smiapp-pll.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460
  1. /*
  2. * drivers/media/i2c/smiapp-pll.c
  3. *
  4. * Generic driver for SMIA/SMIA++ compliant camera modules
  5. *
  6. * Copyright (C) 2011--2012 Nokia Corporation
  7. * Contact: Sakari Ailus <sakari.ailus@iki.fi>
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License
  11. * version 2 as published by the Free Software Foundation.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
  21. * 02110-1301 USA
  22. *
  23. */
  24. #include <linux/gcd.h>
  25. #include <linux/lcm.h>
  26. #include <linux/module.h>
  27. #include "smiapp-pll.h"
  28. /* Return an even number or one. */
  29. static inline uint32_t clk_div_even(uint32_t a)
  30. {
  31. return max_t(uint32_t, 1, a & ~1);
  32. }
  33. /* Return an even number or one. */
  34. static inline uint32_t clk_div_even_up(uint32_t a)
  35. {
  36. if (a == 1)
  37. return 1;
  38. return (a + 1) & ~1;
  39. }
  40. static inline uint32_t is_one_or_even(uint32_t a)
  41. {
  42. if (a == 1)
  43. return 1;
  44. if (a & 1)
  45. return 0;
  46. return 1;
  47. }
  48. static int bounds_check(struct device *dev, uint32_t val,
  49. uint32_t min, uint32_t max, char *str)
  50. {
  51. if (val >= min && val <= max)
  52. return 0;
  53. dev_dbg(dev, "%s out of bounds: %d (%d--%d)\n", str, val, min, max);
  54. return -EINVAL;
  55. }
  56. static void print_pll(struct device *dev, struct smiapp_pll *pll)
  57. {
  58. dev_dbg(dev, "pre_pll_clk_div\t%d\n", pll->pre_pll_clk_div);
  59. dev_dbg(dev, "pll_multiplier \t%d\n", pll->pll_multiplier);
  60. if (pll->flags != SMIAPP_PLL_FLAG_NO_OP_CLOCKS) {
  61. dev_dbg(dev, "op_sys_clk_div \t%d\n", pll->op_sys_clk_div);
  62. dev_dbg(dev, "op_pix_clk_div \t%d\n", pll->op_pix_clk_div);
  63. }
  64. dev_dbg(dev, "vt_sys_clk_div \t%d\n", pll->vt_sys_clk_div);
  65. dev_dbg(dev, "vt_pix_clk_div \t%d\n", pll->vt_pix_clk_div);
  66. dev_dbg(dev, "ext_clk_freq_hz \t%d\n", pll->ext_clk_freq_hz);
  67. dev_dbg(dev, "pll_ip_clk_freq_hz \t%d\n", pll->pll_ip_clk_freq_hz);
  68. dev_dbg(dev, "pll_op_clk_freq_hz \t%d\n", pll->pll_op_clk_freq_hz);
  69. if (pll->flags & SMIAPP_PLL_FLAG_NO_OP_CLOCKS) {
  70. dev_dbg(dev, "op_sys_clk_freq_hz \t%d\n",
  71. pll->op_sys_clk_freq_hz);
  72. dev_dbg(dev, "op_pix_clk_freq_hz \t%d\n",
  73. pll->op_pix_clk_freq_hz);
  74. }
  75. dev_dbg(dev, "vt_sys_clk_freq_hz \t%d\n", pll->vt_sys_clk_freq_hz);
  76. dev_dbg(dev, "vt_pix_clk_freq_hz \t%d\n", pll->vt_pix_clk_freq_hz);
  77. }
  78. /*
  79. * Heuristically guess the PLL tree for a given common multiplier and
  80. * divisor. Begin with the operational timing and continue to video
  81. * timing once operational timing has been verified.
  82. *
  83. * @mul is the PLL multiplier and @div is the common divisor
  84. * (pre_pll_clk_div and op_sys_clk_div combined). The final PLL
  85. * multiplier will be a multiple of @mul.
  86. *
  87. * @return Zero on success, error code on error.
  88. */
  89. static int __smiapp_pll_calculate(struct device *dev,
  90. const struct smiapp_pll_limits *limits,
  91. struct smiapp_pll *pll, uint32_t mul,
  92. uint32_t div, uint32_t lane_op_clock_ratio)
  93. {
  94. uint32_t sys_div;
  95. uint32_t best_pix_div = INT_MAX >> 1;
  96. uint32_t vt_op_binning_div;
  97. /*
  98. * Higher multipliers (and divisors) are often required than
  99. * necessitated by the external clock and the output clocks.
  100. * There are limits for all values in the clock tree. These
  101. * are the minimum and maximum multiplier for mul.
  102. */
  103. uint32_t more_mul_min, more_mul_max;
  104. uint32_t more_mul_factor;
  105. uint32_t min_vt_div, max_vt_div, vt_div;
  106. uint32_t min_sys_div, max_sys_div;
  107. unsigned int i;
  108. int rval;
  109. /*
  110. * Get pre_pll_clk_div so that our pll_op_clk_freq_hz won't be
  111. * too high.
  112. */
  113. dev_dbg(dev, "pre_pll_clk_div %d\n", pll->pre_pll_clk_div);
  114. /* Don't go above max pll multiplier. */
  115. more_mul_max = limits->max_pll_multiplier / mul;
  116. dev_dbg(dev, "more_mul_max: max_pll_multiplier check: %d\n",
  117. more_mul_max);
  118. /* Don't go above max pll op frequency. */
  119. more_mul_max =
  120. min_t(uint32_t,
  121. more_mul_max,
  122. limits->max_pll_op_freq_hz
  123. / (pll->ext_clk_freq_hz / pll->pre_pll_clk_div * mul));
  124. dev_dbg(dev, "more_mul_max: max_pll_op_freq_hz check: %d\n",
  125. more_mul_max);
  126. /* Don't go above the division capability of op sys clock divider. */
  127. more_mul_max = min(more_mul_max,
  128. limits->op.max_sys_clk_div * pll->pre_pll_clk_div
  129. / div);
  130. dev_dbg(dev, "more_mul_max: max_op_sys_clk_div check: %d\n",
  131. more_mul_max);
  132. /* Ensure we won't go above min_pll_multiplier. */
  133. more_mul_max = min(more_mul_max,
  134. DIV_ROUND_UP(limits->max_pll_multiplier, mul));
  135. dev_dbg(dev, "more_mul_max: min_pll_multiplier check: %d\n",
  136. more_mul_max);
  137. /* Ensure we won't go below min_pll_op_freq_hz. */
  138. more_mul_min = DIV_ROUND_UP(limits->min_pll_op_freq_hz,
  139. pll->ext_clk_freq_hz / pll->pre_pll_clk_div
  140. * mul);
  141. dev_dbg(dev, "more_mul_min: min_pll_op_freq_hz check: %d\n",
  142. more_mul_min);
  143. /* Ensure we won't go below min_pll_multiplier. */
  144. more_mul_min = max(more_mul_min,
  145. DIV_ROUND_UP(limits->min_pll_multiplier, mul));
  146. dev_dbg(dev, "more_mul_min: min_pll_multiplier check: %d\n",
  147. more_mul_min);
  148. if (more_mul_min > more_mul_max) {
  149. dev_dbg(dev,
  150. "unable to compute more_mul_min and more_mul_max\n");
  151. return -EINVAL;
  152. }
  153. more_mul_factor = lcm(div, pll->pre_pll_clk_div) / div;
  154. dev_dbg(dev, "more_mul_factor: %d\n", more_mul_factor);
  155. more_mul_factor = lcm(more_mul_factor, limits->op.min_sys_clk_div);
  156. dev_dbg(dev, "more_mul_factor: min_op_sys_clk_div: %d\n",
  157. more_mul_factor);
  158. i = roundup(more_mul_min, more_mul_factor);
  159. if (!is_one_or_even(i))
  160. i <<= 1;
  161. dev_dbg(dev, "final more_mul: %d\n", i);
  162. if (i > more_mul_max) {
  163. dev_dbg(dev, "final more_mul is bad, max %d\n", more_mul_max);
  164. return -EINVAL;
  165. }
  166. pll->pll_multiplier = mul * i;
  167. pll->op_sys_clk_div = div * i / pll->pre_pll_clk_div;
  168. dev_dbg(dev, "op_sys_clk_div: %d\n", pll->op_sys_clk_div);
  169. pll->pll_ip_clk_freq_hz = pll->ext_clk_freq_hz
  170. / pll->pre_pll_clk_div;
  171. pll->pll_op_clk_freq_hz = pll->pll_ip_clk_freq_hz
  172. * pll->pll_multiplier;
  173. /* Derive pll_op_clk_freq_hz. */
  174. pll->op_sys_clk_freq_hz =
  175. pll->pll_op_clk_freq_hz / pll->op_sys_clk_div;
  176. pll->op_pix_clk_div = pll->bits_per_pixel;
  177. dev_dbg(dev, "op_pix_clk_div: %d\n", pll->op_pix_clk_div);
  178. pll->op_pix_clk_freq_hz =
  179. pll->op_sys_clk_freq_hz / pll->op_pix_clk_div;
  180. /*
  181. * Some sensors perform analogue binning and some do this
  182. * digitally. The ones doing this digitally can be roughly be
  183. * found out using this formula. The ones doing this digitally
  184. * should run at higher clock rate, so smaller divisor is used
  185. * on video timing side.
  186. */
  187. if (limits->min_line_length_pck_bin > limits->min_line_length_pck
  188. / pll->binning_horizontal)
  189. vt_op_binning_div = pll->binning_horizontal;
  190. else
  191. vt_op_binning_div = 1;
  192. dev_dbg(dev, "vt_op_binning_div: %d\n", vt_op_binning_div);
  193. /*
  194. * Profile 2 supports vt_pix_clk_div E [4, 10]
  195. *
  196. * Horizontal binning can be used as a base for difference in
  197. * divisors. One must make sure that horizontal blanking is
  198. * enough to accommodate the CSI-2 sync codes.
  199. *
  200. * Take scaling factor into account as well.
  201. *
  202. * Find absolute limits for the factor of vt divider.
  203. */
  204. dev_dbg(dev, "scale_m: %d\n", pll->scale_m);
  205. min_vt_div = DIV_ROUND_UP(pll->op_pix_clk_div * pll->op_sys_clk_div
  206. * pll->scale_n,
  207. lane_op_clock_ratio * vt_op_binning_div
  208. * pll->scale_m);
  209. /* Find smallest and biggest allowed vt divisor. */
  210. dev_dbg(dev, "min_vt_div: %d\n", min_vt_div);
  211. min_vt_div = max(min_vt_div,
  212. DIV_ROUND_UP(pll->pll_op_clk_freq_hz,
  213. limits->vt.max_pix_clk_freq_hz));
  214. dev_dbg(dev, "min_vt_div: max_vt_pix_clk_freq_hz: %d\n",
  215. min_vt_div);
  216. min_vt_div = max_t(uint32_t, min_vt_div,
  217. limits->vt.min_pix_clk_div
  218. * limits->vt.min_sys_clk_div);
  219. dev_dbg(dev, "min_vt_div: min_vt_clk_div: %d\n", min_vt_div);
  220. max_vt_div = limits->vt.max_sys_clk_div * limits->vt.max_pix_clk_div;
  221. dev_dbg(dev, "max_vt_div: %d\n", max_vt_div);
  222. max_vt_div = min(max_vt_div,
  223. DIV_ROUND_UP(pll->pll_op_clk_freq_hz,
  224. limits->vt.min_pix_clk_freq_hz));
  225. dev_dbg(dev, "max_vt_div: min_vt_pix_clk_freq_hz: %d\n",
  226. max_vt_div);
  227. /*
  228. * Find limitsits for sys_clk_div. Not all values are possible
  229. * with all values of pix_clk_div.
  230. */
  231. min_sys_div = limits->vt.min_sys_clk_div;
  232. dev_dbg(dev, "min_sys_div: %d\n", min_sys_div);
  233. min_sys_div = max(min_sys_div,
  234. DIV_ROUND_UP(min_vt_div,
  235. limits->vt.max_pix_clk_div));
  236. dev_dbg(dev, "min_sys_div: max_vt_pix_clk_div: %d\n", min_sys_div);
  237. min_sys_div = max(min_sys_div,
  238. pll->pll_op_clk_freq_hz
  239. / limits->vt.max_sys_clk_freq_hz);
  240. dev_dbg(dev, "min_sys_div: max_pll_op_clk_freq_hz: %d\n", min_sys_div);
  241. min_sys_div = clk_div_even_up(min_sys_div);
  242. dev_dbg(dev, "min_sys_div: one or even: %d\n", min_sys_div);
  243. max_sys_div = limits->vt.max_sys_clk_div;
  244. dev_dbg(dev, "max_sys_div: %d\n", max_sys_div);
  245. max_sys_div = min(max_sys_div,
  246. DIV_ROUND_UP(max_vt_div,
  247. limits->vt.min_pix_clk_div));
  248. dev_dbg(dev, "max_sys_div: min_vt_pix_clk_div: %d\n", max_sys_div);
  249. max_sys_div = min(max_sys_div,
  250. DIV_ROUND_UP(pll->pll_op_clk_freq_hz,
  251. limits->vt.min_pix_clk_freq_hz));
  252. dev_dbg(dev, "max_sys_div: min_vt_pix_clk_freq_hz: %d\n", max_sys_div);
  253. /*
  254. * Find pix_div such that a legal pix_div * sys_div results
  255. * into a value which is not smaller than div, the desired
  256. * divisor.
  257. */
  258. for (vt_div = min_vt_div; vt_div <= max_vt_div;
  259. vt_div += 2 - (vt_div & 1)) {
  260. for (sys_div = min_sys_div;
  261. sys_div <= max_sys_div;
  262. sys_div += 2 - (sys_div & 1)) {
  263. uint16_t pix_div = DIV_ROUND_UP(vt_div, sys_div);
  264. if (pix_div < limits->vt.min_pix_clk_div
  265. || pix_div > limits->vt.max_pix_clk_div) {
  266. dev_dbg(dev,
  267. "pix_div %d too small or too big (%d--%d)\n",
  268. pix_div,
  269. limits->vt.min_pix_clk_div,
  270. limits->vt.max_pix_clk_div);
  271. continue;
  272. }
  273. /* Check if this one is better. */
  274. if (pix_div * sys_div
  275. <= roundup(min_vt_div, best_pix_div))
  276. best_pix_div = pix_div;
  277. }
  278. if (best_pix_div < INT_MAX >> 1)
  279. break;
  280. }
  281. pll->vt_sys_clk_div = DIV_ROUND_UP(min_vt_div, best_pix_div);
  282. pll->vt_pix_clk_div = best_pix_div;
  283. pll->vt_sys_clk_freq_hz =
  284. pll->pll_op_clk_freq_hz / pll->vt_sys_clk_div;
  285. pll->vt_pix_clk_freq_hz =
  286. pll->vt_sys_clk_freq_hz / pll->vt_pix_clk_div;
  287. pll->pixel_rate_csi =
  288. pll->op_pix_clk_freq_hz * lane_op_clock_ratio;
  289. rval = bounds_check(dev, pll->pll_ip_clk_freq_hz,
  290. limits->min_pll_ip_freq_hz,
  291. limits->max_pll_ip_freq_hz,
  292. "pll_ip_clk_freq_hz");
  293. if (!rval)
  294. rval = bounds_check(
  295. dev, pll->pll_multiplier,
  296. limits->min_pll_multiplier, limits->max_pll_multiplier,
  297. "pll_multiplier");
  298. if (!rval)
  299. rval = bounds_check(
  300. dev, pll->pll_op_clk_freq_hz,
  301. limits->min_pll_op_freq_hz, limits->max_pll_op_freq_hz,
  302. "pll_op_clk_freq_hz");
  303. if (!rval)
  304. rval = bounds_check(
  305. dev, pll->op_sys_clk_div,
  306. limits->op.min_sys_clk_div, limits->op.max_sys_clk_div,
  307. "op_sys_clk_div");
  308. if (!rval)
  309. rval = bounds_check(
  310. dev, pll->op_pix_clk_div,
  311. limits->op.min_pix_clk_div, limits->op.max_pix_clk_div,
  312. "op_pix_clk_div");
  313. if (!rval)
  314. rval = bounds_check(
  315. dev, pll->op_sys_clk_freq_hz,
  316. limits->op.min_sys_clk_freq_hz,
  317. limits->op.max_sys_clk_freq_hz,
  318. "op_sys_clk_freq_hz");
  319. if (!rval)
  320. rval = bounds_check(
  321. dev, pll->op_pix_clk_freq_hz,
  322. limits->op.min_pix_clk_freq_hz,
  323. limits->op.max_pix_clk_freq_hz,
  324. "op_pix_clk_freq_hz");
  325. if (!rval)
  326. rval = bounds_check(
  327. dev, pll->vt_sys_clk_freq_hz,
  328. limits->vt.min_sys_clk_freq_hz,
  329. limits->vt.max_sys_clk_freq_hz,
  330. "vt_sys_clk_freq_hz");
  331. if (!rval)
  332. rval = bounds_check(
  333. dev, pll->vt_pix_clk_freq_hz,
  334. limits->vt.min_pix_clk_freq_hz,
  335. limits->vt.max_pix_clk_freq_hz,
  336. "vt_pix_clk_freq_hz");
  337. return rval;
  338. }
  339. int smiapp_pll_calculate(struct device *dev,
  340. const struct smiapp_pll_limits *limits,
  341. struct smiapp_pll *pll)
  342. {
  343. uint16_t min_pre_pll_clk_div;
  344. uint16_t max_pre_pll_clk_div;
  345. uint32_t lane_op_clock_ratio;
  346. uint32_t mul, div;
  347. unsigned int i;
  348. int rval = -EINVAL;
  349. if (pll->flags & SMIAPP_PLL_FLAG_OP_PIX_CLOCK_PER_LANE)
  350. lane_op_clock_ratio = pll->csi2.lanes;
  351. else
  352. lane_op_clock_ratio = 1;
  353. dev_dbg(dev, "lane_op_clock_ratio: %d\n", lane_op_clock_ratio);
  354. dev_dbg(dev, "binning: %dx%d\n", pll->binning_horizontal,
  355. pll->binning_vertical);
  356. switch (pll->bus_type) {
  357. case SMIAPP_PLL_BUS_TYPE_CSI2:
  358. /* CSI transfers 2 bits per clock per lane; thus times 2 */
  359. pll->pll_op_clk_freq_hz = pll->link_freq * 2
  360. * (pll->csi2.lanes / lane_op_clock_ratio);
  361. break;
  362. case SMIAPP_PLL_BUS_TYPE_PARALLEL:
  363. pll->pll_op_clk_freq_hz = pll->link_freq * pll->bits_per_pixel
  364. / DIV_ROUND_UP(pll->bits_per_pixel,
  365. pll->parallel.bus_width);
  366. break;
  367. default:
  368. return -EINVAL;
  369. }
  370. /* Figure out limits for pre-pll divider based on extclk */
  371. dev_dbg(dev, "min / max pre_pll_clk_div: %d / %d\n",
  372. limits->min_pre_pll_clk_div, limits->max_pre_pll_clk_div);
  373. max_pre_pll_clk_div =
  374. min_t(uint16_t, limits->max_pre_pll_clk_div,
  375. clk_div_even(pll->ext_clk_freq_hz /
  376. limits->min_pll_ip_freq_hz));
  377. min_pre_pll_clk_div =
  378. max_t(uint16_t, limits->min_pre_pll_clk_div,
  379. clk_div_even_up(
  380. DIV_ROUND_UP(pll->ext_clk_freq_hz,
  381. limits->max_pll_ip_freq_hz)));
  382. dev_dbg(dev, "pre-pll check: min / max pre_pll_clk_div: %d / %d\n",
  383. min_pre_pll_clk_div, max_pre_pll_clk_div);
  384. i = gcd(pll->pll_op_clk_freq_hz, pll->ext_clk_freq_hz);
  385. mul = div_u64(pll->pll_op_clk_freq_hz, i);
  386. div = pll->ext_clk_freq_hz / i;
  387. dev_dbg(dev, "mul %d / div %d\n", mul, div);
  388. min_pre_pll_clk_div =
  389. max_t(uint16_t, min_pre_pll_clk_div,
  390. clk_div_even_up(
  391. DIV_ROUND_UP(mul * pll->ext_clk_freq_hz,
  392. limits->max_pll_op_freq_hz)));
  393. dev_dbg(dev, "pll_op check: min / max pre_pll_clk_div: %d / %d\n",
  394. min_pre_pll_clk_div, max_pre_pll_clk_div);
  395. for (pll->pre_pll_clk_div = min_pre_pll_clk_div;
  396. pll->pre_pll_clk_div <= max_pre_pll_clk_div;
  397. pll->pre_pll_clk_div += 2 - (pll->pre_pll_clk_div & 1)) {
  398. rval = __smiapp_pll_calculate(dev, limits, pll, mul, div,
  399. lane_op_clock_ratio);
  400. if (rval)
  401. continue;
  402. print_pll(dev, pll);
  403. return 0;
  404. }
  405. dev_info(dev, "unable to compute pre_pll divisor\n");
  406. return rval;
  407. }
  408. EXPORT_SYMBOL_GPL(smiapp_pll_calculate);
  409. MODULE_AUTHOR("Sakari Ailus <sakari.ailus@iki.fi>");
  410. MODULE_DESCRIPTION("Generic SMIA/SMIA++ PLL calculator");
  411. MODULE_LICENSE("GPL");