interrupts_and_traps.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657
  1. /*P:800
  2. * Interrupts (traps) are complicated enough to earn their own file.
  3. * There are three classes of interrupts:
  4. *
  5. * 1) Real hardware interrupts which occur while we're running the Guest,
  6. * 2) Interrupts for virtual devices attached to the Guest, and
  7. * 3) Traps and faults from the Guest.
  8. *
  9. * Real hardware interrupts must be delivered to the Host, not the Guest.
  10. * Virtual interrupts must be delivered to the Guest, but we make them look
  11. * just like real hardware would deliver them. Traps from the Guest can be set
  12. * up to go directly back into the Guest, but sometimes the Host wants to see
  13. * them first, so we also have a way of "reflecting" them into the Guest as if
  14. * they had been delivered to it directly.
  15. :*/
  16. #include <linux/uaccess.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/module.h>
  19. #include <linux/sched.h>
  20. #include "lg.h"
  21. /* Allow Guests to use a non-128 (ie. non-Linux) syscall trap. */
  22. static unsigned int syscall_vector = SYSCALL_VECTOR;
  23. module_param(syscall_vector, uint, 0444);
  24. /* The address of the interrupt handler is split into two bits: */
  25. static unsigned long idt_address(u32 lo, u32 hi)
  26. {
  27. return (lo & 0x0000FFFF) | (hi & 0xFFFF0000);
  28. }
  29. /*
  30. * The "type" of the interrupt handler is a 4 bit field: we only support a
  31. * couple of types.
  32. */
  33. static int idt_type(u32 lo, u32 hi)
  34. {
  35. return (hi >> 8) & 0xF;
  36. }
  37. /* An IDT entry can't be used unless the "present" bit is set. */
  38. static bool idt_present(u32 lo, u32 hi)
  39. {
  40. return (hi & 0x8000);
  41. }
  42. /*
  43. * We need a helper to "push" a value onto the Guest's stack, since that's a
  44. * big part of what delivering an interrupt does.
  45. */
  46. static void push_guest_stack(struct lg_cpu *cpu, unsigned long *gstack, u32 val)
  47. {
  48. /* Stack grows upwards: move stack then write value. */
  49. *gstack -= 4;
  50. lgwrite(cpu, *gstack, u32, val);
  51. }
  52. /*H:210
  53. * The set_guest_interrupt() routine actually delivers the interrupt or
  54. * trap. The mechanics of delivering traps and interrupts to the Guest are the
  55. * same, except some traps have an "error code" which gets pushed onto the
  56. * stack as well: the caller tells us if this is one.
  57. *
  58. * "lo" and "hi" are the two parts of the Interrupt Descriptor Table for this
  59. * interrupt or trap. It's split into two parts for traditional reasons: gcc
  60. * on i386 used to be frightened by 64 bit numbers.
  61. *
  62. * We set up the stack just like the CPU does for a real interrupt, so it's
  63. * identical for the Guest (and the standard "iret" instruction will undo
  64. * it).
  65. */
  66. static void set_guest_interrupt(struct lg_cpu *cpu, u32 lo, u32 hi,
  67. bool has_err)
  68. {
  69. unsigned long gstack, origstack;
  70. u32 eflags, ss, irq_enable;
  71. unsigned long virtstack;
  72. /*
  73. * There are two cases for interrupts: one where the Guest is already
  74. * in the kernel, and a more complex one where the Guest is in
  75. * userspace. We check the privilege level to find out.
  76. */
  77. if ((cpu->regs->ss&0x3) != GUEST_PL) {
  78. /*
  79. * The Guest told us their kernel stack with the SET_STACK
  80. * hypercall: both the virtual address and the segment.
  81. */
  82. virtstack = cpu->esp1;
  83. ss = cpu->ss1;
  84. origstack = gstack = guest_pa(cpu, virtstack);
  85. /*
  86. * We push the old stack segment and pointer onto the new
  87. * stack: when the Guest does an "iret" back from the interrupt
  88. * handler the CPU will notice they're dropping privilege
  89. * levels and expect these here.
  90. */
  91. push_guest_stack(cpu, &gstack, cpu->regs->ss);
  92. push_guest_stack(cpu, &gstack, cpu->regs->esp);
  93. } else {
  94. /* We're staying on the same Guest (kernel) stack. */
  95. virtstack = cpu->regs->esp;
  96. ss = cpu->regs->ss;
  97. origstack = gstack = guest_pa(cpu, virtstack);
  98. }
  99. /*
  100. * Remember that we never let the Guest actually disable interrupts, so
  101. * the "Interrupt Flag" bit is always set. We copy that bit from the
  102. * Guest's "irq_enabled" field into the eflags word: we saw the Guest
  103. * copy it back in "lguest_iret".
  104. */
  105. eflags = cpu->regs->eflags;
  106. if (get_user(irq_enable, &cpu->lg->lguest_data->irq_enabled) == 0
  107. && !(irq_enable & X86_EFLAGS_IF))
  108. eflags &= ~X86_EFLAGS_IF;
  109. /*
  110. * An interrupt is expected to push three things on the stack: the old
  111. * "eflags" word, the old code segment, and the old instruction
  112. * pointer.
  113. */
  114. push_guest_stack(cpu, &gstack, eflags);
  115. push_guest_stack(cpu, &gstack, cpu->regs->cs);
  116. push_guest_stack(cpu, &gstack, cpu->regs->eip);
  117. /* For the six traps which supply an error code, we push that, too. */
  118. if (has_err)
  119. push_guest_stack(cpu, &gstack, cpu->regs->errcode);
  120. /*
  121. * Now we've pushed all the old state, we change the stack, the code
  122. * segment and the address to execute.
  123. */
  124. cpu->regs->ss = ss;
  125. cpu->regs->esp = virtstack + (gstack - origstack);
  126. cpu->regs->cs = (__KERNEL_CS|GUEST_PL);
  127. cpu->regs->eip = idt_address(lo, hi);
  128. /*
  129. * Trapping always clears these flags:
  130. * TF: Trap flag
  131. * VM: Virtual 8086 mode
  132. * RF: Resume
  133. * NT: Nested task.
  134. */
  135. cpu->regs->eflags &=
  136. ~(X86_EFLAGS_TF|X86_EFLAGS_VM|X86_EFLAGS_RF|X86_EFLAGS_NT);
  137. /*
  138. * There are two kinds of interrupt handlers: 0xE is an "interrupt
  139. * gate" which expects interrupts to be disabled on entry.
  140. */
  141. if (idt_type(lo, hi) == 0xE)
  142. if (put_user(0, &cpu->lg->lguest_data->irq_enabled))
  143. kill_guest(cpu, "Disabling interrupts");
  144. }
  145. /*H:205
  146. * Virtual Interrupts.
  147. *
  148. * interrupt_pending() returns the first pending interrupt which isn't blocked
  149. * by the Guest. It is called before every entry to the Guest, and just before
  150. * we go to sleep when the Guest has halted itself.
  151. */
  152. unsigned int interrupt_pending(struct lg_cpu *cpu, bool *more)
  153. {
  154. unsigned int irq;
  155. DECLARE_BITMAP(blk, LGUEST_IRQS);
  156. /* If the Guest hasn't even initialized yet, we can do nothing. */
  157. if (!cpu->lg->lguest_data)
  158. return LGUEST_IRQS;
  159. /*
  160. * Take our "irqs_pending" array and remove any interrupts the Guest
  161. * wants blocked: the result ends up in "blk".
  162. */
  163. if (copy_from_user(&blk, cpu->lg->lguest_data->blocked_interrupts,
  164. sizeof(blk)))
  165. return LGUEST_IRQS;
  166. bitmap_andnot(blk, cpu->irqs_pending, blk, LGUEST_IRQS);
  167. /* Find the first interrupt. */
  168. irq = find_first_bit(blk, LGUEST_IRQS);
  169. *more = find_next_bit(blk, LGUEST_IRQS, irq+1);
  170. return irq;
  171. }
  172. /*
  173. * This actually diverts the Guest to running an interrupt handler, once an
  174. * interrupt has been identified by interrupt_pending().
  175. */
  176. void try_deliver_interrupt(struct lg_cpu *cpu, unsigned int irq, bool more)
  177. {
  178. struct desc_struct *idt;
  179. BUG_ON(irq >= LGUEST_IRQS);
  180. /*
  181. * They may be in the middle of an iret, where they asked us never to
  182. * deliver interrupts.
  183. */
  184. if (cpu->regs->eip >= cpu->lg->noirq_start &&
  185. (cpu->regs->eip < cpu->lg->noirq_end))
  186. return;
  187. /* If they're halted, interrupts restart them. */
  188. if (cpu->halted) {
  189. /* Re-enable interrupts. */
  190. if (put_user(X86_EFLAGS_IF, &cpu->lg->lguest_data->irq_enabled))
  191. kill_guest(cpu, "Re-enabling interrupts");
  192. cpu->halted = 0;
  193. } else {
  194. /* Otherwise we check if they have interrupts disabled. */
  195. u32 irq_enabled;
  196. if (get_user(irq_enabled, &cpu->lg->lguest_data->irq_enabled))
  197. irq_enabled = 0;
  198. if (!irq_enabled) {
  199. /* Make sure they know an IRQ is pending. */
  200. put_user(X86_EFLAGS_IF,
  201. &cpu->lg->lguest_data->irq_pending);
  202. return;
  203. }
  204. }
  205. /*
  206. * Look at the IDT entry the Guest gave us for this interrupt. The
  207. * first 32 (FIRST_EXTERNAL_VECTOR) entries are for traps, so we skip
  208. * over them.
  209. */
  210. idt = &cpu->arch.idt[FIRST_EXTERNAL_VECTOR+irq];
  211. /* If they don't have a handler (yet?), we just ignore it */
  212. if (idt_present(idt->a, idt->b)) {
  213. /* OK, mark it no longer pending and deliver it. */
  214. clear_bit(irq, cpu->irqs_pending);
  215. /*
  216. * set_guest_interrupt() takes the interrupt descriptor and a
  217. * flag to say whether this interrupt pushes an error code onto
  218. * the stack as well: virtual interrupts never do.
  219. */
  220. set_guest_interrupt(cpu, idt->a, idt->b, false);
  221. }
  222. /*
  223. * Every time we deliver an interrupt, we update the timestamp in the
  224. * Guest's lguest_data struct. It would be better for the Guest if we
  225. * did this more often, but it can actually be quite slow: doing it
  226. * here is a compromise which means at least it gets updated every
  227. * timer interrupt.
  228. */
  229. write_timestamp(cpu);
  230. /*
  231. * If there are no other interrupts we want to deliver, clear
  232. * the pending flag.
  233. */
  234. if (!more)
  235. put_user(0, &cpu->lg->lguest_data->irq_pending);
  236. }
  237. /* And this is the routine when we want to set an interrupt for the Guest. */
  238. void set_interrupt(struct lg_cpu *cpu, unsigned int irq)
  239. {
  240. /*
  241. * Next time the Guest runs, the core code will see if it can deliver
  242. * this interrupt.
  243. */
  244. set_bit(irq, cpu->irqs_pending);
  245. /*
  246. * Make sure it sees it; it might be asleep (eg. halted), or running
  247. * the Guest right now, in which case kick_process() will knock it out.
  248. */
  249. if (!wake_up_process(cpu->tsk))
  250. kick_process(cpu->tsk);
  251. }
  252. /*:*/
  253. /*
  254. * Linux uses trap 128 for system calls. Plan9 uses 64, and Ron Minnich sent
  255. * me a patch, so we support that too. It'd be a big step for lguest if half
  256. * the Plan 9 user base were to start using it.
  257. *
  258. * Actually now I think of it, it's possible that Ron *is* half the Plan 9
  259. * userbase. Oh well.
  260. */
  261. static bool could_be_syscall(unsigned int num)
  262. {
  263. /* Normal Linux SYSCALL_VECTOR or reserved vector? */
  264. return num == SYSCALL_VECTOR || num == syscall_vector;
  265. }
  266. /* The syscall vector it wants must be unused by Host. */
  267. bool check_syscall_vector(struct lguest *lg)
  268. {
  269. u32 vector;
  270. if (get_user(vector, &lg->lguest_data->syscall_vec))
  271. return false;
  272. return could_be_syscall(vector);
  273. }
  274. int init_interrupts(void)
  275. {
  276. /* If they want some strange system call vector, reserve it now */
  277. if (syscall_vector != SYSCALL_VECTOR) {
  278. if (test_bit(syscall_vector, used_vectors) ||
  279. vector_used_by_percpu_irq(syscall_vector)) {
  280. printk(KERN_ERR "lg: couldn't reserve syscall %u\n",
  281. syscall_vector);
  282. return -EBUSY;
  283. }
  284. set_bit(syscall_vector, used_vectors);
  285. }
  286. return 0;
  287. }
  288. void free_interrupts(void)
  289. {
  290. if (syscall_vector != SYSCALL_VECTOR)
  291. clear_bit(syscall_vector, used_vectors);
  292. }
  293. /*H:220
  294. * Now we've got the routines to deliver interrupts, delivering traps like
  295. * page fault is easy. The only trick is that Intel decided that some traps
  296. * should have error codes:
  297. */
  298. static bool has_err(unsigned int trap)
  299. {
  300. return (trap == 8 || (trap >= 10 && trap <= 14) || trap == 17);
  301. }
  302. /* deliver_trap() returns true if it could deliver the trap. */
  303. bool deliver_trap(struct lg_cpu *cpu, unsigned int num)
  304. {
  305. /*
  306. * Trap numbers are always 8 bit, but we set an impossible trap number
  307. * for traps inside the Switcher, so check that here.
  308. */
  309. if (num >= ARRAY_SIZE(cpu->arch.idt))
  310. return false;
  311. /*
  312. * Early on the Guest hasn't set the IDT entries (or maybe it put a
  313. * bogus one in): if we fail here, the Guest will be killed.
  314. */
  315. if (!idt_present(cpu->arch.idt[num].a, cpu->arch.idt[num].b))
  316. return false;
  317. set_guest_interrupt(cpu, cpu->arch.idt[num].a,
  318. cpu->arch.idt[num].b, has_err(num));
  319. return true;
  320. }
  321. /*H:250
  322. * Here's the hard part: returning to the Host every time a trap happens
  323. * and then calling deliver_trap() and re-entering the Guest is slow.
  324. * Particularly because Guest userspace system calls are traps (usually trap
  325. * 128).
  326. *
  327. * So we'd like to set up the IDT to tell the CPU to deliver traps directly
  328. * into the Guest. This is possible, but the complexities cause the size of
  329. * this file to double! However, 150 lines of code is worth writing for taking
  330. * system calls down from 1750ns to 270ns. Plus, if lguest didn't do it, all
  331. * the other hypervisors would beat it up at lunchtime.
  332. *
  333. * This routine indicates if a particular trap number could be delivered
  334. * directly.
  335. */
  336. static bool direct_trap(unsigned int num)
  337. {
  338. /*
  339. * Hardware interrupts don't go to the Guest at all (except system
  340. * call).
  341. */
  342. if (num >= FIRST_EXTERNAL_VECTOR && !could_be_syscall(num))
  343. return false;
  344. /*
  345. * The Host needs to see page faults (for shadow paging and to save the
  346. * fault address), general protection faults (in/out emulation) and
  347. * device not available (TS handling) and of course, the hypercall trap.
  348. */
  349. return num != 14 && num != 13 && num != 7 && num != LGUEST_TRAP_ENTRY;
  350. }
  351. /*:*/
  352. /*M:005
  353. * The Guest has the ability to turn its interrupt gates into trap gates,
  354. * if it is careful. The Host will let trap gates can go directly to the
  355. * Guest, but the Guest needs the interrupts atomically disabled for an
  356. * interrupt gate. It can do this by pointing the trap gate at instructions
  357. * within noirq_start and noirq_end, where it can safely disable interrupts.
  358. */
  359. /*M:006
  360. * The Guests do not use the sysenter (fast system call) instruction,
  361. * because it's hardcoded to enter privilege level 0 and so can't go direct.
  362. * It's about twice as fast as the older "int 0x80" system call, so it might
  363. * still be worthwhile to handle it in the Switcher and lcall down to the
  364. * Guest. The sysenter semantics are hairy tho: search for that keyword in
  365. * entry.S
  366. :*/
  367. /*H:260
  368. * When we make traps go directly into the Guest, we need to make sure
  369. * the kernel stack is valid (ie. mapped in the page tables). Otherwise, the
  370. * CPU trying to deliver the trap will fault while trying to push the interrupt
  371. * words on the stack: this is called a double fault, and it forces us to kill
  372. * the Guest.
  373. *
  374. * Which is deeply unfair, because (literally!) it wasn't the Guests' fault.
  375. */
  376. void pin_stack_pages(struct lg_cpu *cpu)
  377. {
  378. unsigned int i;
  379. /*
  380. * Depending on the CONFIG_4KSTACKS option, the Guest can have one or
  381. * two pages of stack space.
  382. */
  383. for (i = 0; i < cpu->lg->stack_pages; i++)
  384. /*
  385. * The stack grows *upwards*, so the address we're given is the
  386. * start of the page after the kernel stack. Subtract one to
  387. * get back onto the first stack page, and keep subtracting to
  388. * get to the rest of the stack pages.
  389. */
  390. pin_page(cpu, cpu->esp1 - 1 - i * PAGE_SIZE);
  391. }
  392. /*
  393. * Direct traps also mean that we need to know whenever the Guest wants to use
  394. * a different kernel stack, so we can change the guest TSS to use that
  395. * stack. The TSS entries expect a virtual address, so unlike most addresses
  396. * the Guest gives us, the "esp" (stack pointer) value here is virtual, not
  397. * physical.
  398. *
  399. * In Linux each process has its own kernel stack, so this happens a lot: we
  400. * change stacks on each context switch.
  401. */
  402. void guest_set_stack(struct lg_cpu *cpu, u32 seg, u32 esp, unsigned int pages)
  403. {
  404. /*
  405. * You're not allowed a stack segment with privilege level 0: bad Guest!
  406. */
  407. if ((seg & 0x3) != GUEST_PL)
  408. kill_guest(cpu, "bad stack segment %i", seg);
  409. /* We only expect one or two stack pages. */
  410. if (pages > 2)
  411. kill_guest(cpu, "bad stack pages %u", pages);
  412. /* Save where the stack is, and how many pages */
  413. cpu->ss1 = seg;
  414. cpu->esp1 = esp;
  415. cpu->lg->stack_pages = pages;
  416. /* Make sure the new stack pages are mapped */
  417. pin_stack_pages(cpu);
  418. }
  419. /*
  420. * All this reference to mapping stacks leads us neatly into the other complex
  421. * part of the Host: page table handling.
  422. */
  423. /*H:235
  424. * This is the routine which actually checks the Guest's IDT entry and
  425. * transfers it into the entry in "struct lguest":
  426. */
  427. static void set_trap(struct lg_cpu *cpu, struct desc_struct *trap,
  428. unsigned int num, u32 lo, u32 hi)
  429. {
  430. u8 type = idt_type(lo, hi);
  431. /* We zero-out a not-present entry */
  432. if (!idt_present(lo, hi)) {
  433. trap->a = trap->b = 0;
  434. return;
  435. }
  436. /* We only support interrupt and trap gates. */
  437. if (type != 0xE && type != 0xF)
  438. kill_guest(cpu, "bad IDT type %i", type);
  439. /*
  440. * We only copy the handler address, present bit, privilege level and
  441. * type. The privilege level controls where the trap can be triggered
  442. * manually with an "int" instruction. This is usually GUEST_PL,
  443. * except for system calls which userspace can use.
  444. */
  445. trap->a = ((__KERNEL_CS|GUEST_PL)<<16) | (lo&0x0000FFFF);
  446. trap->b = (hi&0xFFFFEF00);
  447. }
  448. /*H:230
  449. * While we're here, dealing with delivering traps and interrupts to the
  450. * Guest, we might as well complete the picture: how the Guest tells us where
  451. * it wants them to go. This would be simple, except making traps fast
  452. * requires some tricks.
  453. *
  454. * We saw the Guest setting Interrupt Descriptor Table (IDT) entries with the
  455. * LHCALL_LOAD_IDT_ENTRY hypercall before: that comes here.
  456. */
  457. void load_guest_idt_entry(struct lg_cpu *cpu, unsigned int num, u32 lo, u32 hi)
  458. {
  459. /*
  460. * Guest never handles: NMI, doublefault, spurious interrupt or
  461. * hypercall. We ignore when it tries to set them.
  462. */
  463. if (num == 2 || num == 8 || num == 15 || num == LGUEST_TRAP_ENTRY)
  464. return;
  465. /*
  466. * Mark the IDT as changed: next time the Guest runs we'll know we have
  467. * to copy this again.
  468. */
  469. cpu->changed |= CHANGED_IDT;
  470. /* Check that the Guest doesn't try to step outside the bounds. */
  471. if (num >= ARRAY_SIZE(cpu->arch.idt))
  472. kill_guest(cpu, "Setting idt entry %u", num);
  473. else
  474. set_trap(cpu, &cpu->arch.idt[num], num, lo, hi);
  475. }
  476. /*
  477. * The default entry for each interrupt points into the Switcher routines which
  478. * simply return to the Host. The run_guest() loop will then call
  479. * deliver_trap() to bounce it back into the Guest.
  480. */
  481. static void default_idt_entry(struct desc_struct *idt,
  482. int trap,
  483. const unsigned long handler,
  484. const struct desc_struct *base)
  485. {
  486. /* A present interrupt gate. */
  487. u32 flags = 0x8e00;
  488. /*
  489. * Set the privilege level on the entry for the hypercall: this allows
  490. * the Guest to use the "int" instruction to trigger it.
  491. */
  492. if (trap == LGUEST_TRAP_ENTRY)
  493. flags |= (GUEST_PL << 13);
  494. else if (base)
  495. /*
  496. * Copy privilege level from what Guest asked for. This allows
  497. * debug (int 3) traps from Guest userspace, for example.
  498. */
  499. flags |= (base->b & 0x6000);
  500. /* Now pack it into the IDT entry in its weird format. */
  501. idt->a = (LGUEST_CS<<16) | (handler&0x0000FFFF);
  502. idt->b = (handler&0xFFFF0000) | flags;
  503. }
  504. /* When the Guest first starts, we put default entries into the IDT. */
  505. void setup_default_idt_entries(struct lguest_ro_state *state,
  506. const unsigned long *def)
  507. {
  508. unsigned int i;
  509. for (i = 0; i < ARRAY_SIZE(state->guest_idt); i++)
  510. default_idt_entry(&state->guest_idt[i], i, def[i], NULL);
  511. }
  512. /*H:240
  513. * We don't use the IDT entries in the "struct lguest" directly, instead
  514. * we copy them into the IDT which we've set up for Guests on this CPU, just
  515. * before we run the Guest. This routine does that copy.
  516. */
  517. void copy_traps(const struct lg_cpu *cpu, struct desc_struct *idt,
  518. const unsigned long *def)
  519. {
  520. unsigned int i;
  521. /*
  522. * We can simply copy the direct traps, otherwise we use the default
  523. * ones in the Switcher: they will return to the Host.
  524. */
  525. for (i = 0; i < ARRAY_SIZE(cpu->arch.idt); i++) {
  526. const struct desc_struct *gidt = &cpu->arch.idt[i];
  527. /* If no Guest can ever override this trap, leave it alone. */
  528. if (!direct_trap(i))
  529. continue;
  530. /*
  531. * Only trap gates (type 15) can go direct to the Guest.
  532. * Interrupt gates (type 14) disable interrupts as they are
  533. * entered, which we never let the Guest do. Not present
  534. * entries (type 0x0) also can't go direct, of course.
  535. *
  536. * If it can't go direct, we still need to copy the priv. level:
  537. * they might want to give userspace access to a software
  538. * interrupt.
  539. */
  540. if (idt_type(gidt->a, gidt->b) == 0xF)
  541. idt[i] = *gidt;
  542. else
  543. default_idt_entry(&idt[i], i, def[i], gidt);
  544. }
  545. }
  546. /*H:200
  547. * The Guest Clock.
  548. *
  549. * There are two sources of virtual interrupts. We saw one in lguest_user.c:
  550. * the Launcher sending interrupts for virtual devices. The other is the Guest
  551. * timer interrupt.
  552. *
  553. * The Guest uses the LHCALL_SET_CLOCKEVENT hypercall to tell us how long to
  554. * the next timer interrupt (in nanoseconds). We use the high-resolution timer
  555. * infrastructure to set a callback at that time.
  556. *
  557. * 0 means "turn off the clock".
  558. */
  559. void guest_set_clockevent(struct lg_cpu *cpu, unsigned long delta)
  560. {
  561. ktime_t expires;
  562. if (unlikely(delta == 0)) {
  563. /* Clock event device is shutting down. */
  564. hrtimer_cancel(&cpu->hrt);
  565. return;
  566. }
  567. /*
  568. * We use wallclock time here, so the Guest might not be running for
  569. * all the time between now and the timer interrupt it asked for. This
  570. * is almost always the right thing to do.
  571. */
  572. expires = ktime_add_ns(ktime_get_real(), delta);
  573. hrtimer_start(&cpu->hrt, expires, HRTIMER_MODE_ABS);
  574. }
  575. /* This is the function called when the Guest's timer expires. */
  576. static enum hrtimer_restart clockdev_fn(struct hrtimer *timer)
  577. {
  578. struct lg_cpu *cpu = container_of(timer, struct lg_cpu, hrt);
  579. /* Remember the first interrupt is the timer interrupt. */
  580. set_interrupt(cpu, 0);
  581. return HRTIMER_NORESTART;
  582. }
  583. /* This sets up the timer for this Guest. */
  584. void init_clockdev(struct lg_cpu *cpu)
  585. {
  586. hrtimer_init(&cpu->hrt, CLOCK_REALTIME, HRTIMER_MODE_ABS);
  587. cpu->hrt.function = clockdev_fn;
  588. }