core.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373
  1. /*P:400
  2. * This contains run_guest() which actually calls into the Host<->Guest
  3. * Switcher and analyzes the return, such as determining if the Guest wants the
  4. * Host to do something. This file also contains useful helper routines.
  5. :*/
  6. #include <linux/module.h>
  7. #include <linux/stringify.h>
  8. #include <linux/stddef.h>
  9. #include <linux/io.h>
  10. #include <linux/mm.h>
  11. #include <linux/vmalloc.h>
  12. #include <linux/cpu.h>
  13. #include <linux/freezer.h>
  14. #include <linux/highmem.h>
  15. #include <linux/slab.h>
  16. #include <asm/paravirt.h>
  17. #include <asm/pgtable.h>
  18. #include <asm/uaccess.h>
  19. #include <asm/poll.h>
  20. #include <asm/asm-offsets.h>
  21. #include "lg.h"
  22. unsigned long switcher_addr;
  23. struct page **lg_switcher_pages;
  24. static struct vm_struct *switcher_vma;
  25. /* This One Big lock protects all inter-guest data structures. */
  26. DEFINE_MUTEX(lguest_lock);
  27. /*H:010
  28. * We need to set up the Switcher at a high virtual address. Remember the
  29. * Switcher is a few hundred bytes of assembler code which actually changes the
  30. * CPU to run the Guest, and then changes back to the Host when a trap or
  31. * interrupt happens.
  32. *
  33. * The Switcher code must be at the same virtual address in the Guest as the
  34. * Host since it will be running as the switchover occurs.
  35. *
  36. * Trying to map memory at a particular address is an unusual thing to do, so
  37. * it's not a simple one-liner.
  38. */
  39. static __init int map_switcher(void)
  40. {
  41. int i, err;
  42. struct page **pagep;
  43. /*
  44. * Map the Switcher in to high memory.
  45. *
  46. * It turns out that if we choose the address 0xFFC00000 (4MB under the
  47. * top virtual address), it makes setting up the page tables really
  48. * easy.
  49. */
  50. /* We assume Switcher text fits into a single page. */
  51. if (end_switcher_text - start_switcher_text > PAGE_SIZE) {
  52. printk(KERN_ERR "lguest: switcher text too large (%zu)\n",
  53. end_switcher_text - start_switcher_text);
  54. return -EINVAL;
  55. }
  56. /*
  57. * We allocate an array of struct page pointers. map_vm_area() wants
  58. * this, rather than just an array of pages.
  59. */
  60. lg_switcher_pages = kmalloc(sizeof(lg_switcher_pages[0])
  61. * TOTAL_SWITCHER_PAGES,
  62. GFP_KERNEL);
  63. if (!lg_switcher_pages) {
  64. err = -ENOMEM;
  65. goto out;
  66. }
  67. /*
  68. * Now we actually allocate the pages. The Guest will see these pages,
  69. * so we make sure they're zeroed.
  70. */
  71. for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
  72. lg_switcher_pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
  73. if (!lg_switcher_pages[i]) {
  74. err = -ENOMEM;
  75. goto free_some_pages;
  76. }
  77. }
  78. /*
  79. * We place the Switcher underneath the fixmap area, which is the
  80. * highest virtual address we can get. This is important, since we
  81. * tell the Guest it can't access this memory, so we want its ceiling
  82. * as high as possible.
  83. */
  84. switcher_addr = FIXADDR_START - (TOTAL_SWITCHER_PAGES+1)*PAGE_SIZE;
  85. /*
  86. * Now we reserve the "virtual memory area" we want. We might
  87. * not get it in theory, but in practice it's worked so far.
  88. * The end address needs +1 because __get_vm_area allocates an
  89. * extra guard page, so we need space for that.
  90. */
  91. switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE,
  92. VM_ALLOC, switcher_addr, switcher_addr
  93. + (TOTAL_SWITCHER_PAGES+1) * PAGE_SIZE);
  94. if (!switcher_vma) {
  95. err = -ENOMEM;
  96. printk("lguest: could not map switcher pages high\n");
  97. goto free_pages;
  98. }
  99. /*
  100. * This code actually sets up the pages we've allocated to appear at
  101. * switcher_addr. map_vm_area() takes the vma we allocated above, the
  102. * kind of pages we're mapping (kernel pages), and a pointer to our
  103. * array of struct pages. It increments that pointer, but we don't
  104. * care.
  105. */
  106. pagep = lg_switcher_pages;
  107. err = map_vm_area(switcher_vma, PAGE_KERNEL_EXEC, &pagep);
  108. if (err) {
  109. printk("lguest: map_vm_area failed: %i\n", err);
  110. goto free_vma;
  111. }
  112. /*
  113. * Now the Switcher is mapped at the right address, we can't fail!
  114. * Copy in the compiled-in Switcher code (from x86/switcher_32.S).
  115. */
  116. memcpy(switcher_vma->addr, start_switcher_text,
  117. end_switcher_text - start_switcher_text);
  118. printk(KERN_INFO "lguest: mapped switcher at %p\n",
  119. switcher_vma->addr);
  120. /* And we succeeded... */
  121. return 0;
  122. free_vma:
  123. vunmap(switcher_vma->addr);
  124. free_pages:
  125. i = TOTAL_SWITCHER_PAGES;
  126. free_some_pages:
  127. for (--i; i >= 0; i--)
  128. __free_pages(lg_switcher_pages[i], 0);
  129. kfree(lg_switcher_pages);
  130. out:
  131. return err;
  132. }
  133. /*:*/
  134. /* Cleaning up the mapping when the module is unloaded is almost... too easy. */
  135. static void unmap_switcher(void)
  136. {
  137. unsigned int i;
  138. /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
  139. vunmap(switcher_vma->addr);
  140. /* Now we just need to free the pages we copied the switcher into */
  141. for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
  142. __free_pages(lg_switcher_pages[i], 0);
  143. kfree(lg_switcher_pages);
  144. }
  145. /*H:032
  146. * Dealing With Guest Memory.
  147. *
  148. * Before we go too much further into the Host, we need to grok the routines
  149. * we use to deal with Guest memory.
  150. *
  151. * When the Guest gives us (what it thinks is) a physical address, we can use
  152. * the normal copy_from_user() & copy_to_user() on the corresponding place in
  153. * the memory region allocated by the Launcher.
  154. *
  155. * But we can't trust the Guest: it might be trying to access the Launcher
  156. * code. We have to check that the range is below the pfn_limit the Launcher
  157. * gave us. We have to make sure that addr + len doesn't give us a false
  158. * positive by overflowing, too.
  159. */
  160. bool lguest_address_ok(const struct lguest *lg,
  161. unsigned long addr, unsigned long len)
  162. {
  163. return (addr+len) / PAGE_SIZE < lg->pfn_limit && (addr+len >= addr);
  164. }
  165. /*
  166. * This routine copies memory from the Guest. Here we can see how useful the
  167. * kill_lguest() routine we met in the Launcher can be: we return a random
  168. * value (all zeroes) instead of needing to return an error.
  169. */
  170. void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes)
  171. {
  172. if (!lguest_address_ok(cpu->lg, addr, bytes)
  173. || copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) {
  174. /* copy_from_user should do this, but as we rely on it... */
  175. memset(b, 0, bytes);
  176. kill_guest(cpu, "bad read address %#lx len %u", addr, bytes);
  177. }
  178. }
  179. /* This is the write (copy into Guest) version. */
  180. void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b,
  181. unsigned bytes)
  182. {
  183. if (!lguest_address_ok(cpu->lg, addr, bytes)
  184. || copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0)
  185. kill_guest(cpu, "bad write address %#lx len %u", addr, bytes);
  186. }
  187. /*:*/
  188. /*H:030
  189. * Let's jump straight to the the main loop which runs the Guest.
  190. * Remember, this is called by the Launcher reading /dev/lguest, and we keep
  191. * going around and around until something interesting happens.
  192. */
  193. int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
  194. {
  195. /* We stop running once the Guest is dead. */
  196. while (!cpu->lg->dead) {
  197. unsigned int irq;
  198. bool more;
  199. /* First we run any hypercalls the Guest wants done. */
  200. if (cpu->hcall)
  201. do_hypercalls(cpu);
  202. /*
  203. * It's possible the Guest did a NOTIFY hypercall to the
  204. * Launcher.
  205. */
  206. if (cpu->pending_notify) {
  207. /*
  208. * Does it just needs to write to a registered
  209. * eventfd (ie. the appropriate virtqueue thread)?
  210. */
  211. if (!send_notify_to_eventfd(cpu)) {
  212. /* OK, we tell the main Launcher. */
  213. if (put_user(cpu->pending_notify, user))
  214. return -EFAULT;
  215. return sizeof(cpu->pending_notify);
  216. }
  217. }
  218. /*
  219. * All long-lived kernel loops need to check with this horrible
  220. * thing called the freezer. If the Host is trying to suspend,
  221. * it stops us.
  222. */
  223. try_to_freeze();
  224. /* Check for signals */
  225. if (signal_pending(current))
  226. return -ERESTARTSYS;
  227. /*
  228. * Check if there are any interrupts which can be delivered now:
  229. * if so, this sets up the hander to be executed when we next
  230. * run the Guest.
  231. */
  232. irq = interrupt_pending(cpu, &more);
  233. if (irq < LGUEST_IRQS)
  234. try_deliver_interrupt(cpu, irq, more);
  235. /*
  236. * Just make absolutely sure the Guest is still alive. One of
  237. * those hypercalls could have been fatal, for example.
  238. */
  239. if (cpu->lg->dead)
  240. break;
  241. /*
  242. * If the Guest asked to be stopped, we sleep. The Guest's
  243. * clock timer will wake us.
  244. */
  245. if (cpu->halted) {
  246. set_current_state(TASK_INTERRUPTIBLE);
  247. /*
  248. * Just before we sleep, make sure no interrupt snuck in
  249. * which we should be doing.
  250. */
  251. if (interrupt_pending(cpu, &more) < LGUEST_IRQS)
  252. set_current_state(TASK_RUNNING);
  253. else
  254. schedule();
  255. continue;
  256. }
  257. /*
  258. * OK, now we're ready to jump into the Guest. First we put up
  259. * the "Do Not Disturb" sign:
  260. */
  261. local_irq_disable();
  262. /* Actually run the Guest until something happens. */
  263. lguest_arch_run_guest(cpu);
  264. /* Now we're ready to be interrupted or moved to other CPUs */
  265. local_irq_enable();
  266. /* Now we deal with whatever happened to the Guest. */
  267. lguest_arch_handle_trap(cpu);
  268. }
  269. /* Special case: Guest is 'dead' but wants a reboot. */
  270. if (cpu->lg->dead == ERR_PTR(-ERESTART))
  271. return -ERESTART;
  272. /* The Guest is dead => "No such file or directory" */
  273. return -ENOENT;
  274. }
  275. /*H:000
  276. * Welcome to the Host!
  277. *
  278. * By this point your brain has been tickled by the Guest code and numbed by
  279. * the Launcher code; prepare for it to be stretched by the Host code. This is
  280. * the heart. Let's begin at the initialization routine for the Host's lg
  281. * module.
  282. */
  283. static int __init init(void)
  284. {
  285. int err;
  286. /* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */
  287. if (get_kernel_rpl() != 0) {
  288. printk("lguest is afraid of being a guest\n");
  289. return -EPERM;
  290. }
  291. /* First we put the Switcher up in very high virtual memory. */
  292. err = map_switcher();
  293. if (err)
  294. goto out;
  295. /* We might need to reserve an interrupt vector. */
  296. err = init_interrupts();
  297. if (err)
  298. goto unmap;
  299. /* /dev/lguest needs to be registered. */
  300. err = lguest_device_init();
  301. if (err)
  302. goto free_interrupts;
  303. /* Finally we do some architecture-specific setup. */
  304. lguest_arch_host_init();
  305. /* All good! */
  306. return 0;
  307. free_interrupts:
  308. free_interrupts();
  309. unmap:
  310. unmap_switcher();
  311. out:
  312. return err;
  313. }
  314. /* Cleaning up is just the same code, backwards. With a little French. */
  315. static void __exit fini(void)
  316. {
  317. lguest_device_remove();
  318. free_interrupts();
  319. unmap_switcher();
  320. lguest_arch_host_fini();
  321. }
  322. /*:*/
  323. /*
  324. * The Host side of lguest can be a module. This is a nice way for people to
  325. * play with it.
  326. */
  327. module_init(init);
  328. module_exit(fini);
  329. MODULE_LICENSE("GPL");
  330. MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>");