block.c 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541
  1. /*
  2. * Block driver for media (i.e., flash cards)
  3. *
  4. * Copyright 2002 Hewlett-Packard Company
  5. * Copyright 2005-2008 Pierre Ossman
  6. *
  7. * Use consistent with the GNU GPL is permitted,
  8. * provided that this copyright notice is
  9. * preserved in its entirety in all copies and derived works.
  10. *
  11. * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
  12. * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
  13. * FITNESS FOR ANY PARTICULAR PURPOSE.
  14. *
  15. * Many thanks to Alessandro Rubini and Jonathan Corbet!
  16. *
  17. * Author: Andrew Christian
  18. * 28 May 2002
  19. */
  20. #include <linux/moduleparam.h>
  21. #include <linux/module.h>
  22. #include <linux/init.h>
  23. #include <linux/kernel.h>
  24. #include <linux/fs.h>
  25. #include <linux/slab.h>
  26. #include <linux/errno.h>
  27. #include <linux/hdreg.h>
  28. #include <linux/kdev_t.h>
  29. #include <linux/blkdev.h>
  30. #include <linux/mutex.h>
  31. #include <linux/scatterlist.h>
  32. #include <linux/string_helpers.h>
  33. #include <linux/delay.h>
  34. #include <linux/capability.h>
  35. #include <linux/compat.h>
  36. #include <linux/pm_runtime.h>
  37. #include <linux/mmc/ioctl.h>
  38. #include <linux/mmc/card.h>
  39. #include <linux/mmc/host.h>
  40. #include <linux/mmc/mmc.h>
  41. #include <linux/mmc/sd.h>
  42. #include <asm/uaccess.h>
  43. #include "queue.h"
  44. MODULE_ALIAS("mmc:block");
  45. #ifdef MODULE_PARAM_PREFIX
  46. #undef MODULE_PARAM_PREFIX
  47. #endif
  48. #define MODULE_PARAM_PREFIX "mmcblk."
  49. #define INAND_CMD38_ARG_EXT_CSD 113
  50. #define INAND_CMD38_ARG_ERASE 0x00
  51. #define INAND_CMD38_ARG_TRIM 0x01
  52. #define INAND_CMD38_ARG_SECERASE 0x80
  53. #define INAND_CMD38_ARG_SECTRIM1 0x81
  54. #define INAND_CMD38_ARG_SECTRIM2 0x88
  55. #define MMC_BLK_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
  56. #define MMC_SANITIZE_REQ_TIMEOUT 240000
  57. #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
  58. #define mmc_req_rel_wr(req) (((req->cmd_flags & REQ_FUA) || \
  59. (req->cmd_flags & REQ_META)) && \
  60. (rq_data_dir(req) == WRITE))
  61. #define PACKED_CMD_VER 0x01
  62. #define PACKED_CMD_WR 0x02
  63. static DEFINE_MUTEX(block_mutex);
  64. /*
  65. * The defaults come from config options but can be overriden by module
  66. * or bootarg options.
  67. */
  68. static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
  69. /*
  70. * We've only got one major, so number of mmcblk devices is
  71. * limited to 256 / number of minors per device.
  72. */
  73. static int max_devices;
  74. /* 256 minors, so at most 256 separate devices */
  75. static DECLARE_BITMAP(dev_use, 256);
  76. static DECLARE_BITMAP(name_use, 256);
  77. /*
  78. * There is one mmc_blk_data per slot.
  79. */
  80. struct mmc_blk_data {
  81. spinlock_t lock;
  82. struct gendisk *disk;
  83. struct mmc_queue queue;
  84. struct list_head part;
  85. unsigned int flags;
  86. #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
  87. #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
  88. #define MMC_BLK_PACKED_CMD (1 << 2) /* MMC packed command support */
  89. unsigned int usage;
  90. unsigned int read_only;
  91. unsigned int part_type;
  92. unsigned int name_idx;
  93. unsigned int reset_done;
  94. #define MMC_BLK_READ BIT(0)
  95. #define MMC_BLK_WRITE BIT(1)
  96. #define MMC_BLK_DISCARD BIT(2)
  97. #define MMC_BLK_SECDISCARD BIT(3)
  98. /*
  99. * Only set in main mmc_blk_data associated
  100. * with mmc_card with mmc_set_drvdata, and keeps
  101. * track of the current selected device partition.
  102. */
  103. unsigned int part_curr;
  104. struct device_attribute force_ro;
  105. struct device_attribute power_ro_lock;
  106. int area_type;
  107. };
  108. static DEFINE_MUTEX(open_lock);
  109. enum {
  110. MMC_PACKED_NR_IDX = -1,
  111. MMC_PACKED_NR_ZERO,
  112. MMC_PACKED_NR_SINGLE,
  113. };
  114. module_param(perdev_minors, int, 0444);
  115. MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
  116. static inline int mmc_blk_part_switch(struct mmc_card *card,
  117. struct mmc_blk_data *md);
  118. static int get_card_status(struct mmc_card *card, u32 *status, int retries);
  119. static inline void mmc_blk_clear_packed(struct mmc_queue_req *mqrq)
  120. {
  121. struct mmc_packed *packed = mqrq->packed;
  122. BUG_ON(!packed);
  123. mqrq->cmd_type = MMC_PACKED_NONE;
  124. packed->nr_entries = MMC_PACKED_NR_ZERO;
  125. packed->idx_failure = MMC_PACKED_NR_IDX;
  126. packed->retries = 0;
  127. packed->blocks = 0;
  128. }
  129. static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
  130. {
  131. struct mmc_blk_data *md;
  132. mutex_lock(&open_lock);
  133. md = disk->private_data;
  134. if (md && md->usage == 0)
  135. md = NULL;
  136. if (md)
  137. md->usage++;
  138. mutex_unlock(&open_lock);
  139. return md;
  140. }
  141. static inline int mmc_get_devidx(struct gendisk *disk)
  142. {
  143. int devmaj = MAJOR(disk_devt(disk));
  144. int devidx = MINOR(disk_devt(disk)) / perdev_minors;
  145. if (!devmaj)
  146. devidx = disk->first_minor / perdev_minors;
  147. return devidx;
  148. }
  149. static void mmc_blk_put(struct mmc_blk_data *md)
  150. {
  151. mutex_lock(&open_lock);
  152. md->usage--;
  153. if (md->usage == 0) {
  154. int devidx = mmc_get_devidx(md->disk);
  155. blk_cleanup_queue(md->queue.queue);
  156. __clear_bit(devidx, dev_use);
  157. put_disk(md->disk);
  158. kfree(md);
  159. }
  160. mutex_unlock(&open_lock);
  161. }
  162. static ssize_t power_ro_lock_show(struct device *dev,
  163. struct device_attribute *attr, char *buf)
  164. {
  165. int ret;
  166. struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
  167. struct mmc_card *card = md->queue.card;
  168. int locked = 0;
  169. if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
  170. locked = 2;
  171. else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
  172. locked = 1;
  173. ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
  174. return ret;
  175. }
  176. static ssize_t power_ro_lock_store(struct device *dev,
  177. struct device_attribute *attr, const char *buf, size_t count)
  178. {
  179. int ret;
  180. struct mmc_blk_data *md, *part_md;
  181. struct mmc_card *card;
  182. unsigned long set;
  183. if (kstrtoul(buf, 0, &set))
  184. return -EINVAL;
  185. if (set != 1)
  186. return count;
  187. md = mmc_blk_get(dev_to_disk(dev));
  188. card = md->queue.card;
  189. mmc_get_card(card);
  190. ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
  191. card->ext_csd.boot_ro_lock |
  192. EXT_CSD_BOOT_WP_B_PWR_WP_EN,
  193. card->ext_csd.part_time);
  194. if (ret)
  195. pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret);
  196. else
  197. card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN;
  198. mmc_put_card(card);
  199. if (!ret) {
  200. pr_info("%s: Locking boot partition ro until next power on\n",
  201. md->disk->disk_name);
  202. set_disk_ro(md->disk, 1);
  203. list_for_each_entry(part_md, &md->part, part)
  204. if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
  205. pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
  206. set_disk_ro(part_md->disk, 1);
  207. }
  208. }
  209. mmc_blk_put(md);
  210. return count;
  211. }
  212. static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
  213. char *buf)
  214. {
  215. int ret;
  216. struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
  217. ret = snprintf(buf, PAGE_SIZE, "%d",
  218. get_disk_ro(dev_to_disk(dev)) ^
  219. md->read_only);
  220. mmc_blk_put(md);
  221. return ret;
  222. }
  223. static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
  224. const char *buf, size_t count)
  225. {
  226. int ret;
  227. char *end;
  228. struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
  229. unsigned long set = simple_strtoul(buf, &end, 0);
  230. if (end == buf) {
  231. ret = -EINVAL;
  232. goto out;
  233. }
  234. set_disk_ro(dev_to_disk(dev), set || md->read_only);
  235. ret = count;
  236. out:
  237. mmc_blk_put(md);
  238. return ret;
  239. }
  240. static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
  241. {
  242. struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
  243. int ret = -ENXIO;
  244. mutex_lock(&block_mutex);
  245. if (md) {
  246. if (md->usage == 2)
  247. check_disk_change(bdev);
  248. ret = 0;
  249. if ((mode & FMODE_WRITE) && md->read_only) {
  250. mmc_blk_put(md);
  251. ret = -EROFS;
  252. }
  253. }
  254. mutex_unlock(&block_mutex);
  255. return ret;
  256. }
  257. static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
  258. {
  259. struct mmc_blk_data *md = disk->private_data;
  260. mutex_lock(&block_mutex);
  261. mmc_blk_put(md);
  262. mutex_unlock(&block_mutex);
  263. }
  264. static int
  265. mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  266. {
  267. geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
  268. geo->heads = 4;
  269. geo->sectors = 16;
  270. return 0;
  271. }
  272. struct mmc_blk_ioc_data {
  273. struct mmc_ioc_cmd ic;
  274. unsigned char *buf;
  275. u64 buf_bytes;
  276. };
  277. static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
  278. struct mmc_ioc_cmd __user *user)
  279. {
  280. struct mmc_blk_ioc_data *idata;
  281. int err;
  282. idata = kzalloc(sizeof(*idata), GFP_KERNEL);
  283. if (!idata) {
  284. err = -ENOMEM;
  285. goto out;
  286. }
  287. if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
  288. err = -EFAULT;
  289. goto idata_err;
  290. }
  291. idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
  292. if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
  293. err = -EOVERFLOW;
  294. goto idata_err;
  295. }
  296. if (!idata->buf_bytes)
  297. return idata;
  298. idata->buf = kzalloc(idata->buf_bytes, GFP_KERNEL);
  299. if (!idata->buf) {
  300. err = -ENOMEM;
  301. goto idata_err;
  302. }
  303. if (copy_from_user(idata->buf, (void __user *)(unsigned long)
  304. idata->ic.data_ptr, idata->buf_bytes)) {
  305. err = -EFAULT;
  306. goto copy_err;
  307. }
  308. return idata;
  309. copy_err:
  310. kfree(idata->buf);
  311. idata_err:
  312. kfree(idata);
  313. out:
  314. return ERR_PTR(err);
  315. }
  316. static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
  317. u32 retries_max)
  318. {
  319. int err;
  320. u32 retry_count = 0;
  321. if (!status || !retries_max)
  322. return -EINVAL;
  323. do {
  324. err = get_card_status(card, status, 5);
  325. if (err)
  326. break;
  327. if (!R1_STATUS(*status) &&
  328. (R1_CURRENT_STATE(*status) != R1_STATE_PRG))
  329. break; /* RPMB programming operation complete */
  330. /*
  331. * Rechedule to give the MMC device a chance to continue
  332. * processing the previous command without being polled too
  333. * frequently.
  334. */
  335. usleep_range(1000, 5000);
  336. } while (++retry_count < retries_max);
  337. if (retry_count == retries_max)
  338. err = -EPERM;
  339. return err;
  340. }
  341. static int ioctl_do_sanitize(struct mmc_card *card)
  342. {
  343. int err;
  344. if (!(mmc_can_sanitize(card) &&
  345. (card->host->caps2 & MMC_CAP2_SANITIZE))) {
  346. pr_warn("%s: %s - SANITIZE is not supported\n",
  347. mmc_hostname(card->host), __func__);
  348. err = -EOPNOTSUPP;
  349. goto out;
  350. }
  351. pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
  352. mmc_hostname(card->host), __func__);
  353. err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
  354. EXT_CSD_SANITIZE_START, 1,
  355. MMC_SANITIZE_REQ_TIMEOUT);
  356. if (err)
  357. pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
  358. mmc_hostname(card->host), __func__, err);
  359. pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
  360. __func__);
  361. out:
  362. return err;
  363. }
  364. static int mmc_blk_ioctl_cmd(struct block_device *bdev,
  365. struct mmc_ioc_cmd __user *ic_ptr)
  366. {
  367. struct mmc_blk_ioc_data *idata;
  368. struct mmc_blk_data *md;
  369. struct mmc_card *card;
  370. struct mmc_command cmd = {0};
  371. struct mmc_data data = {0};
  372. struct mmc_request mrq = {NULL};
  373. struct scatterlist sg;
  374. int err;
  375. int is_rpmb = false;
  376. u32 status = 0;
  377. /*
  378. * The caller must have CAP_SYS_RAWIO, and must be calling this on the
  379. * whole block device, not on a partition. This prevents overspray
  380. * between sibling partitions.
  381. */
  382. if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
  383. return -EPERM;
  384. idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
  385. if (IS_ERR(idata))
  386. return PTR_ERR(idata);
  387. md = mmc_blk_get(bdev->bd_disk);
  388. if (!md) {
  389. err = -EINVAL;
  390. goto cmd_err;
  391. }
  392. if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
  393. is_rpmb = true;
  394. card = md->queue.card;
  395. if (IS_ERR(card)) {
  396. err = PTR_ERR(card);
  397. goto cmd_done;
  398. }
  399. cmd.opcode = idata->ic.opcode;
  400. cmd.arg = idata->ic.arg;
  401. cmd.flags = idata->ic.flags;
  402. if (idata->buf_bytes) {
  403. data.sg = &sg;
  404. data.sg_len = 1;
  405. data.blksz = idata->ic.blksz;
  406. data.blocks = idata->ic.blocks;
  407. sg_init_one(data.sg, idata->buf, idata->buf_bytes);
  408. if (idata->ic.write_flag)
  409. data.flags = MMC_DATA_WRITE;
  410. else
  411. data.flags = MMC_DATA_READ;
  412. /* data.flags must already be set before doing this. */
  413. mmc_set_data_timeout(&data, card);
  414. /* Allow overriding the timeout_ns for empirical tuning. */
  415. if (idata->ic.data_timeout_ns)
  416. data.timeout_ns = idata->ic.data_timeout_ns;
  417. if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
  418. /*
  419. * Pretend this is a data transfer and rely on the
  420. * host driver to compute timeout. When all host
  421. * drivers support cmd.cmd_timeout for R1B, this
  422. * can be changed to:
  423. *
  424. * mrq.data = NULL;
  425. * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
  426. */
  427. data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
  428. }
  429. mrq.data = &data;
  430. }
  431. mrq.cmd = &cmd;
  432. mmc_get_card(card);
  433. err = mmc_blk_part_switch(card, md);
  434. if (err)
  435. goto cmd_rel_host;
  436. if (idata->ic.is_acmd) {
  437. err = mmc_app_cmd(card->host, card);
  438. if (err)
  439. goto cmd_rel_host;
  440. }
  441. if (is_rpmb) {
  442. err = mmc_set_blockcount(card, data.blocks,
  443. idata->ic.write_flag & (1 << 31));
  444. if (err)
  445. goto cmd_rel_host;
  446. }
  447. if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
  448. (cmd.opcode == MMC_SWITCH)) {
  449. err = ioctl_do_sanitize(card);
  450. if (err)
  451. pr_err("%s: ioctl_do_sanitize() failed. err = %d",
  452. __func__, err);
  453. goto cmd_rel_host;
  454. }
  455. mmc_wait_for_req(card->host, &mrq);
  456. if (cmd.error) {
  457. dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
  458. __func__, cmd.error);
  459. err = cmd.error;
  460. goto cmd_rel_host;
  461. }
  462. if (data.error) {
  463. dev_err(mmc_dev(card->host), "%s: data error %d\n",
  464. __func__, data.error);
  465. err = data.error;
  466. goto cmd_rel_host;
  467. }
  468. /*
  469. * According to the SD specs, some commands require a delay after
  470. * issuing the command.
  471. */
  472. if (idata->ic.postsleep_min_us)
  473. usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
  474. if (copy_to_user(&(ic_ptr->response), cmd.resp, sizeof(cmd.resp))) {
  475. err = -EFAULT;
  476. goto cmd_rel_host;
  477. }
  478. if (!idata->ic.write_flag) {
  479. if (copy_to_user((void __user *)(unsigned long) idata->ic.data_ptr,
  480. idata->buf, idata->buf_bytes)) {
  481. err = -EFAULT;
  482. goto cmd_rel_host;
  483. }
  484. }
  485. if (is_rpmb) {
  486. /*
  487. * Ensure RPMB command has completed by polling CMD13
  488. * "Send Status".
  489. */
  490. err = ioctl_rpmb_card_status_poll(card, &status, 5);
  491. if (err)
  492. dev_err(mmc_dev(card->host),
  493. "%s: Card Status=0x%08X, error %d\n",
  494. __func__, status, err);
  495. }
  496. cmd_rel_host:
  497. mmc_put_card(card);
  498. cmd_done:
  499. mmc_blk_put(md);
  500. cmd_err:
  501. kfree(idata->buf);
  502. kfree(idata);
  503. return err;
  504. }
  505. static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
  506. unsigned int cmd, unsigned long arg)
  507. {
  508. int ret = -EINVAL;
  509. if (cmd == MMC_IOC_CMD)
  510. ret = mmc_blk_ioctl_cmd(bdev, (struct mmc_ioc_cmd __user *)arg);
  511. return ret;
  512. }
  513. #ifdef CONFIG_COMPAT
  514. static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
  515. unsigned int cmd, unsigned long arg)
  516. {
  517. return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
  518. }
  519. #endif
  520. static const struct block_device_operations mmc_bdops = {
  521. .open = mmc_blk_open,
  522. .release = mmc_blk_release,
  523. .getgeo = mmc_blk_getgeo,
  524. .owner = THIS_MODULE,
  525. .ioctl = mmc_blk_ioctl,
  526. #ifdef CONFIG_COMPAT
  527. .compat_ioctl = mmc_blk_compat_ioctl,
  528. #endif
  529. };
  530. static inline int mmc_blk_part_switch(struct mmc_card *card,
  531. struct mmc_blk_data *md)
  532. {
  533. int ret;
  534. struct mmc_blk_data *main_md = mmc_get_drvdata(card);
  535. if (main_md->part_curr == md->part_type)
  536. return 0;
  537. if (mmc_card_mmc(card)) {
  538. u8 part_config = card->ext_csd.part_config;
  539. part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
  540. part_config |= md->part_type;
  541. ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
  542. EXT_CSD_PART_CONFIG, part_config,
  543. card->ext_csd.part_time);
  544. if (ret)
  545. return ret;
  546. card->ext_csd.part_config = part_config;
  547. }
  548. main_md->part_curr = md->part_type;
  549. return 0;
  550. }
  551. static u32 mmc_sd_num_wr_blocks(struct mmc_card *card)
  552. {
  553. int err;
  554. u32 result;
  555. __be32 *blocks;
  556. struct mmc_request mrq = {NULL};
  557. struct mmc_command cmd = {0};
  558. struct mmc_data data = {0};
  559. struct scatterlist sg;
  560. cmd.opcode = MMC_APP_CMD;
  561. cmd.arg = card->rca << 16;
  562. cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
  563. err = mmc_wait_for_cmd(card->host, &cmd, 0);
  564. if (err)
  565. return (u32)-1;
  566. if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
  567. return (u32)-1;
  568. memset(&cmd, 0, sizeof(struct mmc_command));
  569. cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
  570. cmd.arg = 0;
  571. cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
  572. data.blksz = 4;
  573. data.blocks = 1;
  574. data.flags = MMC_DATA_READ;
  575. data.sg = &sg;
  576. data.sg_len = 1;
  577. mmc_set_data_timeout(&data, card);
  578. mrq.cmd = &cmd;
  579. mrq.data = &data;
  580. blocks = kmalloc(4, GFP_KERNEL);
  581. if (!blocks)
  582. return (u32)-1;
  583. sg_init_one(&sg, blocks, 4);
  584. mmc_wait_for_req(card->host, &mrq);
  585. result = ntohl(*blocks);
  586. kfree(blocks);
  587. if (cmd.error || data.error)
  588. result = (u32)-1;
  589. return result;
  590. }
  591. static int send_stop(struct mmc_card *card, u32 *status)
  592. {
  593. struct mmc_command cmd = {0};
  594. int err;
  595. cmd.opcode = MMC_STOP_TRANSMISSION;
  596. cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
  597. err = mmc_wait_for_cmd(card->host, &cmd, 5);
  598. if (err == 0)
  599. *status = cmd.resp[0];
  600. return err;
  601. }
  602. static int get_card_status(struct mmc_card *card, u32 *status, int retries)
  603. {
  604. struct mmc_command cmd = {0};
  605. int err;
  606. cmd.opcode = MMC_SEND_STATUS;
  607. if (!mmc_host_is_spi(card->host))
  608. cmd.arg = card->rca << 16;
  609. cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
  610. err = mmc_wait_for_cmd(card->host, &cmd, retries);
  611. if (err == 0)
  612. *status = cmd.resp[0];
  613. return err;
  614. }
  615. #define ERR_NOMEDIUM 3
  616. #define ERR_RETRY 2
  617. #define ERR_ABORT 1
  618. #define ERR_CONTINUE 0
  619. static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
  620. bool status_valid, u32 status)
  621. {
  622. switch (error) {
  623. case -EILSEQ:
  624. /* response crc error, retry the r/w cmd */
  625. pr_err("%s: %s sending %s command, card status %#x\n",
  626. req->rq_disk->disk_name, "response CRC error",
  627. name, status);
  628. return ERR_RETRY;
  629. case -ETIMEDOUT:
  630. pr_err("%s: %s sending %s command, card status %#x\n",
  631. req->rq_disk->disk_name, "timed out", name, status);
  632. /* If the status cmd initially failed, retry the r/w cmd */
  633. if (!status_valid)
  634. return ERR_RETRY;
  635. /*
  636. * If it was a r/w cmd crc error, or illegal command
  637. * (eg, issued in wrong state) then retry - we should
  638. * have corrected the state problem above.
  639. */
  640. if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND))
  641. return ERR_RETRY;
  642. /* Otherwise abort the command */
  643. return ERR_ABORT;
  644. default:
  645. /* We don't understand the error code the driver gave us */
  646. pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
  647. req->rq_disk->disk_name, error, status);
  648. return ERR_ABORT;
  649. }
  650. }
  651. /*
  652. * Initial r/w and stop cmd error recovery.
  653. * We don't know whether the card received the r/w cmd or not, so try to
  654. * restore things back to a sane state. Essentially, we do this as follows:
  655. * - Obtain card status. If the first attempt to obtain card status fails,
  656. * the status word will reflect the failed status cmd, not the failed
  657. * r/w cmd. If we fail to obtain card status, it suggests we can no
  658. * longer communicate with the card.
  659. * - Check the card state. If the card received the cmd but there was a
  660. * transient problem with the response, it might still be in a data transfer
  661. * mode. Try to send it a stop command. If this fails, we can't recover.
  662. * - If the r/w cmd failed due to a response CRC error, it was probably
  663. * transient, so retry the cmd.
  664. * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
  665. * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
  666. * illegal cmd, retry.
  667. * Otherwise we don't understand what happened, so abort.
  668. */
  669. static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
  670. struct mmc_blk_request *brq, int *ecc_err, int *gen_err)
  671. {
  672. bool prev_cmd_status_valid = true;
  673. u32 status, stop_status = 0;
  674. int err, retry;
  675. if (mmc_card_removed(card))
  676. return ERR_NOMEDIUM;
  677. /*
  678. * Try to get card status which indicates both the card state
  679. * and why there was no response. If the first attempt fails,
  680. * we can't be sure the returned status is for the r/w command.
  681. */
  682. for (retry = 2; retry >= 0; retry--) {
  683. err = get_card_status(card, &status, 0);
  684. if (!err)
  685. break;
  686. prev_cmd_status_valid = false;
  687. pr_err("%s: error %d sending status command, %sing\n",
  688. req->rq_disk->disk_name, err, retry ? "retry" : "abort");
  689. }
  690. /* We couldn't get a response from the card. Give up. */
  691. if (err) {
  692. /* Check if the card is removed */
  693. if (mmc_detect_card_removed(card->host))
  694. return ERR_NOMEDIUM;
  695. return ERR_ABORT;
  696. }
  697. /* Flag ECC errors */
  698. if ((status & R1_CARD_ECC_FAILED) ||
  699. (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
  700. (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
  701. *ecc_err = 1;
  702. /* Flag General errors */
  703. if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
  704. if ((status & R1_ERROR) ||
  705. (brq->stop.resp[0] & R1_ERROR)) {
  706. pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
  707. req->rq_disk->disk_name, __func__,
  708. brq->stop.resp[0], status);
  709. *gen_err = 1;
  710. }
  711. /*
  712. * Check the current card state. If it is in some data transfer
  713. * mode, tell it to stop (and hopefully transition back to TRAN.)
  714. */
  715. if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
  716. R1_CURRENT_STATE(status) == R1_STATE_RCV) {
  717. err = send_stop(card, &stop_status);
  718. if (err)
  719. pr_err("%s: error %d sending stop command\n",
  720. req->rq_disk->disk_name, err);
  721. /*
  722. * If the stop cmd also timed out, the card is probably
  723. * not present, so abort. Other errors are bad news too.
  724. */
  725. if (err)
  726. return ERR_ABORT;
  727. if (stop_status & R1_CARD_ECC_FAILED)
  728. *ecc_err = 1;
  729. if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
  730. if (stop_status & R1_ERROR) {
  731. pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
  732. req->rq_disk->disk_name, __func__,
  733. stop_status);
  734. *gen_err = 1;
  735. }
  736. }
  737. /* Check for set block count errors */
  738. if (brq->sbc.error)
  739. return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
  740. prev_cmd_status_valid, status);
  741. /* Check for r/w command errors */
  742. if (brq->cmd.error)
  743. return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
  744. prev_cmd_status_valid, status);
  745. /* Data errors */
  746. if (!brq->stop.error)
  747. return ERR_CONTINUE;
  748. /* Now for stop errors. These aren't fatal to the transfer. */
  749. pr_err("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
  750. req->rq_disk->disk_name, brq->stop.error,
  751. brq->cmd.resp[0], status);
  752. /*
  753. * Subsitute in our own stop status as this will give the error
  754. * state which happened during the execution of the r/w command.
  755. */
  756. if (stop_status) {
  757. brq->stop.resp[0] = stop_status;
  758. brq->stop.error = 0;
  759. }
  760. return ERR_CONTINUE;
  761. }
  762. static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
  763. int type)
  764. {
  765. int err;
  766. if (md->reset_done & type)
  767. return -EEXIST;
  768. md->reset_done |= type;
  769. err = mmc_hw_reset(host);
  770. /* Ensure we switch back to the correct partition */
  771. if (err != -EOPNOTSUPP) {
  772. struct mmc_blk_data *main_md = mmc_get_drvdata(host->card);
  773. int part_err;
  774. main_md->part_curr = main_md->part_type;
  775. part_err = mmc_blk_part_switch(host->card, md);
  776. if (part_err) {
  777. /*
  778. * We have failed to get back into the correct
  779. * partition, so we need to abort the whole request.
  780. */
  781. return -ENODEV;
  782. }
  783. }
  784. return err;
  785. }
  786. static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
  787. {
  788. md->reset_done &= ~type;
  789. }
  790. static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
  791. {
  792. struct mmc_blk_data *md = mq->data;
  793. struct mmc_card *card = md->queue.card;
  794. unsigned int from, nr, arg;
  795. int err = 0, type = MMC_BLK_DISCARD;
  796. if (!mmc_can_erase(card)) {
  797. err = -EOPNOTSUPP;
  798. goto out;
  799. }
  800. from = blk_rq_pos(req);
  801. nr = blk_rq_sectors(req);
  802. if (mmc_can_discard(card))
  803. arg = MMC_DISCARD_ARG;
  804. else if (mmc_can_trim(card))
  805. arg = MMC_TRIM_ARG;
  806. else
  807. arg = MMC_ERASE_ARG;
  808. retry:
  809. if (card->quirks & MMC_QUIRK_INAND_CMD38) {
  810. err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
  811. INAND_CMD38_ARG_EXT_CSD,
  812. arg == MMC_TRIM_ARG ?
  813. INAND_CMD38_ARG_TRIM :
  814. INAND_CMD38_ARG_ERASE,
  815. 0);
  816. if (err)
  817. goto out;
  818. }
  819. err = mmc_erase(card, from, nr, arg);
  820. out:
  821. if (err == -EIO && !mmc_blk_reset(md, card->host, type))
  822. goto retry;
  823. if (!err)
  824. mmc_blk_reset_success(md, type);
  825. blk_end_request(req, err, blk_rq_bytes(req));
  826. return err ? 0 : 1;
  827. }
  828. static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
  829. struct request *req)
  830. {
  831. struct mmc_blk_data *md = mq->data;
  832. struct mmc_card *card = md->queue.card;
  833. unsigned int from, nr, arg;
  834. int err = 0, type = MMC_BLK_SECDISCARD;
  835. if (!(mmc_can_secure_erase_trim(card))) {
  836. err = -EOPNOTSUPP;
  837. goto out;
  838. }
  839. from = blk_rq_pos(req);
  840. nr = blk_rq_sectors(req);
  841. if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
  842. arg = MMC_SECURE_TRIM1_ARG;
  843. else
  844. arg = MMC_SECURE_ERASE_ARG;
  845. retry:
  846. if (card->quirks & MMC_QUIRK_INAND_CMD38) {
  847. err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
  848. INAND_CMD38_ARG_EXT_CSD,
  849. arg == MMC_SECURE_TRIM1_ARG ?
  850. INAND_CMD38_ARG_SECTRIM1 :
  851. INAND_CMD38_ARG_SECERASE,
  852. 0);
  853. if (err)
  854. goto out_retry;
  855. }
  856. err = mmc_erase(card, from, nr, arg);
  857. if (err == -EIO)
  858. goto out_retry;
  859. if (err)
  860. goto out;
  861. if (arg == MMC_SECURE_TRIM1_ARG) {
  862. if (card->quirks & MMC_QUIRK_INAND_CMD38) {
  863. err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
  864. INAND_CMD38_ARG_EXT_CSD,
  865. INAND_CMD38_ARG_SECTRIM2,
  866. 0);
  867. if (err)
  868. goto out_retry;
  869. }
  870. err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
  871. if (err == -EIO)
  872. goto out_retry;
  873. if (err)
  874. goto out;
  875. }
  876. out_retry:
  877. if (err && !mmc_blk_reset(md, card->host, type))
  878. goto retry;
  879. if (!err)
  880. mmc_blk_reset_success(md, type);
  881. out:
  882. blk_end_request(req, err, blk_rq_bytes(req));
  883. return err ? 0 : 1;
  884. }
  885. static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
  886. {
  887. struct mmc_blk_data *md = mq->data;
  888. struct mmc_card *card = md->queue.card;
  889. int ret = 0;
  890. ret = mmc_flush_cache(card);
  891. if (ret)
  892. ret = -EIO;
  893. blk_end_request_all(req, ret);
  894. return ret ? 0 : 1;
  895. }
  896. /*
  897. * Reformat current write as a reliable write, supporting
  898. * both legacy and the enhanced reliable write MMC cards.
  899. * In each transfer we'll handle only as much as a single
  900. * reliable write can handle, thus finish the request in
  901. * partial completions.
  902. */
  903. static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
  904. struct mmc_card *card,
  905. struct request *req)
  906. {
  907. if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
  908. /* Legacy mode imposes restrictions on transfers. */
  909. if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors))
  910. brq->data.blocks = 1;
  911. if (brq->data.blocks > card->ext_csd.rel_sectors)
  912. brq->data.blocks = card->ext_csd.rel_sectors;
  913. else if (brq->data.blocks < card->ext_csd.rel_sectors)
  914. brq->data.blocks = 1;
  915. }
  916. }
  917. #define CMD_ERRORS \
  918. (R1_OUT_OF_RANGE | /* Command argument out of range */ \
  919. R1_ADDRESS_ERROR | /* Misaligned address */ \
  920. R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
  921. R1_WP_VIOLATION | /* Tried to write to protected block */ \
  922. R1_CC_ERROR | /* Card controller error */ \
  923. R1_ERROR) /* General/unknown error */
  924. static int mmc_blk_err_check(struct mmc_card *card,
  925. struct mmc_async_req *areq)
  926. {
  927. struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
  928. mmc_active);
  929. struct mmc_blk_request *brq = &mq_mrq->brq;
  930. struct request *req = mq_mrq->req;
  931. int ecc_err = 0, gen_err = 0;
  932. /*
  933. * sbc.error indicates a problem with the set block count
  934. * command. No data will have been transferred.
  935. *
  936. * cmd.error indicates a problem with the r/w command. No
  937. * data will have been transferred.
  938. *
  939. * stop.error indicates a problem with the stop command. Data
  940. * may have been transferred, or may still be transferring.
  941. */
  942. if (brq->sbc.error || brq->cmd.error || brq->stop.error ||
  943. brq->data.error) {
  944. switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
  945. case ERR_RETRY:
  946. return MMC_BLK_RETRY;
  947. case ERR_ABORT:
  948. return MMC_BLK_ABORT;
  949. case ERR_NOMEDIUM:
  950. return MMC_BLK_NOMEDIUM;
  951. case ERR_CONTINUE:
  952. break;
  953. }
  954. }
  955. /*
  956. * Check for errors relating to the execution of the
  957. * initial command - such as address errors. No data
  958. * has been transferred.
  959. */
  960. if (brq->cmd.resp[0] & CMD_ERRORS) {
  961. pr_err("%s: r/w command failed, status = %#x\n",
  962. req->rq_disk->disk_name, brq->cmd.resp[0]);
  963. return MMC_BLK_ABORT;
  964. }
  965. /*
  966. * Everything else is either success, or a data error of some
  967. * kind. If it was a write, we may have transitioned to
  968. * program mode, which we have to wait for it to complete.
  969. */
  970. if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
  971. u32 status;
  972. unsigned long timeout;
  973. /* Check stop command response */
  974. if (brq->stop.resp[0] & R1_ERROR) {
  975. pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
  976. req->rq_disk->disk_name, __func__,
  977. brq->stop.resp[0]);
  978. gen_err = 1;
  979. }
  980. timeout = jiffies + msecs_to_jiffies(MMC_BLK_TIMEOUT_MS);
  981. do {
  982. int err = get_card_status(card, &status, 5);
  983. if (err) {
  984. pr_err("%s: error %d requesting status\n",
  985. req->rq_disk->disk_name, err);
  986. return MMC_BLK_CMD_ERR;
  987. }
  988. if (status & R1_ERROR) {
  989. pr_err("%s: %s: general error sending status command, card status %#x\n",
  990. req->rq_disk->disk_name, __func__,
  991. status);
  992. gen_err = 1;
  993. }
  994. /* Timeout if the device never becomes ready for data
  995. * and never leaves the program state.
  996. */
  997. if (time_after(jiffies, timeout)) {
  998. pr_err("%s: Card stuck in programming state!"\
  999. " %s %s\n", mmc_hostname(card->host),
  1000. req->rq_disk->disk_name, __func__);
  1001. return MMC_BLK_CMD_ERR;
  1002. }
  1003. /*
  1004. * Some cards mishandle the status bits,
  1005. * so make sure to check both the busy
  1006. * indication and the card state.
  1007. */
  1008. } while (!(status & R1_READY_FOR_DATA) ||
  1009. (R1_CURRENT_STATE(status) == R1_STATE_PRG));
  1010. }
  1011. /* if general error occurs, retry the write operation. */
  1012. if (gen_err) {
  1013. pr_warn("%s: retrying write for general error\n",
  1014. req->rq_disk->disk_name);
  1015. return MMC_BLK_RETRY;
  1016. }
  1017. if (brq->data.error) {
  1018. pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
  1019. req->rq_disk->disk_name, brq->data.error,
  1020. (unsigned)blk_rq_pos(req),
  1021. (unsigned)blk_rq_sectors(req),
  1022. brq->cmd.resp[0], brq->stop.resp[0]);
  1023. if (rq_data_dir(req) == READ) {
  1024. if (ecc_err)
  1025. return MMC_BLK_ECC_ERR;
  1026. return MMC_BLK_DATA_ERR;
  1027. } else {
  1028. return MMC_BLK_CMD_ERR;
  1029. }
  1030. }
  1031. if (!brq->data.bytes_xfered)
  1032. return MMC_BLK_RETRY;
  1033. if (mmc_packed_cmd(mq_mrq->cmd_type)) {
  1034. if (unlikely(brq->data.blocks << 9 != brq->data.bytes_xfered))
  1035. return MMC_BLK_PARTIAL;
  1036. else
  1037. return MMC_BLK_SUCCESS;
  1038. }
  1039. if (blk_rq_bytes(req) != brq->data.bytes_xfered)
  1040. return MMC_BLK_PARTIAL;
  1041. return MMC_BLK_SUCCESS;
  1042. }
  1043. static int mmc_blk_packed_err_check(struct mmc_card *card,
  1044. struct mmc_async_req *areq)
  1045. {
  1046. struct mmc_queue_req *mq_rq = container_of(areq, struct mmc_queue_req,
  1047. mmc_active);
  1048. struct request *req = mq_rq->req;
  1049. struct mmc_packed *packed = mq_rq->packed;
  1050. int err, check, status;
  1051. u8 *ext_csd;
  1052. BUG_ON(!packed);
  1053. packed->retries--;
  1054. check = mmc_blk_err_check(card, areq);
  1055. err = get_card_status(card, &status, 0);
  1056. if (err) {
  1057. pr_err("%s: error %d sending status command\n",
  1058. req->rq_disk->disk_name, err);
  1059. return MMC_BLK_ABORT;
  1060. }
  1061. if (status & R1_EXCEPTION_EVENT) {
  1062. ext_csd = kzalloc(512, GFP_KERNEL);
  1063. if (!ext_csd) {
  1064. pr_err("%s: unable to allocate buffer for ext_csd\n",
  1065. req->rq_disk->disk_name);
  1066. return -ENOMEM;
  1067. }
  1068. err = mmc_send_ext_csd(card, ext_csd);
  1069. if (err) {
  1070. pr_err("%s: error %d sending ext_csd\n",
  1071. req->rq_disk->disk_name, err);
  1072. check = MMC_BLK_ABORT;
  1073. goto free;
  1074. }
  1075. if ((ext_csd[EXT_CSD_EXP_EVENTS_STATUS] &
  1076. EXT_CSD_PACKED_FAILURE) &&
  1077. (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
  1078. EXT_CSD_PACKED_GENERIC_ERROR)) {
  1079. if (ext_csd[EXT_CSD_PACKED_CMD_STATUS] &
  1080. EXT_CSD_PACKED_INDEXED_ERROR) {
  1081. packed->idx_failure =
  1082. ext_csd[EXT_CSD_PACKED_FAILURE_INDEX] - 1;
  1083. check = MMC_BLK_PARTIAL;
  1084. }
  1085. pr_err("%s: packed cmd failed, nr %u, sectors %u, "
  1086. "failure index: %d\n",
  1087. req->rq_disk->disk_name, packed->nr_entries,
  1088. packed->blocks, packed->idx_failure);
  1089. }
  1090. free:
  1091. kfree(ext_csd);
  1092. }
  1093. return check;
  1094. }
  1095. static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
  1096. struct mmc_card *card,
  1097. int disable_multi,
  1098. struct mmc_queue *mq)
  1099. {
  1100. u32 readcmd, writecmd;
  1101. struct mmc_blk_request *brq = &mqrq->brq;
  1102. struct request *req = mqrq->req;
  1103. struct mmc_blk_data *md = mq->data;
  1104. bool do_data_tag;
  1105. /*
  1106. * Reliable writes are used to implement Forced Unit Access and
  1107. * REQ_META accesses, and are supported only on MMCs.
  1108. *
  1109. * XXX: this really needs a good explanation of why REQ_META
  1110. * is treated special.
  1111. */
  1112. bool do_rel_wr = ((req->cmd_flags & REQ_FUA) ||
  1113. (req->cmd_flags & REQ_META)) &&
  1114. (rq_data_dir(req) == WRITE) &&
  1115. (md->flags & MMC_BLK_REL_WR);
  1116. memset(brq, 0, sizeof(struct mmc_blk_request));
  1117. brq->mrq.cmd = &brq->cmd;
  1118. brq->mrq.data = &brq->data;
  1119. brq->cmd.arg = blk_rq_pos(req);
  1120. if (!mmc_card_blockaddr(card))
  1121. brq->cmd.arg <<= 9;
  1122. brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
  1123. brq->data.blksz = 512;
  1124. brq->stop.opcode = MMC_STOP_TRANSMISSION;
  1125. brq->stop.arg = 0;
  1126. brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
  1127. brq->data.blocks = blk_rq_sectors(req);
  1128. /*
  1129. * The block layer doesn't support all sector count
  1130. * restrictions, so we need to be prepared for too big
  1131. * requests.
  1132. */
  1133. if (brq->data.blocks > card->host->max_blk_count)
  1134. brq->data.blocks = card->host->max_blk_count;
  1135. if (brq->data.blocks > 1) {
  1136. /*
  1137. * After a read error, we redo the request one sector
  1138. * at a time in order to accurately determine which
  1139. * sectors can be read successfully.
  1140. */
  1141. if (disable_multi)
  1142. brq->data.blocks = 1;
  1143. /* Some controllers can't do multiblock reads due to hw bugs */
  1144. if (card->host->caps2 & MMC_CAP2_NO_MULTI_READ &&
  1145. rq_data_dir(req) == READ)
  1146. brq->data.blocks = 1;
  1147. }
  1148. if (brq->data.blocks > 1 || do_rel_wr) {
  1149. /* SPI multiblock writes terminate using a special
  1150. * token, not a STOP_TRANSMISSION request.
  1151. */
  1152. if (!mmc_host_is_spi(card->host) ||
  1153. rq_data_dir(req) == READ)
  1154. brq->mrq.stop = &brq->stop;
  1155. readcmd = MMC_READ_MULTIPLE_BLOCK;
  1156. writecmd = MMC_WRITE_MULTIPLE_BLOCK;
  1157. } else {
  1158. brq->mrq.stop = NULL;
  1159. readcmd = MMC_READ_SINGLE_BLOCK;
  1160. writecmd = MMC_WRITE_BLOCK;
  1161. }
  1162. if (rq_data_dir(req) == READ) {
  1163. brq->cmd.opcode = readcmd;
  1164. brq->data.flags |= MMC_DATA_READ;
  1165. } else {
  1166. brq->cmd.opcode = writecmd;
  1167. brq->data.flags |= MMC_DATA_WRITE;
  1168. }
  1169. if (do_rel_wr)
  1170. mmc_apply_rel_rw(brq, card, req);
  1171. /*
  1172. * Data tag is used only during writing meta data to speed
  1173. * up write and any subsequent read of this meta data
  1174. */
  1175. do_data_tag = (card->ext_csd.data_tag_unit_size) &&
  1176. (req->cmd_flags & REQ_META) &&
  1177. (rq_data_dir(req) == WRITE) &&
  1178. ((brq->data.blocks * brq->data.blksz) >=
  1179. card->ext_csd.data_tag_unit_size);
  1180. /*
  1181. * Pre-defined multi-block transfers are preferable to
  1182. * open ended-ones (and necessary for reliable writes).
  1183. * However, it is not sufficient to just send CMD23,
  1184. * and avoid the final CMD12, as on an error condition
  1185. * CMD12 (stop) needs to be sent anyway. This, coupled
  1186. * with Auto-CMD23 enhancements provided by some
  1187. * hosts, means that the complexity of dealing
  1188. * with this is best left to the host. If CMD23 is
  1189. * supported by card and host, we'll fill sbc in and let
  1190. * the host deal with handling it correctly. This means
  1191. * that for hosts that don't expose MMC_CAP_CMD23, no
  1192. * change of behavior will be observed.
  1193. *
  1194. * N.B: Some MMC cards experience perf degradation.
  1195. * We'll avoid using CMD23-bounded multiblock writes for
  1196. * these, while retaining features like reliable writes.
  1197. */
  1198. if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
  1199. (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
  1200. do_data_tag)) {
  1201. brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
  1202. brq->sbc.arg = brq->data.blocks |
  1203. (do_rel_wr ? (1 << 31) : 0) |
  1204. (do_data_tag ? (1 << 29) : 0);
  1205. brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
  1206. brq->mrq.sbc = &brq->sbc;
  1207. }
  1208. mmc_set_data_timeout(&brq->data, card);
  1209. brq->data.sg = mqrq->sg;
  1210. brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
  1211. /*
  1212. * Adjust the sg list so it is the same size as the
  1213. * request.
  1214. */
  1215. if (brq->data.blocks != blk_rq_sectors(req)) {
  1216. int i, data_size = brq->data.blocks << 9;
  1217. struct scatterlist *sg;
  1218. for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
  1219. data_size -= sg->length;
  1220. if (data_size <= 0) {
  1221. sg->length += data_size;
  1222. i++;
  1223. break;
  1224. }
  1225. }
  1226. brq->data.sg_len = i;
  1227. }
  1228. mqrq->mmc_active.mrq = &brq->mrq;
  1229. mqrq->mmc_active.err_check = mmc_blk_err_check;
  1230. mmc_queue_bounce_pre(mqrq);
  1231. }
  1232. static inline u8 mmc_calc_packed_hdr_segs(struct request_queue *q,
  1233. struct mmc_card *card)
  1234. {
  1235. unsigned int hdr_sz = mmc_large_sector(card) ? 4096 : 512;
  1236. unsigned int max_seg_sz = queue_max_segment_size(q);
  1237. unsigned int len, nr_segs = 0;
  1238. do {
  1239. len = min(hdr_sz, max_seg_sz);
  1240. hdr_sz -= len;
  1241. nr_segs++;
  1242. } while (hdr_sz);
  1243. return nr_segs;
  1244. }
  1245. static u8 mmc_blk_prep_packed_list(struct mmc_queue *mq, struct request *req)
  1246. {
  1247. struct request_queue *q = mq->queue;
  1248. struct mmc_card *card = mq->card;
  1249. struct request *cur = req, *next = NULL;
  1250. struct mmc_blk_data *md = mq->data;
  1251. struct mmc_queue_req *mqrq = mq->mqrq_cur;
  1252. bool en_rel_wr = card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN;
  1253. unsigned int req_sectors = 0, phys_segments = 0;
  1254. unsigned int max_blk_count, max_phys_segs;
  1255. bool put_back = true;
  1256. u8 max_packed_rw = 0;
  1257. u8 reqs = 0;
  1258. if (!(md->flags & MMC_BLK_PACKED_CMD))
  1259. goto no_packed;
  1260. if ((rq_data_dir(cur) == WRITE) &&
  1261. mmc_host_packed_wr(card->host))
  1262. max_packed_rw = card->ext_csd.max_packed_writes;
  1263. if (max_packed_rw == 0)
  1264. goto no_packed;
  1265. if (mmc_req_rel_wr(cur) &&
  1266. (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
  1267. goto no_packed;
  1268. if (mmc_large_sector(card) &&
  1269. !IS_ALIGNED(blk_rq_sectors(cur), 8))
  1270. goto no_packed;
  1271. mmc_blk_clear_packed(mqrq);
  1272. max_blk_count = min(card->host->max_blk_count,
  1273. card->host->max_req_size >> 9);
  1274. if (unlikely(max_blk_count > 0xffff))
  1275. max_blk_count = 0xffff;
  1276. max_phys_segs = queue_max_segments(q);
  1277. req_sectors += blk_rq_sectors(cur);
  1278. phys_segments += cur->nr_phys_segments;
  1279. if (rq_data_dir(cur) == WRITE) {
  1280. req_sectors += mmc_large_sector(card) ? 8 : 1;
  1281. phys_segments += mmc_calc_packed_hdr_segs(q, card);
  1282. }
  1283. do {
  1284. if (reqs >= max_packed_rw - 1) {
  1285. put_back = false;
  1286. break;
  1287. }
  1288. spin_lock_irq(q->queue_lock);
  1289. next = blk_fetch_request(q);
  1290. spin_unlock_irq(q->queue_lock);
  1291. if (!next) {
  1292. put_back = false;
  1293. break;
  1294. }
  1295. if (mmc_large_sector(card) &&
  1296. !IS_ALIGNED(blk_rq_sectors(next), 8))
  1297. break;
  1298. if (next->cmd_flags & REQ_DISCARD ||
  1299. next->cmd_flags & REQ_FLUSH)
  1300. break;
  1301. if (rq_data_dir(cur) != rq_data_dir(next))
  1302. break;
  1303. if (mmc_req_rel_wr(next) &&
  1304. (md->flags & MMC_BLK_REL_WR) && !en_rel_wr)
  1305. break;
  1306. req_sectors += blk_rq_sectors(next);
  1307. if (req_sectors > max_blk_count)
  1308. break;
  1309. phys_segments += next->nr_phys_segments;
  1310. if (phys_segments > max_phys_segs)
  1311. break;
  1312. list_add_tail(&next->queuelist, &mqrq->packed->list);
  1313. cur = next;
  1314. reqs++;
  1315. } while (1);
  1316. if (put_back) {
  1317. spin_lock_irq(q->queue_lock);
  1318. blk_requeue_request(q, next);
  1319. spin_unlock_irq(q->queue_lock);
  1320. }
  1321. if (reqs > 0) {
  1322. list_add(&req->queuelist, &mqrq->packed->list);
  1323. mqrq->packed->nr_entries = ++reqs;
  1324. mqrq->packed->retries = reqs;
  1325. return reqs;
  1326. }
  1327. no_packed:
  1328. mqrq->cmd_type = MMC_PACKED_NONE;
  1329. return 0;
  1330. }
  1331. static void mmc_blk_packed_hdr_wrq_prep(struct mmc_queue_req *mqrq,
  1332. struct mmc_card *card,
  1333. struct mmc_queue *mq)
  1334. {
  1335. struct mmc_blk_request *brq = &mqrq->brq;
  1336. struct request *req = mqrq->req;
  1337. struct request *prq;
  1338. struct mmc_blk_data *md = mq->data;
  1339. struct mmc_packed *packed = mqrq->packed;
  1340. bool do_rel_wr, do_data_tag;
  1341. u32 *packed_cmd_hdr;
  1342. u8 hdr_blocks;
  1343. u8 i = 1;
  1344. BUG_ON(!packed);
  1345. mqrq->cmd_type = MMC_PACKED_WRITE;
  1346. packed->blocks = 0;
  1347. packed->idx_failure = MMC_PACKED_NR_IDX;
  1348. packed_cmd_hdr = packed->cmd_hdr;
  1349. memset(packed_cmd_hdr, 0, sizeof(packed->cmd_hdr));
  1350. packed_cmd_hdr[0] = (packed->nr_entries << 16) |
  1351. (PACKED_CMD_WR << 8) | PACKED_CMD_VER;
  1352. hdr_blocks = mmc_large_sector(card) ? 8 : 1;
  1353. /*
  1354. * Argument for each entry of packed group
  1355. */
  1356. list_for_each_entry(prq, &packed->list, queuelist) {
  1357. do_rel_wr = mmc_req_rel_wr(prq) && (md->flags & MMC_BLK_REL_WR);
  1358. do_data_tag = (card->ext_csd.data_tag_unit_size) &&
  1359. (prq->cmd_flags & REQ_META) &&
  1360. (rq_data_dir(prq) == WRITE) &&
  1361. ((brq->data.blocks * brq->data.blksz) >=
  1362. card->ext_csd.data_tag_unit_size);
  1363. /* Argument of CMD23 */
  1364. packed_cmd_hdr[(i * 2)] =
  1365. (do_rel_wr ? MMC_CMD23_ARG_REL_WR : 0) |
  1366. (do_data_tag ? MMC_CMD23_ARG_TAG_REQ : 0) |
  1367. blk_rq_sectors(prq);
  1368. /* Argument of CMD18 or CMD25 */
  1369. packed_cmd_hdr[((i * 2)) + 1] =
  1370. mmc_card_blockaddr(card) ?
  1371. blk_rq_pos(prq) : blk_rq_pos(prq) << 9;
  1372. packed->blocks += blk_rq_sectors(prq);
  1373. i++;
  1374. }
  1375. memset(brq, 0, sizeof(struct mmc_blk_request));
  1376. brq->mrq.cmd = &brq->cmd;
  1377. brq->mrq.data = &brq->data;
  1378. brq->mrq.sbc = &brq->sbc;
  1379. brq->mrq.stop = &brq->stop;
  1380. brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
  1381. brq->sbc.arg = MMC_CMD23_ARG_PACKED | (packed->blocks + hdr_blocks);
  1382. brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
  1383. brq->cmd.opcode = MMC_WRITE_MULTIPLE_BLOCK;
  1384. brq->cmd.arg = blk_rq_pos(req);
  1385. if (!mmc_card_blockaddr(card))
  1386. brq->cmd.arg <<= 9;
  1387. brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
  1388. brq->data.blksz = 512;
  1389. brq->data.blocks = packed->blocks + hdr_blocks;
  1390. brq->data.flags |= MMC_DATA_WRITE;
  1391. brq->stop.opcode = MMC_STOP_TRANSMISSION;
  1392. brq->stop.arg = 0;
  1393. brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
  1394. mmc_set_data_timeout(&brq->data, card);
  1395. brq->data.sg = mqrq->sg;
  1396. brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
  1397. mqrq->mmc_active.mrq = &brq->mrq;
  1398. mqrq->mmc_active.err_check = mmc_blk_packed_err_check;
  1399. mmc_queue_bounce_pre(mqrq);
  1400. }
  1401. static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
  1402. struct mmc_blk_request *brq, struct request *req,
  1403. int ret)
  1404. {
  1405. struct mmc_queue_req *mq_rq;
  1406. mq_rq = container_of(brq, struct mmc_queue_req, brq);
  1407. /*
  1408. * If this is an SD card and we're writing, we can first
  1409. * mark the known good sectors as ok.
  1410. *
  1411. * If the card is not SD, we can still ok written sectors
  1412. * as reported by the controller (which might be less than
  1413. * the real number of written sectors, but never more).
  1414. */
  1415. if (mmc_card_sd(card)) {
  1416. u32 blocks;
  1417. blocks = mmc_sd_num_wr_blocks(card);
  1418. if (blocks != (u32)-1) {
  1419. ret = blk_end_request(req, 0, blocks << 9);
  1420. }
  1421. } else {
  1422. if (!mmc_packed_cmd(mq_rq->cmd_type))
  1423. ret = blk_end_request(req, 0, brq->data.bytes_xfered);
  1424. }
  1425. return ret;
  1426. }
  1427. static int mmc_blk_end_packed_req(struct mmc_queue_req *mq_rq)
  1428. {
  1429. struct request *prq;
  1430. struct mmc_packed *packed = mq_rq->packed;
  1431. int idx = packed->idx_failure, i = 0;
  1432. int ret = 0;
  1433. BUG_ON(!packed);
  1434. while (!list_empty(&packed->list)) {
  1435. prq = list_entry_rq(packed->list.next);
  1436. if (idx == i) {
  1437. /* retry from error index */
  1438. packed->nr_entries -= idx;
  1439. mq_rq->req = prq;
  1440. ret = 1;
  1441. if (packed->nr_entries == MMC_PACKED_NR_SINGLE) {
  1442. list_del_init(&prq->queuelist);
  1443. mmc_blk_clear_packed(mq_rq);
  1444. }
  1445. return ret;
  1446. }
  1447. list_del_init(&prq->queuelist);
  1448. blk_end_request(prq, 0, blk_rq_bytes(prq));
  1449. i++;
  1450. }
  1451. mmc_blk_clear_packed(mq_rq);
  1452. return ret;
  1453. }
  1454. static void mmc_blk_abort_packed_req(struct mmc_queue_req *mq_rq)
  1455. {
  1456. struct request *prq;
  1457. struct mmc_packed *packed = mq_rq->packed;
  1458. BUG_ON(!packed);
  1459. while (!list_empty(&packed->list)) {
  1460. prq = list_entry_rq(packed->list.next);
  1461. list_del_init(&prq->queuelist);
  1462. blk_end_request(prq, -EIO, blk_rq_bytes(prq));
  1463. }
  1464. mmc_blk_clear_packed(mq_rq);
  1465. }
  1466. static void mmc_blk_revert_packed_req(struct mmc_queue *mq,
  1467. struct mmc_queue_req *mq_rq)
  1468. {
  1469. struct request *prq;
  1470. struct request_queue *q = mq->queue;
  1471. struct mmc_packed *packed = mq_rq->packed;
  1472. BUG_ON(!packed);
  1473. while (!list_empty(&packed->list)) {
  1474. prq = list_entry_rq(packed->list.prev);
  1475. if (prq->queuelist.prev != &packed->list) {
  1476. list_del_init(&prq->queuelist);
  1477. spin_lock_irq(q->queue_lock);
  1478. blk_requeue_request(mq->queue, prq);
  1479. spin_unlock_irq(q->queue_lock);
  1480. } else {
  1481. list_del_init(&prq->queuelist);
  1482. }
  1483. }
  1484. mmc_blk_clear_packed(mq_rq);
  1485. }
  1486. static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc)
  1487. {
  1488. struct mmc_blk_data *md = mq->data;
  1489. struct mmc_card *card = md->queue.card;
  1490. struct mmc_blk_request *brq = &mq->mqrq_cur->brq;
  1491. int ret = 1, disable_multi = 0, retry = 0, type;
  1492. enum mmc_blk_status status;
  1493. struct mmc_queue_req *mq_rq;
  1494. struct request *req = rqc;
  1495. struct mmc_async_req *areq;
  1496. const u8 packed_nr = 2;
  1497. u8 reqs = 0;
  1498. if (!rqc && !mq->mqrq_prev->req)
  1499. return 0;
  1500. if (rqc)
  1501. reqs = mmc_blk_prep_packed_list(mq, rqc);
  1502. do {
  1503. if (rqc) {
  1504. /*
  1505. * When 4KB native sector is enabled, only 8 blocks
  1506. * multiple read or write is allowed
  1507. */
  1508. if ((brq->data.blocks & 0x07) &&
  1509. (card->ext_csd.data_sector_size == 4096)) {
  1510. pr_err("%s: Transfer size is not 4KB sector size aligned\n",
  1511. req->rq_disk->disk_name);
  1512. mq_rq = mq->mqrq_cur;
  1513. goto cmd_abort;
  1514. }
  1515. if (reqs >= packed_nr)
  1516. mmc_blk_packed_hdr_wrq_prep(mq->mqrq_cur,
  1517. card, mq);
  1518. else
  1519. mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
  1520. areq = &mq->mqrq_cur->mmc_active;
  1521. } else
  1522. areq = NULL;
  1523. areq = mmc_start_req(card->host, areq, (int *) &status);
  1524. if (!areq) {
  1525. if (status == MMC_BLK_NEW_REQUEST)
  1526. mq->flags |= MMC_QUEUE_NEW_REQUEST;
  1527. return 0;
  1528. }
  1529. mq_rq = container_of(areq, struct mmc_queue_req, mmc_active);
  1530. brq = &mq_rq->brq;
  1531. req = mq_rq->req;
  1532. type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
  1533. mmc_queue_bounce_post(mq_rq);
  1534. switch (status) {
  1535. case MMC_BLK_SUCCESS:
  1536. case MMC_BLK_PARTIAL:
  1537. /*
  1538. * A block was successfully transferred.
  1539. */
  1540. mmc_blk_reset_success(md, type);
  1541. if (mmc_packed_cmd(mq_rq->cmd_type)) {
  1542. ret = mmc_blk_end_packed_req(mq_rq);
  1543. break;
  1544. } else {
  1545. ret = blk_end_request(req, 0,
  1546. brq->data.bytes_xfered);
  1547. }
  1548. /*
  1549. * If the blk_end_request function returns non-zero even
  1550. * though all data has been transferred and no errors
  1551. * were returned by the host controller, it's a bug.
  1552. */
  1553. if (status == MMC_BLK_SUCCESS && ret) {
  1554. pr_err("%s BUG rq_tot %d d_xfer %d\n",
  1555. __func__, blk_rq_bytes(req),
  1556. brq->data.bytes_xfered);
  1557. rqc = NULL;
  1558. goto cmd_abort;
  1559. }
  1560. break;
  1561. case MMC_BLK_CMD_ERR:
  1562. ret = mmc_blk_cmd_err(md, card, brq, req, ret);
  1563. if (!mmc_blk_reset(md, card->host, type))
  1564. break;
  1565. goto cmd_abort;
  1566. case MMC_BLK_RETRY:
  1567. if (retry++ < 5)
  1568. break;
  1569. /* Fall through */
  1570. case MMC_BLK_ABORT:
  1571. if (!mmc_blk_reset(md, card->host, type))
  1572. break;
  1573. goto cmd_abort;
  1574. case MMC_BLK_DATA_ERR: {
  1575. int err;
  1576. err = mmc_blk_reset(md, card->host, type);
  1577. if (!err)
  1578. break;
  1579. if (err == -ENODEV ||
  1580. mmc_packed_cmd(mq_rq->cmd_type))
  1581. goto cmd_abort;
  1582. /* Fall through */
  1583. }
  1584. case MMC_BLK_ECC_ERR:
  1585. if (brq->data.blocks > 1) {
  1586. /* Redo read one sector at a time */
  1587. pr_warning("%s: retrying using single block read\n",
  1588. req->rq_disk->disk_name);
  1589. disable_multi = 1;
  1590. break;
  1591. }
  1592. /*
  1593. * After an error, we redo I/O one sector at a
  1594. * time, so we only reach here after trying to
  1595. * read a single sector.
  1596. */
  1597. ret = blk_end_request(req, -EIO,
  1598. brq->data.blksz);
  1599. if (!ret)
  1600. goto start_new_req;
  1601. break;
  1602. case MMC_BLK_NOMEDIUM:
  1603. goto cmd_abort;
  1604. default:
  1605. pr_err("%s: Unhandled return value (%d)",
  1606. req->rq_disk->disk_name, status);
  1607. goto cmd_abort;
  1608. }
  1609. if (ret) {
  1610. if (mmc_packed_cmd(mq_rq->cmd_type)) {
  1611. if (!mq_rq->packed->retries)
  1612. goto cmd_abort;
  1613. mmc_blk_packed_hdr_wrq_prep(mq_rq, card, mq);
  1614. mmc_start_req(card->host,
  1615. &mq_rq->mmc_active, NULL);
  1616. } else {
  1617. /*
  1618. * In case of a incomplete request
  1619. * prepare it again and resend.
  1620. */
  1621. mmc_blk_rw_rq_prep(mq_rq, card,
  1622. disable_multi, mq);
  1623. mmc_start_req(card->host,
  1624. &mq_rq->mmc_active, NULL);
  1625. }
  1626. }
  1627. } while (ret);
  1628. return 1;
  1629. cmd_abort:
  1630. if (mmc_packed_cmd(mq_rq->cmd_type)) {
  1631. mmc_blk_abort_packed_req(mq_rq);
  1632. } else {
  1633. if (mmc_card_removed(card))
  1634. req->cmd_flags |= REQ_QUIET;
  1635. while (ret)
  1636. ret = blk_end_request(req, -EIO,
  1637. blk_rq_cur_bytes(req));
  1638. }
  1639. start_new_req:
  1640. if (rqc) {
  1641. if (mmc_card_removed(card)) {
  1642. rqc->cmd_flags |= REQ_QUIET;
  1643. blk_end_request_all(rqc, -EIO);
  1644. } else {
  1645. /*
  1646. * If current request is packed, it needs to put back.
  1647. */
  1648. if (mmc_packed_cmd(mq->mqrq_cur->cmd_type))
  1649. mmc_blk_revert_packed_req(mq, mq->mqrq_cur);
  1650. mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq);
  1651. mmc_start_req(card->host,
  1652. &mq->mqrq_cur->mmc_active, NULL);
  1653. }
  1654. }
  1655. return 0;
  1656. }
  1657. static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
  1658. {
  1659. int ret;
  1660. struct mmc_blk_data *md = mq->data;
  1661. struct mmc_card *card = md->queue.card;
  1662. struct mmc_host *host = card->host;
  1663. unsigned long flags;
  1664. if (req && !mq->mqrq_prev->req)
  1665. /* claim host only for the first request */
  1666. mmc_get_card(card);
  1667. ret = mmc_blk_part_switch(card, md);
  1668. if (ret) {
  1669. if (req) {
  1670. blk_end_request_all(req, -EIO);
  1671. }
  1672. ret = 0;
  1673. goto out;
  1674. }
  1675. mq->flags &= ~MMC_QUEUE_NEW_REQUEST;
  1676. if (req && req->cmd_flags & REQ_DISCARD) {
  1677. /* complete ongoing async transfer before issuing discard */
  1678. if (card->host->areq)
  1679. mmc_blk_issue_rw_rq(mq, NULL);
  1680. if (req->cmd_flags & REQ_SECURE &&
  1681. !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
  1682. ret = mmc_blk_issue_secdiscard_rq(mq, req);
  1683. else
  1684. ret = mmc_blk_issue_discard_rq(mq, req);
  1685. } else if (req && req->cmd_flags & REQ_FLUSH) {
  1686. /* complete ongoing async transfer before issuing flush */
  1687. if (card->host->areq)
  1688. mmc_blk_issue_rw_rq(mq, NULL);
  1689. ret = mmc_blk_issue_flush(mq, req);
  1690. } else {
  1691. if (!req && host->areq) {
  1692. spin_lock_irqsave(&host->context_info.lock, flags);
  1693. host->context_info.is_waiting_last_req = true;
  1694. spin_unlock_irqrestore(&host->context_info.lock, flags);
  1695. }
  1696. ret = mmc_blk_issue_rw_rq(mq, req);
  1697. }
  1698. out:
  1699. if ((!req && !(mq->flags & MMC_QUEUE_NEW_REQUEST)) ||
  1700. (req && (req->cmd_flags & MMC_REQ_SPECIAL_MASK)))
  1701. /*
  1702. * Release host when there are no more requests
  1703. * and after special request(discard, flush) is done.
  1704. * In case sepecial request, there is no reentry to
  1705. * the 'mmc_blk_issue_rq' with 'mqrq_prev->req'.
  1706. */
  1707. mmc_put_card(card);
  1708. return ret;
  1709. }
  1710. static inline int mmc_blk_readonly(struct mmc_card *card)
  1711. {
  1712. return mmc_card_readonly(card) ||
  1713. !(card->csd.cmdclass & CCC_BLOCK_WRITE);
  1714. }
  1715. static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
  1716. struct device *parent,
  1717. sector_t size,
  1718. bool default_ro,
  1719. const char *subname,
  1720. int area_type)
  1721. {
  1722. struct mmc_blk_data *md;
  1723. int devidx, ret;
  1724. devidx = find_first_zero_bit(dev_use, max_devices);
  1725. if (devidx >= max_devices)
  1726. return ERR_PTR(-ENOSPC);
  1727. __set_bit(devidx, dev_use);
  1728. md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
  1729. if (!md) {
  1730. ret = -ENOMEM;
  1731. goto out;
  1732. }
  1733. /*
  1734. * !subname implies we are creating main mmc_blk_data that will be
  1735. * associated with mmc_card with mmc_set_drvdata. Due to device
  1736. * partitions, devidx will not coincide with a per-physical card
  1737. * index anymore so we keep track of a name index.
  1738. */
  1739. if (!subname) {
  1740. md->name_idx = find_first_zero_bit(name_use, max_devices);
  1741. __set_bit(md->name_idx, name_use);
  1742. } else
  1743. md->name_idx = ((struct mmc_blk_data *)
  1744. dev_to_disk(parent)->private_data)->name_idx;
  1745. md->area_type = area_type;
  1746. /*
  1747. * Set the read-only status based on the supported commands
  1748. * and the write protect switch.
  1749. */
  1750. md->read_only = mmc_blk_readonly(card);
  1751. md->disk = alloc_disk(perdev_minors);
  1752. if (md->disk == NULL) {
  1753. ret = -ENOMEM;
  1754. goto err_kfree;
  1755. }
  1756. spin_lock_init(&md->lock);
  1757. INIT_LIST_HEAD(&md->part);
  1758. md->usage = 1;
  1759. ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
  1760. if (ret)
  1761. goto err_putdisk;
  1762. md->queue.issue_fn = mmc_blk_issue_rq;
  1763. md->queue.data = md;
  1764. md->disk->major = MMC_BLOCK_MAJOR;
  1765. md->disk->first_minor = devidx * perdev_minors;
  1766. md->disk->fops = &mmc_bdops;
  1767. md->disk->private_data = md;
  1768. md->disk->queue = md->queue.queue;
  1769. md->disk->driverfs_dev = parent;
  1770. set_disk_ro(md->disk, md->read_only || default_ro);
  1771. if (area_type & MMC_BLK_DATA_AREA_RPMB)
  1772. md->disk->flags |= GENHD_FL_NO_PART_SCAN;
  1773. /*
  1774. * As discussed on lkml, GENHD_FL_REMOVABLE should:
  1775. *
  1776. * - be set for removable media with permanent block devices
  1777. * - be unset for removable block devices with permanent media
  1778. *
  1779. * Since MMC block devices clearly fall under the second
  1780. * case, we do not set GENHD_FL_REMOVABLE. Userspace
  1781. * should use the block device creation/destruction hotplug
  1782. * messages to tell when the card is present.
  1783. */
  1784. snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
  1785. "mmcblk%d%s", md->name_idx, subname ? subname : "");
  1786. if (mmc_card_mmc(card))
  1787. blk_queue_logical_block_size(md->queue.queue,
  1788. card->ext_csd.data_sector_size);
  1789. else
  1790. blk_queue_logical_block_size(md->queue.queue, 512);
  1791. set_capacity(md->disk, size);
  1792. if (mmc_host_cmd23(card->host)) {
  1793. if (mmc_card_mmc(card) ||
  1794. (mmc_card_sd(card) &&
  1795. card->scr.cmds & SD_SCR_CMD23_SUPPORT))
  1796. md->flags |= MMC_BLK_CMD23;
  1797. }
  1798. if (mmc_card_mmc(card) &&
  1799. md->flags & MMC_BLK_CMD23 &&
  1800. ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
  1801. card->ext_csd.rel_sectors)) {
  1802. md->flags |= MMC_BLK_REL_WR;
  1803. blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA);
  1804. }
  1805. if (mmc_card_mmc(card) &&
  1806. (area_type == MMC_BLK_DATA_AREA_MAIN) &&
  1807. (md->flags & MMC_BLK_CMD23) &&
  1808. card->ext_csd.packed_event_en) {
  1809. if (!mmc_packed_init(&md->queue, card))
  1810. md->flags |= MMC_BLK_PACKED_CMD;
  1811. }
  1812. return md;
  1813. err_putdisk:
  1814. put_disk(md->disk);
  1815. err_kfree:
  1816. kfree(md);
  1817. out:
  1818. return ERR_PTR(ret);
  1819. }
  1820. static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
  1821. {
  1822. sector_t size;
  1823. struct mmc_blk_data *md;
  1824. if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
  1825. /*
  1826. * The EXT_CSD sector count is in number or 512 byte
  1827. * sectors.
  1828. */
  1829. size = card->ext_csd.sectors;
  1830. } else {
  1831. /*
  1832. * The CSD capacity field is in units of read_blkbits.
  1833. * set_capacity takes units of 512 bytes.
  1834. */
  1835. size = card->csd.capacity << (card->csd.read_blkbits - 9);
  1836. }
  1837. md = mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
  1838. MMC_BLK_DATA_AREA_MAIN);
  1839. return md;
  1840. }
  1841. static int mmc_blk_alloc_part(struct mmc_card *card,
  1842. struct mmc_blk_data *md,
  1843. unsigned int part_type,
  1844. sector_t size,
  1845. bool default_ro,
  1846. const char *subname,
  1847. int area_type)
  1848. {
  1849. char cap_str[10];
  1850. struct mmc_blk_data *part_md;
  1851. part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
  1852. subname, area_type);
  1853. if (IS_ERR(part_md))
  1854. return PTR_ERR(part_md);
  1855. part_md->part_type = part_type;
  1856. list_add(&part_md->part, &md->part);
  1857. string_get_size((u64)get_capacity(part_md->disk) << 9, STRING_UNITS_2,
  1858. cap_str, sizeof(cap_str));
  1859. pr_info("%s: %s %s partition %u %s\n",
  1860. part_md->disk->disk_name, mmc_card_id(card),
  1861. mmc_card_name(card), part_md->part_type, cap_str);
  1862. return 0;
  1863. }
  1864. /* MMC Physical partitions consist of two boot partitions and
  1865. * up to four general purpose partitions.
  1866. * For each partition enabled in EXT_CSD a block device will be allocatedi
  1867. * to provide access to the partition.
  1868. */
  1869. static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
  1870. {
  1871. int idx, ret = 0;
  1872. if (!mmc_card_mmc(card))
  1873. return 0;
  1874. for (idx = 0; idx < card->nr_parts; idx++) {
  1875. if (card->part[idx].size) {
  1876. ret = mmc_blk_alloc_part(card, md,
  1877. card->part[idx].part_cfg,
  1878. card->part[idx].size >> 9,
  1879. card->part[idx].force_ro,
  1880. card->part[idx].name,
  1881. card->part[idx].area_type);
  1882. if (ret)
  1883. return ret;
  1884. }
  1885. }
  1886. return ret;
  1887. }
  1888. static void mmc_blk_remove_req(struct mmc_blk_data *md)
  1889. {
  1890. struct mmc_card *card;
  1891. if (md) {
  1892. /*
  1893. * Flush remaining requests and free queues. It
  1894. * is freeing the queue that stops new requests
  1895. * from being accepted.
  1896. */
  1897. card = md->queue.card;
  1898. mmc_cleanup_queue(&md->queue);
  1899. if (md->flags & MMC_BLK_PACKED_CMD)
  1900. mmc_packed_clean(&md->queue);
  1901. if (md->disk->flags & GENHD_FL_UP) {
  1902. device_remove_file(disk_to_dev(md->disk), &md->force_ro);
  1903. if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
  1904. card->ext_csd.boot_ro_lockable)
  1905. device_remove_file(disk_to_dev(md->disk),
  1906. &md->power_ro_lock);
  1907. del_gendisk(md->disk);
  1908. }
  1909. mmc_blk_put(md);
  1910. }
  1911. }
  1912. static void mmc_blk_remove_parts(struct mmc_card *card,
  1913. struct mmc_blk_data *md)
  1914. {
  1915. struct list_head *pos, *q;
  1916. struct mmc_blk_data *part_md;
  1917. __clear_bit(md->name_idx, name_use);
  1918. list_for_each_safe(pos, q, &md->part) {
  1919. part_md = list_entry(pos, struct mmc_blk_data, part);
  1920. list_del(pos);
  1921. mmc_blk_remove_req(part_md);
  1922. }
  1923. }
  1924. static int mmc_add_disk(struct mmc_blk_data *md)
  1925. {
  1926. int ret;
  1927. struct mmc_card *card = md->queue.card;
  1928. add_disk(md->disk);
  1929. md->force_ro.show = force_ro_show;
  1930. md->force_ro.store = force_ro_store;
  1931. sysfs_attr_init(&md->force_ro.attr);
  1932. md->force_ro.attr.name = "force_ro";
  1933. md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
  1934. ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
  1935. if (ret)
  1936. goto force_ro_fail;
  1937. if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
  1938. card->ext_csd.boot_ro_lockable) {
  1939. umode_t mode;
  1940. if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
  1941. mode = S_IRUGO;
  1942. else
  1943. mode = S_IRUGO | S_IWUSR;
  1944. md->power_ro_lock.show = power_ro_lock_show;
  1945. md->power_ro_lock.store = power_ro_lock_store;
  1946. sysfs_attr_init(&md->power_ro_lock.attr);
  1947. md->power_ro_lock.attr.mode = mode;
  1948. md->power_ro_lock.attr.name =
  1949. "ro_lock_until_next_power_on";
  1950. ret = device_create_file(disk_to_dev(md->disk),
  1951. &md->power_ro_lock);
  1952. if (ret)
  1953. goto power_ro_lock_fail;
  1954. }
  1955. return ret;
  1956. power_ro_lock_fail:
  1957. device_remove_file(disk_to_dev(md->disk), &md->force_ro);
  1958. force_ro_fail:
  1959. del_gendisk(md->disk);
  1960. return ret;
  1961. }
  1962. #define CID_MANFID_SANDISK 0x2
  1963. #define CID_MANFID_TOSHIBA 0x11
  1964. #define CID_MANFID_MICRON 0x13
  1965. #define CID_MANFID_SAMSUNG 0x15
  1966. static const struct mmc_fixup blk_fixups[] =
  1967. {
  1968. MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk,
  1969. MMC_QUIRK_INAND_CMD38),
  1970. MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk,
  1971. MMC_QUIRK_INAND_CMD38),
  1972. MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk,
  1973. MMC_QUIRK_INAND_CMD38),
  1974. MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk,
  1975. MMC_QUIRK_INAND_CMD38),
  1976. MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk,
  1977. MMC_QUIRK_INAND_CMD38),
  1978. /*
  1979. * Some MMC cards experience performance degradation with CMD23
  1980. * instead of CMD12-bounded multiblock transfers. For now we'll
  1981. * black list what's bad...
  1982. * - Certain Toshiba cards.
  1983. *
  1984. * N.B. This doesn't affect SD cards.
  1985. */
  1986. MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
  1987. MMC_QUIRK_BLK_NO_CMD23),
  1988. MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
  1989. MMC_QUIRK_BLK_NO_CMD23),
  1990. MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc,
  1991. MMC_QUIRK_BLK_NO_CMD23),
  1992. /*
  1993. * Some Micron MMC cards needs longer data read timeout than
  1994. * indicated in CSD.
  1995. */
  1996. MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc,
  1997. MMC_QUIRK_LONG_READ_TIME),
  1998. /*
  1999. * On these Samsung MoviNAND parts, performing secure erase or
  2000. * secure trim can result in unrecoverable corruption due to a
  2001. * firmware bug.
  2002. */
  2003. MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
  2004. MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
  2005. MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
  2006. MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
  2007. MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
  2008. MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
  2009. MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
  2010. MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
  2011. MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
  2012. MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
  2013. MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
  2014. MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
  2015. MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
  2016. MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
  2017. MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc,
  2018. MMC_QUIRK_SEC_ERASE_TRIM_BROKEN),
  2019. END_FIXUP
  2020. };
  2021. static int mmc_blk_probe(struct mmc_card *card)
  2022. {
  2023. struct mmc_blk_data *md, *part_md;
  2024. char cap_str[10];
  2025. /*
  2026. * Check that the card supports the command class(es) we need.
  2027. */
  2028. if (!(card->csd.cmdclass & CCC_BLOCK_READ))
  2029. return -ENODEV;
  2030. md = mmc_blk_alloc(card);
  2031. if (IS_ERR(md))
  2032. return PTR_ERR(md);
  2033. string_get_size((u64)get_capacity(md->disk) << 9, STRING_UNITS_2,
  2034. cap_str, sizeof(cap_str));
  2035. pr_info("%s: %s %s %s %s\n",
  2036. md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
  2037. cap_str, md->read_only ? "(ro)" : "");
  2038. if (mmc_blk_alloc_parts(card, md))
  2039. goto out;
  2040. mmc_set_drvdata(card, md);
  2041. mmc_fixup_device(card, blk_fixups);
  2042. if (mmc_add_disk(md))
  2043. goto out;
  2044. list_for_each_entry(part_md, &md->part, part) {
  2045. if (mmc_add_disk(part_md))
  2046. goto out;
  2047. }
  2048. pm_runtime_set_autosuspend_delay(&card->dev, 3000);
  2049. pm_runtime_use_autosuspend(&card->dev);
  2050. /*
  2051. * Don't enable runtime PM for SD-combo cards here. Leave that
  2052. * decision to be taken during the SDIO init sequence instead.
  2053. */
  2054. if (card->type != MMC_TYPE_SD_COMBO) {
  2055. pm_runtime_set_active(&card->dev);
  2056. pm_runtime_enable(&card->dev);
  2057. }
  2058. return 0;
  2059. out:
  2060. mmc_blk_remove_parts(card, md);
  2061. mmc_blk_remove_req(md);
  2062. return 0;
  2063. }
  2064. static void mmc_blk_remove(struct mmc_card *card)
  2065. {
  2066. struct mmc_blk_data *md = mmc_get_drvdata(card);
  2067. mmc_blk_remove_parts(card, md);
  2068. pm_runtime_get_sync(&card->dev);
  2069. mmc_claim_host(card->host);
  2070. mmc_blk_part_switch(card, md);
  2071. mmc_release_host(card->host);
  2072. if (card->type != MMC_TYPE_SD_COMBO)
  2073. pm_runtime_disable(&card->dev);
  2074. pm_runtime_put_noidle(&card->dev);
  2075. mmc_blk_remove_req(md);
  2076. mmc_set_drvdata(card, NULL);
  2077. }
  2078. static int _mmc_blk_suspend(struct mmc_card *card)
  2079. {
  2080. struct mmc_blk_data *part_md;
  2081. struct mmc_blk_data *md = mmc_get_drvdata(card);
  2082. if (md) {
  2083. pm_runtime_get_sync(&card->dev);
  2084. mmc_queue_suspend(&md->queue);
  2085. list_for_each_entry(part_md, &md->part, part) {
  2086. mmc_queue_suspend(&part_md->queue);
  2087. }
  2088. }
  2089. return 0;
  2090. }
  2091. static void mmc_blk_shutdown(struct mmc_card *card)
  2092. {
  2093. _mmc_blk_suspend(card);
  2094. }
  2095. #ifdef CONFIG_PM
  2096. static int mmc_blk_suspend(struct mmc_card *card)
  2097. {
  2098. return _mmc_blk_suspend(card);
  2099. }
  2100. static int mmc_blk_resume(struct mmc_card *card)
  2101. {
  2102. struct mmc_blk_data *part_md;
  2103. struct mmc_blk_data *md = mmc_get_drvdata(card);
  2104. if (md) {
  2105. /*
  2106. * Resume involves the card going into idle state,
  2107. * so current partition is always the main one.
  2108. */
  2109. md->part_curr = md->part_type;
  2110. mmc_queue_resume(&md->queue);
  2111. list_for_each_entry(part_md, &md->part, part) {
  2112. mmc_queue_resume(&part_md->queue);
  2113. }
  2114. pm_runtime_put(&card->dev);
  2115. }
  2116. return 0;
  2117. }
  2118. #else
  2119. #define mmc_blk_suspend NULL
  2120. #define mmc_blk_resume NULL
  2121. #endif
  2122. static struct mmc_driver mmc_driver = {
  2123. .drv = {
  2124. .name = "mmcblk",
  2125. },
  2126. .probe = mmc_blk_probe,
  2127. .remove = mmc_blk_remove,
  2128. .suspend = mmc_blk_suspend,
  2129. .resume = mmc_blk_resume,
  2130. .shutdown = mmc_blk_shutdown,
  2131. };
  2132. static int __init mmc_blk_init(void)
  2133. {
  2134. int res;
  2135. if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
  2136. pr_info("mmcblk: using %d minors per device\n", perdev_minors);
  2137. max_devices = 256 / perdev_minors;
  2138. res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
  2139. if (res)
  2140. goto out;
  2141. res = mmc_register_driver(&mmc_driver);
  2142. if (res)
  2143. goto out2;
  2144. return 0;
  2145. out2:
  2146. unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
  2147. out:
  2148. return res;
  2149. }
  2150. static void __exit mmc_blk_exit(void)
  2151. {
  2152. mmc_unregister_driver(&mmc_driver);
  2153. unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
  2154. }
  2155. module_init(mmc_blk_init);
  2156. module_exit(mmc_blk_exit);
  2157. MODULE_LICENSE("GPL");
  2158. MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");