intel_ringbuffer.c 53 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. static inline int ring_space(struct intel_ring_buffer *ring)
  35. {
  36. int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
  37. if (space < 0)
  38. space += ring->size;
  39. return space;
  40. }
  41. static int
  42. gen2_render_ring_flush(struct intel_ring_buffer *ring,
  43. u32 invalidate_domains,
  44. u32 flush_domains)
  45. {
  46. u32 cmd;
  47. int ret;
  48. cmd = MI_FLUSH;
  49. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  50. cmd |= MI_NO_WRITE_FLUSH;
  51. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  52. cmd |= MI_READ_FLUSH;
  53. ret = intel_ring_begin(ring, 2);
  54. if (ret)
  55. return ret;
  56. intel_ring_emit(ring, cmd);
  57. intel_ring_emit(ring, MI_NOOP);
  58. intel_ring_advance(ring);
  59. return 0;
  60. }
  61. static int
  62. gen4_render_ring_flush(struct intel_ring_buffer *ring,
  63. u32 invalidate_domains,
  64. u32 flush_domains)
  65. {
  66. struct drm_device *dev = ring->dev;
  67. u32 cmd;
  68. int ret;
  69. /*
  70. * read/write caches:
  71. *
  72. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  73. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  74. * also flushed at 2d versus 3d pipeline switches.
  75. *
  76. * read-only caches:
  77. *
  78. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  79. * MI_READ_FLUSH is set, and is always flushed on 965.
  80. *
  81. * I915_GEM_DOMAIN_COMMAND may not exist?
  82. *
  83. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  84. * invalidated when MI_EXE_FLUSH is set.
  85. *
  86. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  87. * invalidated with every MI_FLUSH.
  88. *
  89. * TLBs:
  90. *
  91. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  92. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  93. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  94. * are flushed at any MI_FLUSH.
  95. */
  96. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  97. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  98. cmd &= ~MI_NO_WRITE_FLUSH;
  99. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  100. cmd |= MI_EXE_FLUSH;
  101. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  102. (IS_G4X(dev) || IS_GEN5(dev)))
  103. cmd |= MI_INVALIDATE_ISP;
  104. ret = intel_ring_begin(ring, 2);
  105. if (ret)
  106. return ret;
  107. intel_ring_emit(ring, cmd);
  108. intel_ring_emit(ring, MI_NOOP);
  109. intel_ring_advance(ring);
  110. return 0;
  111. }
  112. /**
  113. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  114. * implementing two workarounds on gen6. From section 1.4.7.1
  115. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  116. *
  117. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  118. * produced by non-pipelined state commands), software needs to first
  119. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  120. * 0.
  121. *
  122. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  123. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  124. *
  125. * And the workaround for these two requires this workaround first:
  126. *
  127. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  128. * BEFORE the pipe-control with a post-sync op and no write-cache
  129. * flushes.
  130. *
  131. * And this last workaround is tricky because of the requirements on
  132. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  133. * volume 2 part 1:
  134. *
  135. * "1 of the following must also be set:
  136. * - Render Target Cache Flush Enable ([12] of DW1)
  137. * - Depth Cache Flush Enable ([0] of DW1)
  138. * - Stall at Pixel Scoreboard ([1] of DW1)
  139. * - Depth Stall ([13] of DW1)
  140. * - Post-Sync Operation ([13] of DW1)
  141. * - Notify Enable ([8] of DW1)"
  142. *
  143. * The cache flushes require the workaround flush that triggered this
  144. * one, so we can't use it. Depth stall would trigger the same.
  145. * Post-sync nonzero is what triggered this second workaround, so we
  146. * can't use that one either. Notify enable is IRQs, which aren't
  147. * really our business. That leaves only stall at scoreboard.
  148. */
  149. static int
  150. intel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
  151. {
  152. u32 scratch_addr = ring->scratch.gtt_offset + 128;
  153. int ret;
  154. ret = intel_ring_begin(ring, 6);
  155. if (ret)
  156. return ret;
  157. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  158. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  159. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  160. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  161. intel_ring_emit(ring, 0); /* low dword */
  162. intel_ring_emit(ring, 0); /* high dword */
  163. intel_ring_emit(ring, MI_NOOP);
  164. intel_ring_advance(ring);
  165. ret = intel_ring_begin(ring, 6);
  166. if (ret)
  167. return ret;
  168. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  169. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  170. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  171. intel_ring_emit(ring, 0);
  172. intel_ring_emit(ring, 0);
  173. intel_ring_emit(ring, MI_NOOP);
  174. intel_ring_advance(ring);
  175. return 0;
  176. }
  177. static int
  178. gen6_render_ring_flush(struct intel_ring_buffer *ring,
  179. u32 invalidate_domains, u32 flush_domains)
  180. {
  181. u32 flags = 0;
  182. u32 scratch_addr = ring->scratch.gtt_offset + 128;
  183. int ret;
  184. /* Force SNB workarounds for PIPE_CONTROL flushes */
  185. ret = intel_emit_post_sync_nonzero_flush(ring);
  186. if (ret)
  187. return ret;
  188. /* Just flush everything. Experiments have shown that reducing the
  189. * number of bits based on the write domains has little performance
  190. * impact.
  191. */
  192. if (flush_domains) {
  193. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  194. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  195. /*
  196. * Ensure that any following seqno writes only happen
  197. * when the render cache is indeed flushed.
  198. */
  199. flags |= PIPE_CONTROL_CS_STALL;
  200. }
  201. if (invalidate_domains) {
  202. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  203. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  204. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  205. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  206. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  207. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  208. /*
  209. * TLB invalidate requires a post-sync write.
  210. */
  211. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  212. }
  213. ret = intel_ring_begin(ring, 4);
  214. if (ret)
  215. return ret;
  216. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  217. intel_ring_emit(ring, flags);
  218. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  219. intel_ring_emit(ring, 0);
  220. intel_ring_advance(ring);
  221. return 0;
  222. }
  223. static int
  224. gen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
  225. {
  226. int ret;
  227. ret = intel_ring_begin(ring, 4);
  228. if (ret)
  229. return ret;
  230. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  231. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  232. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  233. intel_ring_emit(ring, 0);
  234. intel_ring_emit(ring, 0);
  235. intel_ring_advance(ring);
  236. return 0;
  237. }
  238. static int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
  239. {
  240. int ret;
  241. if (!ring->fbc_dirty)
  242. return 0;
  243. ret = intel_ring_begin(ring, 4);
  244. if (ret)
  245. return ret;
  246. intel_ring_emit(ring, MI_NOOP);
  247. /* WaFbcNukeOn3DBlt:ivb/hsw */
  248. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  249. intel_ring_emit(ring, MSG_FBC_REND_STATE);
  250. intel_ring_emit(ring, value);
  251. intel_ring_advance(ring);
  252. ring->fbc_dirty = false;
  253. return 0;
  254. }
  255. static int
  256. gen7_render_ring_flush(struct intel_ring_buffer *ring,
  257. u32 invalidate_domains, u32 flush_domains)
  258. {
  259. u32 flags = 0;
  260. u32 scratch_addr = ring->scratch.gtt_offset + 128;
  261. int ret;
  262. /*
  263. * Ensure that any following seqno writes only happen when the render
  264. * cache is indeed flushed.
  265. *
  266. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  267. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  268. * don't try to be clever and just set it unconditionally.
  269. */
  270. flags |= PIPE_CONTROL_CS_STALL;
  271. /* Just flush everything. Experiments have shown that reducing the
  272. * number of bits based on the write domains has little performance
  273. * impact.
  274. */
  275. if (flush_domains) {
  276. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  277. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  278. }
  279. if (invalidate_domains) {
  280. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  281. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  282. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  283. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  284. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  285. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  286. /*
  287. * TLB invalidate requires a post-sync write.
  288. */
  289. flags |= PIPE_CONTROL_QW_WRITE;
  290. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  291. /* Workaround: we must issue a pipe_control with CS-stall bit
  292. * set before a pipe_control command that has the state cache
  293. * invalidate bit set. */
  294. gen7_render_ring_cs_stall_wa(ring);
  295. }
  296. ret = intel_ring_begin(ring, 4);
  297. if (ret)
  298. return ret;
  299. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  300. intel_ring_emit(ring, flags);
  301. intel_ring_emit(ring, scratch_addr);
  302. intel_ring_emit(ring, 0);
  303. intel_ring_advance(ring);
  304. if (flush_domains)
  305. return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
  306. return 0;
  307. }
  308. static void ring_write_tail(struct intel_ring_buffer *ring,
  309. u32 value)
  310. {
  311. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  312. I915_WRITE_TAIL(ring, value);
  313. }
  314. u32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
  315. {
  316. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  317. u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
  318. RING_ACTHD(ring->mmio_base) : ACTHD;
  319. return I915_READ(acthd_reg);
  320. }
  321. static void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
  322. {
  323. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  324. u32 addr;
  325. addr = dev_priv->status_page_dmah->busaddr;
  326. if (INTEL_INFO(ring->dev)->gen >= 4)
  327. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  328. I915_WRITE(HWS_PGA, addr);
  329. }
  330. static int init_ring_common(struct intel_ring_buffer *ring)
  331. {
  332. struct drm_device *dev = ring->dev;
  333. drm_i915_private_t *dev_priv = dev->dev_private;
  334. struct drm_i915_gem_object *obj = ring->obj;
  335. int ret = 0;
  336. u32 head;
  337. if (HAS_FORCE_WAKE(dev))
  338. gen6_gt_force_wake_get(dev_priv);
  339. if (I915_NEED_GFX_HWS(dev))
  340. intel_ring_setup_status_page(ring);
  341. else
  342. ring_setup_phys_status_page(ring);
  343. /* Stop the ring if it's running. */
  344. I915_WRITE_CTL(ring, 0);
  345. I915_WRITE_HEAD(ring, 0);
  346. ring->write_tail(ring, 0);
  347. head = I915_READ_HEAD(ring) & HEAD_ADDR;
  348. /* G45 ring initialization fails to reset head to zero */
  349. if (head != 0) {
  350. DRM_DEBUG_KMS("%s head not reset to zero "
  351. "ctl %08x head %08x tail %08x start %08x\n",
  352. ring->name,
  353. I915_READ_CTL(ring),
  354. I915_READ_HEAD(ring),
  355. I915_READ_TAIL(ring),
  356. I915_READ_START(ring));
  357. I915_WRITE_HEAD(ring, 0);
  358. if (I915_READ_HEAD(ring) & HEAD_ADDR) {
  359. DRM_ERROR("failed to set %s head to zero "
  360. "ctl %08x head %08x tail %08x start %08x\n",
  361. ring->name,
  362. I915_READ_CTL(ring),
  363. I915_READ_HEAD(ring),
  364. I915_READ_TAIL(ring),
  365. I915_READ_START(ring));
  366. }
  367. }
  368. /* Initialize the ring. This must happen _after_ we've cleared the ring
  369. * registers with the above sequence (the readback of the HEAD registers
  370. * also enforces ordering), otherwise the hw might lose the new ring
  371. * register values. */
  372. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  373. I915_WRITE_CTL(ring,
  374. ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
  375. | RING_VALID);
  376. /* If the head is still not zero, the ring is dead */
  377. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  378. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  379. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  380. DRM_ERROR("%s initialization failed "
  381. "ctl %08x head %08x tail %08x start %08x\n",
  382. ring->name,
  383. I915_READ_CTL(ring),
  384. I915_READ_HEAD(ring),
  385. I915_READ_TAIL(ring),
  386. I915_READ_START(ring));
  387. ret = -EIO;
  388. goto out;
  389. }
  390. if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
  391. i915_kernel_lost_context(ring->dev);
  392. else {
  393. ring->head = I915_READ_HEAD(ring);
  394. ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  395. ring->space = ring_space(ring);
  396. ring->last_retired_head = -1;
  397. }
  398. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  399. out:
  400. if (HAS_FORCE_WAKE(dev))
  401. gen6_gt_force_wake_put(dev_priv);
  402. return ret;
  403. }
  404. static int
  405. init_pipe_control(struct intel_ring_buffer *ring)
  406. {
  407. int ret;
  408. if (ring->scratch.obj)
  409. return 0;
  410. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  411. if (ring->scratch.obj == NULL) {
  412. DRM_ERROR("Failed to allocate seqno page\n");
  413. ret = -ENOMEM;
  414. goto err;
  415. }
  416. i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  417. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, true, false);
  418. if (ret)
  419. goto err_unref;
  420. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  421. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  422. if (ring->scratch.cpu_page == NULL) {
  423. ret = -ENOMEM;
  424. goto err_unpin;
  425. }
  426. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  427. ring->name, ring->scratch.gtt_offset);
  428. return 0;
  429. err_unpin:
  430. i915_gem_object_unpin(ring->scratch.obj);
  431. err_unref:
  432. drm_gem_object_unreference(&ring->scratch.obj->base);
  433. err:
  434. return ret;
  435. }
  436. static int init_render_ring(struct intel_ring_buffer *ring)
  437. {
  438. struct drm_device *dev = ring->dev;
  439. struct drm_i915_private *dev_priv = dev->dev_private;
  440. int ret = init_ring_common(ring);
  441. if (INTEL_INFO(dev)->gen > 3)
  442. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  443. /* We need to disable the AsyncFlip performance optimisations in order
  444. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  445. * programmed to '1' on all products.
  446. *
  447. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  448. */
  449. if (INTEL_INFO(dev)->gen >= 6)
  450. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  451. /* Required for the hardware to program scanline values for waiting */
  452. if (INTEL_INFO(dev)->gen == 6)
  453. I915_WRITE(GFX_MODE,
  454. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
  455. if (IS_GEN7(dev))
  456. I915_WRITE(GFX_MODE_GEN7,
  457. _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
  458. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  459. if (INTEL_INFO(dev)->gen >= 5) {
  460. ret = init_pipe_control(ring);
  461. if (ret)
  462. return ret;
  463. }
  464. if (IS_GEN6(dev)) {
  465. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  466. * "If this bit is set, STCunit will have LRA as replacement
  467. * policy. [...] This bit must be reset. LRA replacement
  468. * policy is not supported."
  469. */
  470. I915_WRITE(CACHE_MODE_0,
  471. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  472. /* This is not explicitly set for GEN6, so read the register.
  473. * see intel_ring_mi_set_context() for why we care.
  474. * TODO: consider explicitly setting the bit for GEN5
  475. */
  476. ring->itlb_before_ctx_switch =
  477. !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
  478. }
  479. if (INTEL_INFO(dev)->gen >= 6)
  480. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  481. if (HAS_L3_GPU_CACHE(dev))
  482. I915_WRITE_IMR(ring, ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  483. return ret;
  484. }
  485. static void render_ring_cleanup(struct intel_ring_buffer *ring)
  486. {
  487. struct drm_device *dev = ring->dev;
  488. if (ring->scratch.obj == NULL)
  489. return;
  490. if (INTEL_INFO(dev)->gen >= 5) {
  491. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  492. i915_gem_object_unpin(ring->scratch.obj);
  493. }
  494. drm_gem_object_unreference(&ring->scratch.obj->base);
  495. ring->scratch.obj = NULL;
  496. }
  497. static void
  498. update_mboxes(struct intel_ring_buffer *ring,
  499. u32 mmio_offset)
  500. {
  501. /* NB: In order to be able to do semaphore MBOX updates for varying number
  502. * of rings, it's easiest if we round up each individual update to a
  503. * multiple of 2 (since ring updates must always be a multiple of 2)
  504. * even though the actual update only requires 3 dwords.
  505. */
  506. #define MBOX_UPDATE_DWORDS 4
  507. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  508. intel_ring_emit(ring, mmio_offset);
  509. intel_ring_emit(ring, ring->outstanding_lazy_request);
  510. intel_ring_emit(ring, MI_NOOP);
  511. }
  512. /**
  513. * gen6_add_request - Update the semaphore mailbox registers
  514. *
  515. * @ring - ring that is adding a request
  516. * @seqno - return seqno stuck into the ring
  517. *
  518. * Update the mailbox registers in the *other* rings with the current seqno.
  519. * This acts like a signal in the canonical semaphore.
  520. */
  521. static int
  522. gen6_add_request(struct intel_ring_buffer *ring)
  523. {
  524. struct drm_device *dev = ring->dev;
  525. struct drm_i915_private *dev_priv = dev->dev_private;
  526. struct intel_ring_buffer *useless;
  527. int i, ret;
  528. ret = intel_ring_begin(ring, ((I915_NUM_RINGS-1) *
  529. MBOX_UPDATE_DWORDS) +
  530. 4);
  531. if (ret)
  532. return ret;
  533. #undef MBOX_UPDATE_DWORDS
  534. for_each_ring(useless, dev_priv, i) {
  535. u32 mbox_reg = ring->signal_mbox[i];
  536. if (mbox_reg != GEN6_NOSYNC)
  537. update_mboxes(ring, mbox_reg);
  538. }
  539. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  540. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  541. intel_ring_emit(ring, ring->outstanding_lazy_request);
  542. intel_ring_emit(ring, MI_USER_INTERRUPT);
  543. intel_ring_advance(ring);
  544. return 0;
  545. }
  546. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  547. u32 seqno)
  548. {
  549. struct drm_i915_private *dev_priv = dev->dev_private;
  550. return dev_priv->last_seqno < seqno;
  551. }
  552. /**
  553. * intel_ring_sync - sync the waiter to the signaller on seqno
  554. *
  555. * @waiter - ring that is waiting
  556. * @signaller - ring which has, or will signal
  557. * @seqno - seqno which the waiter will block on
  558. */
  559. static int
  560. gen6_ring_sync(struct intel_ring_buffer *waiter,
  561. struct intel_ring_buffer *signaller,
  562. u32 seqno)
  563. {
  564. int ret;
  565. u32 dw1 = MI_SEMAPHORE_MBOX |
  566. MI_SEMAPHORE_COMPARE |
  567. MI_SEMAPHORE_REGISTER;
  568. /* Throughout all of the GEM code, seqno passed implies our current
  569. * seqno is >= the last seqno executed. However for hardware the
  570. * comparison is strictly greater than.
  571. */
  572. seqno -= 1;
  573. WARN_ON(signaller->semaphore_register[waiter->id] ==
  574. MI_SEMAPHORE_SYNC_INVALID);
  575. ret = intel_ring_begin(waiter, 4);
  576. if (ret)
  577. return ret;
  578. /* If seqno wrap happened, omit the wait with no-ops */
  579. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  580. intel_ring_emit(waiter,
  581. dw1 |
  582. signaller->semaphore_register[waiter->id]);
  583. intel_ring_emit(waiter, seqno);
  584. intel_ring_emit(waiter, 0);
  585. intel_ring_emit(waiter, MI_NOOP);
  586. } else {
  587. intel_ring_emit(waiter, MI_NOOP);
  588. intel_ring_emit(waiter, MI_NOOP);
  589. intel_ring_emit(waiter, MI_NOOP);
  590. intel_ring_emit(waiter, MI_NOOP);
  591. }
  592. intel_ring_advance(waiter);
  593. return 0;
  594. }
  595. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  596. do { \
  597. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  598. PIPE_CONTROL_DEPTH_STALL); \
  599. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  600. intel_ring_emit(ring__, 0); \
  601. intel_ring_emit(ring__, 0); \
  602. } while (0)
  603. static int
  604. pc_render_add_request(struct intel_ring_buffer *ring)
  605. {
  606. u32 scratch_addr = ring->scratch.gtt_offset + 128;
  607. int ret;
  608. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  609. * incoherent with writes to memory, i.e. completely fubar,
  610. * so we need to use PIPE_NOTIFY instead.
  611. *
  612. * However, we also need to workaround the qword write
  613. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  614. * memory before requesting an interrupt.
  615. */
  616. ret = intel_ring_begin(ring, 32);
  617. if (ret)
  618. return ret;
  619. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  620. PIPE_CONTROL_WRITE_FLUSH |
  621. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  622. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  623. intel_ring_emit(ring, ring->outstanding_lazy_request);
  624. intel_ring_emit(ring, 0);
  625. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  626. scratch_addr += 128; /* write to separate cachelines */
  627. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  628. scratch_addr += 128;
  629. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  630. scratch_addr += 128;
  631. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  632. scratch_addr += 128;
  633. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  634. scratch_addr += 128;
  635. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  636. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  637. PIPE_CONTROL_WRITE_FLUSH |
  638. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  639. PIPE_CONTROL_NOTIFY);
  640. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  641. intel_ring_emit(ring, ring->outstanding_lazy_request);
  642. intel_ring_emit(ring, 0);
  643. intel_ring_advance(ring);
  644. return 0;
  645. }
  646. static u32
  647. gen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
  648. {
  649. /* Workaround to force correct ordering between irq and seqno writes on
  650. * ivb (and maybe also on snb) by reading from a CS register (like
  651. * ACTHD) before reading the status page. */
  652. if (!lazy_coherency)
  653. intel_ring_get_active_head(ring);
  654. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  655. }
  656. static u32
  657. ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
  658. {
  659. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  660. }
  661. static void
  662. ring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
  663. {
  664. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  665. }
  666. static u32
  667. pc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
  668. {
  669. return ring->scratch.cpu_page[0];
  670. }
  671. static void
  672. pc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
  673. {
  674. ring->scratch.cpu_page[0] = seqno;
  675. }
  676. static bool
  677. gen5_ring_get_irq(struct intel_ring_buffer *ring)
  678. {
  679. struct drm_device *dev = ring->dev;
  680. drm_i915_private_t *dev_priv = dev->dev_private;
  681. unsigned long flags;
  682. if (!dev->irq_enabled)
  683. return false;
  684. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  685. if (ring->irq_refcount++ == 0)
  686. ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  687. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  688. return true;
  689. }
  690. static void
  691. gen5_ring_put_irq(struct intel_ring_buffer *ring)
  692. {
  693. struct drm_device *dev = ring->dev;
  694. drm_i915_private_t *dev_priv = dev->dev_private;
  695. unsigned long flags;
  696. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  697. if (--ring->irq_refcount == 0)
  698. ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  699. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  700. }
  701. static bool
  702. i9xx_ring_get_irq(struct intel_ring_buffer *ring)
  703. {
  704. struct drm_device *dev = ring->dev;
  705. drm_i915_private_t *dev_priv = dev->dev_private;
  706. unsigned long flags;
  707. if (!dev->irq_enabled)
  708. return false;
  709. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  710. if (ring->irq_refcount++ == 0) {
  711. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  712. I915_WRITE(IMR, dev_priv->irq_mask);
  713. POSTING_READ(IMR);
  714. }
  715. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  716. return true;
  717. }
  718. static void
  719. i9xx_ring_put_irq(struct intel_ring_buffer *ring)
  720. {
  721. struct drm_device *dev = ring->dev;
  722. drm_i915_private_t *dev_priv = dev->dev_private;
  723. unsigned long flags;
  724. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  725. if (--ring->irq_refcount == 0) {
  726. dev_priv->irq_mask |= ring->irq_enable_mask;
  727. I915_WRITE(IMR, dev_priv->irq_mask);
  728. POSTING_READ(IMR);
  729. }
  730. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  731. }
  732. static bool
  733. i8xx_ring_get_irq(struct intel_ring_buffer *ring)
  734. {
  735. struct drm_device *dev = ring->dev;
  736. drm_i915_private_t *dev_priv = dev->dev_private;
  737. unsigned long flags;
  738. if (!dev->irq_enabled)
  739. return false;
  740. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  741. if (ring->irq_refcount++ == 0) {
  742. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  743. I915_WRITE16(IMR, dev_priv->irq_mask);
  744. POSTING_READ16(IMR);
  745. }
  746. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  747. return true;
  748. }
  749. static void
  750. i8xx_ring_put_irq(struct intel_ring_buffer *ring)
  751. {
  752. struct drm_device *dev = ring->dev;
  753. drm_i915_private_t *dev_priv = dev->dev_private;
  754. unsigned long flags;
  755. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  756. if (--ring->irq_refcount == 0) {
  757. dev_priv->irq_mask |= ring->irq_enable_mask;
  758. I915_WRITE16(IMR, dev_priv->irq_mask);
  759. POSTING_READ16(IMR);
  760. }
  761. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  762. }
  763. void intel_ring_setup_status_page(struct intel_ring_buffer *ring)
  764. {
  765. struct drm_device *dev = ring->dev;
  766. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  767. u32 mmio = 0;
  768. /* The ring status page addresses are no longer next to the rest of
  769. * the ring registers as of gen7.
  770. */
  771. if (IS_GEN7(dev)) {
  772. switch (ring->id) {
  773. case RCS:
  774. mmio = RENDER_HWS_PGA_GEN7;
  775. break;
  776. case BCS:
  777. mmio = BLT_HWS_PGA_GEN7;
  778. break;
  779. case VCS:
  780. mmio = BSD_HWS_PGA_GEN7;
  781. break;
  782. case VECS:
  783. mmio = VEBOX_HWS_PGA_GEN7;
  784. break;
  785. }
  786. } else if (IS_GEN6(ring->dev)) {
  787. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  788. } else {
  789. mmio = RING_HWS_PGA(ring->mmio_base);
  790. }
  791. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  792. POSTING_READ(mmio);
  793. /* Flush the TLB for this page */
  794. if (INTEL_INFO(dev)->gen >= 6) {
  795. u32 reg = RING_INSTPM(ring->mmio_base);
  796. I915_WRITE(reg,
  797. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  798. INSTPM_SYNC_FLUSH));
  799. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  800. 1000))
  801. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  802. ring->name);
  803. }
  804. }
  805. static int
  806. bsd_ring_flush(struct intel_ring_buffer *ring,
  807. u32 invalidate_domains,
  808. u32 flush_domains)
  809. {
  810. int ret;
  811. ret = intel_ring_begin(ring, 2);
  812. if (ret)
  813. return ret;
  814. intel_ring_emit(ring, MI_FLUSH);
  815. intel_ring_emit(ring, MI_NOOP);
  816. intel_ring_advance(ring);
  817. return 0;
  818. }
  819. static int
  820. i9xx_add_request(struct intel_ring_buffer *ring)
  821. {
  822. int ret;
  823. ret = intel_ring_begin(ring, 4);
  824. if (ret)
  825. return ret;
  826. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  827. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  828. intel_ring_emit(ring, ring->outstanding_lazy_request);
  829. intel_ring_emit(ring, MI_USER_INTERRUPT);
  830. intel_ring_advance(ring);
  831. return 0;
  832. }
  833. static bool
  834. gen6_ring_get_irq(struct intel_ring_buffer *ring)
  835. {
  836. struct drm_device *dev = ring->dev;
  837. drm_i915_private_t *dev_priv = dev->dev_private;
  838. unsigned long flags;
  839. if (!dev->irq_enabled)
  840. return false;
  841. /* It looks like we need to prevent the gt from suspending while waiting
  842. * for an notifiy irq, otherwise irqs seem to get lost on at least the
  843. * blt/bsd rings on ivb. */
  844. gen6_gt_force_wake_get(dev_priv);
  845. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  846. if (ring->irq_refcount++ == 0) {
  847. if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
  848. I915_WRITE_IMR(ring,
  849. ~(ring->irq_enable_mask |
  850. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  851. else
  852. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  853. ilk_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  854. }
  855. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  856. return true;
  857. }
  858. static void
  859. gen6_ring_put_irq(struct intel_ring_buffer *ring)
  860. {
  861. struct drm_device *dev = ring->dev;
  862. drm_i915_private_t *dev_priv = dev->dev_private;
  863. unsigned long flags;
  864. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  865. if (--ring->irq_refcount == 0) {
  866. if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
  867. I915_WRITE_IMR(ring,
  868. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  869. else
  870. I915_WRITE_IMR(ring, ~0);
  871. ilk_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  872. }
  873. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  874. gen6_gt_force_wake_put(dev_priv);
  875. }
  876. static bool
  877. hsw_vebox_get_irq(struct intel_ring_buffer *ring)
  878. {
  879. struct drm_device *dev = ring->dev;
  880. struct drm_i915_private *dev_priv = dev->dev_private;
  881. unsigned long flags;
  882. if (!dev->irq_enabled)
  883. return false;
  884. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  885. if (ring->irq_refcount++ == 0) {
  886. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  887. snb_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  888. }
  889. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  890. return true;
  891. }
  892. static void
  893. hsw_vebox_put_irq(struct intel_ring_buffer *ring)
  894. {
  895. struct drm_device *dev = ring->dev;
  896. struct drm_i915_private *dev_priv = dev->dev_private;
  897. unsigned long flags;
  898. if (!dev->irq_enabled)
  899. return;
  900. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  901. if (--ring->irq_refcount == 0) {
  902. I915_WRITE_IMR(ring, ~0);
  903. snb_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  904. }
  905. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  906. }
  907. static int
  908. i965_dispatch_execbuffer(struct intel_ring_buffer *ring,
  909. u32 offset, u32 length,
  910. unsigned flags)
  911. {
  912. int ret;
  913. ret = intel_ring_begin(ring, 2);
  914. if (ret)
  915. return ret;
  916. intel_ring_emit(ring,
  917. MI_BATCH_BUFFER_START |
  918. MI_BATCH_GTT |
  919. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  920. intel_ring_emit(ring, offset);
  921. intel_ring_advance(ring);
  922. return 0;
  923. }
  924. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  925. #define I830_BATCH_LIMIT (256*1024)
  926. static int
  927. i830_dispatch_execbuffer(struct intel_ring_buffer *ring,
  928. u32 offset, u32 len,
  929. unsigned flags)
  930. {
  931. int ret;
  932. if (flags & I915_DISPATCH_PINNED) {
  933. ret = intel_ring_begin(ring, 4);
  934. if (ret)
  935. return ret;
  936. intel_ring_emit(ring, MI_BATCH_BUFFER);
  937. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  938. intel_ring_emit(ring, offset + len - 8);
  939. intel_ring_emit(ring, MI_NOOP);
  940. intel_ring_advance(ring);
  941. } else {
  942. u32 cs_offset = ring->scratch.gtt_offset;
  943. if (len > I830_BATCH_LIMIT)
  944. return -ENOSPC;
  945. ret = intel_ring_begin(ring, 9+3);
  946. if (ret)
  947. return ret;
  948. /* Blit the batch (which has now all relocs applied) to the stable batch
  949. * scratch bo area (so that the CS never stumbles over its tlb
  950. * invalidation bug) ... */
  951. intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
  952. XY_SRC_COPY_BLT_WRITE_ALPHA |
  953. XY_SRC_COPY_BLT_WRITE_RGB);
  954. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
  955. intel_ring_emit(ring, 0);
  956. intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
  957. intel_ring_emit(ring, cs_offset);
  958. intel_ring_emit(ring, 0);
  959. intel_ring_emit(ring, 4096);
  960. intel_ring_emit(ring, offset);
  961. intel_ring_emit(ring, MI_FLUSH);
  962. /* ... and execute it. */
  963. intel_ring_emit(ring, MI_BATCH_BUFFER);
  964. intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  965. intel_ring_emit(ring, cs_offset + len - 8);
  966. intel_ring_advance(ring);
  967. }
  968. return 0;
  969. }
  970. static int
  971. i915_dispatch_execbuffer(struct intel_ring_buffer *ring,
  972. u32 offset, u32 len,
  973. unsigned flags)
  974. {
  975. int ret;
  976. ret = intel_ring_begin(ring, 2);
  977. if (ret)
  978. return ret;
  979. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  980. intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
  981. intel_ring_advance(ring);
  982. return 0;
  983. }
  984. static void cleanup_status_page(struct intel_ring_buffer *ring)
  985. {
  986. struct drm_i915_gem_object *obj;
  987. obj = ring->status_page.obj;
  988. if (obj == NULL)
  989. return;
  990. kunmap(sg_page(obj->pages->sgl));
  991. i915_gem_object_unpin(obj);
  992. drm_gem_object_unreference(&obj->base);
  993. ring->status_page.obj = NULL;
  994. }
  995. static int init_status_page(struct intel_ring_buffer *ring)
  996. {
  997. struct drm_device *dev = ring->dev;
  998. struct drm_i915_gem_object *obj;
  999. int ret;
  1000. obj = i915_gem_alloc_object(dev, 4096);
  1001. if (obj == NULL) {
  1002. DRM_ERROR("Failed to allocate status page\n");
  1003. ret = -ENOMEM;
  1004. goto err;
  1005. }
  1006. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1007. ret = i915_gem_obj_ggtt_pin(obj, 4096, true, false);
  1008. if (ret != 0) {
  1009. goto err_unref;
  1010. }
  1011. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1012. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1013. if (ring->status_page.page_addr == NULL) {
  1014. ret = -ENOMEM;
  1015. goto err_unpin;
  1016. }
  1017. ring->status_page.obj = obj;
  1018. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1019. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1020. ring->name, ring->status_page.gfx_addr);
  1021. return 0;
  1022. err_unpin:
  1023. i915_gem_object_unpin(obj);
  1024. err_unref:
  1025. drm_gem_object_unreference(&obj->base);
  1026. err:
  1027. return ret;
  1028. }
  1029. static int init_phys_status_page(struct intel_ring_buffer *ring)
  1030. {
  1031. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1032. if (!dev_priv->status_page_dmah) {
  1033. dev_priv->status_page_dmah =
  1034. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1035. if (!dev_priv->status_page_dmah)
  1036. return -ENOMEM;
  1037. }
  1038. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1039. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1040. return 0;
  1041. }
  1042. static int intel_init_ring_buffer(struct drm_device *dev,
  1043. struct intel_ring_buffer *ring)
  1044. {
  1045. struct drm_i915_gem_object *obj;
  1046. struct drm_i915_private *dev_priv = dev->dev_private;
  1047. int ret;
  1048. ring->dev = dev;
  1049. INIT_LIST_HEAD(&ring->active_list);
  1050. INIT_LIST_HEAD(&ring->request_list);
  1051. ring->size = 32 * PAGE_SIZE;
  1052. memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
  1053. init_waitqueue_head(&ring->irq_queue);
  1054. if (I915_NEED_GFX_HWS(dev)) {
  1055. ret = init_status_page(ring);
  1056. if (ret)
  1057. return ret;
  1058. } else {
  1059. BUG_ON(ring->id != RCS);
  1060. ret = init_phys_status_page(ring);
  1061. if (ret)
  1062. return ret;
  1063. }
  1064. obj = NULL;
  1065. if (!HAS_LLC(dev))
  1066. obj = i915_gem_object_create_stolen(dev, ring->size);
  1067. if (obj == NULL)
  1068. obj = i915_gem_alloc_object(dev, ring->size);
  1069. if (obj == NULL) {
  1070. DRM_ERROR("Failed to allocate ringbuffer\n");
  1071. ret = -ENOMEM;
  1072. goto err_hws;
  1073. }
  1074. ring->obj = obj;
  1075. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, true, false);
  1076. if (ret)
  1077. goto err_unref;
  1078. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1079. if (ret)
  1080. goto err_unpin;
  1081. ring->virtual_start =
  1082. ioremap_wc(dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj),
  1083. ring->size);
  1084. if (ring->virtual_start == NULL) {
  1085. DRM_ERROR("Failed to map ringbuffer.\n");
  1086. ret = -EINVAL;
  1087. goto err_unpin;
  1088. }
  1089. ret = ring->init(ring);
  1090. if (ret)
  1091. goto err_unmap;
  1092. /* Workaround an erratum on the i830 which causes a hang if
  1093. * the TAIL pointer points to within the last 2 cachelines
  1094. * of the buffer.
  1095. */
  1096. ring->effective_size = ring->size;
  1097. if (IS_I830(ring->dev) || IS_845G(ring->dev))
  1098. ring->effective_size -= 128;
  1099. return 0;
  1100. err_unmap:
  1101. iounmap(ring->virtual_start);
  1102. err_unpin:
  1103. i915_gem_object_unpin(obj);
  1104. err_unref:
  1105. drm_gem_object_unreference(&obj->base);
  1106. ring->obj = NULL;
  1107. err_hws:
  1108. cleanup_status_page(ring);
  1109. return ret;
  1110. }
  1111. void intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
  1112. {
  1113. struct drm_i915_private *dev_priv;
  1114. int ret;
  1115. if (ring->obj == NULL)
  1116. return;
  1117. /* Disable the ring buffer. The ring must be idle at this point */
  1118. dev_priv = ring->dev->dev_private;
  1119. ret = intel_ring_idle(ring);
  1120. if (ret)
  1121. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  1122. ring->name, ret);
  1123. I915_WRITE_CTL(ring, 0);
  1124. iounmap(ring->virtual_start);
  1125. i915_gem_object_unpin(ring->obj);
  1126. drm_gem_object_unreference(&ring->obj->base);
  1127. ring->obj = NULL;
  1128. if (ring->cleanup)
  1129. ring->cleanup(ring);
  1130. cleanup_status_page(ring);
  1131. }
  1132. static int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
  1133. {
  1134. int ret;
  1135. ret = i915_wait_seqno(ring, seqno);
  1136. if (!ret)
  1137. i915_gem_retire_requests_ring(ring);
  1138. return ret;
  1139. }
  1140. static int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
  1141. {
  1142. struct drm_i915_gem_request *request;
  1143. u32 seqno = 0;
  1144. int ret;
  1145. i915_gem_retire_requests_ring(ring);
  1146. if (ring->last_retired_head != -1) {
  1147. ring->head = ring->last_retired_head;
  1148. ring->last_retired_head = -1;
  1149. ring->space = ring_space(ring);
  1150. if (ring->space >= n)
  1151. return 0;
  1152. }
  1153. list_for_each_entry(request, &ring->request_list, list) {
  1154. int space;
  1155. if (request->tail == -1)
  1156. continue;
  1157. space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
  1158. if (space < 0)
  1159. space += ring->size;
  1160. if (space >= n) {
  1161. seqno = request->seqno;
  1162. break;
  1163. }
  1164. /* Consume this request in case we need more space than
  1165. * is available and so need to prevent a race between
  1166. * updating last_retired_head and direct reads of
  1167. * I915_RING_HEAD. It also provides a nice sanity check.
  1168. */
  1169. request->tail = -1;
  1170. }
  1171. if (seqno == 0)
  1172. return -ENOSPC;
  1173. ret = intel_ring_wait_seqno(ring, seqno);
  1174. if (ret)
  1175. return ret;
  1176. if (WARN_ON(ring->last_retired_head == -1))
  1177. return -ENOSPC;
  1178. ring->head = ring->last_retired_head;
  1179. ring->last_retired_head = -1;
  1180. ring->space = ring_space(ring);
  1181. if (WARN_ON(ring->space < n))
  1182. return -ENOSPC;
  1183. return 0;
  1184. }
  1185. static int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
  1186. {
  1187. struct drm_device *dev = ring->dev;
  1188. struct drm_i915_private *dev_priv = dev->dev_private;
  1189. unsigned long end;
  1190. int ret;
  1191. ret = intel_ring_wait_request(ring, n);
  1192. if (ret != -ENOSPC)
  1193. return ret;
  1194. trace_i915_ring_wait_begin(ring);
  1195. /* With GEM the hangcheck timer should kick us out of the loop,
  1196. * leaving it early runs the risk of corrupting GEM state (due
  1197. * to running on almost untested codepaths). But on resume
  1198. * timers don't work yet, so prevent a complete hang in that
  1199. * case by choosing an insanely large timeout. */
  1200. end = jiffies + 60 * HZ;
  1201. do {
  1202. ring->head = I915_READ_HEAD(ring);
  1203. ring->space = ring_space(ring);
  1204. if (ring->space >= n) {
  1205. trace_i915_ring_wait_end(ring);
  1206. return 0;
  1207. }
  1208. if (dev->primary->master) {
  1209. struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
  1210. if (master_priv->sarea_priv)
  1211. master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
  1212. }
  1213. msleep(1);
  1214. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1215. dev_priv->mm.interruptible);
  1216. if (ret)
  1217. return ret;
  1218. } while (!time_after(jiffies, end));
  1219. trace_i915_ring_wait_end(ring);
  1220. return -EBUSY;
  1221. }
  1222. static int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
  1223. {
  1224. uint32_t __iomem *virt;
  1225. int rem = ring->size - ring->tail;
  1226. if (ring->space < rem) {
  1227. int ret = ring_wait_for_space(ring, rem);
  1228. if (ret)
  1229. return ret;
  1230. }
  1231. virt = ring->virtual_start + ring->tail;
  1232. rem /= 4;
  1233. while (rem--)
  1234. iowrite32(MI_NOOP, virt++);
  1235. ring->tail = 0;
  1236. ring->space = ring_space(ring);
  1237. return 0;
  1238. }
  1239. int intel_ring_idle(struct intel_ring_buffer *ring)
  1240. {
  1241. u32 seqno;
  1242. int ret;
  1243. /* We need to add any requests required to flush the objects and ring */
  1244. if (ring->outstanding_lazy_request) {
  1245. ret = i915_add_request(ring, NULL);
  1246. if (ret)
  1247. return ret;
  1248. }
  1249. /* Wait upon the last request to be completed */
  1250. if (list_empty(&ring->request_list))
  1251. return 0;
  1252. seqno = list_entry(ring->request_list.prev,
  1253. struct drm_i915_gem_request,
  1254. list)->seqno;
  1255. return i915_wait_seqno(ring, seqno);
  1256. }
  1257. static int
  1258. intel_ring_alloc_seqno(struct intel_ring_buffer *ring)
  1259. {
  1260. if (ring->outstanding_lazy_request)
  1261. return 0;
  1262. return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_request);
  1263. }
  1264. static int __intel_ring_begin(struct intel_ring_buffer *ring,
  1265. int bytes)
  1266. {
  1267. int ret;
  1268. if (unlikely(ring->tail + bytes > ring->effective_size)) {
  1269. ret = intel_wrap_ring_buffer(ring);
  1270. if (unlikely(ret))
  1271. return ret;
  1272. }
  1273. if (unlikely(ring->space < bytes)) {
  1274. ret = ring_wait_for_space(ring, bytes);
  1275. if (unlikely(ret))
  1276. return ret;
  1277. }
  1278. ring->space -= bytes;
  1279. return 0;
  1280. }
  1281. int intel_ring_begin(struct intel_ring_buffer *ring,
  1282. int num_dwords)
  1283. {
  1284. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1285. int ret;
  1286. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1287. dev_priv->mm.interruptible);
  1288. if (ret)
  1289. return ret;
  1290. /* Preallocate the olr before touching the ring */
  1291. ret = intel_ring_alloc_seqno(ring);
  1292. if (ret)
  1293. return ret;
  1294. return __intel_ring_begin(ring, num_dwords * sizeof(uint32_t));
  1295. }
  1296. void intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
  1297. {
  1298. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1299. BUG_ON(ring->outstanding_lazy_request);
  1300. if (INTEL_INFO(ring->dev)->gen >= 6) {
  1301. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1302. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1303. if (HAS_VEBOX(ring->dev))
  1304. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1305. }
  1306. ring->set_seqno(ring, seqno);
  1307. ring->hangcheck.seqno = seqno;
  1308. }
  1309. void intel_ring_advance(struct intel_ring_buffer *ring)
  1310. {
  1311. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1312. ring->tail &= ring->size - 1;
  1313. if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
  1314. return;
  1315. ring->write_tail(ring, ring->tail);
  1316. }
  1317. static void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
  1318. u32 value)
  1319. {
  1320. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1321. /* Every tail move must follow the sequence below */
  1322. /* Disable notification that the ring is IDLE. The GT
  1323. * will then assume that it is busy and bring it out of rc6.
  1324. */
  1325. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1326. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1327. /* Clear the context id. Here be magic! */
  1328. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1329. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1330. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1331. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1332. 50))
  1333. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  1334. /* Now that the ring is fully powered up, update the tail */
  1335. I915_WRITE_TAIL(ring, value);
  1336. POSTING_READ(RING_TAIL(ring->mmio_base));
  1337. /* Let the ring send IDLE messages to the GT again,
  1338. * and so let it sleep to conserve power when idle.
  1339. */
  1340. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1341. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1342. }
  1343. static int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
  1344. u32 invalidate, u32 flush)
  1345. {
  1346. uint32_t cmd;
  1347. int ret;
  1348. ret = intel_ring_begin(ring, 4);
  1349. if (ret)
  1350. return ret;
  1351. cmd = MI_FLUSH_DW;
  1352. /*
  1353. * Bspec vol 1c.5 - video engine command streamer:
  1354. * "If ENABLED, all TLBs will be invalidated once the flush
  1355. * operation is complete. This bit is only valid when the
  1356. * Post-Sync Operation field is a value of 1h or 3h."
  1357. */
  1358. if (invalidate & I915_GEM_GPU_DOMAINS)
  1359. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
  1360. MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  1361. intel_ring_emit(ring, cmd);
  1362. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1363. intel_ring_emit(ring, 0);
  1364. intel_ring_emit(ring, MI_NOOP);
  1365. intel_ring_advance(ring);
  1366. return 0;
  1367. }
  1368. static int
  1369. hsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1370. u32 offset, u32 len,
  1371. unsigned flags)
  1372. {
  1373. int ret;
  1374. ret = intel_ring_begin(ring, 2);
  1375. if (ret)
  1376. return ret;
  1377. intel_ring_emit(ring,
  1378. MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
  1379. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
  1380. /* bit0-7 is the length on GEN6+ */
  1381. intel_ring_emit(ring, offset);
  1382. intel_ring_advance(ring);
  1383. return 0;
  1384. }
  1385. static int
  1386. gen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
  1387. u32 offset, u32 len,
  1388. unsigned flags)
  1389. {
  1390. int ret;
  1391. ret = intel_ring_begin(ring, 2);
  1392. if (ret)
  1393. return ret;
  1394. intel_ring_emit(ring,
  1395. MI_BATCH_BUFFER_START |
  1396. (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
  1397. /* bit0-7 is the length on GEN6+ */
  1398. intel_ring_emit(ring, offset);
  1399. intel_ring_advance(ring);
  1400. return 0;
  1401. }
  1402. /* Blitter support (SandyBridge+) */
  1403. static int gen6_ring_flush(struct intel_ring_buffer *ring,
  1404. u32 invalidate, u32 flush)
  1405. {
  1406. struct drm_device *dev = ring->dev;
  1407. uint32_t cmd;
  1408. int ret;
  1409. ret = intel_ring_begin(ring, 4);
  1410. if (ret)
  1411. return ret;
  1412. cmd = MI_FLUSH_DW;
  1413. /*
  1414. * Bspec vol 1c.3 - blitter engine command streamer:
  1415. * "If ENABLED, all TLBs will be invalidated once the flush
  1416. * operation is complete. This bit is only valid when the
  1417. * Post-Sync Operation field is a value of 1h or 3h."
  1418. */
  1419. if (invalidate & I915_GEM_DOMAIN_RENDER)
  1420. cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
  1421. MI_FLUSH_DW_OP_STOREDW;
  1422. intel_ring_emit(ring, cmd);
  1423. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  1424. intel_ring_emit(ring, 0);
  1425. intel_ring_emit(ring, MI_NOOP);
  1426. intel_ring_advance(ring);
  1427. if (IS_GEN7(dev) && flush)
  1428. return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
  1429. return 0;
  1430. }
  1431. int intel_init_render_ring_buffer(struct drm_device *dev)
  1432. {
  1433. drm_i915_private_t *dev_priv = dev->dev_private;
  1434. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  1435. ring->name = "render ring";
  1436. ring->id = RCS;
  1437. ring->mmio_base = RENDER_RING_BASE;
  1438. if (INTEL_INFO(dev)->gen >= 6) {
  1439. ring->add_request = gen6_add_request;
  1440. ring->flush = gen7_render_ring_flush;
  1441. if (INTEL_INFO(dev)->gen == 6)
  1442. ring->flush = gen6_render_ring_flush;
  1443. ring->irq_get = gen6_ring_get_irq;
  1444. ring->irq_put = gen6_ring_put_irq;
  1445. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  1446. ring->get_seqno = gen6_ring_get_seqno;
  1447. ring->set_seqno = ring_set_seqno;
  1448. ring->sync_to = gen6_ring_sync;
  1449. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  1450. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
  1451. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
  1452. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
  1453. ring->signal_mbox[RCS] = GEN6_NOSYNC;
  1454. ring->signal_mbox[VCS] = GEN6_VRSYNC;
  1455. ring->signal_mbox[BCS] = GEN6_BRSYNC;
  1456. ring->signal_mbox[VECS] = GEN6_VERSYNC;
  1457. } else if (IS_GEN5(dev)) {
  1458. ring->add_request = pc_render_add_request;
  1459. ring->flush = gen4_render_ring_flush;
  1460. ring->get_seqno = pc_render_get_seqno;
  1461. ring->set_seqno = pc_render_set_seqno;
  1462. ring->irq_get = gen5_ring_get_irq;
  1463. ring->irq_put = gen5_ring_put_irq;
  1464. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  1465. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  1466. } else {
  1467. ring->add_request = i9xx_add_request;
  1468. if (INTEL_INFO(dev)->gen < 4)
  1469. ring->flush = gen2_render_ring_flush;
  1470. else
  1471. ring->flush = gen4_render_ring_flush;
  1472. ring->get_seqno = ring_get_seqno;
  1473. ring->set_seqno = ring_set_seqno;
  1474. if (IS_GEN2(dev)) {
  1475. ring->irq_get = i8xx_ring_get_irq;
  1476. ring->irq_put = i8xx_ring_put_irq;
  1477. } else {
  1478. ring->irq_get = i9xx_ring_get_irq;
  1479. ring->irq_put = i9xx_ring_put_irq;
  1480. }
  1481. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1482. }
  1483. ring->write_tail = ring_write_tail;
  1484. if (IS_HASWELL(dev))
  1485. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  1486. else if (INTEL_INFO(dev)->gen >= 6)
  1487. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1488. else if (INTEL_INFO(dev)->gen >= 4)
  1489. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1490. else if (IS_I830(dev) || IS_845G(dev))
  1491. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  1492. else
  1493. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  1494. ring->init = init_render_ring;
  1495. ring->cleanup = render_ring_cleanup;
  1496. /* Workaround batchbuffer to combat CS tlb bug. */
  1497. if (HAS_BROKEN_CS_TLB(dev)) {
  1498. struct drm_i915_gem_object *obj;
  1499. int ret;
  1500. obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
  1501. if (obj == NULL) {
  1502. DRM_ERROR("Failed to allocate batch bo\n");
  1503. return -ENOMEM;
  1504. }
  1505. ret = i915_gem_obj_ggtt_pin(obj, 0, true, false);
  1506. if (ret != 0) {
  1507. drm_gem_object_unreference(&obj->base);
  1508. DRM_ERROR("Failed to ping batch bo\n");
  1509. return ret;
  1510. }
  1511. ring->scratch.obj = obj;
  1512. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  1513. }
  1514. return intel_init_ring_buffer(dev, ring);
  1515. }
  1516. int intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
  1517. {
  1518. drm_i915_private_t *dev_priv = dev->dev_private;
  1519. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  1520. int ret;
  1521. ring->name = "render ring";
  1522. ring->id = RCS;
  1523. ring->mmio_base = RENDER_RING_BASE;
  1524. if (INTEL_INFO(dev)->gen >= 6) {
  1525. /* non-kms not supported on gen6+ */
  1526. return -ENODEV;
  1527. }
  1528. /* Note: gem is not supported on gen5/ilk without kms (the corresponding
  1529. * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
  1530. * the special gen5 functions. */
  1531. ring->add_request = i9xx_add_request;
  1532. if (INTEL_INFO(dev)->gen < 4)
  1533. ring->flush = gen2_render_ring_flush;
  1534. else
  1535. ring->flush = gen4_render_ring_flush;
  1536. ring->get_seqno = ring_get_seqno;
  1537. ring->set_seqno = ring_set_seqno;
  1538. if (IS_GEN2(dev)) {
  1539. ring->irq_get = i8xx_ring_get_irq;
  1540. ring->irq_put = i8xx_ring_put_irq;
  1541. } else {
  1542. ring->irq_get = i9xx_ring_get_irq;
  1543. ring->irq_put = i9xx_ring_put_irq;
  1544. }
  1545. ring->irq_enable_mask = I915_USER_INTERRUPT;
  1546. ring->write_tail = ring_write_tail;
  1547. if (INTEL_INFO(dev)->gen >= 4)
  1548. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1549. else if (IS_I830(dev) || IS_845G(dev))
  1550. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  1551. else
  1552. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  1553. ring->init = init_render_ring;
  1554. ring->cleanup = render_ring_cleanup;
  1555. ring->dev = dev;
  1556. INIT_LIST_HEAD(&ring->active_list);
  1557. INIT_LIST_HEAD(&ring->request_list);
  1558. ring->size = size;
  1559. ring->effective_size = ring->size;
  1560. if (IS_I830(ring->dev) || IS_845G(ring->dev))
  1561. ring->effective_size -= 128;
  1562. ring->virtual_start = ioremap_wc(start, size);
  1563. if (ring->virtual_start == NULL) {
  1564. DRM_ERROR("can not ioremap virtual address for"
  1565. " ring buffer\n");
  1566. return -ENOMEM;
  1567. }
  1568. if (!I915_NEED_GFX_HWS(dev)) {
  1569. ret = init_phys_status_page(ring);
  1570. if (ret)
  1571. return ret;
  1572. }
  1573. return 0;
  1574. }
  1575. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  1576. {
  1577. drm_i915_private_t *dev_priv = dev->dev_private;
  1578. struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
  1579. ring->name = "bsd ring";
  1580. ring->id = VCS;
  1581. ring->write_tail = ring_write_tail;
  1582. if (IS_GEN6(dev) || IS_GEN7(dev)) {
  1583. ring->mmio_base = GEN6_BSD_RING_BASE;
  1584. /* gen6 bsd needs a special wa for tail updates */
  1585. if (IS_GEN6(dev))
  1586. ring->write_tail = gen6_bsd_ring_write_tail;
  1587. ring->flush = gen6_bsd_ring_flush;
  1588. ring->add_request = gen6_add_request;
  1589. ring->get_seqno = gen6_ring_get_seqno;
  1590. ring->set_seqno = ring_set_seqno;
  1591. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  1592. ring->irq_get = gen6_ring_get_irq;
  1593. ring->irq_put = gen6_ring_put_irq;
  1594. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1595. ring->sync_to = gen6_ring_sync;
  1596. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
  1597. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  1598. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
  1599. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
  1600. ring->signal_mbox[RCS] = GEN6_RVSYNC;
  1601. ring->signal_mbox[VCS] = GEN6_NOSYNC;
  1602. ring->signal_mbox[BCS] = GEN6_BVSYNC;
  1603. ring->signal_mbox[VECS] = GEN6_VEVSYNC;
  1604. } else {
  1605. ring->mmio_base = BSD_RING_BASE;
  1606. ring->flush = bsd_ring_flush;
  1607. ring->add_request = i9xx_add_request;
  1608. ring->get_seqno = ring_get_seqno;
  1609. ring->set_seqno = ring_set_seqno;
  1610. if (IS_GEN5(dev)) {
  1611. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  1612. ring->irq_get = gen5_ring_get_irq;
  1613. ring->irq_put = gen5_ring_put_irq;
  1614. } else {
  1615. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  1616. ring->irq_get = i9xx_ring_get_irq;
  1617. ring->irq_put = i9xx_ring_put_irq;
  1618. }
  1619. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  1620. }
  1621. ring->init = init_ring_common;
  1622. return intel_init_ring_buffer(dev, ring);
  1623. }
  1624. int intel_init_blt_ring_buffer(struct drm_device *dev)
  1625. {
  1626. drm_i915_private_t *dev_priv = dev->dev_private;
  1627. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  1628. ring->name = "blitter ring";
  1629. ring->id = BCS;
  1630. ring->mmio_base = BLT_RING_BASE;
  1631. ring->write_tail = ring_write_tail;
  1632. ring->flush = gen6_ring_flush;
  1633. ring->add_request = gen6_add_request;
  1634. ring->get_seqno = gen6_ring_get_seqno;
  1635. ring->set_seqno = ring_set_seqno;
  1636. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  1637. ring->irq_get = gen6_ring_get_irq;
  1638. ring->irq_put = gen6_ring_put_irq;
  1639. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1640. ring->sync_to = gen6_ring_sync;
  1641. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
  1642. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
  1643. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  1644. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
  1645. ring->signal_mbox[RCS] = GEN6_RBSYNC;
  1646. ring->signal_mbox[VCS] = GEN6_VBSYNC;
  1647. ring->signal_mbox[BCS] = GEN6_NOSYNC;
  1648. ring->signal_mbox[VECS] = GEN6_VEBSYNC;
  1649. ring->init = init_ring_common;
  1650. return intel_init_ring_buffer(dev, ring);
  1651. }
  1652. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  1653. {
  1654. drm_i915_private_t *dev_priv = dev->dev_private;
  1655. struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
  1656. ring->name = "video enhancement ring";
  1657. ring->id = VECS;
  1658. ring->mmio_base = VEBOX_RING_BASE;
  1659. ring->write_tail = ring_write_tail;
  1660. ring->flush = gen6_ring_flush;
  1661. ring->add_request = gen6_add_request;
  1662. ring->get_seqno = gen6_ring_get_seqno;
  1663. ring->set_seqno = ring_set_seqno;
  1664. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  1665. ring->irq_get = hsw_vebox_get_irq;
  1666. ring->irq_put = hsw_vebox_put_irq;
  1667. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  1668. ring->sync_to = gen6_ring_sync;
  1669. ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
  1670. ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
  1671. ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
  1672. ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  1673. ring->signal_mbox[RCS] = GEN6_RVESYNC;
  1674. ring->signal_mbox[VCS] = GEN6_VVESYNC;
  1675. ring->signal_mbox[BCS] = GEN6_BVESYNC;
  1676. ring->signal_mbox[VECS] = GEN6_NOSYNC;
  1677. ring->init = init_ring_common;
  1678. return intel_init_ring_buffer(dev, ring);
  1679. }
  1680. int
  1681. intel_ring_flush_all_caches(struct intel_ring_buffer *ring)
  1682. {
  1683. int ret;
  1684. if (!ring->gpu_caches_dirty)
  1685. return 0;
  1686. ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
  1687. if (ret)
  1688. return ret;
  1689. trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
  1690. ring->gpu_caches_dirty = false;
  1691. return 0;
  1692. }
  1693. int
  1694. intel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
  1695. {
  1696. uint32_t flush_domains;
  1697. int ret;
  1698. flush_domains = 0;
  1699. if (ring->gpu_caches_dirty)
  1700. flush_domains = I915_GEM_GPU_DOMAINS;
  1701. ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  1702. if (ret)
  1703. return ret;
  1704. trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
  1705. ring->gpu_caches_dirty = false;
  1706. return 0;
  1707. }