i2c-mxs.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801
  1. /*
  2. * Freescale MXS I2C bus driver
  3. *
  4. * Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K.
  5. *
  6. * based on a (non-working) driver which was:
  7. *
  8. * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; either version 2 of the License, or
  13. * (at your option) any later version.
  14. *
  15. */
  16. #include <linux/slab.h>
  17. #include <linux/device.h>
  18. #include <linux/module.h>
  19. #include <linux/i2c.h>
  20. #include <linux/err.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/completion.h>
  23. #include <linux/platform_device.h>
  24. #include <linux/jiffies.h>
  25. #include <linux/io.h>
  26. #include <linux/stmp_device.h>
  27. #include <linux/of.h>
  28. #include <linux/of_device.h>
  29. #include <linux/dma-mapping.h>
  30. #include <linux/dmaengine.h>
  31. #define DRIVER_NAME "mxs-i2c"
  32. #define MXS_I2C_CTRL0 (0x00)
  33. #define MXS_I2C_CTRL0_SET (0x04)
  34. #define MXS_I2C_CTRL0_SFTRST 0x80000000
  35. #define MXS_I2C_CTRL0_RUN 0x20000000
  36. #define MXS_I2C_CTRL0_SEND_NAK_ON_LAST 0x02000000
  37. #define MXS_I2C_CTRL0_RETAIN_CLOCK 0x00200000
  38. #define MXS_I2C_CTRL0_POST_SEND_STOP 0x00100000
  39. #define MXS_I2C_CTRL0_PRE_SEND_START 0x00080000
  40. #define MXS_I2C_CTRL0_MASTER_MODE 0x00020000
  41. #define MXS_I2C_CTRL0_DIRECTION 0x00010000
  42. #define MXS_I2C_CTRL0_XFER_COUNT(v) ((v) & 0x0000FFFF)
  43. #define MXS_I2C_TIMING0 (0x10)
  44. #define MXS_I2C_TIMING1 (0x20)
  45. #define MXS_I2C_TIMING2 (0x30)
  46. #define MXS_I2C_CTRL1 (0x40)
  47. #define MXS_I2C_CTRL1_SET (0x44)
  48. #define MXS_I2C_CTRL1_CLR (0x48)
  49. #define MXS_I2C_CTRL1_CLR_GOT_A_NAK 0x10000000
  50. #define MXS_I2C_CTRL1_BUS_FREE_IRQ 0x80
  51. #define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ 0x40
  52. #define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ 0x20
  53. #define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ 0x10
  54. #define MXS_I2C_CTRL1_EARLY_TERM_IRQ 0x08
  55. #define MXS_I2C_CTRL1_MASTER_LOSS_IRQ 0x04
  56. #define MXS_I2C_CTRL1_SLAVE_STOP_IRQ 0x02
  57. #define MXS_I2C_CTRL1_SLAVE_IRQ 0x01
  58. #define MXS_I2C_STAT (0x50)
  59. #define MXS_I2C_STAT_BUS_BUSY 0x00000800
  60. #define MXS_I2C_STAT_CLK_GEN_BUSY 0x00000400
  61. #define MXS_I2C_DATA (0xa0)
  62. #define MXS_I2C_DEBUG0 (0xb0)
  63. #define MXS_I2C_DEBUG0_CLR (0xb8)
  64. #define MXS_I2C_DEBUG0_DMAREQ 0x80000000
  65. #define MXS_I2C_IRQ_MASK (MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \
  66. MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \
  67. MXS_I2C_CTRL1_EARLY_TERM_IRQ | \
  68. MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \
  69. MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \
  70. MXS_I2C_CTRL1_SLAVE_IRQ)
  71. #define MXS_CMD_I2C_SELECT (MXS_I2C_CTRL0_RETAIN_CLOCK | \
  72. MXS_I2C_CTRL0_PRE_SEND_START | \
  73. MXS_I2C_CTRL0_MASTER_MODE | \
  74. MXS_I2C_CTRL0_DIRECTION | \
  75. MXS_I2C_CTRL0_XFER_COUNT(1))
  76. #define MXS_CMD_I2C_WRITE (MXS_I2C_CTRL0_PRE_SEND_START | \
  77. MXS_I2C_CTRL0_MASTER_MODE | \
  78. MXS_I2C_CTRL0_DIRECTION)
  79. #define MXS_CMD_I2C_READ (MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \
  80. MXS_I2C_CTRL0_MASTER_MODE)
  81. /**
  82. * struct mxs_i2c_dev - per device, private MXS-I2C data
  83. *
  84. * @dev: driver model device node
  85. * @regs: IO registers pointer
  86. * @cmd_complete: completion object for transaction wait
  87. * @cmd_err: error code for last transaction
  88. * @adapter: i2c subsystem adapter node
  89. */
  90. struct mxs_i2c_dev {
  91. struct device *dev;
  92. void __iomem *regs;
  93. struct completion cmd_complete;
  94. int cmd_err;
  95. struct i2c_adapter adapter;
  96. uint32_t timing0;
  97. uint32_t timing1;
  98. uint32_t timing2;
  99. /* DMA support components */
  100. struct dma_chan *dmach;
  101. uint32_t pio_data[2];
  102. uint32_t addr_data;
  103. struct scatterlist sg_io[2];
  104. bool dma_read;
  105. };
  106. static int mxs_i2c_reset(struct mxs_i2c_dev *i2c)
  107. {
  108. int ret = stmp_reset_block(i2c->regs);
  109. if (ret)
  110. return ret;
  111. /*
  112. * Configure timing for the I2C block. The I2C TIMING2 register has to
  113. * be programmed with this particular magic number. The rest is derived
  114. * from the XTAL speed and requested I2C speed.
  115. *
  116. * For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4].
  117. */
  118. writel(i2c->timing0, i2c->regs + MXS_I2C_TIMING0);
  119. writel(i2c->timing1, i2c->regs + MXS_I2C_TIMING1);
  120. writel(i2c->timing2, i2c->regs + MXS_I2C_TIMING2);
  121. writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
  122. return 0;
  123. }
  124. static void mxs_i2c_dma_finish(struct mxs_i2c_dev *i2c)
  125. {
  126. if (i2c->dma_read) {
  127. dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
  128. dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
  129. } else {
  130. dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
  131. }
  132. }
  133. static void mxs_i2c_dma_irq_callback(void *param)
  134. {
  135. struct mxs_i2c_dev *i2c = param;
  136. complete(&i2c->cmd_complete);
  137. mxs_i2c_dma_finish(i2c);
  138. }
  139. static int mxs_i2c_dma_setup_xfer(struct i2c_adapter *adap,
  140. struct i2c_msg *msg, uint32_t flags)
  141. {
  142. struct dma_async_tx_descriptor *desc;
  143. struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
  144. if (msg->flags & I2C_M_RD) {
  145. i2c->dma_read = 1;
  146. i2c->addr_data = (msg->addr << 1) | I2C_SMBUS_READ;
  147. /*
  148. * SELECT command.
  149. */
  150. /* Queue the PIO register write transfer. */
  151. i2c->pio_data[0] = MXS_CMD_I2C_SELECT;
  152. desc = dmaengine_prep_slave_sg(i2c->dmach,
  153. (struct scatterlist *)&i2c->pio_data[0],
  154. 1, DMA_TRANS_NONE, 0);
  155. if (!desc) {
  156. dev_err(i2c->dev,
  157. "Failed to get PIO reg. write descriptor.\n");
  158. goto select_init_pio_fail;
  159. }
  160. /* Queue the DMA data transfer. */
  161. sg_init_one(&i2c->sg_io[0], &i2c->addr_data, 1);
  162. dma_map_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
  163. desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[0], 1,
  164. DMA_MEM_TO_DEV,
  165. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  166. if (!desc) {
  167. dev_err(i2c->dev,
  168. "Failed to get DMA data write descriptor.\n");
  169. goto select_init_dma_fail;
  170. }
  171. /*
  172. * READ command.
  173. */
  174. /* Queue the PIO register write transfer. */
  175. i2c->pio_data[1] = flags | MXS_CMD_I2C_READ |
  176. MXS_I2C_CTRL0_XFER_COUNT(msg->len);
  177. desc = dmaengine_prep_slave_sg(i2c->dmach,
  178. (struct scatterlist *)&i2c->pio_data[1],
  179. 1, DMA_TRANS_NONE, DMA_PREP_INTERRUPT);
  180. if (!desc) {
  181. dev_err(i2c->dev,
  182. "Failed to get PIO reg. write descriptor.\n");
  183. goto select_init_dma_fail;
  184. }
  185. /* Queue the DMA data transfer. */
  186. sg_init_one(&i2c->sg_io[1], msg->buf, msg->len);
  187. dma_map_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
  188. desc = dmaengine_prep_slave_sg(i2c->dmach, &i2c->sg_io[1], 1,
  189. DMA_DEV_TO_MEM,
  190. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  191. if (!desc) {
  192. dev_err(i2c->dev,
  193. "Failed to get DMA data write descriptor.\n");
  194. goto read_init_dma_fail;
  195. }
  196. } else {
  197. i2c->dma_read = 0;
  198. i2c->addr_data = (msg->addr << 1) | I2C_SMBUS_WRITE;
  199. /*
  200. * WRITE command.
  201. */
  202. /* Queue the PIO register write transfer. */
  203. i2c->pio_data[0] = flags | MXS_CMD_I2C_WRITE |
  204. MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1);
  205. desc = dmaengine_prep_slave_sg(i2c->dmach,
  206. (struct scatterlist *)&i2c->pio_data[0],
  207. 1, DMA_TRANS_NONE, 0);
  208. if (!desc) {
  209. dev_err(i2c->dev,
  210. "Failed to get PIO reg. write descriptor.\n");
  211. goto write_init_pio_fail;
  212. }
  213. /* Queue the DMA data transfer. */
  214. sg_init_table(i2c->sg_io, 2);
  215. sg_set_buf(&i2c->sg_io[0], &i2c->addr_data, 1);
  216. sg_set_buf(&i2c->sg_io[1], msg->buf, msg->len);
  217. dma_map_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
  218. desc = dmaengine_prep_slave_sg(i2c->dmach, i2c->sg_io, 2,
  219. DMA_MEM_TO_DEV,
  220. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  221. if (!desc) {
  222. dev_err(i2c->dev,
  223. "Failed to get DMA data write descriptor.\n");
  224. goto write_init_dma_fail;
  225. }
  226. }
  227. /*
  228. * The last descriptor must have this callback,
  229. * to finish the DMA transaction.
  230. */
  231. desc->callback = mxs_i2c_dma_irq_callback;
  232. desc->callback_param = i2c;
  233. /* Start the transfer. */
  234. dmaengine_submit(desc);
  235. dma_async_issue_pending(i2c->dmach);
  236. return 0;
  237. /* Read failpath. */
  238. read_init_dma_fail:
  239. dma_unmap_sg(i2c->dev, &i2c->sg_io[1], 1, DMA_FROM_DEVICE);
  240. select_init_dma_fail:
  241. dma_unmap_sg(i2c->dev, &i2c->sg_io[0], 1, DMA_TO_DEVICE);
  242. select_init_pio_fail:
  243. dmaengine_terminate_all(i2c->dmach);
  244. return -EINVAL;
  245. /* Write failpath. */
  246. write_init_dma_fail:
  247. dma_unmap_sg(i2c->dev, i2c->sg_io, 2, DMA_TO_DEVICE);
  248. write_init_pio_fail:
  249. dmaengine_terminate_all(i2c->dmach);
  250. return -EINVAL;
  251. }
  252. static int mxs_i2c_pio_wait_dmareq(struct mxs_i2c_dev *i2c)
  253. {
  254. unsigned long timeout = jiffies + msecs_to_jiffies(1000);
  255. while (!(readl(i2c->regs + MXS_I2C_DEBUG0) &
  256. MXS_I2C_DEBUG0_DMAREQ)) {
  257. if (time_after(jiffies, timeout))
  258. return -ETIMEDOUT;
  259. cond_resched();
  260. }
  261. return 0;
  262. }
  263. static int mxs_i2c_pio_wait_cplt(struct mxs_i2c_dev *i2c, int last)
  264. {
  265. unsigned long timeout = jiffies + msecs_to_jiffies(1000);
  266. /*
  267. * We do not use interrupts in the PIO mode. Due to the
  268. * maximum transfer length being 8 bytes in PIO mode, the
  269. * overhead of interrupt would be too large and this would
  270. * neglect the gain from using the PIO mode.
  271. */
  272. while (!(readl(i2c->regs + MXS_I2C_CTRL1) &
  273. MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ)) {
  274. if (time_after(jiffies, timeout))
  275. return -ETIMEDOUT;
  276. cond_resched();
  277. }
  278. writel(MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ,
  279. i2c->regs + MXS_I2C_CTRL1_CLR);
  280. /*
  281. * When ending a transfer with a stop, we have to wait for the bus to
  282. * go idle before we report the transfer as completed. Otherwise the
  283. * start of the next transfer may race with the end of the current one.
  284. */
  285. while (last && (readl(i2c->regs + MXS_I2C_STAT) &
  286. (MXS_I2C_STAT_BUS_BUSY | MXS_I2C_STAT_CLK_GEN_BUSY))) {
  287. if (time_after(jiffies, timeout))
  288. return -ETIMEDOUT;
  289. cond_resched();
  290. }
  291. return 0;
  292. }
  293. static int mxs_i2c_pio_check_error_state(struct mxs_i2c_dev *i2c)
  294. {
  295. u32 state;
  296. state = readl(i2c->regs + MXS_I2C_CTRL1_CLR) & MXS_I2C_IRQ_MASK;
  297. if (state & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
  298. i2c->cmd_err = -ENXIO;
  299. else if (state & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
  300. MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
  301. MXS_I2C_CTRL1_SLAVE_STOP_IRQ |
  302. MXS_I2C_CTRL1_SLAVE_IRQ))
  303. i2c->cmd_err = -EIO;
  304. return i2c->cmd_err;
  305. }
  306. static void mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev *i2c, u32 cmd)
  307. {
  308. u32 reg;
  309. writel(cmd, i2c->regs + MXS_I2C_CTRL0);
  310. /* readback makes sure the write is latched into hardware */
  311. reg = readl(i2c->regs + MXS_I2C_CTRL0);
  312. reg |= MXS_I2C_CTRL0_RUN;
  313. writel(reg, i2c->regs + MXS_I2C_CTRL0);
  314. }
  315. static int mxs_i2c_pio_setup_xfer(struct i2c_adapter *adap,
  316. struct i2c_msg *msg, uint32_t flags)
  317. {
  318. struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
  319. uint32_t addr_data = msg->addr << 1;
  320. uint32_t data = 0;
  321. int i, shifts_left, ret;
  322. /* Mute IRQs coming from this block. */
  323. writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_CLR);
  324. if (msg->flags & I2C_M_RD) {
  325. addr_data |= I2C_SMBUS_READ;
  326. /* SELECT command. */
  327. mxs_i2c_pio_trigger_cmd(i2c, MXS_CMD_I2C_SELECT);
  328. ret = mxs_i2c_pio_wait_dmareq(i2c);
  329. if (ret)
  330. return ret;
  331. writel(addr_data, i2c->regs + MXS_I2C_DATA);
  332. writel(MXS_I2C_DEBUG0_DMAREQ, i2c->regs + MXS_I2C_DEBUG0_CLR);
  333. ret = mxs_i2c_pio_wait_cplt(i2c, 0);
  334. if (ret)
  335. return ret;
  336. if (mxs_i2c_pio_check_error_state(i2c))
  337. goto cleanup;
  338. /* READ command. */
  339. mxs_i2c_pio_trigger_cmd(i2c,
  340. MXS_CMD_I2C_READ | flags |
  341. MXS_I2C_CTRL0_XFER_COUNT(msg->len));
  342. for (i = 0; i < msg->len; i++) {
  343. if ((i & 3) == 0) {
  344. ret = mxs_i2c_pio_wait_dmareq(i2c);
  345. if (ret)
  346. return ret;
  347. data = readl(i2c->regs + MXS_I2C_DATA);
  348. writel(MXS_I2C_DEBUG0_DMAREQ,
  349. i2c->regs + MXS_I2C_DEBUG0_CLR);
  350. }
  351. msg->buf[i] = data & 0xff;
  352. data >>= 8;
  353. }
  354. } else {
  355. addr_data |= I2C_SMBUS_WRITE;
  356. /* WRITE command. */
  357. mxs_i2c_pio_trigger_cmd(i2c,
  358. MXS_CMD_I2C_WRITE | flags |
  359. MXS_I2C_CTRL0_XFER_COUNT(msg->len + 1));
  360. /*
  361. * The LSB of data buffer is the first byte blasted across
  362. * the bus. Higher order bytes follow. Thus the following
  363. * filling schematic.
  364. */
  365. data = addr_data << 24;
  366. for (i = 0; i < msg->len; i++) {
  367. data >>= 8;
  368. data |= (msg->buf[i] << 24);
  369. if ((i & 3) == 2) {
  370. ret = mxs_i2c_pio_wait_dmareq(i2c);
  371. if (ret)
  372. return ret;
  373. writel(data, i2c->regs + MXS_I2C_DATA);
  374. writel(MXS_I2C_DEBUG0_DMAREQ,
  375. i2c->regs + MXS_I2C_DEBUG0_CLR);
  376. }
  377. }
  378. shifts_left = 24 - (i & 3) * 8;
  379. if (shifts_left) {
  380. data >>= shifts_left;
  381. ret = mxs_i2c_pio_wait_dmareq(i2c);
  382. if (ret)
  383. return ret;
  384. writel(data, i2c->regs + MXS_I2C_DATA);
  385. writel(MXS_I2C_DEBUG0_DMAREQ,
  386. i2c->regs + MXS_I2C_DEBUG0_CLR);
  387. }
  388. }
  389. ret = mxs_i2c_pio_wait_cplt(i2c, flags & MXS_I2C_CTRL0_POST_SEND_STOP);
  390. if (ret)
  391. return ret;
  392. /* make sure we capture any occurred error into cmd_err */
  393. mxs_i2c_pio_check_error_state(i2c);
  394. cleanup:
  395. /* Clear any dangling IRQs and re-enable interrupts. */
  396. writel(MXS_I2C_IRQ_MASK, i2c->regs + MXS_I2C_CTRL1_CLR);
  397. writel(MXS_I2C_IRQ_MASK << 8, i2c->regs + MXS_I2C_CTRL1_SET);
  398. return 0;
  399. }
  400. /*
  401. * Low level master read/write transaction.
  402. */
  403. static int mxs_i2c_xfer_msg(struct i2c_adapter *adap, struct i2c_msg *msg,
  404. int stop)
  405. {
  406. struct mxs_i2c_dev *i2c = i2c_get_adapdata(adap);
  407. int ret, err;
  408. int flags;
  409. flags = stop ? MXS_I2C_CTRL0_POST_SEND_STOP : 0;
  410. dev_dbg(i2c->dev, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n",
  411. msg->addr, msg->len, msg->flags, stop);
  412. if (msg->len == 0)
  413. return -EINVAL;
  414. /*
  415. * The current boundary to select between PIO/DMA transfer method
  416. * is set to 8 bytes, transfers shorter than 8 bytes are transfered
  417. * using PIO mode while longer transfers use DMA. The 8 byte border is
  418. * based on this empirical measurement and a lot of previous frobbing.
  419. */
  420. i2c->cmd_err = 0;
  421. if (0) { /* disable PIO mode until a proper fix is made */
  422. ret = mxs_i2c_pio_setup_xfer(adap, msg, flags);
  423. if (ret) {
  424. err = mxs_i2c_reset(i2c);
  425. if (err)
  426. return err;
  427. }
  428. } else {
  429. INIT_COMPLETION(i2c->cmd_complete);
  430. ret = mxs_i2c_dma_setup_xfer(adap, msg, flags);
  431. if (ret)
  432. return ret;
  433. ret = wait_for_completion_timeout(&i2c->cmd_complete,
  434. msecs_to_jiffies(1000));
  435. if (ret == 0)
  436. goto timeout;
  437. }
  438. if (i2c->cmd_err == -ENXIO) {
  439. /*
  440. * If the transfer fails with a NAK from the slave the
  441. * controller halts until it gets told to return to idle state.
  442. */
  443. writel(MXS_I2C_CTRL1_CLR_GOT_A_NAK,
  444. i2c->regs + MXS_I2C_CTRL1_SET);
  445. }
  446. ret = i2c->cmd_err;
  447. dev_dbg(i2c->dev, "Done with err=%d\n", ret);
  448. return ret;
  449. timeout:
  450. dev_dbg(i2c->dev, "Timeout!\n");
  451. mxs_i2c_dma_finish(i2c);
  452. ret = mxs_i2c_reset(i2c);
  453. if (ret)
  454. return ret;
  455. return -ETIMEDOUT;
  456. }
  457. static int mxs_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg msgs[],
  458. int num)
  459. {
  460. int i;
  461. int err;
  462. for (i = 0; i < num; i++) {
  463. err = mxs_i2c_xfer_msg(adap, &msgs[i], i == (num - 1));
  464. if (err)
  465. return err;
  466. }
  467. return num;
  468. }
  469. static u32 mxs_i2c_func(struct i2c_adapter *adap)
  470. {
  471. return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
  472. }
  473. static irqreturn_t mxs_i2c_isr(int this_irq, void *dev_id)
  474. {
  475. struct mxs_i2c_dev *i2c = dev_id;
  476. u32 stat = readl(i2c->regs + MXS_I2C_CTRL1) & MXS_I2C_IRQ_MASK;
  477. if (!stat)
  478. return IRQ_NONE;
  479. if (stat & MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ)
  480. i2c->cmd_err = -ENXIO;
  481. else if (stat & (MXS_I2C_CTRL1_EARLY_TERM_IRQ |
  482. MXS_I2C_CTRL1_MASTER_LOSS_IRQ |
  483. MXS_I2C_CTRL1_SLAVE_STOP_IRQ | MXS_I2C_CTRL1_SLAVE_IRQ))
  484. /* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */
  485. i2c->cmd_err = -EIO;
  486. writel(stat, i2c->regs + MXS_I2C_CTRL1_CLR);
  487. return IRQ_HANDLED;
  488. }
  489. static const struct i2c_algorithm mxs_i2c_algo = {
  490. .master_xfer = mxs_i2c_xfer,
  491. .functionality = mxs_i2c_func,
  492. };
  493. static void mxs_i2c_derive_timing(struct mxs_i2c_dev *i2c, uint32_t speed)
  494. {
  495. /* The I2C block clock runs at 24MHz */
  496. const uint32_t clk = 24000000;
  497. uint32_t divider;
  498. uint16_t high_count, low_count, rcv_count, xmit_count;
  499. uint32_t bus_free, leadin;
  500. struct device *dev = i2c->dev;
  501. divider = DIV_ROUND_UP(clk, speed);
  502. if (divider < 25) {
  503. /*
  504. * limit the divider, so that min(low_count, high_count)
  505. * is >= 1
  506. */
  507. divider = 25;
  508. dev_warn(dev,
  509. "Speed too high (%u.%03u kHz), using %u.%03u kHz\n",
  510. speed / 1000, speed % 1000,
  511. clk / divider / 1000, clk / divider % 1000);
  512. } else if (divider > 1897) {
  513. /*
  514. * limit the divider, so that max(low_count, high_count)
  515. * cannot exceed 1023
  516. */
  517. divider = 1897;
  518. dev_warn(dev,
  519. "Speed too low (%u.%03u kHz), using %u.%03u kHz\n",
  520. speed / 1000, speed % 1000,
  521. clk / divider / 1000, clk / divider % 1000);
  522. }
  523. /*
  524. * The I2C spec specifies the following timing data:
  525. * standard mode fast mode Bitfield name
  526. * tLOW (SCL LOW period) 4700 ns 1300 ns
  527. * tHIGH (SCL HIGH period) 4000 ns 600 ns
  528. * tSU;DAT (data setup time) 250 ns 100 ns
  529. * tHD;STA (START hold time) 4000 ns 600 ns
  530. * tBUF (bus free time) 4700 ns 1300 ns
  531. *
  532. * The hardware (of the i.MX28 at least) seems to add 2 additional
  533. * clock cycles to the low_count and 7 cycles to the high_count.
  534. * This is compensated for by subtracting the respective constants
  535. * from the values written to the timing registers.
  536. */
  537. if (speed > 100000) {
  538. /* fast mode */
  539. low_count = DIV_ROUND_CLOSEST(divider * 13, (13 + 6));
  540. high_count = DIV_ROUND_CLOSEST(divider * 6, (13 + 6));
  541. leadin = DIV_ROUND_UP(600 * (clk / 1000000), 1000);
  542. bus_free = DIV_ROUND_UP(1300 * (clk / 1000000), 1000);
  543. } else {
  544. /* normal mode */
  545. low_count = DIV_ROUND_CLOSEST(divider * 47, (47 + 40));
  546. high_count = DIV_ROUND_CLOSEST(divider * 40, (47 + 40));
  547. leadin = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
  548. bus_free = DIV_ROUND_UP(4700 * (clk / 1000000), 1000);
  549. }
  550. rcv_count = high_count * 3 / 8;
  551. xmit_count = low_count * 3 / 8;
  552. dev_dbg(dev,
  553. "speed=%u(actual %u) divider=%u low=%u high=%u xmit=%u rcv=%u leadin=%u bus_free=%u\n",
  554. speed, clk / divider, divider, low_count, high_count,
  555. xmit_count, rcv_count, leadin, bus_free);
  556. low_count -= 2;
  557. high_count -= 7;
  558. i2c->timing0 = (high_count << 16) | rcv_count;
  559. i2c->timing1 = (low_count << 16) | xmit_count;
  560. i2c->timing2 = (bus_free << 16 | leadin);
  561. }
  562. static int mxs_i2c_get_ofdata(struct mxs_i2c_dev *i2c)
  563. {
  564. uint32_t speed;
  565. struct device *dev = i2c->dev;
  566. struct device_node *node = dev->of_node;
  567. int ret;
  568. ret = of_property_read_u32(node, "clock-frequency", &speed);
  569. if (ret) {
  570. dev_warn(dev, "No I2C speed selected, using 100kHz\n");
  571. speed = 100000;
  572. }
  573. mxs_i2c_derive_timing(i2c, speed);
  574. return 0;
  575. }
  576. static int mxs_i2c_probe(struct platform_device *pdev)
  577. {
  578. struct device *dev = &pdev->dev;
  579. struct mxs_i2c_dev *i2c;
  580. struct i2c_adapter *adap;
  581. struct resource *res;
  582. resource_size_t res_size;
  583. int err, irq;
  584. i2c = devm_kzalloc(dev, sizeof(struct mxs_i2c_dev), GFP_KERNEL);
  585. if (!i2c)
  586. return -ENOMEM;
  587. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  588. irq = platform_get_irq(pdev, 0);
  589. if (!res || irq < 0)
  590. return -ENOENT;
  591. res_size = resource_size(res);
  592. if (!devm_request_mem_region(dev, res->start, res_size, res->name))
  593. return -EBUSY;
  594. i2c->regs = devm_ioremap_nocache(dev, res->start, res_size);
  595. if (!i2c->regs)
  596. return -EBUSY;
  597. err = devm_request_irq(dev, irq, mxs_i2c_isr, 0, dev_name(dev), i2c);
  598. if (err)
  599. return err;
  600. i2c->dev = dev;
  601. init_completion(&i2c->cmd_complete);
  602. if (dev->of_node) {
  603. err = mxs_i2c_get_ofdata(i2c);
  604. if (err)
  605. return err;
  606. }
  607. /* Setup the DMA */
  608. i2c->dmach = dma_request_slave_channel(dev, "rx-tx");
  609. if (!i2c->dmach) {
  610. dev_err(dev, "Failed to request dma\n");
  611. return -ENODEV;
  612. }
  613. platform_set_drvdata(pdev, i2c);
  614. /* Do reset to enforce correct startup after pinmuxing */
  615. err = mxs_i2c_reset(i2c);
  616. if (err)
  617. return err;
  618. adap = &i2c->adapter;
  619. strlcpy(adap->name, "MXS I2C adapter", sizeof(adap->name));
  620. adap->owner = THIS_MODULE;
  621. adap->algo = &mxs_i2c_algo;
  622. adap->dev.parent = dev;
  623. adap->nr = pdev->id;
  624. adap->dev.of_node = pdev->dev.of_node;
  625. i2c_set_adapdata(adap, i2c);
  626. err = i2c_add_numbered_adapter(adap);
  627. if (err) {
  628. dev_err(dev, "Failed to add adapter (%d)\n", err);
  629. writel(MXS_I2C_CTRL0_SFTRST,
  630. i2c->regs + MXS_I2C_CTRL0_SET);
  631. return err;
  632. }
  633. return 0;
  634. }
  635. static int mxs_i2c_remove(struct platform_device *pdev)
  636. {
  637. struct mxs_i2c_dev *i2c = platform_get_drvdata(pdev);
  638. i2c_del_adapter(&i2c->adapter);
  639. if (i2c->dmach)
  640. dma_release_channel(i2c->dmach);
  641. writel(MXS_I2C_CTRL0_SFTRST, i2c->regs + MXS_I2C_CTRL0_SET);
  642. return 0;
  643. }
  644. static const struct of_device_id mxs_i2c_dt_ids[] = {
  645. { .compatible = "fsl,imx28-i2c", },
  646. { /* sentinel */ }
  647. };
  648. MODULE_DEVICE_TABLE(of, mxs_i2c_dt_ids);
  649. static struct platform_driver mxs_i2c_driver = {
  650. .driver = {
  651. .name = DRIVER_NAME,
  652. .owner = THIS_MODULE,
  653. .of_match_table = mxs_i2c_dt_ids,
  654. },
  655. .remove = mxs_i2c_remove,
  656. };
  657. static int __init mxs_i2c_init(void)
  658. {
  659. return platform_driver_probe(&mxs_i2c_driver, mxs_i2c_probe);
  660. }
  661. subsys_initcall(mxs_i2c_init);
  662. static void __exit mxs_i2c_exit(void)
  663. {
  664. platform_driver_unregister(&mxs_i2c_driver);
  665. }
  666. module_exit(mxs_i2c_exit);
  667. MODULE_AUTHOR("Wolfram Sang <w.sang@pengutronix.de>");
  668. MODULE_DESCRIPTION("MXS I2C Bus Driver");
  669. MODULE_LICENSE("GPL");
  670. MODULE_ALIAS("platform:" DRIVER_NAME);