af9033.c 23 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106
  1. /*
  2. * Afatech AF9033 demodulator driver
  3. *
  4. * Copyright (C) 2009 Antti Palosaari <crope@iki.fi>
  5. * Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License along
  18. * with this program; if not, write to the Free Software Foundation, Inc.,
  19. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  20. */
  21. #include "af9033_priv.h"
  22. struct af9033_state {
  23. struct i2c_adapter *i2c;
  24. struct dvb_frontend fe;
  25. struct af9033_config cfg;
  26. u32 bandwidth_hz;
  27. bool ts_mode_parallel;
  28. bool ts_mode_serial;
  29. u32 ber;
  30. u32 ucb;
  31. unsigned long last_stat_check;
  32. };
  33. /* write multiple registers */
  34. static int af9033_wr_regs(struct af9033_state *state, u32 reg, const u8 *val,
  35. int len)
  36. {
  37. int ret;
  38. u8 buf[3 + len];
  39. struct i2c_msg msg[1] = {
  40. {
  41. .addr = state->cfg.i2c_addr,
  42. .flags = 0,
  43. .len = sizeof(buf),
  44. .buf = buf,
  45. }
  46. };
  47. buf[0] = (reg >> 16) & 0xff;
  48. buf[1] = (reg >> 8) & 0xff;
  49. buf[2] = (reg >> 0) & 0xff;
  50. memcpy(&buf[3], val, len);
  51. ret = i2c_transfer(state->i2c, msg, 1);
  52. if (ret == 1) {
  53. ret = 0;
  54. } else {
  55. dev_warn(&state->i2c->dev, "%s: i2c wr failed=%d reg=%06x " \
  56. "len=%d\n", KBUILD_MODNAME, ret, reg, len);
  57. ret = -EREMOTEIO;
  58. }
  59. return ret;
  60. }
  61. /* read multiple registers */
  62. static int af9033_rd_regs(struct af9033_state *state, u32 reg, u8 *val, int len)
  63. {
  64. int ret;
  65. u8 buf[3] = { (reg >> 16) & 0xff, (reg >> 8) & 0xff,
  66. (reg >> 0) & 0xff };
  67. struct i2c_msg msg[2] = {
  68. {
  69. .addr = state->cfg.i2c_addr,
  70. .flags = 0,
  71. .len = sizeof(buf),
  72. .buf = buf
  73. }, {
  74. .addr = state->cfg.i2c_addr,
  75. .flags = I2C_M_RD,
  76. .len = len,
  77. .buf = val
  78. }
  79. };
  80. ret = i2c_transfer(state->i2c, msg, 2);
  81. if (ret == 2) {
  82. ret = 0;
  83. } else {
  84. dev_warn(&state->i2c->dev, "%s: i2c rd failed=%d reg=%06x " \
  85. "len=%d\n", KBUILD_MODNAME, ret, reg, len);
  86. ret = -EREMOTEIO;
  87. }
  88. return ret;
  89. }
  90. /* write single register */
  91. static int af9033_wr_reg(struct af9033_state *state, u32 reg, u8 val)
  92. {
  93. return af9033_wr_regs(state, reg, &val, 1);
  94. }
  95. /* read single register */
  96. static int af9033_rd_reg(struct af9033_state *state, u32 reg, u8 *val)
  97. {
  98. return af9033_rd_regs(state, reg, val, 1);
  99. }
  100. /* write single register with mask */
  101. static int af9033_wr_reg_mask(struct af9033_state *state, u32 reg, u8 val,
  102. u8 mask)
  103. {
  104. int ret;
  105. u8 tmp;
  106. /* no need for read if whole reg is written */
  107. if (mask != 0xff) {
  108. ret = af9033_rd_regs(state, reg, &tmp, 1);
  109. if (ret)
  110. return ret;
  111. val &= mask;
  112. tmp &= ~mask;
  113. val |= tmp;
  114. }
  115. return af9033_wr_regs(state, reg, &val, 1);
  116. }
  117. /* read single register with mask */
  118. static int af9033_rd_reg_mask(struct af9033_state *state, u32 reg, u8 *val,
  119. u8 mask)
  120. {
  121. int ret, i;
  122. u8 tmp;
  123. ret = af9033_rd_regs(state, reg, &tmp, 1);
  124. if (ret)
  125. return ret;
  126. tmp &= mask;
  127. /* find position of the first bit */
  128. for (i = 0; i < 8; i++) {
  129. if ((mask >> i) & 0x01)
  130. break;
  131. }
  132. *val = tmp >> i;
  133. return 0;
  134. }
  135. /* write reg val table using reg addr auto increment */
  136. static int af9033_wr_reg_val_tab(struct af9033_state *state,
  137. const struct reg_val *tab, int tab_len)
  138. {
  139. int ret, i, j;
  140. u8 buf[tab_len];
  141. dev_dbg(&state->i2c->dev, "%s: tab_len=%d\n", __func__, tab_len);
  142. for (i = 0, j = 0; i < tab_len; i++) {
  143. buf[j] = tab[i].val;
  144. if (i == tab_len - 1 || tab[i].reg != tab[i + 1].reg - 1) {
  145. ret = af9033_wr_regs(state, tab[i].reg - j, buf, j + 1);
  146. if (ret < 0)
  147. goto err;
  148. j = 0;
  149. } else {
  150. j++;
  151. }
  152. }
  153. return 0;
  154. err:
  155. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  156. return ret;
  157. }
  158. static u32 af9033_div(struct af9033_state *state, u32 a, u32 b, u32 x)
  159. {
  160. u32 r = 0, c = 0, i;
  161. dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d\n", __func__, a, b, x);
  162. if (a > b) {
  163. c = a / b;
  164. a = a - c * b;
  165. }
  166. for (i = 0; i < x; i++) {
  167. if (a >= b) {
  168. r += 1;
  169. a -= b;
  170. }
  171. a <<= 1;
  172. r <<= 1;
  173. }
  174. r = (c << (u32)x) + r;
  175. dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d r=%d r=%x\n",
  176. __func__, a, b, x, r, r);
  177. return r;
  178. }
  179. static void af9033_release(struct dvb_frontend *fe)
  180. {
  181. struct af9033_state *state = fe->demodulator_priv;
  182. kfree(state);
  183. }
  184. static int af9033_init(struct dvb_frontend *fe)
  185. {
  186. struct af9033_state *state = fe->demodulator_priv;
  187. int ret, i, len;
  188. const struct reg_val *init;
  189. u8 buf[4];
  190. u32 adc_cw, clock_cw;
  191. struct reg_val_mask tab[] = {
  192. { 0x80fb24, 0x00, 0x08 },
  193. { 0x80004c, 0x00, 0xff },
  194. { 0x00f641, state->cfg.tuner, 0xff },
  195. { 0x80f5ca, 0x01, 0x01 },
  196. { 0x80f715, 0x01, 0x01 },
  197. { 0x00f41f, 0x04, 0x04 },
  198. { 0x00f41a, 0x01, 0x01 },
  199. { 0x80f731, 0x00, 0x01 },
  200. { 0x00d91e, 0x00, 0x01 },
  201. { 0x00d919, 0x00, 0x01 },
  202. { 0x80f732, 0x00, 0x01 },
  203. { 0x00d91f, 0x00, 0x01 },
  204. { 0x00d91a, 0x00, 0x01 },
  205. { 0x80f730, 0x00, 0x01 },
  206. { 0x80f778, 0x00, 0xff },
  207. { 0x80f73c, 0x01, 0x01 },
  208. { 0x80f776, 0x00, 0x01 },
  209. { 0x00d8fd, 0x01, 0xff },
  210. { 0x00d830, 0x01, 0xff },
  211. { 0x00d831, 0x00, 0xff },
  212. { 0x00d832, 0x00, 0xff },
  213. { 0x80f985, state->ts_mode_serial, 0x01 },
  214. { 0x80f986, state->ts_mode_parallel, 0x01 },
  215. { 0x00d827, 0x00, 0xff },
  216. { 0x00d829, 0x00, 0xff },
  217. { 0x800045, state->cfg.adc_multiplier, 0xff },
  218. };
  219. /* program clock control */
  220. clock_cw = af9033_div(state, state->cfg.clock, 1000000ul, 19ul);
  221. buf[0] = (clock_cw >> 0) & 0xff;
  222. buf[1] = (clock_cw >> 8) & 0xff;
  223. buf[2] = (clock_cw >> 16) & 0xff;
  224. buf[3] = (clock_cw >> 24) & 0xff;
  225. dev_dbg(&state->i2c->dev, "%s: clock=%d clock_cw=%08x\n",
  226. __func__, state->cfg.clock, clock_cw);
  227. ret = af9033_wr_regs(state, 0x800025, buf, 4);
  228. if (ret < 0)
  229. goto err;
  230. /* program ADC control */
  231. for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
  232. if (clock_adc_lut[i].clock == state->cfg.clock)
  233. break;
  234. }
  235. adc_cw = af9033_div(state, clock_adc_lut[i].adc, 1000000ul, 19ul);
  236. buf[0] = (adc_cw >> 0) & 0xff;
  237. buf[1] = (adc_cw >> 8) & 0xff;
  238. buf[2] = (adc_cw >> 16) & 0xff;
  239. dev_dbg(&state->i2c->dev, "%s: adc=%d adc_cw=%06x\n",
  240. __func__, clock_adc_lut[i].adc, adc_cw);
  241. ret = af9033_wr_regs(state, 0x80f1cd, buf, 3);
  242. if (ret < 0)
  243. goto err;
  244. /* program register table */
  245. for (i = 0; i < ARRAY_SIZE(tab); i++) {
  246. ret = af9033_wr_reg_mask(state, tab[i].reg, tab[i].val,
  247. tab[i].mask);
  248. if (ret < 0)
  249. goto err;
  250. }
  251. /* settings for TS interface */
  252. if (state->cfg.ts_mode == AF9033_TS_MODE_USB) {
  253. ret = af9033_wr_reg_mask(state, 0x80f9a5, 0x00, 0x01);
  254. if (ret < 0)
  255. goto err;
  256. ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x01, 0x01);
  257. if (ret < 0)
  258. goto err;
  259. } else {
  260. ret = af9033_wr_reg_mask(state, 0x80f990, 0x00, 0x01);
  261. if (ret < 0)
  262. goto err;
  263. ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x00, 0x01);
  264. if (ret < 0)
  265. goto err;
  266. }
  267. /* load OFSM settings */
  268. dev_dbg(&state->i2c->dev, "%s: load ofsm settings\n", __func__);
  269. switch (state->cfg.tuner) {
  270. case AF9033_TUNER_IT9135_38:
  271. case AF9033_TUNER_IT9135_51:
  272. case AF9033_TUNER_IT9135_52:
  273. len = ARRAY_SIZE(ofsm_init_it9135_v1);
  274. init = ofsm_init_it9135_v1;
  275. break;
  276. case AF9033_TUNER_IT9135_60:
  277. case AF9033_TUNER_IT9135_61:
  278. case AF9033_TUNER_IT9135_62:
  279. len = ARRAY_SIZE(ofsm_init_it9135_v2);
  280. init = ofsm_init_it9135_v2;
  281. break;
  282. default:
  283. len = ARRAY_SIZE(ofsm_init);
  284. init = ofsm_init;
  285. break;
  286. }
  287. ret = af9033_wr_reg_val_tab(state, init, len);
  288. if (ret < 0)
  289. goto err;
  290. /* load tuner specific settings */
  291. dev_dbg(&state->i2c->dev, "%s: load tuner specific settings\n",
  292. __func__);
  293. switch (state->cfg.tuner) {
  294. case AF9033_TUNER_TUA9001:
  295. len = ARRAY_SIZE(tuner_init_tua9001);
  296. init = tuner_init_tua9001;
  297. break;
  298. case AF9033_TUNER_FC0011:
  299. len = ARRAY_SIZE(tuner_init_fc0011);
  300. init = tuner_init_fc0011;
  301. break;
  302. case AF9033_TUNER_MXL5007T:
  303. len = ARRAY_SIZE(tuner_init_mxl5007t);
  304. init = tuner_init_mxl5007t;
  305. break;
  306. case AF9033_TUNER_TDA18218:
  307. len = ARRAY_SIZE(tuner_init_tda18218);
  308. init = tuner_init_tda18218;
  309. break;
  310. case AF9033_TUNER_FC2580:
  311. len = ARRAY_SIZE(tuner_init_fc2580);
  312. init = tuner_init_fc2580;
  313. break;
  314. case AF9033_TUNER_FC0012:
  315. len = ARRAY_SIZE(tuner_init_fc0012);
  316. init = tuner_init_fc0012;
  317. break;
  318. case AF9033_TUNER_IT9135_38:
  319. len = ARRAY_SIZE(tuner_init_it9135_38);
  320. init = tuner_init_it9135_38;
  321. break;
  322. case AF9033_TUNER_IT9135_51:
  323. len = ARRAY_SIZE(tuner_init_it9135_51);
  324. init = tuner_init_it9135_51;
  325. break;
  326. case AF9033_TUNER_IT9135_52:
  327. len = ARRAY_SIZE(tuner_init_it9135_52);
  328. init = tuner_init_it9135_52;
  329. break;
  330. case AF9033_TUNER_IT9135_60:
  331. len = ARRAY_SIZE(tuner_init_it9135_60);
  332. init = tuner_init_it9135_60;
  333. break;
  334. case AF9033_TUNER_IT9135_61:
  335. len = ARRAY_SIZE(tuner_init_it9135_61);
  336. init = tuner_init_it9135_61;
  337. break;
  338. case AF9033_TUNER_IT9135_62:
  339. len = ARRAY_SIZE(tuner_init_it9135_62);
  340. init = tuner_init_it9135_62;
  341. break;
  342. default:
  343. dev_dbg(&state->i2c->dev, "%s: unsupported tuner ID=%d\n",
  344. __func__, state->cfg.tuner);
  345. ret = -ENODEV;
  346. goto err;
  347. }
  348. ret = af9033_wr_reg_val_tab(state, init, len);
  349. if (ret < 0)
  350. goto err;
  351. if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
  352. ret = af9033_wr_reg_mask(state, 0x00d91c, 0x01, 0x01);
  353. if (ret < 0)
  354. goto err;
  355. ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01);
  356. if (ret < 0)
  357. goto err;
  358. ret = af9033_wr_reg_mask(state, 0x00d916, 0x00, 0x01);
  359. if (ret < 0)
  360. goto err;
  361. }
  362. switch (state->cfg.tuner) {
  363. case AF9033_TUNER_IT9135_60:
  364. case AF9033_TUNER_IT9135_61:
  365. case AF9033_TUNER_IT9135_62:
  366. ret = af9033_wr_reg(state, 0x800000, 0x01);
  367. if (ret < 0)
  368. goto err;
  369. }
  370. state->bandwidth_hz = 0; /* force to program all parameters */
  371. return 0;
  372. err:
  373. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  374. return ret;
  375. }
  376. static int af9033_sleep(struct dvb_frontend *fe)
  377. {
  378. struct af9033_state *state = fe->demodulator_priv;
  379. int ret, i;
  380. u8 tmp;
  381. ret = af9033_wr_reg(state, 0x80004c, 1);
  382. if (ret < 0)
  383. goto err;
  384. ret = af9033_wr_reg(state, 0x800000, 0);
  385. if (ret < 0)
  386. goto err;
  387. for (i = 100, tmp = 1; i && tmp; i--) {
  388. ret = af9033_rd_reg(state, 0x80004c, &tmp);
  389. if (ret < 0)
  390. goto err;
  391. usleep_range(200, 10000);
  392. }
  393. dev_dbg(&state->i2c->dev, "%s: loop=%d\n", __func__, i);
  394. if (i == 0) {
  395. ret = -ETIMEDOUT;
  396. goto err;
  397. }
  398. ret = af9033_wr_reg_mask(state, 0x80fb24, 0x08, 0x08);
  399. if (ret < 0)
  400. goto err;
  401. /* prevent current leak (?) */
  402. if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
  403. /* enable parallel TS */
  404. ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01);
  405. if (ret < 0)
  406. goto err;
  407. ret = af9033_wr_reg_mask(state, 0x00d916, 0x01, 0x01);
  408. if (ret < 0)
  409. goto err;
  410. }
  411. return 0;
  412. err:
  413. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  414. return ret;
  415. }
  416. static int af9033_get_tune_settings(struct dvb_frontend *fe,
  417. struct dvb_frontend_tune_settings *fesettings)
  418. {
  419. /* 800 => 2000 because IT9135 v2 is slow to gain lock */
  420. fesettings->min_delay_ms = 2000;
  421. fesettings->step_size = 0;
  422. fesettings->max_drift = 0;
  423. return 0;
  424. }
  425. static int af9033_set_frontend(struct dvb_frontend *fe)
  426. {
  427. struct af9033_state *state = fe->demodulator_priv;
  428. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  429. int ret, i, spec_inv, sampling_freq;
  430. u8 tmp, buf[3], bandwidth_reg_val;
  431. u32 if_frequency, freq_cw, adc_freq;
  432. dev_dbg(&state->i2c->dev, "%s: frequency=%d bandwidth_hz=%d\n",
  433. __func__, c->frequency, c->bandwidth_hz);
  434. /* check bandwidth */
  435. switch (c->bandwidth_hz) {
  436. case 6000000:
  437. bandwidth_reg_val = 0x00;
  438. break;
  439. case 7000000:
  440. bandwidth_reg_val = 0x01;
  441. break;
  442. case 8000000:
  443. bandwidth_reg_val = 0x02;
  444. break;
  445. default:
  446. dev_dbg(&state->i2c->dev, "%s: invalid bandwidth_hz\n",
  447. __func__);
  448. ret = -EINVAL;
  449. goto err;
  450. }
  451. /* program tuner */
  452. if (fe->ops.tuner_ops.set_params)
  453. fe->ops.tuner_ops.set_params(fe);
  454. /* program CFOE coefficients */
  455. if (c->bandwidth_hz != state->bandwidth_hz) {
  456. for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
  457. if (coeff_lut[i].clock == state->cfg.clock &&
  458. coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
  459. break;
  460. }
  461. }
  462. ret = af9033_wr_regs(state, 0x800001,
  463. coeff_lut[i].val, sizeof(coeff_lut[i].val));
  464. }
  465. /* program frequency control */
  466. if (c->bandwidth_hz != state->bandwidth_hz) {
  467. spec_inv = state->cfg.spec_inv ? -1 : 1;
  468. for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
  469. if (clock_adc_lut[i].clock == state->cfg.clock)
  470. break;
  471. }
  472. adc_freq = clock_adc_lut[i].adc;
  473. /* get used IF frequency */
  474. if (fe->ops.tuner_ops.get_if_frequency)
  475. fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
  476. else
  477. if_frequency = 0;
  478. sampling_freq = if_frequency;
  479. while (sampling_freq > (adc_freq / 2))
  480. sampling_freq -= adc_freq;
  481. if (sampling_freq >= 0)
  482. spec_inv *= -1;
  483. else
  484. sampling_freq *= -1;
  485. freq_cw = af9033_div(state, sampling_freq, adc_freq, 23ul);
  486. if (spec_inv == -1)
  487. freq_cw = 0x800000 - freq_cw;
  488. if (state->cfg.adc_multiplier == AF9033_ADC_MULTIPLIER_2X)
  489. freq_cw /= 2;
  490. buf[0] = (freq_cw >> 0) & 0xff;
  491. buf[1] = (freq_cw >> 8) & 0xff;
  492. buf[2] = (freq_cw >> 16) & 0x7f;
  493. /* FIXME: there seems to be calculation error here... */
  494. if (if_frequency == 0)
  495. buf[2] = 0;
  496. ret = af9033_wr_regs(state, 0x800029, buf, 3);
  497. if (ret < 0)
  498. goto err;
  499. state->bandwidth_hz = c->bandwidth_hz;
  500. }
  501. ret = af9033_wr_reg_mask(state, 0x80f904, bandwidth_reg_val, 0x03);
  502. if (ret < 0)
  503. goto err;
  504. ret = af9033_wr_reg(state, 0x800040, 0x00);
  505. if (ret < 0)
  506. goto err;
  507. ret = af9033_wr_reg(state, 0x800047, 0x00);
  508. if (ret < 0)
  509. goto err;
  510. ret = af9033_wr_reg_mask(state, 0x80f999, 0x00, 0x01);
  511. if (ret < 0)
  512. goto err;
  513. if (c->frequency <= 230000000)
  514. tmp = 0x00; /* VHF */
  515. else
  516. tmp = 0x01; /* UHF */
  517. ret = af9033_wr_reg(state, 0x80004b, tmp);
  518. if (ret < 0)
  519. goto err;
  520. ret = af9033_wr_reg(state, 0x800000, 0x00);
  521. if (ret < 0)
  522. goto err;
  523. return 0;
  524. err:
  525. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  526. return ret;
  527. }
  528. static int af9033_get_frontend(struct dvb_frontend *fe)
  529. {
  530. struct af9033_state *state = fe->demodulator_priv;
  531. struct dtv_frontend_properties *c = &fe->dtv_property_cache;
  532. int ret;
  533. u8 buf[8];
  534. dev_dbg(&state->i2c->dev, "%s:\n", __func__);
  535. /* read all needed registers */
  536. ret = af9033_rd_regs(state, 0x80f900, buf, sizeof(buf));
  537. if (ret < 0)
  538. goto err;
  539. switch ((buf[0] >> 0) & 3) {
  540. case 0:
  541. c->transmission_mode = TRANSMISSION_MODE_2K;
  542. break;
  543. case 1:
  544. c->transmission_mode = TRANSMISSION_MODE_8K;
  545. break;
  546. }
  547. switch ((buf[1] >> 0) & 3) {
  548. case 0:
  549. c->guard_interval = GUARD_INTERVAL_1_32;
  550. break;
  551. case 1:
  552. c->guard_interval = GUARD_INTERVAL_1_16;
  553. break;
  554. case 2:
  555. c->guard_interval = GUARD_INTERVAL_1_8;
  556. break;
  557. case 3:
  558. c->guard_interval = GUARD_INTERVAL_1_4;
  559. break;
  560. }
  561. switch ((buf[2] >> 0) & 7) {
  562. case 0:
  563. c->hierarchy = HIERARCHY_NONE;
  564. break;
  565. case 1:
  566. c->hierarchy = HIERARCHY_1;
  567. break;
  568. case 2:
  569. c->hierarchy = HIERARCHY_2;
  570. break;
  571. case 3:
  572. c->hierarchy = HIERARCHY_4;
  573. break;
  574. }
  575. switch ((buf[3] >> 0) & 3) {
  576. case 0:
  577. c->modulation = QPSK;
  578. break;
  579. case 1:
  580. c->modulation = QAM_16;
  581. break;
  582. case 2:
  583. c->modulation = QAM_64;
  584. break;
  585. }
  586. switch ((buf[4] >> 0) & 3) {
  587. case 0:
  588. c->bandwidth_hz = 6000000;
  589. break;
  590. case 1:
  591. c->bandwidth_hz = 7000000;
  592. break;
  593. case 2:
  594. c->bandwidth_hz = 8000000;
  595. break;
  596. }
  597. switch ((buf[6] >> 0) & 7) {
  598. case 0:
  599. c->code_rate_HP = FEC_1_2;
  600. break;
  601. case 1:
  602. c->code_rate_HP = FEC_2_3;
  603. break;
  604. case 2:
  605. c->code_rate_HP = FEC_3_4;
  606. break;
  607. case 3:
  608. c->code_rate_HP = FEC_5_6;
  609. break;
  610. case 4:
  611. c->code_rate_HP = FEC_7_8;
  612. break;
  613. case 5:
  614. c->code_rate_HP = FEC_NONE;
  615. break;
  616. }
  617. switch ((buf[7] >> 0) & 7) {
  618. case 0:
  619. c->code_rate_LP = FEC_1_2;
  620. break;
  621. case 1:
  622. c->code_rate_LP = FEC_2_3;
  623. break;
  624. case 2:
  625. c->code_rate_LP = FEC_3_4;
  626. break;
  627. case 3:
  628. c->code_rate_LP = FEC_5_6;
  629. break;
  630. case 4:
  631. c->code_rate_LP = FEC_7_8;
  632. break;
  633. case 5:
  634. c->code_rate_LP = FEC_NONE;
  635. break;
  636. }
  637. return 0;
  638. err:
  639. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  640. return ret;
  641. }
  642. static int af9033_read_status(struct dvb_frontend *fe, fe_status_t *status)
  643. {
  644. struct af9033_state *state = fe->demodulator_priv;
  645. int ret;
  646. u8 tmp;
  647. *status = 0;
  648. /* radio channel status, 0=no result, 1=has signal, 2=no signal */
  649. ret = af9033_rd_reg(state, 0x800047, &tmp);
  650. if (ret < 0)
  651. goto err;
  652. /* has signal */
  653. if (tmp == 0x01)
  654. *status |= FE_HAS_SIGNAL;
  655. if (tmp != 0x02) {
  656. /* TPS lock */
  657. ret = af9033_rd_reg_mask(state, 0x80f5a9, &tmp, 0x01);
  658. if (ret < 0)
  659. goto err;
  660. if (tmp)
  661. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
  662. FE_HAS_VITERBI;
  663. /* full lock */
  664. ret = af9033_rd_reg_mask(state, 0x80f999, &tmp, 0x01);
  665. if (ret < 0)
  666. goto err;
  667. if (tmp)
  668. *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
  669. FE_HAS_VITERBI | FE_HAS_SYNC |
  670. FE_HAS_LOCK;
  671. }
  672. return 0;
  673. err:
  674. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  675. return ret;
  676. }
  677. static int af9033_read_snr(struct dvb_frontend *fe, u16 *snr)
  678. {
  679. struct af9033_state *state = fe->demodulator_priv;
  680. int ret, i, len;
  681. u8 buf[3], tmp;
  682. u32 snr_val;
  683. const struct val_snr *uninitialized_var(snr_lut);
  684. /* read value */
  685. ret = af9033_rd_regs(state, 0x80002c, buf, 3);
  686. if (ret < 0)
  687. goto err;
  688. snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];
  689. /* read current modulation */
  690. ret = af9033_rd_reg(state, 0x80f903, &tmp);
  691. if (ret < 0)
  692. goto err;
  693. switch ((tmp >> 0) & 3) {
  694. case 0:
  695. len = ARRAY_SIZE(qpsk_snr_lut);
  696. snr_lut = qpsk_snr_lut;
  697. break;
  698. case 1:
  699. len = ARRAY_SIZE(qam16_snr_lut);
  700. snr_lut = qam16_snr_lut;
  701. break;
  702. case 2:
  703. len = ARRAY_SIZE(qam64_snr_lut);
  704. snr_lut = qam64_snr_lut;
  705. break;
  706. default:
  707. goto err;
  708. }
  709. for (i = 0; i < len; i++) {
  710. tmp = snr_lut[i].snr;
  711. if (snr_val < snr_lut[i].val)
  712. break;
  713. }
  714. *snr = tmp * 10; /* dB/10 */
  715. return 0;
  716. err:
  717. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  718. return ret;
  719. }
  720. static int af9033_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
  721. {
  722. struct af9033_state *state = fe->demodulator_priv;
  723. int ret;
  724. u8 strength2;
  725. /* read signal strength of 0-100 scale */
  726. ret = af9033_rd_reg(state, 0x800048, &strength2);
  727. if (ret < 0)
  728. goto err;
  729. /* scale value to 0x0000-0xffff */
  730. *strength = strength2 * 0xffff / 100;
  731. return 0;
  732. err:
  733. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  734. return ret;
  735. }
  736. static int af9033_update_ch_stat(struct af9033_state *state)
  737. {
  738. int ret = 0;
  739. u32 err_cnt, bit_cnt;
  740. u16 abort_cnt;
  741. u8 buf[7];
  742. /* only update data every half second */
  743. if (time_after(jiffies, state->last_stat_check + msecs_to_jiffies(500))) {
  744. ret = af9033_rd_regs(state, 0x800032, buf, sizeof(buf));
  745. if (ret < 0)
  746. goto err;
  747. /* in 8 byte packets? */
  748. abort_cnt = (buf[1] << 8) + buf[0];
  749. /* in bits */
  750. err_cnt = (buf[4] << 16) + (buf[3] << 8) + buf[2];
  751. /* in 8 byte packets? always(?) 0x2710 = 10000 */
  752. bit_cnt = (buf[6] << 8) + buf[5];
  753. if (bit_cnt < abort_cnt) {
  754. abort_cnt = 1000;
  755. state->ber = 0xffffffff;
  756. } else {
  757. /* 8 byte packets, that have not been rejected already */
  758. bit_cnt -= (u32)abort_cnt;
  759. if (bit_cnt == 0) {
  760. state->ber = 0xffffffff;
  761. } else {
  762. err_cnt -= (u32)abort_cnt * 8 * 8;
  763. bit_cnt *= 8 * 8;
  764. state->ber = err_cnt * (0xffffffff / bit_cnt);
  765. }
  766. }
  767. state->ucb += abort_cnt;
  768. state->last_stat_check = jiffies;
  769. }
  770. return 0;
  771. err:
  772. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  773. return ret;
  774. }
  775. static int af9033_read_ber(struct dvb_frontend *fe, u32 *ber)
  776. {
  777. struct af9033_state *state = fe->demodulator_priv;
  778. int ret;
  779. ret = af9033_update_ch_stat(state);
  780. if (ret < 0)
  781. return ret;
  782. *ber = state->ber;
  783. return 0;
  784. }
  785. static int af9033_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
  786. {
  787. struct af9033_state *state = fe->demodulator_priv;
  788. int ret;
  789. ret = af9033_update_ch_stat(state);
  790. if (ret < 0)
  791. return ret;
  792. *ucblocks = state->ucb;
  793. return 0;
  794. }
  795. static int af9033_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
  796. {
  797. struct af9033_state *state = fe->demodulator_priv;
  798. int ret;
  799. dev_dbg(&state->i2c->dev, "%s: enable=%d\n", __func__, enable);
  800. ret = af9033_wr_reg_mask(state, 0x00fa04, enable, 0x01);
  801. if (ret < 0)
  802. goto err;
  803. return 0;
  804. err:
  805. dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
  806. return ret;
  807. }
  808. static struct dvb_frontend_ops af9033_ops;
  809. struct dvb_frontend *af9033_attach(const struct af9033_config *config,
  810. struct i2c_adapter *i2c)
  811. {
  812. int ret;
  813. struct af9033_state *state;
  814. u8 buf[8];
  815. dev_dbg(&i2c->dev, "%s:\n", __func__);
  816. /* allocate memory for the internal state */
  817. state = kzalloc(sizeof(struct af9033_state), GFP_KERNEL);
  818. if (state == NULL)
  819. goto err;
  820. /* setup the state */
  821. state->i2c = i2c;
  822. memcpy(&state->cfg, config, sizeof(struct af9033_config));
  823. if (state->cfg.clock != 12000000) {
  824. dev_err(&state->i2c->dev, "%s: af9033: unsupported clock=%d, " \
  825. "only 12000000 Hz is supported currently\n",
  826. KBUILD_MODNAME, state->cfg.clock);
  827. goto err;
  828. }
  829. /* firmware version */
  830. ret = af9033_rd_regs(state, 0x0083e9, &buf[0], 4);
  831. if (ret < 0)
  832. goto err;
  833. ret = af9033_rd_regs(state, 0x804191, &buf[4], 4);
  834. if (ret < 0)
  835. goto err;
  836. dev_info(&state->i2c->dev, "%s: firmware version: LINK=%d.%d.%d.%d " \
  837. "OFDM=%d.%d.%d.%d\n", KBUILD_MODNAME, buf[0], buf[1],
  838. buf[2], buf[3], buf[4], buf[5], buf[6], buf[7]);
  839. /* sleep */
  840. switch (state->cfg.tuner) {
  841. case AF9033_TUNER_IT9135_38:
  842. case AF9033_TUNER_IT9135_51:
  843. case AF9033_TUNER_IT9135_52:
  844. case AF9033_TUNER_IT9135_60:
  845. case AF9033_TUNER_IT9135_61:
  846. case AF9033_TUNER_IT9135_62:
  847. /* IT9135 did not like to sleep at that early */
  848. break;
  849. default:
  850. ret = af9033_wr_reg(state, 0x80004c, 1);
  851. if (ret < 0)
  852. goto err;
  853. ret = af9033_wr_reg(state, 0x800000, 0);
  854. if (ret < 0)
  855. goto err;
  856. }
  857. /* configure internal TS mode */
  858. switch (state->cfg.ts_mode) {
  859. case AF9033_TS_MODE_PARALLEL:
  860. state->ts_mode_parallel = true;
  861. break;
  862. case AF9033_TS_MODE_SERIAL:
  863. state->ts_mode_serial = true;
  864. break;
  865. case AF9033_TS_MODE_USB:
  866. /* usb mode for AF9035 */
  867. default:
  868. break;
  869. }
  870. /* create dvb_frontend */
  871. memcpy(&state->fe.ops, &af9033_ops, sizeof(struct dvb_frontend_ops));
  872. state->fe.demodulator_priv = state;
  873. return &state->fe;
  874. err:
  875. kfree(state);
  876. return NULL;
  877. }
  878. EXPORT_SYMBOL(af9033_attach);
  879. static struct dvb_frontend_ops af9033_ops = {
  880. .delsys = { SYS_DVBT },
  881. .info = {
  882. .name = "Afatech AF9033 (DVB-T)",
  883. .frequency_min = 174000000,
  884. .frequency_max = 862000000,
  885. .frequency_stepsize = 250000,
  886. .frequency_tolerance = 0,
  887. .caps = FE_CAN_FEC_1_2 |
  888. FE_CAN_FEC_2_3 |
  889. FE_CAN_FEC_3_4 |
  890. FE_CAN_FEC_5_6 |
  891. FE_CAN_FEC_7_8 |
  892. FE_CAN_FEC_AUTO |
  893. FE_CAN_QPSK |
  894. FE_CAN_QAM_16 |
  895. FE_CAN_QAM_64 |
  896. FE_CAN_QAM_AUTO |
  897. FE_CAN_TRANSMISSION_MODE_AUTO |
  898. FE_CAN_GUARD_INTERVAL_AUTO |
  899. FE_CAN_HIERARCHY_AUTO |
  900. FE_CAN_RECOVER |
  901. FE_CAN_MUTE_TS
  902. },
  903. .release = af9033_release,
  904. .init = af9033_init,
  905. .sleep = af9033_sleep,
  906. .get_tune_settings = af9033_get_tune_settings,
  907. .set_frontend = af9033_set_frontend,
  908. .get_frontend = af9033_get_frontend,
  909. .read_status = af9033_read_status,
  910. .read_snr = af9033_read_snr,
  911. .read_signal_strength = af9033_read_signal_strength,
  912. .read_ber = af9033_read_ber,
  913. .read_ucblocks = af9033_read_ucblocks,
  914. .i2c_gate_ctrl = af9033_i2c_gate_ctrl,
  915. };
  916. MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
  917. MODULE_DESCRIPTION("Afatech AF9033 DVB-T demodulator driver");
  918. MODULE_LICENSE("GPL");