priv->spi);
  306. }
  307. /* (2) Program full page via Buffer1 */
  308. addr += offset;
  309. command[0] = OP_PROGRAM_VIA_BUF1;
  310. command[1] = (addr & 0x00FF0000) >> 16;
  311. command[2] = (addr & 0x0000FF00) >> 8;
  312. command[3] = (addr & 0x000000FF);
  313. pr_debug("PROGRAM: (%x) %x %x %x\n",
  314. command[0], command[1], command[2], command[3]);
  315. x[1].tx_buf = writebuf;
  316. x[1].len = writelen;
  317. spi_message_add_tail(x + 1, &msg);
  318. status = spi_sync(spi, &msg);
  319. spi_transfer_del(x + 1);
  320. if (status < 0)
  321. pr_debug("%s: pgm %u/%u -> %d\n",
  322. dev_name(&spi->dev), addr, writelen, status);
  323. (void) dataflash_waitready(priv->spi);
  324. #ifdef CONFIG_MTD_DATAFLASH_WRITE_VERIFY
  325. /* (3) Compare to Buffer1 */
  326. addr = pageaddr << priv->page_offset;
  327. command[0] = OP_COMPARE_BUF1;
  328. command[1] = (addr & 0x00FF0000) >> 16;
  329. command[2] = (addr & 0x0000FF00) >> 8;
  330. command[3] = 0;
  331. pr_debug("COMPARE: (%x) %x %x %x\n",
  332. command[0], command[1], command[2], command[3]);
  333. status = spi_sync(spi, &msg);
  334. if (status < 0)
  335. pr_debug("%s: compare %u -> %d\n",
  336. dev_name(&spi->dev), addr, status);
  337. status = dataflash_waitready(priv->spi);
  338. /* Check result of the compare operation */
  339. if (status & (1 << 6)) {
  340. printk(KERN_ERR "%s: compare page %u, err %d\n",
  341. dev_name(&spi->dev), pageaddr, status);
  342. remaining = 0;
  343. status = -EIO;
  344. break;
  345. } else
  346. status = 0;
  347. #endif /* CONFIG_MTD_DATAFLASH_WRITE_VERIFY */
  348. remaining = remaining - writelen;
  349. pageaddr++;
  350. offset = 0;
  351. writebuf += writelen;
  352. *retlen += writelen;
  353. if (remaining > priv->page_size)
  354. writelen = priv->page_size;
  355. else
  356. writelen = remaining;
  357. }
  358. mutex_unlock(&priv->lock);
  359. return status;
  360. }
  361. /* ......................................................................... */
  362. #ifdef CONFIG_MTD_DATAFLASH_OTP
  363. static int dataflash_get_otp_info(struct mtd_info *mtd,
  364. struct otp_info *info, size_t len)
  365. {
  366. /* Report both blocks as identical: bytes 0..64, locked.
  367. * Unless the user block changed from all-ones, we can't
  368. * tell whether it's still writable; so we assume it isn't.
  369. */
  370. info->start = 0;
  371. info->length = 64;
  372. info->locked = 1;
  373. return sizeof(*info);
  374. }
  375. static ssize_t otp_read(struct spi_device *spi, unsigned base,
  376. uint8_t *buf, loff_t off, size_t len)
  377. {
  378. struct spi_message m;
  379. size_t l;
  380. uint8_t *scratch;
  381. struct spi_transfer t;
  382. int status;
  383. if (off > 64)
  384. return -EINVAL;
  385. if ((off + len) > 64)
  386. len = 64 - off;
  387. spi_message_init(&m);
  388. l = 4 + base + off + len;
  389. scratch = kzalloc(l, GFP_KERNEL);
  390. if (!scratch)
  391. return -ENOMEM;
  392. /* OUT: OP_READ_SECURITY, 3 don't-care bytes, zeroes
  393. * IN: ignore 4 bytes, data bytes 0..N (max 127)
  394. */
  395. scratch[0] = OP_READ_SECURITY;
  396. memset(&t, 0, sizeof t);
  397. t.tx_buf = scratch;
  398. t.rx_buf = scratch;
  399. t.len = l;
  400. spi_message_add_tail(&t, &m);
  401. dataflash_waitready(spi);
  402. status = spi_sync(spi, &m);
  403. if (status >= 0) {
  404. memcpy(buf, scratch + 4 + base + off, len);
  405. status = len;
  406. }
  407. kfree(scratch);
  408. return status;
  409. }
  410. static int dataflash_read_fact_otp(struct mtd_info *mtd,
  411. loff_t from, size_t len, size_t *retlen, u_char *buf)
  412. {
  413. struct dataflash *priv = mtd->priv;
  414. int status;
  415. /* 64 bytes, from 0..63 ... start at 64 on-chip */
  416. mutex_lock(&priv->lock);
  417. status = otp_read(priv->spi, 64, buf, from, len);
  418. mutex_unlock(&priv->lock);
  419. if (status < 0)
  420. return status;
  421. *retlen = status;
  422. return 0;
  423. }
  424. static int dataflash_read_user_otp(struct mtd_info *mtd,
  425. loff_t from, size_t len, size_t *retlen, u_char *buf)
  426. {
  427. struct dataflash *priv = mtd->priv;
  428. int status;
  429. /* 64 bytes, from 0..63 ... start at 0 on-chip */
  430. mutex_lock(&priv->lock);
  431. status = otp_read(priv->spi, 0, buf, from, len);
  432. mutex_unlock(&priv->lock);
  433. if (status < 0)
  434. return status;
  435. *retlen = status;
  436. return 0;
  437. }
  438. static int dataflash_write_user_otp(struct mtd_info *mtd,
  439. loff_t from, size_t len, size_t *retlen, u_char *buf)
  440. {
  441. struct spi_message m;
  442. const size_t l = 4 + 64;
  443. uint8_t *scratch;
  444. struct spi_transfer t;
  445. struct dataflash *priv = mtd->priv;
  446. int status;
  447. if (len > 64)
  448. return -EINVAL;
  449. /* Strictly speaking, we *could* truncate the write ... but
  450. * let's not do that for the only write that's ever possible.
  451. */
  452. if ((from + len) > 64)
  453. return -EINVAL;
  454. /* OUT: OP_WRITE_SECURITY, 3 zeroes, 64 data-or-zero bytes
  455. * IN: ignore all
  456. */
  457. scratch = kzalloc(l, GFP_KERNEL);
  458. if (!scratch)
  459. return -ENOMEM;
  460. scratch[0] = OP_WRITE_SECURITY;
  461. memcpy(scratch + 4 + from, buf, len);
  462. spi_message_init(&m);
  463. memset(&t, 0, sizeof t);
  464. t.tx_buf = scratch;
  465. t.len = l;
  466. spi_message_add_tail(&t, &m);
  467. /* Write the OTP bits, if they've not yet been written.
  468. * This modifies SRAM buffer1.
  469. */
  470. mutex_lock(&priv->lock);
  471. dataflash_waitready(priv->spi);
  472. status = spi_sync(priv->spi, &m);
  473. mutex_unlock(&priv->lock);
  474. kfree(scratch);
  475. if (status >= 0) {
  476. status = 0;
  477. *retlen = len;
  478. }
  479. return status;
  480. }
  481. static char *otp_setup(struct mtd_info *device, char revision)
  482. {
  483. device->_get_fact_prot_info = dataflash_get_otp_info;
  484. device->_read_fact_prot_reg = dataflash_read_fact_otp;
  485. device->_get_user_prot_info = dataflash_get_otp_info;
  486. device->_read_user_prot_reg = dataflash_read_user_otp;
  487. /* rev c parts (at45db321c and at45db1281 only!) use a
  488. * different write procedure; not (yet?) implemented.
  489. */
  490. if (revision > 'c')
  491. device->_write_user_prot_reg = dataflash_write_user_otp;
  492. return ", OTP";
  493. }
  494. #else
  495. static char *otp_setup(struct mtd_info *device, char revision)
  496. {
  497. return " (OTP)";
  498. }
  499. #endif
  500. /* ......................................................................... */
  501. /*
  502. * Register DataFlash device with MTD subsystem.
  503. */
  504. static int add_dataflash_otp(struct spi_device *spi, char *name, int nr_pages,
  505. int pagesize, int pageoffset, char revision)
  506. {
  507. struct dataflash *priv;
  508. struct mtd_info *device;
  509. struct mtd_part_parser_data ppdata;
  510. struct flash_platform_data *pdata = dev_get_platdata(&spi->dev);
  511. char *otp_tag = "";
  512. int err = 0;
  513. priv = kzalloc(sizeof *priv, GFP_KERNEL);
  514. if (!priv)
  515. return -ENOMEM;
  516. mutex_init(&priv->lock);
  517. priv->spi = spi;
  518. priv->page_size = pagesize;
  519. priv->page_offset = pageoffset;
  520. /* name must be usable with cmdlinepart */
  521. sprintf(priv->name, "spi%d.%d-%s",
  522. spi->master->bus_num, spi->chip_select,
  523. name);
  524. device = &priv->mtd;
  525. device->name = (pdata && pdata->name) ? pdata->name : priv->name;
  526. device->size = nr_pages * pagesize;
  527. device->erasesize = pagesize;
  528. device->writesize = pagesize;
  529. device->owner = THIS_MODULE;
  530. device->type = MTD_DATAFLASH;
  531. device->flags = MTD_WRITEABLE;
  532. device->_erase = dataflash_erase;
  533. device->_read = dataflash_read;
  534. device->_write = dataflash_write;
  535. device->priv = priv;
  536. device->dev.parent = &spi->dev;
  537. if (revision >= 'c')
  538. otp_tag = otp_setup(device, revision);
  539. dev_info(&spi->dev, "%s (%lld KBytes) pagesize %d bytes%s\n",
  540. name, (long long)((device->size + 1023) >> 10),
  541. pagesize, otp_tag);
  542. spi_set_drvdata(spi, priv);
  543. ppdata.of_node = spi->dev.of_node;
  544. err = mtd_device_parse_register(device, NULL, &ppdata,
  545. pdata ? pdata->parts : NULL,
  546. pdata ? pdata->nr_parts : 0);
  547. if (!err)
  548. return 0;
  549. spi_set_drvdata(spi, NULL);
  550. kfree(priv);
  551. return err;
  552. }
  553. static inline int add_dataflash(struct spi_device *spi, char *name,
  554. int nr_pages, int pagesize, int pageoffset)
  555. {
  556. return add_dataflash_otp(spi, name, nr_pages, pagesize,
  557. pageoffset, 0);
  558. }
  559. struct flash_info {
  560. char *name;
  561. /* JEDEC id has a high byte of zero plus three data bytes:
  562. * the manufacturer id, then a two byte device id.
  563. */
  564. uint32_t jedec_id;
  565. /* The size listed here is what works with OP_ERASE_PAGE. */
  566. unsigned nr_pages;
  567. uint16_t pagesize;
  568. uint16_t pageoffset;
  569. uint16_t flags;
  570. #define SUP_POW2PS 0x0002 /* supports 2^N byte pages */
  571. #define IS_POW2PS 0x0001 /* uses 2^N byte pages */
  572. };
  573. static struct flash_info dataflash_data[] = {
  574. /*
  575. * NOTE: chips with SUP_POW2PS (rev D and up) need two entries,
  576. * one with IS_POW2PS and the other without. The entry with the
  577. * non-2^N byte page size can't name exact chip revisions without
  578. * losing backwards compatibility for cmdlinepart.
  579. *
  580. * These newer chips also support 128-byte security registers (with
  581. * 64 bytes one-time-programmable) and software write-protection.
  582. */
  583. { "AT45DB011B", 0x1f2200, 512, 264, 9, SUP_POW2PS},
  584. { "at45db011d", 0x1f2200, 512, 256, 8, SUP_POW2PS | IS_POW2PS},
  585. { "AT45DB021B", 0x1f2300, 1024, 264, 9, SUP_POW2PS},
  586. { "at45db021d", 0x1f2300, 1024, 256, 8, SUP_POW2PS | IS_POW2PS},
  587. { "AT45DB041x", 0x1f2400, 2048, 264, 9, SUP_POW2PS},
  588. { "at45db041d", 0x1f2400, 2048, 256, 8, SUP_POW2PS | IS_POW2PS},
  589. { "AT45DB081B", 0x1f2500, 4096, 264, 9, SUP_POW2PS},
  590. { "at45db081d", 0x1f2500, 4096, 256, 8, SUP_POW2PS | IS_POW2PS},
  591. { "AT45DB161x", 0x1f2600, 4096, 528, 10, SUP_POW2PS},
  592. { "at45db161d", 0x1f2600, 4096, 512, 9, SUP_POW2PS | IS_POW2PS},
  593. { "AT45DB321x", 0x1f2700, 8192, 528, 10, 0}, /* rev C */
  594. { "AT45DB321x", 0x1f2701, 8192, 528, 10, SUP_POW2PS},
  595. { "at45db321d", 0x1f2701, 8192, 512, 9, SUP_POW2PS | IS_POW2PS},
  596. { "AT45DB642x", 0x1f2800, 8192, 1056, 11, SUP_POW2PS},
  597. { "at45db642d", 0x1f2800, 8192, 1024, 10, SUP_POW2PS | IS_POW2PS},
  598. };
  599. static struct flash_info *jedec_probe(struct spi_device *spi)
  600. {
  601. int tmp;
  602. uint8_t code = OP_READ_ID;
  603. uint8_t id[3];
  604. uint32_t jedec;
  605. struct flash_info *info;
  606. int status;
  607. /* JEDEC also defines an optional "extended device information"
  608. * string for after vendor-specific data, after the three bytes
  609. * we use here. Supporting some chips might require using it.
  610. *
  611. * If the vendor ID isn't Atmel's (0x1f), assume this call failed.
  612. * That's not an error; only rev C and newer chips handle it, and
  613. * only Atmel sells these chips.
  614. */
  615. tmp = spi_write_then_read(spi, &code, 1, id, 3);
  616. if (tmp < 0) {
  617. pr_debug("%s: error %d reading JEDEC ID\n",
  618. dev_name(&spi->dev), tmp);
  619. return ERR_PTR(tmp);
  620. }
  621. if (id[0] != 0x1f)
  622. return NULL;
  623. jedec = id[0];
  624. jedec = jedec << 8;
  625. jedec |= id[1];
  626. jedec = jedec << 8;
  627. jedec |= id[2];
  628. for (tmp = 0, info = dataflash_data;
  629. tmp < ARRAY_SIZE(dataflash_data);
  630. tmp++, info++) {
  631. if (info->jedec_id == jedec) {
  632. pr_debug("%s: OTP, sector protect%s\n",
  633. dev_name(&spi->dev),
  634. (info->flags & SUP_POW2PS)
  635. ? ", binary pagesize" : ""
  636. );
  637. if (info->flags & SUP_POW2PS) {
  638. status = dataflash_status(spi);
  639. if (status < 0) {
  640. pr_debug("%s: status error %d\n",
  641. dev_name(&spi->dev), status);
  642. return ERR_PTR(status);
  643. }
  644. if (status & 0x1) {
  645. if (info->flags & IS_POW2PS)
  646. return info;
  647. } else {
  648. if (!(info->flags & IS_POW2PS))
  649. return info;
  650. }
  651. } else
  652. return info;
  653. }
  654. }
  655. /*
  656. * Treat other chips as errors ... we won't know the right page
  657. * size (it might be binary) even when we can tell which density
  658. * class is involved (legacy chip id scheme).
  659. */
  660. dev_warn(&spi->dev, "JEDEC id %06x not handled\n", jedec);
  661. return ERR_PTR(-ENODEV);
  662. }
  663. /*
  664. * Detect and initialize DataFlash device, using JEDEC IDs on newer chips
  665. * or else the ID code embedded in the status bits:
  666. *
  667. * Device Density ID code #Pages PageSize Offset
  668. * AT45DB011B 1Mbit (128K) xx0011xx (0x0c) 512 264 9
  669. * AT45DB021B 2Mbit (256K) xx0101xx (0x14) 1024 264 9
  670. * AT45DB041B 4Mbit (512K) xx0111xx (0x1c) 2048 264 9
  671. * AT45DB081B 8Mbit (1M) xx1001xx (0x24) 4096 264 9
  672. * AT45DB0161B 16Mbit (2M) xx1011xx (0x2c) 4096 528 10
  673. * AT45DB0321B 32Mbit (4M) xx1101xx (0x34) 8192 528 10
  674. * AT45DB0642 64Mbit (8M) xx111xxx (0x3c) 8192 1056 11
  675. * AT45DB1282 128Mbit (16M) xx0100xx (0x10) 16384 1056 11
  676. */
  677. static int dataflash_probe(struct spi_device *spi)
  678. {
  679. int status;
  680. struct flash_info *info;
  681. /*
  682. * Try to detect dataflash by JEDEC ID.
  683. * If it succeeds we know we have either a C or D part.
  684. * D will support power of 2 pagesize option.
  685. * Both support the security register, though with different
  686. * write procedures.
  687. */
  688. info = jedec_probe(spi);
  689. if (IS_ERR(info))
  690. return PTR_ERR(info);
  691. if (info != NULL)
  692. return add_dataflash_otp(spi, info->name, info->nr_pages,
  693. info->pagesize, info->pageoffset,
  694. (info->flags & SUP_POW2PS) ? 'd' : 'c');
  695. /*
  696. * Older chips support only legacy commands, identifing
  697. * capacity using bits in the status byte.
  698. */
  699. status = dataflash_status(spi);
  700. if (status <= 0 || status == 0xff) {
  701. pr_debug("%s: status error %d\n",
  702. dev_name(&spi->dev), status);
  703. if (status == 0 || status == 0xff)
  704. status = -ENODEV;
  705. return status;
  706. }
  707. /* if there's a device there, assume it's dataflash.
  708. * board setup should have set spi->max_speed_max to
  709. * match f(car) for continuous reads, mode 0 or 3.
  710. */
  711. switch (status & 0x3c) {
  712. case 0x0c: /* 0 0 1 1 x x */
  713. status = add_dataflash(spi, "AT45DB011B", 512, 264, 9);
  714. break;
  715. case 0x14: /* 0 1 0 1 x x */
  716. status = add_dataflash(spi, "AT45DB021B", 1024, 264, 9);
  717. break;
  718. case 0x1c: /* 0 1 1 1 x x */
  719. status = add_dataflash(spi, "AT45DB041x", 2048, 264, 9);
  720. break;
  721. case 0x24: /* 1 0 0 1 x x */
  722. status = add_dataflash(spi, "AT45DB081B", 4096, 264, 9);
  723. break;
  724. case 0x2c: /* 1 0 1 1 x x */
  725. status = add_dataflash(spi, "AT45DB161x", 4096, 528, 10);
  726. break;
  727. case 0x34: /* 1 1 0 1 x x */
  728. status = add_dataflash(spi, "AT45DB321x", 8192, 528, 10);
  729. break;
  730. case 0x38: /* 1 1 1 x x x */
  731. case 0x3c:
  732. status = add_dataflash(spi, "AT45DB642x", 8192, 1056, 11);
  733. break;
  734. /* obsolete AT45DB1282 not (yet?) supported */
  735. default:
  736. pr_debug("%s: unsupported device (%x)\n", dev_name(&spi->dev),
  737. status & 0x3c);
  738. status = -ENODEV;
  739. }
  740. if (status < 0)
  741. pr_debug("%s: add_dataflash --> %d\n", dev_name(&spi->dev),
  742. status);
  743. return status;
  744. }
  745. static int dataflash_remove(struct spi_device *spi)
  746. {
  747. struct dataflash *flash = spi_get_drvdata(spi);
  748. int status;
  749. pr_debug("%s: remove\n", dev_name(&spi->dev));
  750. status = mtd_device_unregister(&flash->mtd);
  751. if (status == 0) {
  752. spi_set_drvdata(spi, NULL);
  753. kfree(flash);
  754. }
  755. return status;
  756. }
  757. static struct spi_driver dataflash_driver = {
  758. .driver = {
  759. .name = "mtd_dataflash",
  760. .owner = THIS_MODULE,
  761. .of_match_table = of_match_ptr(dataflash_dt_ids),
  762. },
  763. .probe = dataflash_probe,
  764. .remove = dataflash_remove,
  765. /* FIXME: investigate suspend and resume... */
  766. };
  767. module_spi_driver(dataflash_driver);
  768. MODULE_LICENSE("GPL");
  769. MODULE_AUTHOR("Andrew Victor, David Brownell");
  770. MODULE_DESCRIPTION("MTD DataFlash driver");
  771. MODULE_ALIAS("spi:mtd_dataflash");