intel_display.c 293 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  46. struct intel_crtc_config *pipe_config);
  47. static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
  48. struct intel_crtc_config *pipe_config);
  49. static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
  50. int x, int y, struct drm_framebuffer *old_fb);
  51. typedef struct {
  52. int min, max;
  53. } intel_range_t;
  54. typedef struct {
  55. int dot_limit;
  56. int p2_slow, p2_fast;
  57. } intel_p2_t;
  58. typedef struct intel_limit intel_limit_t;
  59. struct intel_limit {
  60. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  61. intel_p2_t p2;
  62. };
  63. /* FDI */
  64. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  65. int
  66. intel_pch_rawclk(struct drm_device *dev)
  67. {
  68. struct drm_i915_private *dev_priv = dev->dev_private;
  69. WARN_ON(!HAS_PCH_SPLIT(dev));
  70. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  71. }
  72. static inline u32 /* units of 100MHz */
  73. intel_fdi_link_freq(struct drm_device *dev)
  74. {
  75. if (IS_GEN5(dev)) {
  76. struct drm_i915_private *dev_priv = dev->dev_private;
  77. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  78. } else
  79. return 27;
  80. }
  81. static const intel_limit_t intel_limits_i8xx_dac = {
  82. .dot = { .min = 25000, .max = 350000 },
  83. .vco = { .min = 930000, .max = 1400000 },
  84. .n = { .min = 3, .max = 16 },
  85. .m = { .min = 96, .max = 140 },
  86. .m1 = { .min = 18, .max = 26 },
  87. .m2 = { .min = 6, .max = 16 },
  88. .p = { .min = 4, .max = 128 },
  89. .p1 = { .min = 2, .max = 33 },
  90. .p2 = { .dot_limit = 165000,
  91. .p2_slow = 4, .p2_fast = 2 },
  92. };
  93. static const intel_limit_t intel_limits_i8xx_dvo = {
  94. .dot = { .min = 25000, .max = 350000 },
  95. .vco = { .min = 930000, .max = 1400000 },
  96. .n = { .min = 3, .max = 16 },
  97. .m = { .min = 96, .max = 140 },
  98. .m1 = { .min = 18, .max = 26 },
  99. .m2 = { .min = 6, .max = 16 },
  100. .p = { .min = 4, .max = 128 },
  101. .p1 = { .min = 2, .max = 33 },
  102. .p2 = { .dot_limit = 165000,
  103. .p2_slow = 4, .p2_fast = 4 },
  104. };
  105. static const intel_limit_t intel_limits_i8xx_lvds = {
  106. .dot = { .min = 25000, .max = 350000 },
  107. .vco = { .min = 930000, .max = 1400000 },
  108. .n = { .min = 3, .max = 16 },
  109. .m = { .min = 96, .max = 140 },
  110. .m1 = { .min = 18, .max = 26 },
  111. .m2 = { .min = 6, .max = 16 },
  112. .p = { .min = 4, .max = 128 },
  113. .p1 = { .min = 1, .max = 6 },
  114. .p2 = { .dot_limit = 165000,
  115. .p2_slow = 14, .p2_fast = 7 },
  116. };
  117. static const intel_limit_t intel_limits_i9xx_sdvo = {
  118. .dot = { .min = 20000, .max = 400000 },
  119. .vco = { .min = 1400000, .max = 2800000 },
  120. .n = { .min = 1, .max = 6 },
  121. .m = { .min = 70, .max = 120 },
  122. .m1 = { .min = 8, .max = 18 },
  123. .m2 = { .min = 3, .max = 7 },
  124. .p = { .min = 5, .max = 80 },
  125. .p1 = { .min = 1, .max = 8 },
  126. .p2 = { .dot_limit = 200000,
  127. .p2_slow = 10, .p2_fast = 5 },
  128. };
  129. static const intel_limit_t intel_limits_i9xx_lvds = {
  130. .dot = { .min = 20000, .max = 400000 },
  131. .vco = { .min = 1400000, .max = 2800000 },
  132. .n = { .min = 1, .max = 6 },
  133. .m = { .min = 70, .max = 120 },
  134. .m1 = { .min = 8, .max = 18 },
  135. .m2 = { .min = 3, .max = 7 },
  136. .p = { .min = 7, .max = 98 },
  137. .p1 = { .min = 1, .max = 8 },
  138. .p2 = { .dot_limit = 112000,
  139. .p2_slow = 14, .p2_fast = 7 },
  140. };
  141. static const intel_limit_t intel_limits_g4x_sdvo = {
  142. .dot = { .min = 25000, .max = 270000 },
  143. .vco = { .min = 1750000, .max = 3500000},
  144. .n = { .min = 1, .max = 4 },
  145. .m = { .min = 104, .max = 138 },
  146. .m1 = { .min = 17, .max = 23 },
  147. .m2 = { .min = 5, .max = 11 },
  148. .p = { .min = 10, .max = 30 },
  149. .p1 = { .min = 1, .max = 3},
  150. .p2 = { .dot_limit = 270000,
  151. .p2_slow = 10,
  152. .p2_fast = 10
  153. },
  154. };
  155. static const intel_limit_t intel_limits_g4x_hdmi = {
  156. .dot = { .min = 22000, .max = 400000 },
  157. .vco = { .min = 1750000, .max = 3500000},
  158. .n = { .min = 1, .max = 4 },
  159. .m = { .min = 104, .max = 138 },
  160. .m1 = { .min = 16, .max = 23 },
  161. .m2 = { .min = 5, .max = 11 },
  162. .p = { .min = 5, .max = 80 },
  163. .p1 = { .min = 1, .max = 8},
  164. .p2 = { .dot_limit = 165000,
  165. .p2_slow = 10, .p2_fast = 5 },
  166. };
  167. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  168. .dot = { .min = 20000, .max = 115000 },
  169. .vco = { .min = 1750000, .max = 3500000 },
  170. .n = { .min = 1, .max = 3 },
  171. .m = { .min = 104, .max = 138 },
  172. .m1 = { .min = 17, .max = 23 },
  173. .m2 = { .min = 5, .max = 11 },
  174. .p = { .min = 28, .max = 112 },
  175. .p1 = { .min = 2, .max = 8 },
  176. .p2 = { .dot_limit = 0,
  177. .p2_slow = 14, .p2_fast = 14
  178. },
  179. };
  180. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  181. .dot = { .min = 80000, .max = 224000 },
  182. .vco = { .min = 1750000, .max = 3500000 },
  183. .n = { .min = 1, .max = 3 },
  184. .m = { .min = 104, .max = 138 },
  185. .m1 = { .min = 17, .max = 23 },
  186. .m2 = { .min = 5, .max = 11 },
  187. .p = { .min = 14, .max = 42 },
  188. .p1 = { .min = 2, .max = 6 },
  189. .p2 = { .dot_limit = 0,
  190. .p2_slow = 7, .p2_fast = 7
  191. },
  192. };
  193. static const intel_limit_t intel_limits_pineview_sdvo = {
  194. .dot = { .min = 20000, .max = 400000},
  195. .vco = { .min = 1700000, .max = 3500000 },
  196. /* Pineview's Ncounter is a ring counter */
  197. .n = { .min = 3, .max = 6 },
  198. .m = { .min = 2, .max = 256 },
  199. /* Pineview only has one combined m divider, which we treat as m2. */
  200. .m1 = { .min = 0, .max = 0 },
  201. .m2 = { .min = 0, .max = 254 },
  202. .p = { .min = 5, .max = 80 },
  203. .p1 = { .min = 1, .max = 8 },
  204. .p2 = { .dot_limit = 200000,
  205. .p2_slow = 10, .p2_fast = 5 },
  206. };
  207. static const intel_limit_t intel_limits_pineview_lvds = {
  208. .dot = { .min = 20000, .max = 400000 },
  209. .vco = { .min = 1700000, .max = 3500000 },
  210. .n = { .min = 3, .max = 6 },
  211. .m = { .min = 2, .max = 256 },
  212. .m1 = { .min = 0, .max = 0 },
  213. .m2 = { .min = 0, .max = 254 },
  214. .p = { .min = 7, .max = 112 },
  215. .p1 = { .min = 1, .max = 8 },
  216. .p2 = { .dot_limit = 112000,
  217. .p2_slow = 14, .p2_fast = 14 },
  218. };
  219. /* Ironlake / Sandybridge
  220. *
  221. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  222. * the range value for them is (actual_value - 2).
  223. */
  224. static const intel_limit_t intel_limits_ironlake_dac = {
  225. .dot = { .min = 25000, .max = 350000 },
  226. .vco = { .min = 1760000, .max = 3510000 },
  227. .n = { .min = 1, .max = 5 },
  228. .m = { .min = 79, .max = 127 },
  229. .m1 = { .min = 12, .max = 22 },
  230. .m2 = { .min = 5, .max = 9 },
  231. .p = { .min = 5, .max = 80 },
  232. .p1 = { .min = 1, .max = 8 },
  233. .p2 = { .dot_limit = 225000,
  234. .p2_slow = 10, .p2_fast = 5 },
  235. };
  236. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  237. .dot = { .min = 25000, .max = 350000 },
  238. .vco = { .min = 1760000, .max = 3510000 },
  239. .n = { .min = 1, .max = 3 },
  240. .m = { .min = 79, .max = 118 },
  241. .m1 = { .min = 12, .max = 22 },
  242. .m2 = { .min = 5, .max = 9 },
  243. .p = { .min = 28, .max = 112 },
  244. .p1 = { .min = 2, .max = 8 },
  245. .p2 = { .dot_limit = 225000,
  246. .p2_slow = 14, .p2_fast = 14 },
  247. };
  248. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  249. .dot = { .min = 25000, .max = 350000 },
  250. .vco = { .min = 1760000, .max = 3510000 },
  251. .n = { .min = 1, .max = 3 },
  252. .m = { .min = 79, .max = 127 },
  253. .m1 = { .min = 12, .max = 22 },
  254. .m2 = { .min = 5, .max = 9 },
  255. .p = { .min = 14, .max = 56 },
  256. .p1 = { .min = 2, .max = 8 },
  257. .p2 = { .dot_limit = 225000,
  258. .p2_slow = 7, .p2_fast = 7 },
  259. };
  260. /* LVDS 100mhz refclk limits. */
  261. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  262. .dot = { .min = 25000, .max = 350000 },
  263. .vco = { .min = 1760000, .max = 3510000 },
  264. .n = { .min = 1, .max = 2 },
  265. .m = { .min = 79, .max = 126 },
  266. .m1 = { .min = 12, .max = 22 },
  267. .m2 = { .min = 5, .max = 9 },
  268. .p = { .min = 28, .max = 112 },
  269. .p1 = { .min = 2, .max = 8 },
  270. .p2 = { .dot_limit = 225000,
  271. .p2_slow = 14, .p2_fast = 14 },
  272. };
  273. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  274. .dot = { .min = 25000, .max = 350000 },
  275. .vco = { .min = 1760000, .max = 3510000 },
  276. .n = { .min = 1, .max = 3 },
  277. .m = { .min = 79, .max = 126 },
  278. .m1 = { .min = 12, .max = 22 },
  279. .m2 = { .min = 5, .max = 9 },
  280. .p = { .min = 14, .max = 42 },
  281. .p1 = { .min = 2, .max = 6 },
  282. .p2 = { .dot_limit = 225000,
  283. .p2_slow = 7, .p2_fast = 7 },
  284. };
  285. static const intel_limit_t intel_limits_vlv_dac = {
  286. .dot = { .min = 25000, .max = 270000 },
  287. .vco = { .min = 4000000, .max = 6000000 },
  288. .n = { .min = 1, .max = 7 },
  289. .m = { .min = 22, .max = 450 }, /* guess */
  290. .m1 = { .min = 2, .max = 3 },
  291. .m2 = { .min = 11, .max = 156 },
  292. .p = { .min = 10, .max = 30 },
  293. .p1 = { .min = 1, .max = 3 },
  294. .p2 = { .dot_limit = 270000,
  295. .p2_slow = 2, .p2_fast = 20 },
  296. };
  297. static const intel_limit_t intel_limits_vlv_hdmi = {
  298. .dot = { .min = 25000, .max = 270000 },
  299. .vco = { .min = 4000000, .max = 6000000 },
  300. .n = { .min = 1, .max = 7 },
  301. .m = { .min = 60, .max = 300 }, /* guess */
  302. .m1 = { .min = 2, .max = 3 },
  303. .m2 = { .min = 11, .max = 156 },
  304. .p = { .min = 10, .max = 30 },
  305. .p1 = { .min = 2, .max = 3 },
  306. .p2 = { .dot_limit = 270000,
  307. .p2_slow = 2, .p2_fast = 20 },
  308. };
  309. static const intel_limit_t intel_limits_vlv_dp = {
  310. .dot = { .min = 25000, .max = 270000 },
  311. .vco = { .min = 4000000, .max = 6000000 },
  312. .n = { .min = 1, .max = 7 },
  313. .m = { .min = 22, .max = 450 },
  314. .m1 = { .min = 2, .max = 3 },
  315. .m2 = { .min = 11, .max = 156 },
  316. .p = { .min = 10, .max = 30 },
  317. .p1 = { .min = 1, .max = 3 },
  318. .p2 = { .dot_limit = 270000,
  319. .p2_slow = 2, .p2_fast = 20 },
  320. };
  321. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  322. int refclk)
  323. {
  324. struct drm_device *dev = crtc->dev;
  325. const intel_limit_t *limit;
  326. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  327. if (intel_is_dual_link_lvds(dev)) {
  328. if (refclk == 100000)
  329. limit = &intel_limits_ironlake_dual_lvds_100m;
  330. else
  331. limit = &intel_limits_ironlake_dual_lvds;
  332. } else {
  333. if (refclk == 100000)
  334. limit = &intel_limits_ironlake_single_lvds_100m;
  335. else
  336. limit = &intel_limits_ironlake_single_lvds;
  337. }
  338. } else
  339. limit = &intel_limits_ironlake_dac;
  340. return limit;
  341. }
  342. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  343. {
  344. struct drm_device *dev = crtc->dev;
  345. const intel_limit_t *limit;
  346. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  347. if (intel_is_dual_link_lvds(dev))
  348. limit = &intel_limits_g4x_dual_channel_lvds;
  349. else
  350. limit = &intel_limits_g4x_single_channel_lvds;
  351. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  352. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  353. limit = &intel_limits_g4x_hdmi;
  354. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  355. limit = &intel_limits_g4x_sdvo;
  356. } else /* The option is for other outputs */
  357. limit = &intel_limits_i9xx_sdvo;
  358. return limit;
  359. }
  360. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  361. {
  362. struct drm_device *dev = crtc->dev;
  363. const intel_limit_t *limit;
  364. if (HAS_PCH_SPLIT(dev))
  365. limit = intel_ironlake_limit(crtc, refclk);
  366. else if (IS_G4X(dev)) {
  367. limit = intel_g4x_limit(crtc);
  368. } else if (IS_PINEVIEW(dev)) {
  369. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  370. limit = &intel_limits_pineview_lvds;
  371. else
  372. limit = &intel_limits_pineview_sdvo;
  373. } else if (IS_VALLEYVIEW(dev)) {
  374. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  375. limit = &intel_limits_vlv_dac;
  376. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  377. limit = &intel_limits_vlv_hdmi;
  378. else
  379. limit = &intel_limits_vlv_dp;
  380. } else if (!IS_GEN2(dev)) {
  381. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  382. limit = &intel_limits_i9xx_lvds;
  383. else
  384. limit = &intel_limits_i9xx_sdvo;
  385. } else {
  386. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  387. limit = &intel_limits_i8xx_lvds;
  388. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
  389. limit = &intel_limits_i8xx_dvo;
  390. else
  391. limit = &intel_limits_i8xx_dac;
  392. }
  393. return limit;
  394. }
  395. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  396. static void pineview_clock(int refclk, intel_clock_t *clock)
  397. {
  398. clock->m = clock->m2 + 2;
  399. clock->p = clock->p1 * clock->p2;
  400. clock->vco = refclk * clock->m / clock->n;
  401. clock->dot = clock->vco / clock->p;
  402. }
  403. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  404. {
  405. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  406. }
  407. static void i9xx_clock(int refclk, intel_clock_t *clock)
  408. {
  409. clock->m = i9xx_dpll_compute_m(clock);
  410. clock->p = clock->p1 * clock->p2;
  411. clock->vco = refclk * clock->m / (clock->n + 2);
  412. clock->dot = clock->vco / clock->p;
  413. }
  414. /**
  415. * Returns whether any output on the specified pipe is of the specified type
  416. */
  417. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  418. {
  419. struct drm_device *dev = crtc->dev;
  420. struct intel_encoder *encoder;
  421. for_each_encoder_on_crtc(dev, crtc, encoder)
  422. if (encoder->type == type)
  423. return true;
  424. return false;
  425. }
  426. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  427. /**
  428. * Returns whether the given set of divisors are valid for a given refclk with
  429. * the given connectors.
  430. */
  431. static bool intel_PLL_is_valid(struct drm_device *dev,
  432. const intel_limit_t *limit,
  433. const intel_clock_t *clock)
  434. {
  435. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  436. INTELPllInvalid("p1 out of range\n");
  437. if (clock->p < limit->p.min || limit->p.max < clock->p)
  438. INTELPllInvalid("p out of range\n");
  439. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  440. INTELPllInvalid("m2 out of range\n");
  441. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  442. INTELPllInvalid("m1 out of range\n");
  443. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  444. INTELPllInvalid("m1 <= m2\n");
  445. if (clock->m < limit->m.min || limit->m.max < clock->m)
  446. INTELPllInvalid("m out of range\n");
  447. if (clock->n < limit->n.min || limit->n.max < clock->n)
  448. INTELPllInvalid("n out of range\n");
  449. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  450. INTELPllInvalid("vco out of range\n");
  451. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  452. * connector, etc., rather than just a single range.
  453. */
  454. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  455. INTELPllInvalid("dot out of range\n");
  456. return true;
  457. }
  458. static bool
  459. i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  460. int target, int refclk, intel_clock_t *match_clock,
  461. intel_clock_t *best_clock)
  462. {
  463. struct drm_device *dev = crtc->dev;
  464. intel_clock_t clock;
  465. int err = target;
  466. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  467. /*
  468. * For LVDS just rely on its current settings for dual-channel.
  469. * We haven't figured out how to reliably set up different
  470. * single/dual channel state, if we even can.
  471. */
  472. if (intel_is_dual_link_lvds(dev))
  473. clock.p2 = limit->p2.p2_fast;
  474. else
  475. clock.p2 = limit->p2.p2_slow;
  476. } else {
  477. if (target < limit->p2.dot_limit)
  478. clock.p2 = limit->p2.p2_slow;
  479. else
  480. clock.p2 = limit->p2.p2_fast;
  481. }
  482. memset(best_clock, 0, sizeof(*best_clock));
  483. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  484. clock.m1++) {
  485. for (clock.m2 = limit->m2.min;
  486. clock.m2 <= limit->m2.max; clock.m2++) {
  487. if (clock.m2 >= clock.m1)
  488. break;
  489. for (clock.n = limit->n.min;
  490. clock.n <= limit->n.max; clock.n++) {
  491. for (clock.p1 = limit->p1.min;
  492. clock.p1 <= limit->p1.max; clock.p1++) {
  493. int this_err;
  494. i9xx_clock(refclk, &clock);
  495. if (!intel_PLL_is_valid(dev, limit,
  496. &clock))
  497. continue;
  498. if (match_clock &&
  499. clock.p != match_clock->p)
  500. continue;
  501. this_err = abs(clock.dot - target);
  502. if (this_err < err) {
  503. *best_clock = clock;
  504. err = this_err;
  505. }
  506. }
  507. }
  508. }
  509. }
  510. return (err != target);
  511. }
  512. static bool
  513. pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  514. int target, int refclk, intel_clock_t *match_clock,
  515. intel_clock_t *best_clock)
  516. {
  517. struct drm_device *dev = crtc->dev;
  518. intel_clock_t clock;
  519. int err = target;
  520. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  521. /*
  522. * For LVDS just rely on its current settings for dual-channel.
  523. * We haven't figured out how to reliably set up different
  524. * single/dual channel state, if we even can.
  525. */
  526. if (intel_is_dual_link_lvds(dev))
  527. clock.p2 = limit->p2.p2_fast;
  528. else
  529. clock.p2 = limit->p2.p2_slow;
  530. } else {
  531. if (target < limit->p2.dot_limit)
  532. clock.p2 = limit->p2.p2_slow;
  533. else
  534. clock.p2 = limit->p2.p2_fast;
  535. }
  536. memset(best_clock, 0, sizeof(*best_clock));
  537. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  538. clock.m1++) {
  539. for (clock.m2 = limit->m2.min;
  540. clock.m2 <= limit->m2.max; clock.m2++) {
  541. for (clock.n = limit->n.min;
  542. clock.n <= limit->n.max; clock.n++) {
  543. for (clock.p1 = limit->p1.min;
  544. clock.p1 <= limit->p1.max; clock.p1++) {
  545. int this_err;
  546. pineview_clock(refclk, &clock);
  547. if (!intel_PLL_is_valid(dev, limit,
  548. &clock))
  549. continue;
  550. if (match_clock &&
  551. clock.p != match_clock->p)
  552. continue;
  553. this_err = abs(clock.dot - target);
  554. if (this_err < err) {
  555. *best_clock = clock;
  556. err = this_err;
  557. }
  558. }
  559. }
  560. }
  561. }
  562. return (err != target);
  563. }
  564. static bool
  565. g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  566. int target, int refclk, intel_clock_t *match_clock,
  567. intel_clock_t *best_clock)
  568. {
  569. struct drm_device *dev = crtc->dev;
  570. intel_clock_t clock;
  571. int max_n;
  572. bool found;
  573. /* approximately equals target * 0.00585 */
  574. int err_most = (target >> 8) + (target >> 9);
  575. found = false;
  576. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  577. if (intel_is_dual_link_lvds(dev))
  578. clock.p2 = limit->p2.p2_fast;
  579. else
  580. clock.p2 = limit->p2.p2_slow;
  581. } else {
  582. if (target < limit->p2.dot_limit)
  583. clock.p2 = limit->p2.p2_slow;
  584. else
  585. clock.p2 = limit->p2.p2_fast;
  586. }
  587. memset(best_clock, 0, sizeof(*best_clock));
  588. max_n = limit->n.max;
  589. /* based on hardware requirement, prefer smaller n to precision */
  590. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  591. /* based on hardware requirement, prefere larger m1,m2 */
  592. for (clock.m1 = limit->m1.max;
  593. clock.m1 >= limit->m1.min; clock.m1--) {
  594. for (clock.m2 = limit->m2.max;
  595. clock.m2 >= limit->m2.min; clock.m2--) {
  596. for (clock.p1 = limit->p1.max;
  597. clock.p1 >= limit->p1.min; clock.p1--) {
  598. int this_err;
  599. i9xx_clock(refclk, &clock);
  600. if (!intel_PLL_is_valid(dev, limit,
  601. &clock))
  602. continue;
  603. this_err = abs(clock.dot - target);
  604. if (this_err < err_most) {
  605. *best_clock = clock;
  606. err_most = this_err;
  607. max_n = clock.n;
  608. found = true;
  609. }
  610. }
  611. }
  612. }
  613. }
  614. return found;
  615. }
  616. static bool
  617. vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  618. int target, int refclk, intel_clock_t *match_clock,
  619. intel_clock_t *best_clock)
  620. {
  621. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  622. u32 m, n, fastclk;
  623. u32 updrate, minupdate, p;
  624. unsigned long bestppm, ppm, absppm;
  625. int dotclk, flag;
  626. flag = 0;
  627. dotclk = target * 1000;
  628. bestppm = 1000000;
  629. ppm = absppm = 0;
  630. fastclk = dotclk / (2*100);
  631. updrate = 0;
  632. minupdate = 19200;
  633. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  634. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  635. /* based on hardware requirement, prefer smaller n to precision */
  636. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  637. updrate = refclk / n;
  638. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  639. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  640. if (p2 > 10)
  641. p2 = p2 - 1;
  642. p = p1 * p2;
  643. /* based on hardware requirement, prefer bigger m1,m2 values */
  644. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  645. m2 = (((2*(fastclk * p * n / m1 )) +
  646. refclk) / (2*refclk));
  647. m = m1 * m2;
  648. vco = updrate * m;
  649. if (vco >= limit->vco.min && vco < limit->vco.max) {
  650. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  651. absppm = (ppm > 0) ? ppm : (-ppm);
  652. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  653. bestppm = 0;
  654. flag = 1;
  655. }
  656. if (absppm < bestppm - 10) {
  657. bestppm = absppm;
  658. flag = 1;
  659. }
  660. if (flag) {
  661. bestn = n;
  662. bestm1 = m1;
  663. bestm2 = m2;
  664. bestp1 = p1;
  665. bestp2 = p2;
  666. flag = 0;
  667. }
  668. }
  669. }
  670. }
  671. }
  672. }
  673. best_clock->n = bestn;
  674. best_clock->m1 = bestm1;
  675. best_clock->m2 = bestm2;
  676. best_clock->p1 = bestp1;
  677. best_clock->p2 = bestp2;
  678. return true;
  679. }
  680. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  681. enum pipe pipe)
  682. {
  683. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  684. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  685. return intel_crtc->config.cpu_transcoder;
  686. }
  687. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  688. {
  689. struct drm_i915_private *dev_priv = dev->dev_private;
  690. u32 frame, frame_reg = PIPEFRAME(pipe);
  691. frame = I915_READ(frame_reg);
  692. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  693. DRM_DEBUG_KMS("vblank wait timed out\n");
  694. }
  695. /**
  696. * intel_wait_for_vblank - wait for vblank on a given pipe
  697. * @dev: drm device
  698. * @pipe: pipe to wait for
  699. *
  700. * Wait for vblank to occur on a given pipe. Needed for various bits of
  701. * mode setting code.
  702. */
  703. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  704. {
  705. struct drm_i915_private *dev_priv = dev->dev_private;
  706. int pipestat_reg = PIPESTAT(pipe);
  707. if (INTEL_INFO(dev)->gen >= 5) {
  708. ironlake_wait_for_vblank(dev, pipe);
  709. return;
  710. }
  711. /* Clear existing vblank status. Note this will clear any other
  712. * sticky status fields as well.
  713. *
  714. * This races with i915_driver_irq_handler() with the result
  715. * that either function could miss a vblank event. Here it is not
  716. * fatal, as we will either wait upon the next vblank interrupt or
  717. * timeout. Generally speaking intel_wait_for_vblank() is only
  718. * called during modeset at which time the GPU should be idle and
  719. * should *not* be performing page flips and thus not waiting on
  720. * vblanks...
  721. * Currently, the result of us stealing a vblank from the irq
  722. * handler is that a single frame will be skipped during swapbuffers.
  723. */
  724. I915_WRITE(pipestat_reg,
  725. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  726. /* Wait for vblank interrupt bit to set */
  727. if (wait_for(I915_READ(pipestat_reg) &
  728. PIPE_VBLANK_INTERRUPT_STATUS,
  729. 50))
  730. DRM_DEBUG_KMS("vblank wait timed out\n");
  731. }
  732. /*
  733. * intel_wait_for_pipe_off - wait for pipe to turn off
  734. * @dev: drm device
  735. * @pipe: pipe to wait for
  736. *
  737. * After disabling a pipe, we can't wait for vblank in the usual way,
  738. * spinning on the vblank interrupt status bit, since we won't actually
  739. * see an interrupt when the pipe is disabled.
  740. *
  741. * On Gen4 and above:
  742. * wait for the pipe register state bit to turn off
  743. *
  744. * Otherwise:
  745. * wait for the display line value to settle (it usually
  746. * ends up stopping at the start of the next frame).
  747. *
  748. */
  749. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  750. {
  751. struct drm_i915_private *dev_priv = dev->dev_private;
  752. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  753. pipe);
  754. if (INTEL_INFO(dev)->gen >= 4) {
  755. int reg = PIPECONF(cpu_transcoder);
  756. /* Wait for the Pipe State to go off */
  757. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  758. 100))
  759. WARN(1, "pipe_off wait timed out\n");
  760. } else {
  761. u32 last_line, line_mask;
  762. int reg = PIPEDSL(pipe);
  763. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  764. if (IS_GEN2(dev))
  765. line_mask = DSL_LINEMASK_GEN2;
  766. else
  767. line_mask = DSL_LINEMASK_GEN3;
  768. /* Wait for the display line to settle */
  769. do {
  770. last_line = I915_READ(reg) & line_mask;
  771. mdelay(5);
  772. } while (((I915_READ(reg) & line_mask) != last_line) &&
  773. time_after(timeout, jiffies));
  774. if (time_after(jiffies, timeout))
  775. WARN(1, "pipe_off wait timed out\n");
  776. }
  777. }
  778. /*
  779. * ibx_digital_port_connected - is the specified port connected?
  780. * @dev_priv: i915 private structure
  781. * @port: the port to test
  782. *
  783. * Returns true if @port is connected, false otherwise.
  784. */
  785. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  786. struct intel_digital_port *port)
  787. {
  788. u32 bit;
  789. if (HAS_PCH_IBX(dev_priv->dev)) {
  790. switch(port->port) {
  791. case PORT_B:
  792. bit = SDE_PORTB_HOTPLUG;
  793. break;
  794. case PORT_C:
  795. bit = SDE_PORTC_HOTPLUG;
  796. break;
  797. case PORT_D:
  798. bit = SDE_PORTD_HOTPLUG;
  799. break;
  800. default:
  801. return true;
  802. }
  803. } else {
  804. switch(port->port) {
  805. case PORT_B:
  806. bit = SDE_PORTB_HOTPLUG_CPT;
  807. break;
  808. case PORT_C:
  809. bit = SDE_PORTC_HOTPLUG_CPT;
  810. break;
  811. case PORT_D:
  812. bit = SDE_PORTD_HOTPLUG_CPT;
  813. break;
  814. default:
  815. return true;
  816. }
  817. }
  818. return I915_READ(SDEISR) & bit;
  819. }
  820. static const char *state_string(bool enabled)
  821. {
  822. return enabled ? "on" : "off";
  823. }
  824. /* Only for pre-ILK configs */
  825. void assert_pll(struct drm_i915_private *dev_priv,
  826. enum pipe pipe, bool state)
  827. {
  828. int reg;
  829. u32 val;
  830. bool cur_state;
  831. reg = DPLL(pipe);
  832. val = I915_READ(reg);
  833. cur_state = !!(val & DPLL_VCO_ENABLE);
  834. WARN(cur_state != state,
  835. "PLL state assertion failure (expected %s, current %s)\n",
  836. state_string(state), state_string(cur_state));
  837. }
  838. struct intel_shared_dpll *
  839. intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
  840. {
  841. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  842. if (crtc->config.shared_dpll < 0)
  843. return NULL;
  844. return &dev_priv->shared_dplls[crtc->config.shared_dpll];
  845. }
  846. /* For ILK+ */
  847. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  848. struct intel_shared_dpll *pll,
  849. bool state)
  850. {
  851. bool cur_state;
  852. struct intel_dpll_hw_state hw_state;
  853. if (HAS_PCH_LPT(dev_priv->dev)) {
  854. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  855. return;
  856. }
  857. if (WARN (!pll,
  858. "asserting DPLL %s with no DPLL\n", state_string(state)))
  859. return;
  860. cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
  861. WARN(cur_state != state,
  862. "%s assertion failure (expected %s, current %s)\n",
  863. pll->name, state_string(state), state_string(cur_state));
  864. }
  865. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  866. enum pipe pipe, bool state)
  867. {
  868. int reg;
  869. u32 val;
  870. bool cur_state;
  871. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  872. pipe);
  873. if (HAS_DDI(dev_priv->dev)) {
  874. /* DDI does not have a specific FDI_TX register */
  875. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  876. val = I915_READ(reg);
  877. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  878. } else {
  879. reg = FDI_TX_CTL(pipe);
  880. val = I915_READ(reg);
  881. cur_state = !!(val & FDI_TX_ENABLE);
  882. }
  883. WARN(cur_state != state,
  884. "FDI TX state assertion failure (expected %s, current %s)\n",
  885. state_string(state), state_string(cur_state));
  886. }
  887. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  888. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  889. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  890. enum pipe pipe, bool state)
  891. {
  892. int reg;
  893. u32 val;
  894. bool cur_state;
  895. reg = FDI_RX_CTL(pipe);
  896. val = I915_READ(reg);
  897. cur_state = !!(val & FDI_RX_ENABLE);
  898. WARN(cur_state != state,
  899. "FDI RX state assertion failure (expected %s, current %s)\n",
  900. state_string(state), state_string(cur_state));
  901. }
  902. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  903. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  904. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  905. enum pipe pipe)
  906. {
  907. int reg;
  908. u32 val;
  909. /* ILK FDI PLL is always enabled */
  910. if (dev_priv->info->gen == 5)
  911. return;
  912. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  913. if (HAS_DDI(dev_priv->dev))
  914. return;
  915. reg = FDI_TX_CTL(pipe);
  916. val = I915_READ(reg);
  917. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  918. }
  919. void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
  920. enum pipe pipe, bool state)
  921. {
  922. int reg;
  923. u32 val;
  924. bool cur_state;
  925. reg = FDI_RX_CTL(pipe);
  926. val = I915_READ(reg);
  927. cur_state = !!(val & FDI_RX_PLL_ENABLE);
  928. WARN(cur_state != state,
  929. "FDI RX PLL assertion failure (expected %s, current %s)\n",
  930. state_string(state), state_string(cur_state));
  931. }
  932. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  933. enum pipe pipe)
  934. {
  935. int pp_reg, lvds_reg;
  936. u32 val;
  937. enum pipe panel_pipe = PIPE_A;
  938. bool locked = true;
  939. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  940. pp_reg = PCH_PP_CONTROL;
  941. lvds_reg = PCH_LVDS;
  942. } else {
  943. pp_reg = PP_CONTROL;
  944. lvds_reg = LVDS;
  945. }
  946. val = I915_READ(pp_reg);
  947. if (!(val & PANEL_POWER_ON) ||
  948. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  949. locked = false;
  950. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  951. panel_pipe = PIPE_B;
  952. WARN(panel_pipe == pipe && locked,
  953. "panel assertion failure, pipe %c regs locked\n",
  954. pipe_name(pipe));
  955. }
  956. void assert_pipe(struct drm_i915_private *dev_priv,
  957. enum pipe pipe, bool state)
  958. {
  959. int reg;
  960. u32 val;
  961. bool cur_state;
  962. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  963. pipe);
  964. /* if we need the pipe A quirk it must be always on */
  965. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  966. state = true;
  967. if (!intel_display_power_enabled(dev_priv->dev,
  968. POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  969. cur_state = false;
  970. } else {
  971. reg = PIPECONF(cpu_transcoder);
  972. val = I915_READ(reg);
  973. cur_state = !!(val & PIPECONF_ENABLE);
  974. }
  975. WARN(cur_state != state,
  976. "pipe %c assertion failure (expected %s, current %s)\n",
  977. pipe_name(pipe), state_string(state), state_string(cur_state));
  978. }
  979. static void assert_plane(struct drm_i915_private *dev_priv,
  980. enum plane plane, bool state)
  981. {
  982. int reg;
  983. u32 val;
  984. bool cur_state;
  985. reg = DSPCNTR(plane);
  986. val = I915_READ(reg);
  987. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  988. WARN(cur_state != state,
  989. "plane %c assertion failure (expected %s, current %s)\n",
  990. plane_name(plane), state_string(state), state_string(cur_state));
  991. }
  992. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  993. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  994. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  995. enum pipe pipe)
  996. {
  997. struct drm_device *dev = dev_priv->dev;
  998. int reg, i;
  999. u32 val;
  1000. int cur_pipe;
  1001. /* Primary planes are fixed to pipes on gen4+ */
  1002. if (INTEL_INFO(dev)->gen >= 4) {
  1003. reg = DSPCNTR(pipe);
  1004. val = I915_READ(reg);
  1005. WARN((val & DISPLAY_PLANE_ENABLE),
  1006. "plane %c assertion failure, should be disabled but not\n",
  1007. plane_name(pipe));
  1008. return;
  1009. }
  1010. /* Need to check both planes against the pipe */
  1011. for_each_pipe(i) {
  1012. reg = DSPCNTR(i);
  1013. val = I915_READ(reg);
  1014. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1015. DISPPLANE_SEL_PIPE_SHIFT;
  1016. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1017. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1018. plane_name(i), pipe_name(pipe));
  1019. }
  1020. }
  1021. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1022. enum pipe pipe)
  1023. {
  1024. struct drm_device *dev = dev_priv->dev;
  1025. int reg, i;
  1026. u32 val;
  1027. if (IS_VALLEYVIEW(dev)) {
  1028. for (i = 0; i < dev_priv->num_plane; i++) {
  1029. reg = SPCNTR(pipe, i);
  1030. val = I915_READ(reg);
  1031. WARN((val & SP_ENABLE),
  1032. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1033. sprite_name(pipe, i), pipe_name(pipe));
  1034. }
  1035. } else if (INTEL_INFO(dev)->gen >= 7) {
  1036. reg = SPRCTL(pipe);
  1037. val = I915_READ(reg);
  1038. WARN((val & SPRITE_ENABLE),
  1039. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1040. plane_name(pipe), pipe_name(pipe));
  1041. } else if (INTEL_INFO(dev)->gen >= 5) {
  1042. reg = DVSCNTR(pipe);
  1043. val = I915_READ(reg);
  1044. WARN((val & DVS_ENABLE),
  1045. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1046. plane_name(pipe), pipe_name(pipe));
  1047. }
  1048. }
  1049. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1050. {
  1051. u32 val;
  1052. bool enabled;
  1053. if (HAS_PCH_LPT(dev_priv->dev)) {
  1054. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1055. return;
  1056. }
  1057. val = I915_READ(PCH_DREF_CONTROL);
  1058. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1059. DREF_SUPERSPREAD_SOURCE_MASK));
  1060. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1061. }
  1062. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1063. enum pipe pipe)
  1064. {
  1065. int reg;
  1066. u32 val;
  1067. bool enabled;
  1068. reg = PCH_TRANSCONF(pipe);
  1069. val = I915_READ(reg);
  1070. enabled = !!(val & TRANS_ENABLE);
  1071. WARN(enabled,
  1072. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1073. pipe_name(pipe));
  1074. }
  1075. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1076. enum pipe pipe, u32 port_sel, u32 val)
  1077. {
  1078. if ((val & DP_PORT_EN) == 0)
  1079. return false;
  1080. if (HAS_PCH_CPT(dev_priv->dev)) {
  1081. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1082. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1083. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1084. return false;
  1085. } else {
  1086. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1087. return false;
  1088. }
  1089. return true;
  1090. }
  1091. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1092. enum pipe pipe, u32 val)
  1093. {
  1094. if ((val & SDVO_ENABLE) == 0)
  1095. return false;
  1096. if (HAS_PCH_CPT(dev_priv->dev)) {
  1097. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1098. return false;
  1099. } else {
  1100. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1101. return false;
  1102. }
  1103. return true;
  1104. }
  1105. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1106. enum pipe pipe, u32 val)
  1107. {
  1108. if ((val & LVDS_PORT_EN) == 0)
  1109. return false;
  1110. if (HAS_PCH_CPT(dev_priv->dev)) {
  1111. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1112. return false;
  1113. } else {
  1114. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1115. return false;
  1116. }
  1117. return true;
  1118. }
  1119. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1120. enum pipe pipe, u32 val)
  1121. {
  1122. if ((val & ADPA_DAC_ENABLE) == 0)
  1123. return false;
  1124. if (HAS_PCH_CPT(dev_priv->dev)) {
  1125. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1126. return false;
  1127. } else {
  1128. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1129. return false;
  1130. }
  1131. return true;
  1132. }
  1133. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1134. enum pipe pipe, int reg, u32 port_sel)
  1135. {
  1136. u32 val = I915_READ(reg);
  1137. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1138. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1139. reg, pipe_name(pipe));
  1140. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1141. && (val & DP_PIPEB_SELECT),
  1142. "IBX PCH dp port still using transcoder B\n");
  1143. }
  1144. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1145. enum pipe pipe, int reg)
  1146. {
  1147. u32 val = I915_READ(reg);
  1148. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1149. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1150. reg, pipe_name(pipe));
  1151. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1152. && (val & SDVO_PIPE_B_SELECT),
  1153. "IBX PCH hdmi port still using transcoder B\n");
  1154. }
  1155. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1156. enum pipe pipe)
  1157. {
  1158. int reg;
  1159. u32 val;
  1160. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1161. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1162. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1163. reg = PCH_ADPA;
  1164. val = I915_READ(reg);
  1165. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1166. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1167. pipe_name(pipe));
  1168. reg = PCH_LVDS;
  1169. val = I915_READ(reg);
  1170. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1171. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1172. pipe_name(pipe));
  1173. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1174. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1175. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1176. }
  1177. static void vlv_enable_pll(struct intel_crtc *crtc)
  1178. {
  1179. struct drm_device *dev = crtc->base.dev;
  1180. struct drm_i915_private *dev_priv = dev->dev_private;
  1181. int reg = DPLL(crtc->pipe);
  1182. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1183. assert_pipe_disabled(dev_priv, crtc->pipe);
  1184. /* No really, not for ILK+ */
  1185. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
  1186. /* PLL is protected by panel, make sure we can write it */
  1187. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1188. assert_panel_unlocked(dev_priv, crtc->pipe);
  1189. I915_WRITE(reg, dpll);
  1190. POSTING_READ(reg);
  1191. udelay(150);
  1192. if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  1193. DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
  1194. I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
  1195. POSTING_READ(DPLL_MD(crtc->pipe));
  1196. /* We do this three times for luck */
  1197. I915_WRITE(reg, dpll);
  1198. POSTING_READ(reg);
  1199. udelay(150); /* wait for warmup */
  1200. I915_WRITE(reg, dpll);
  1201. POSTING_READ(reg);
  1202. udelay(150); /* wait for warmup */
  1203. I915_WRITE(reg, dpll);
  1204. POSTING_READ(reg);
  1205. udelay(150); /* wait for warmup */
  1206. }
  1207. static void i9xx_enable_pll(struct intel_crtc *crtc)
  1208. {
  1209. struct drm_device *dev = crtc->base.dev;
  1210. struct drm_i915_private *dev_priv = dev->dev_private;
  1211. int reg = DPLL(crtc->pipe);
  1212. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1213. assert_pipe_disabled(dev_priv, crtc->pipe);
  1214. /* No really, not for ILK+ */
  1215. BUG_ON(dev_priv->info->gen >= 5);
  1216. /* PLL is protected by panel, make sure we can write it */
  1217. if (IS_MOBILE(dev) && !IS_I830(dev))
  1218. assert_panel_unlocked(dev_priv, crtc->pipe);
  1219. I915_WRITE(reg, dpll);
  1220. /* Wait for the clocks to stabilize. */
  1221. POSTING_READ(reg);
  1222. udelay(150);
  1223. if (INTEL_INFO(dev)->gen >= 4) {
  1224. I915_WRITE(DPLL_MD(crtc->pipe),
  1225. crtc->config.dpll_hw_state.dpll_md);
  1226. } else {
  1227. /* The pixel multiplier can only be updated once the
  1228. * DPLL is enabled and the clocks are stable.
  1229. *
  1230. * So write it again.
  1231. */
  1232. I915_WRITE(reg, dpll);
  1233. }
  1234. /* We do this three times for luck */
  1235. I915_WRITE(reg, dpll);
  1236. POSTING_READ(reg);
  1237. udelay(150); /* wait for warmup */
  1238. I915_WRITE(reg, dpll);
  1239. POSTING_READ(reg);
  1240. udelay(150); /* wait for warmup */
  1241. I915_WRITE(reg, dpll);
  1242. POSTING_READ(reg);
  1243. udelay(150); /* wait for warmup */
  1244. }
  1245. /**
  1246. * i9xx_disable_pll - disable a PLL
  1247. * @dev_priv: i915 private structure
  1248. * @pipe: pipe PLL to disable
  1249. *
  1250. * Disable the PLL for @pipe, making sure the pipe is off first.
  1251. *
  1252. * Note! This is for pre-ILK only.
  1253. */
  1254. static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1255. {
  1256. /* Don't disable pipe A or pipe A PLLs if needed */
  1257. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1258. return;
  1259. /* Make sure the pipe isn't still relying on us */
  1260. assert_pipe_disabled(dev_priv, pipe);
  1261. I915_WRITE(DPLL(pipe), 0);
  1262. POSTING_READ(DPLL(pipe));
  1263. }
  1264. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1265. {
  1266. u32 port_mask;
  1267. if (!port)
  1268. port_mask = DPLL_PORTB_READY_MASK;
  1269. else
  1270. port_mask = DPLL_PORTC_READY_MASK;
  1271. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1272. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1273. 'B' + port, I915_READ(DPLL(0)));
  1274. }
  1275. /**
  1276. * ironlake_enable_shared_dpll - enable PCH PLL
  1277. * @dev_priv: i915 private structure
  1278. * @pipe: pipe PLL to enable
  1279. *
  1280. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1281. * drives the transcoder clock.
  1282. */
  1283. static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
  1284. {
  1285. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1286. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1287. /* PCH PLLs only available on ILK, SNB and IVB */
  1288. BUG_ON(dev_priv->info->gen < 5);
  1289. if (WARN_ON(pll == NULL))
  1290. return;
  1291. if (WARN_ON(pll->refcount == 0))
  1292. return;
  1293. DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
  1294. pll->name, pll->active, pll->on,
  1295. crtc->base.base.id);
  1296. if (pll->active++) {
  1297. WARN_ON(!pll->on);
  1298. assert_shared_dpll_enabled(dev_priv, pll);
  1299. return;
  1300. }
  1301. WARN_ON(pll->on);
  1302. DRM_DEBUG_KMS("enabling %s\n", pll->name);
  1303. pll->enable(dev_priv, pll);
  1304. pll->on = true;
  1305. }
  1306. static void intel_disable_shared_dpll(struct intel_crtc *crtc)
  1307. {
  1308. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1309. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1310. /* PCH only available on ILK+ */
  1311. BUG_ON(dev_priv->info->gen < 5);
  1312. if (WARN_ON(pll == NULL))
  1313. return;
  1314. if (WARN_ON(pll->refcount == 0))
  1315. return;
  1316. DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
  1317. pll->name, pll->active, pll->on,
  1318. crtc->base.base.id);
  1319. if (WARN_ON(pll->active == 0)) {
  1320. assert_shared_dpll_disabled(dev_priv, pll);
  1321. return;
  1322. }
  1323. assert_shared_dpll_enabled(dev_priv, pll);
  1324. WARN_ON(!pll->on);
  1325. if (--pll->active)
  1326. return;
  1327. DRM_DEBUG_KMS("disabling %s\n", pll->name);
  1328. pll->disable(dev_priv, pll);
  1329. pll->on = false;
  1330. }
  1331. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1332. enum pipe pipe)
  1333. {
  1334. struct drm_device *dev = dev_priv->dev;
  1335. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1336. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1337. uint32_t reg, val, pipeconf_val;
  1338. /* PCH only available on ILK+ */
  1339. BUG_ON(dev_priv->info->gen < 5);
  1340. /* Make sure PCH DPLL is enabled */
  1341. assert_shared_dpll_enabled(dev_priv,
  1342. intel_crtc_to_shared_dpll(intel_crtc));
  1343. /* FDI must be feeding us bits for PCH ports */
  1344. assert_fdi_tx_enabled(dev_priv, pipe);
  1345. assert_fdi_rx_enabled(dev_priv, pipe);
  1346. if (HAS_PCH_CPT(dev)) {
  1347. /* Workaround: Set the timing override bit before enabling the
  1348. * pch transcoder. */
  1349. reg = TRANS_CHICKEN2(pipe);
  1350. val = I915_READ(reg);
  1351. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1352. I915_WRITE(reg, val);
  1353. }
  1354. reg = PCH_TRANSCONF(pipe);
  1355. val = I915_READ(reg);
  1356. pipeconf_val = I915_READ(PIPECONF(pipe));
  1357. if (HAS_PCH_IBX(dev_priv->dev)) {
  1358. /*
  1359. * make the BPC in transcoder be consistent with
  1360. * that in pipeconf reg.
  1361. */
  1362. val &= ~PIPECONF_BPC_MASK;
  1363. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1364. }
  1365. val &= ~TRANS_INTERLACE_MASK;
  1366. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1367. if (HAS_PCH_IBX(dev_priv->dev) &&
  1368. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1369. val |= TRANS_LEGACY_INTERLACED_ILK;
  1370. else
  1371. val |= TRANS_INTERLACED;
  1372. else
  1373. val |= TRANS_PROGRESSIVE;
  1374. I915_WRITE(reg, val | TRANS_ENABLE);
  1375. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1376. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1377. }
  1378. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1379. enum transcoder cpu_transcoder)
  1380. {
  1381. u32 val, pipeconf_val;
  1382. /* PCH only available on ILK+ */
  1383. BUG_ON(dev_priv->info->gen < 5);
  1384. /* FDI must be feeding us bits for PCH ports */
  1385. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1386. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1387. /* Workaround: set timing override bit. */
  1388. val = I915_READ(_TRANSA_CHICKEN2);
  1389. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1390. I915_WRITE(_TRANSA_CHICKEN2, val);
  1391. val = TRANS_ENABLE;
  1392. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1393. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1394. PIPECONF_INTERLACED_ILK)
  1395. val |= TRANS_INTERLACED;
  1396. else
  1397. val |= TRANS_PROGRESSIVE;
  1398. I915_WRITE(LPT_TRANSCONF, val);
  1399. if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1400. DRM_ERROR("Failed to enable PCH transcoder\n");
  1401. }
  1402. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1403. enum pipe pipe)
  1404. {
  1405. struct drm_device *dev = dev_priv->dev;
  1406. uint32_t reg, val;
  1407. /* FDI relies on the transcoder */
  1408. assert_fdi_tx_disabled(dev_priv, pipe);
  1409. assert_fdi_rx_disabled(dev_priv, pipe);
  1410. /* Ports must be off as well */
  1411. assert_pch_ports_disabled(dev_priv, pipe);
  1412. reg = PCH_TRANSCONF(pipe);
  1413. val = I915_READ(reg);
  1414. val &= ~TRANS_ENABLE;
  1415. I915_WRITE(reg, val);
  1416. /* wait for PCH transcoder off, transcoder state */
  1417. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1418. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1419. if (!HAS_PCH_IBX(dev)) {
  1420. /* Workaround: Clear the timing override chicken bit again. */
  1421. reg = TRANS_CHICKEN2(pipe);
  1422. val = I915_READ(reg);
  1423. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1424. I915_WRITE(reg, val);
  1425. }
  1426. }
  1427. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1428. {
  1429. u32 val;
  1430. val = I915_READ(LPT_TRANSCONF);
  1431. val &= ~TRANS_ENABLE;
  1432. I915_WRITE(LPT_TRANSCONF, val);
  1433. /* wait for PCH transcoder off, transcoder state */
  1434. if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1435. DRM_ERROR("Failed to disable PCH transcoder\n");
  1436. /* Workaround: clear timing override bit. */
  1437. val = I915_READ(_TRANSA_CHICKEN2);
  1438. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1439. I915_WRITE(_TRANSA_CHICKEN2, val);
  1440. }
  1441. /**
  1442. * intel_enable_pipe - enable a pipe, asserting requirements
  1443. * @dev_priv: i915 private structure
  1444. * @pipe: pipe to enable
  1445. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1446. *
  1447. * Enable @pipe, making sure that various hardware specific requirements
  1448. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1449. *
  1450. * @pipe should be %PIPE_A or %PIPE_B.
  1451. *
  1452. * Will wait until the pipe is actually running (i.e. first vblank) before
  1453. * returning.
  1454. */
  1455. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1456. bool pch_port)
  1457. {
  1458. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1459. pipe);
  1460. enum pipe pch_transcoder;
  1461. int reg;
  1462. u32 val;
  1463. assert_planes_disabled(dev_priv, pipe);
  1464. assert_sprites_disabled(dev_priv, pipe);
  1465. if (HAS_PCH_LPT(dev_priv->dev))
  1466. pch_transcoder = TRANSCODER_A;
  1467. else
  1468. pch_transcoder = pipe;
  1469. /*
  1470. * A pipe without a PLL won't actually be able to drive bits from
  1471. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1472. * need the check.
  1473. */
  1474. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1475. assert_pll_enabled(dev_priv, pipe);
  1476. else {
  1477. if (pch_port) {
  1478. /* if driving the PCH, we need FDI enabled */
  1479. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1480. assert_fdi_tx_pll_enabled(dev_priv,
  1481. (enum pipe) cpu_transcoder);
  1482. }
  1483. /* FIXME: assert CPU port conditions for SNB+ */
  1484. }
  1485. reg = PIPECONF(cpu_transcoder);
  1486. val = I915_READ(reg);
  1487. if (val & PIPECONF_ENABLE)
  1488. return;
  1489. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1490. intel_wait_for_vblank(dev_priv->dev, pipe);
  1491. }
  1492. /**
  1493. * intel_disable_pipe - disable a pipe, asserting requirements
  1494. * @dev_priv: i915 private structure
  1495. * @pipe: pipe to disable
  1496. *
  1497. * Disable @pipe, making sure that various hardware specific requirements
  1498. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1499. *
  1500. * @pipe should be %PIPE_A or %PIPE_B.
  1501. *
  1502. * Will wait until the pipe has shut down before returning.
  1503. */
  1504. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1505. enum pipe pipe)
  1506. {
  1507. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1508. pipe);
  1509. int reg;
  1510. u32 val;
  1511. /*
  1512. * Make sure planes won't keep trying to pump pixels to us,
  1513. * or we might hang the display.
  1514. */
  1515. assert_planes_disabled(dev_priv, pipe);
  1516. assert_sprites_disabled(dev_priv, pipe);
  1517. /* Don't disable pipe A or pipe A PLLs if needed */
  1518. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1519. return;
  1520. reg = PIPECONF(cpu_transcoder);
  1521. val = I915_READ(reg);
  1522. if ((val & PIPECONF_ENABLE) == 0)
  1523. return;
  1524. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1525. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1526. }
  1527. /*
  1528. * Plane regs are double buffered, going from enabled->disabled needs a
  1529. * trigger in order to latch. The display address reg provides this.
  1530. */
  1531. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1532. enum plane plane)
  1533. {
  1534. if (dev_priv->info->gen >= 4)
  1535. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1536. else
  1537. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1538. }
  1539. /**
  1540. * intel_enable_plane - enable a display plane on a given pipe
  1541. * @dev_priv: i915 private structure
  1542. * @plane: plane to enable
  1543. * @pipe: pipe being fed
  1544. *
  1545. * Enable @plane on @pipe, making sure that @pipe is running first.
  1546. */
  1547. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1548. enum plane plane, enum pipe pipe)
  1549. {
  1550. int reg;
  1551. u32 val;
  1552. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1553. assert_pipe_enabled(dev_priv, pipe);
  1554. reg = DSPCNTR(plane);
  1555. val = I915_READ(reg);
  1556. if (val & DISPLAY_PLANE_ENABLE)
  1557. return;
  1558. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1559. intel_flush_display_plane(dev_priv, plane);
  1560. intel_wait_for_vblank(dev_priv->dev, pipe);
  1561. }
  1562. /**
  1563. * intel_disable_plane - disable a display plane
  1564. * @dev_priv: i915 private structure
  1565. * @plane: plane to disable
  1566. * @pipe: pipe consuming the data
  1567. *
  1568. * Disable @plane; should be an independent operation.
  1569. */
  1570. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1571. enum plane plane, enum pipe pipe)
  1572. {
  1573. int reg;
  1574. u32 val;
  1575. reg = DSPCNTR(plane);
  1576. val = I915_READ(reg);
  1577. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1578. return;
  1579. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1580. intel_flush_display_plane(dev_priv, plane);
  1581. intel_wait_for_vblank(dev_priv->dev, pipe);
  1582. }
  1583. static bool need_vtd_wa(struct drm_device *dev)
  1584. {
  1585. #ifdef CONFIG_INTEL_IOMMU
  1586. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1587. return true;
  1588. #endif
  1589. return false;
  1590. }
  1591. int
  1592. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1593. struct drm_i915_gem_object *obj,
  1594. struct intel_ring_buffer *pipelined)
  1595. {
  1596. struct drm_i915_private *dev_priv = dev->dev_private;
  1597. u32 alignment;
  1598. int ret;
  1599. switch (obj->tiling_mode) {
  1600. case I915_TILING_NONE:
  1601. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1602. alignment = 128 * 1024;
  1603. else if (INTEL_INFO(dev)->gen >= 4)
  1604. alignment = 4 * 1024;
  1605. else
  1606. alignment = 64 * 1024;
  1607. break;
  1608. case I915_TILING_X:
  1609. /* pin() will align the object as required by fence */
  1610. alignment = 0;
  1611. break;
  1612. case I915_TILING_Y:
  1613. /* Despite that we check this in framebuffer_init userspace can
  1614. * screw us over and change the tiling after the fact. Only
  1615. * pinned buffers can't change their tiling. */
  1616. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1617. return -EINVAL;
  1618. default:
  1619. BUG();
  1620. }
  1621. /* Note that the w/a also requires 64 PTE of padding following the
  1622. * bo. We currently fill all unused PTE with the shadow page and so
  1623. * we should always have valid PTE following the scanout preventing
  1624. * the VT-d warning.
  1625. */
  1626. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1627. alignment = 256 * 1024;
  1628. dev_priv->mm.interruptible = false;
  1629. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1630. if (ret)
  1631. goto err_interruptible;
  1632. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1633. * fence, whereas 965+ only requires a fence if using
  1634. * framebuffer compression. For simplicity, we always install
  1635. * a fence as the cost is not that onerous.
  1636. */
  1637. ret = i915_gem_object_get_fence(obj);
  1638. if (ret)
  1639. goto err_unpin;
  1640. i915_gem_object_pin_fence(obj);
  1641. dev_priv->mm.interruptible = true;
  1642. return 0;
  1643. err_unpin:
  1644. i915_gem_object_unpin_from_display_plane(obj);
  1645. err_interruptible:
  1646. dev_priv->mm.interruptible = true;
  1647. return ret;
  1648. }
  1649. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1650. {
  1651. i915_gem_object_unpin_fence(obj);
  1652. i915_gem_object_unpin_from_display_plane(obj);
  1653. }
  1654. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1655. * is assumed to be a power-of-two. */
  1656. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1657. unsigned int tiling_mode,
  1658. unsigned int cpp,
  1659. unsigned int pitch)
  1660. {
  1661. if (tiling_mode != I915_TILING_NONE) {
  1662. unsigned int tile_rows, tiles;
  1663. tile_rows = *y / 8;
  1664. *y %= 8;
  1665. tiles = *x / (512/cpp);
  1666. *x %= 512/cpp;
  1667. return tile_rows * pitch * 8 + tiles * 4096;
  1668. } else {
  1669. unsigned int offset;
  1670. offset = *y * pitch + *x * cpp;
  1671. *y = 0;
  1672. *x = (offset & 4095) / cpp;
  1673. return offset & -4096;
  1674. }
  1675. }
  1676. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1677. int x, int y)
  1678. {
  1679. struct drm_device *dev = crtc->dev;
  1680. struct drm_i915_private *dev_priv = dev->dev_private;
  1681. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1682. struct intel_framebuffer *intel_fb;
  1683. struct drm_i915_gem_object *obj;
  1684. int plane = intel_crtc->plane;
  1685. unsigned long linear_offset;
  1686. u32 dspcntr;
  1687. u32 reg;
  1688. switch (plane) {
  1689. case 0:
  1690. case 1:
  1691. break;
  1692. default:
  1693. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1694. return -EINVAL;
  1695. }
  1696. intel_fb = to_intel_framebuffer(fb);
  1697. obj = intel_fb->obj;
  1698. reg = DSPCNTR(plane);
  1699. dspcntr = I915_READ(reg);
  1700. /* Mask out pixel format bits in case we change it */
  1701. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1702. switch (fb->pixel_format) {
  1703. case DRM_FORMAT_C8:
  1704. dspcntr |= DISPPLANE_8BPP;
  1705. break;
  1706. case DRM_FORMAT_XRGB1555:
  1707. case DRM_FORMAT_ARGB1555:
  1708. dspcntr |= DISPPLANE_BGRX555;
  1709. break;
  1710. case DRM_FORMAT_RGB565:
  1711. dspcntr |= DISPPLANE_BGRX565;
  1712. break;
  1713. case DRM_FORMAT_XRGB8888:
  1714. case DRM_FORMAT_ARGB8888:
  1715. dspcntr |= DISPPLANE_BGRX888;
  1716. break;
  1717. case DRM_FORMAT_XBGR8888:
  1718. case DRM_FORMAT_ABGR8888:
  1719. dspcntr |= DISPPLANE_RGBX888;
  1720. break;
  1721. case DRM_FORMAT_XRGB2101010:
  1722. case DRM_FORMAT_ARGB2101010:
  1723. dspcntr |= DISPPLANE_BGRX101010;
  1724. break;
  1725. case DRM_FORMAT_XBGR2101010:
  1726. case DRM_FORMAT_ABGR2101010:
  1727. dspcntr |= DISPPLANE_RGBX101010;
  1728. break;
  1729. default:
  1730. BUG();
  1731. }
  1732. if (INTEL_INFO(dev)->gen >= 4) {
  1733. if (obj->tiling_mode != I915_TILING_NONE)
  1734. dspcntr |= DISPPLANE_TILED;
  1735. else
  1736. dspcntr &= ~DISPPLANE_TILED;
  1737. }
  1738. if (IS_G4X(dev))
  1739. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1740. I915_WRITE(reg, dspcntr);
  1741. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1742. if (INTEL_INFO(dev)->gen >= 4) {
  1743. intel_crtc->dspaddr_offset =
  1744. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1745. fb->bits_per_pixel / 8,
  1746. fb->pitches[0]);
  1747. linear_offset -= intel_crtc->dspaddr_offset;
  1748. } else {
  1749. intel_crtc->dspaddr_offset = linear_offset;
  1750. }
  1751. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1752. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1753. fb->pitches[0]);
  1754. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1755. if (INTEL_INFO(dev)->gen >= 4) {
  1756. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1757. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1758. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1759. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1760. } else
  1761. I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
  1762. POSTING_READ(reg);
  1763. return 0;
  1764. }
  1765. static int ironlake_update_plane(struct drm_crtc *crtc,
  1766. struct drm_framebuffer *fb, int x, int y)
  1767. {
  1768. struct drm_device *dev = crtc->dev;
  1769. struct drm_i915_private *dev_priv = dev->dev_private;
  1770. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1771. struct intel_framebuffer *intel_fb;
  1772. struct drm_i915_gem_object *obj;
  1773. int plane = intel_crtc->plane;
  1774. unsigned long linear_offset;
  1775. u32 dspcntr;
  1776. u32 reg;
  1777. switch (plane) {
  1778. case 0:
  1779. case 1:
  1780. case 2:
  1781. break;
  1782. default:
  1783. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1784. return -EINVAL;
  1785. }
  1786. intel_fb = to_intel_framebuffer(fb);
  1787. obj = intel_fb->obj;
  1788. reg = DSPCNTR(plane);
  1789. dspcntr = I915_READ(reg);
  1790. /* Mask out pixel format bits in case we change it */
  1791. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1792. switch (fb->pixel_format) {
  1793. case DRM_FORMAT_C8:
  1794. dspcntr |= DISPPLANE_8BPP;
  1795. break;
  1796. case DRM_FORMAT_RGB565:
  1797. dspcntr |= DISPPLANE_BGRX565;
  1798. break;
  1799. case DRM_FORMAT_XRGB8888:
  1800. case DRM_FORMAT_ARGB8888:
  1801. dspcntr |= DISPPLANE_BGRX888;
  1802. break;
  1803. case DRM_FORMAT_XBGR8888:
  1804. case DRM_FORMAT_ABGR8888:
  1805. dspcntr |= DISPPLANE_RGBX888;
  1806. break;
  1807. case DRM_FORMAT_XRGB2101010:
  1808. case DRM_FORMAT_ARGB2101010:
  1809. dspcntr |= DISPPLANE_BGRX101010;
  1810. break;
  1811. case DRM_FORMAT_XBGR2101010:
  1812. case DRM_FORMAT_ABGR2101010:
  1813. dspcntr |= DISPPLANE_RGBX101010;
  1814. break;
  1815. default:
  1816. BUG();
  1817. }
  1818. if (obj->tiling_mode != I915_TILING_NONE)
  1819. dspcntr |= DISPPLANE_TILED;
  1820. else
  1821. dspcntr &= ~DISPPLANE_TILED;
  1822. if (IS_HASWELL(dev))
  1823. dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
  1824. else
  1825. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1826. I915_WRITE(reg, dspcntr);
  1827. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1828. intel_crtc->dspaddr_offset =
  1829. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1830. fb->bits_per_pixel / 8,
  1831. fb->pitches[0]);
  1832. linear_offset -= intel_crtc->dspaddr_offset;
  1833. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1834. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1835. fb->pitches[0]);
  1836. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1837. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1838. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1839. if (IS_HASWELL(dev)) {
  1840. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1841. } else {
  1842. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1843. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1844. }
  1845. POSTING_READ(reg);
  1846. return 0;
  1847. }
  1848. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1849. static int
  1850. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1851. int x, int y, enum mode_set_atomic state)
  1852. {
  1853. struct drm_device *dev = crtc->dev;
  1854. struct drm_i915_private *dev_priv = dev->dev_private;
  1855. if (dev_priv->display.disable_fbc)
  1856. dev_priv->display.disable_fbc(dev);
  1857. intel_increase_pllclock(crtc);
  1858. return dev_priv->display.update_plane(crtc, fb, x, y);
  1859. }
  1860. void intel_display_handle_reset(struct drm_device *dev)
  1861. {
  1862. struct drm_i915_private *dev_priv = dev->dev_private;
  1863. struct drm_crtc *crtc;
  1864. /*
  1865. * Flips in the rings have been nuked by the reset,
  1866. * so complete all pending flips so that user space
  1867. * will get its events and not get stuck.
  1868. *
  1869. * Also update the base address of all primary
  1870. * planes to the the last fb to make sure we're
  1871. * showing the correct fb after a reset.
  1872. *
  1873. * Need to make two loops over the crtcs so that we
  1874. * don't try to grab a crtc mutex before the
  1875. * pending_flip_queue really got woken up.
  1876. */
  1877. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1878. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1879. enum plane plane = intel_crtc->plane;
  1880. intel_prepare_page_flip(dev, plane);
  1881. intel_finish_page_flip_plane(dev, plane);
  1882. }
  1883. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1884. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1885. mutex_lock(&crtc->mutex);
  1886. if (intel_crtc->active)
  1887. dev_priv->display.update_plane(crtc, crtc->fb,
  1888. crtc->x, crtc->y);
  1889. mutex_unlock(&crtc->mutex);
  1890. }
  1891. }
  1892. static int
  1893. intel_finish_fb(struct drm_framebuffer *old_fb)
  1894. {
  1895. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1896. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1897. bool was_interruptible = dev_priv->mm.interruptible;
  1898. int ret;
  1899. /* Big Hammer, we also need to ensure that any pending
  1900. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1901. * current scanout is retired before unpinning the old
  1902. * framebuffer.
  1903. *
  1904. * This should only fail upon a hung GPU, in which case we
  1905. * can safely continue.
  1906. */
  1907. dev_priv->mm.interruptible = false;
  1908. ret = i915_gem_object_finish_gpu(obj);
  1909. dev_priv->mm.interruptible = was_interruptible;
  1910. return ret;
  1911. }
  1912. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1913. {
  1914. struct drm_device *dev = crtc->dev;
  1915. struct drm_i915_master_private *master_priv;
  1916. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1917. if (!dev->primary->master)
  1918. return;
  1919. master_priv = dev->primary->master->driver_priv;
  1920. if (!master_priv->sarea_priv)
  1921. return;
  1922. switch (intel_crtc->pipe) {
  1923. case 0:
  1924. master_priv->sarea_priv->pipeA_x = x;
  1925. master_priv->sarea_priv->pipeA_y = y;
  1926. break;
  1927. case 1:
  1928. master_priv->sarea_priv->pipeB_x = x;
  1929. master_priv->sarea_priv->pipeB_y = y;
  1930. break;
  1931. default:
  1932. break;
  1933. }
  1934. }
  1935. static int
  1936. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1937. struct drm_framebuffer *fb)
  1938. {
  1939. struct drm_device *dev = crtc->dev;
  1940. struct drm_i915_private *dev_priv = dev->dev_private;
  1941. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1942. struct drm_framebuffer *old_fb;
  1943. int ret;
  1944. /* no fb bound */
  1945. if (!fb) {
  1946. DRM_ERROR("No FB bound\n");
  1947. return 0;
  1948. }
  1949. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  1950. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  1951. plane_name(intel_crtc->plane),
  1952. INTEL_INFO(dev)->num_pipes);
  1953. return -EINVAL;
  1954. }
  1955. mutex_lock(&dev->struct_mutex);
  1956. ret = intel_pin_and_fence_fb_obj(dev,
  1957. to_intel_framebuffer(fb)->obj,
  1958. NULL);
  1959. if (ret != 0) {
  1960. mutex_unlock(&dev->struct_mutex);
  1961. DRM_ERROR("pin & fence failed\n");
  1962. return ret;
  1963. }
  1964. /* Update pipe size and adjust fitter if needed */
  1965. if (i915_fastboot) {
  1966. I915_WRITE(PIPESRC(intel_crtc->pipe),
  1967. ((crtc->mode.hdisplay - 1) << 16) |
  1968. (crtc->mode.vdisplay - 1));
  1969. if (!intel_crtc->config.pch_pfit.enabled &&
  1970. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
  1971. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  1972. I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
  1973. I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
  1974. I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
  1975. }
  1976. }
  1977. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1978. if (ret) {
  1979. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  1980. mutex_unlock(&dev->struct_mutex);
  1981. DRM_ERROR("failed to update base address\n");
  1982. return ret;
  1983. }
  1984. old_fb = crtc->fb;
  1985. crtc->fb = fb;
  1986. crtc->x = x;
  1987. crtc->y = y;
  1988. if (old_fb) {
  1989. if (intel_crtc->active && old_fb != fb)
  1990. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1991. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  1992. }
  1993. intel_update_fbc(dev);
  1994. intel_edp_psr_update(dev);
  1995. mutex_unlock(&dev->struct_mutex);
  1996. intel_crtc_update_sarea_pos(crtc, x, y);
  1997. return 0;
  1998. }
  1999. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2000. {
  2001. struct drm_device *dev = crtc->dev;
  2002. struct drm_i915_private *dev_priv = dev->dev_private;
  2003. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2004. int pipe = intel_crtc->pipe;
  2005. u32 reg, temp;
  2006. /* enable normal train */
  2007. reg = FDI_TX_CTL(pipe);
  2008. temp = I915_READ(reg);
  2009. if (IS_IVYBRIDGE(dev)) {
  2010. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2011. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2012. } else {
  2013. temp &= ~FDI_LINK_TRAIN_NONE;
  2014. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2015. }
  2016. I915_WRITE(reg, temp);
  2017. reg = FDI_RX_CTL(pipe);
  2018. temp = I915_READ(reg);
  2019. if (HAS_PCH_CPT(dev)) {
  2020. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2021. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2022. } else {
  2023. temp &= ~FDI_LINK_TRAIN_NONE;
  2024. temp |= FDI_LINK_TRAIN_NONE;
  2025. }
  2026. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2027. /* wait one idle pattern time */
  2028. POSTING_READ(reg);
  2029. udelay(1000);
  2030. /* IVB wants error correction enabled */
  2031. if (IS_IVYBRIDGE(dev))
  2032. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2033. FDI_FE_ERRC_ENABLE);
  2034. }
  2035. static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
  2036. {
  2037. return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
  2038. }
  2039. static void ivb_modeset_global_resources(struct drm_device *dev)
  2040. {
  2041. struct drm_i915_private *dev_priv = dev->dev_private;
  2042. struct intel_crtc *pipe_B_crtc =
  2043. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2044. struct intel_crtc *pipe_C_crtc =
  2045. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2046. uint32_t temp;
  2047. /*
  2048. * When everything is off disable fdi C so that we could enable fdi B
  2049. * with all lanes. Note that we don't care about enabled pipes without
  2050. * an enabled pch encoder.
  2051. */
  2052. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  2053. !pipe_has_enabled_pch(pipe_C_crtc)) {
  2054. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2055. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2056. temp = I915_READ(SOUTH_CHICKEN1);
  2057. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2058. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2059. I915_WRITE(SOUTH_CHICKEN1, temp);
  2060. }
  2061. }
  2062. /* The FDI link training functions for ILK/Ibexpeak. */
  2063. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2064. {
  2065. struct drm_device *dev = crtc->dev;
  2066. struct drm_i915_private *dev_priv = dev->dev_private;
  2067. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2068. int pipe = intel_crtc->pipe;
  2069. int plane = intel_crtc->plane;
  2070. u32 reg, temp, tries;
  2071. /* FDI needs bits from pipe & plane first */
  2072. assert_pipe_enabled(dev_priv, pipe);
  2073. assert_plane_enabled(dev_priv, plane);
  2074. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2075. for train result */
  2076. reg = FDI_RX_IMR(pipe);
  2077. temp = I915_READ(reg);
  2078. temp &= ~FDI_RX_SYMBOL_LOCK;
  2079. temp &= ~FDI_RX_BIT_LOCK;
  2080. I915_WRITE(reg, temp);
  2081. I915_READ(reg);
  2082. udelay(150);
  2083. /* enable CPU FDI TX and PCH FDI RX */
  2084. reg = FDI_TX_CTL(pipe);
  2085. temp = I915_READ(reg);
  2086. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2087. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2088. temp &= ~FDI_LINK_TRAIN_NONE;
  2089. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2090. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2091. reg = FDI_RX_CTL(pipe);
  2092. temp = I915_READ(reg);
  2093. temp &= ~FDI_LINK_TRAIN_NONE;
  2094. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2095. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2096. POSTING_READ(reg);
  2097. udelay(150);
  2098. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2099. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2100. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2101. FDI_RX_PHASE_SYNC_POINTER_EN);
  2102. reg = FDI_RX_IIR(pipe);
  2103. for (tries = 0; tries < 5; tries++) {
  2104. temp = I915_READ(reg);
  2105. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2106. if ((temp & FDI_RX_BIT_LOCK)) {
  2107. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2108. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2109. break;
  2110. }
  2111. }
  2112. if (tries == 5)
  2113. DRM_ERROR("FDI train 1 fail!\n");
  2114. /* Train 2 */
  2115. reg = FDI_TX_CTL(pipe);
  2116. temp = I915_READ(reg);
  2117. temp &= ~FDI_LINK_TRAIN_NONE;
  2118. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2119. I915_WRITE(reg, temp);
  2120. reg = FDI_RX_CTL(pipe);
  2121. temp = I915_READ(reg);
  2122. temp &= ~FDI_LINK_TRAIN_NONE;
  2123. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2124. I915_WRITE(reg, temp);
  2125. POSTING_READ(reg);
  2126. udelay(150);
  2127. reg = FDI_RX_IIR(pipe);
  2128. for (tries = 0; tries < 5; tries++) {
  2129. temp = I915_READ(reg);
  2130. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2131. if (temp & FDI_RX_SYMBOL_LOCK) {
  2132. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2133. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2134. break;
  2135. }
  2136. }
  2137. if (tries == 5)
  2138. DRM_ERROR("FDI train 2 fail!\n");
  2139. DRM_DEBUG_KMS("FDI train done\n");
  2140. }
  2141. static const int snb_b_fdi_train_param[] = {
  2142. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2143. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2144. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2145. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2146. };
  2147. /* The FDI link training functions for SNB/Cougarpoint. */
  2148. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2149. {
  2150. struct drm_device *dev = crtc->dev;
  2151. struct drm_i915_private *dev_priv = dev->dev_private;
  2152. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2153. int pipe = intel_crtc->pipe;
  2154. u32 reg, temp, i, retry;
  2155. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2156. for train result */
  2157. reg = FDI_RX_IMR(pipe);
  2158. temp = I915_READ(reg);
  2159. temp &= ~FDI_RX_SYMBOL_LOCK;
  2160. temp &= ~FDI_RX_BIT_LOCK;
  2161. I915_WRITE(reg, temp);
  2162. POSTING_READ(reg);
  2163. udelay(150);
  2164. /* enable CPU FDI TX and PCH FDI RX */
  2165. reg = FDI_TX_CTL(pipe);
  2166. temp = I915_READ(reg);
  2167. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2168. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2169. temp &= ~FDI_LINK_TRAIN_NONE;
  2170. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2171. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2172. /* SNB-B */
  2173. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2174. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2175. I915_WRITE(FDI_RX_MISC(pipe),
  2176. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2177. reg = FDI_RX_CTL(pipe);
  2178. temp = I915_READ(reg);
  2179. if (HAS_PCH_CPT(dev)) {
  2180. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2181. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2182. } else {
  2183. temp &= ~FDI_LINK_TRAIN_NONE;
  2184. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2185. }
  2186. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2187. POSTING_READ(reg);
  2188. udelay(150);
  2189. for (i = 0; i < 4; i++) {
  2190. reg = FDI_TX_CTL(pipe);
  2191. temp = I915_READ(reg);
  2192. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2193. temp |= snb_b_fdi_train_param[i];
  2194. I915_WRITE(reg, temp);
  2195. POSTING_READ(reg);
  2196. udelay(500);
  2197. for (retry = 0; retry < 5; retry++) {
  2198. reg = FDI_RX_IIR(pipe);
  2199. temp = I915_READ(reg);
  2200. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2201. if (temp & FDI_RX_BIT_LOCK) {
  2202. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2203. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2204. break;
  2205. }
  2206. udelay(50);
  2207. }
  2208. if (retry < 5)
  2209. break;
  2210. }
  2211. if (i == 4)
  2212. DRM_ERROR("FDI train 1 fail!\n");
  2213. /* Train 2 */
  2214. reg = FDI_TX_CTL(pipe);
  2215. temp = I915_READ(reg);
  2216. temp &= ~FDI_LINK_TRAIN_NONE;
  2217. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2218. if (IS_GEN6(dev)) {
  2219. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2220. /* SNB-B */
  2221. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2222. }
  2223. I915_WRITE(reg, temp);
  2224. reg = FDI_RX_CTL(pipe);
  2225. temp = I915_READ(reg);
  2226. if (HAS_PCH_CPT(dev)) {
  2227. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2228. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2229. } else {
  2230. temp &= ~FDI_LINK_TRAIN_NONE;
  2231. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2232. }
  2233. I915_WRITE(reg, temp);
  2234. POSTING_READ(reg);
  2235. udelay(150);
  2236. for (i = 0; i < 4; i++) {
  2237. reg = FDI_TX_CTL(pipe);
  2238. temp = I915_READ(reg);
  2239. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2240. temp |= snb_b_fdi_train_param[i];
  2241. I915_WRITE(reg, temp);
  2242. POSTING_READ(reg);
  2243. udelay(500);
  2244. for (retry = 0; retry < 5; retry++) {
  2245. reg = FDI_RX_IIR(pipe);
  2246. temp = I915_READ(reg);
  2247. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2248. if (temp & FDI_RX_SYMBOL_LOCK) {
  2249. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2250. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2251. break;
  2252. }
  2253. udelay(50);
  2254. }
  2255. if (retry < 5)
  2256. break;
  2257. }
  2258. if (i == 4)
  2259. DRM_ERROR("FDI train 2 fail!\n");
  2260. DRM_DEBUG_KMS("FDI train done.\n");
  2261. }
  2262. /* Manual link training for Ivy Bridge A0 parts */
  2263. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2264. {
  2265. struct drm_device *dev = crtc->dev;
  2266. struct drm_i915_private *dev_priv = dev->dev_private;
  2267. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2268. int pipe = intel_crtc->pipe;
  2269. u32 reg, temp, i, j;
  2270. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2271. for train result */
  2272. reg = FDI_RX_IMR(pipe);
  2273. temp = I915_READ(reg);
  2274. temp &= ~FDI_RX_SYMBOL_LOCK;
  2275. temp &= ~FDI_RX_BIT_LOCK;
  2276. I915_WRITE(reg, temp);
  2277. POSTING_READ(reg);
  2278. udelay(150);
  2279. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2280. I915_READ(FDI_RX_IIR(pipe)));
  2281. /* Try each vswing and preemphasis setting twice before moving on */
  2282. for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
  2283. /* disable first in case we need to retry */
  2284. reg = FDI_TX_CTL(pipe);
  2285. temp = I915_READ(reg);
  2286. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2287. temp &= ~FDI_TX_ENABLE;
  2288. I915_WRITE(reg, temp);
  2289. reg = FDI_RX_CTL(pipe);
  2290. temp = I915_READ(reg);
  2291. temp &= ~FDI_LINK_TRAIN_AUTO;
  2292. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2293. temp &= ~FDI_RX_ENABLE;
  2294. I915_WRITE(reg, temp);
  2295. /* enable CPU FDI TX and PCH FDI RX */
  2296. reg = FDI_TX_CTL(pipe);
  2297. temp = I915_READ(reg);
  2298. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2299. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2300. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2301. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2302. temp |= snb_b_fdi_train_param[j/2];
  2303. temp |= FDI_COMPOSITE_SYNC;
  2304. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2305. I915_WRITE(FDI_RX_MISC(pipe),
  2306. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2307. reg = FDI_RX_CTL(pipe);
  2308. temp = I915_READ(reg);
  2309. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2310. temp |= FDI_COMPOSITE_SYNC;
  2311. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2312. POSTING_READ(reg);
  2313. udelay(1); /* should be 0.5us */
  2314. for (i = 0; i < 4; i++) {
  2315. reg = FDI_RX_IIR(pipe);
  2316. temp = I915_READ(reg);
  2317. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2318. if (temp & FDI_RX_BIT_LOCK ||
  2319. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2320. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2321. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
  2322. i);
  2323. break;
  2324. }
  2325. udelay(1); /* should be 0.5us */
  2326. }
  2327. if (i == 4) {
  2328. DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
  2329. continue;
  2330. }
  2331. /* Train 2 */
  2332. reg = FDI_TX_CTL(pipe);
  2333. temp = I915_READ(reg);
  2334. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2335. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2336. I915_WRITE(reg, temp);
  2337. reg = FDI_RX_CTL(pipe);
  2338. temp = I915_READ(reg);
  2339. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2340. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2341. I915_WRITE(reg, temp);
  2342. POSTING_READ(reg);
  2343. udelay(2); /* should be 1.5us */
  2344. for (i = 0; i < 4; i++) {
  2345. reg = FDI_RX_IIR(pipe);
  2346. temp = I915_READ(reg);
  2347. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2348. if (temp & FDI_RX_SYMBOL_LOCK ||
  2349. (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
  2350. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2351. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
  2352. i);
  2353. goto train_done;
  2354. }
  2355. udelay(2); /* should be 1.5us */
  2356. }
  2357. if (i == 4)
  2358. DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
  2359. }
  2360. train_done:
  2361. DRM_DEBUG_KMS("FDI train done.\n");
  2362. }
  2363. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2364. {
  2365. struct drm_device *dev = intel_crtc->base.dev;
  2366. struct drm_i915_private *dev_priv = dev->dev_private;
  2367. int pipe = intel_crtc->pipe;
  2368. u32 reg, temp;
  2369. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2370. reg = FDI_RX_CTL(pipe);
  2371. temp = I915_READ(reg);
  2372. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2373. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2374. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2375. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2376. POSTING_READ(reg);
  2377. udelay(200);
  2378. /* Switch from Rawclk to PCDclk */
  2379. temp = I915_READ(reg);
  2380. I915_WRITE(reg, temp | FDI_PCDCLK);
  2381. POSTING_READ(reg);
  2382. udelay(200);
  2383. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2384. reg = FDI_TX_CTL(pipe);
  2385. temp = I915_READ(reg);
  2386. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2387. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2388. POSTING_READ(reg);
  2389. udelay(100);
  2390. }
  2391. }
  2392. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2393. {
  2394. struct drm_device *dev = intel_crtc->base.dev;
  2395. struct drm_i915_private *dev_priv = dev->dev_private;
  2396. int pipe = intel_crtc->pipe;
  2397. u32 reg, temp;
  2398. /* Switch from PCDclk to Rawclk */
  2399. reg = FDI_RX_CTL(pipe);
  2400. temp = I915_READ(reg);
  2401. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2402. /* Disable CPU FDI TX PLL */
  2403. reg = FDI_TX_CTL(pipe);
  2404. temp = I915_READ(reg);
  2405. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2406. POSTING_READ(reg);
  2407. udelay(100);
  2408. reg = FDI_RX_CTL(pipe);
  2409. temp = I915_READ(reg);
  2410. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2411. /* Wait for the clocks to turn off. */
  2412. POSTING_READ(reg);
  2413. udelay(100);
  2414. }
  2415. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2416. {
  2417. struct drm_device *dev = crtc->dev;
  2418. struct drm_i915_private *dev_priv = dev->dev_private;
  2419. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2420. int pipe = intel_crtc->pipe;
  2421. u32 reg, temp;
  2422. /* disable CPU FDI tx and PCH FDI rx */
  2423. reg = FDI_TX_CTL(pipe);
  2424. temp = I915_READ(reg);
  2425. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2426. POSTING_READ(reg);
  2427. reg = FDI_RX_CTL(pipe);
  2428. temp = I915_READ(reg);
  2429. temp &= ~(0x7 << 16);
  2430. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2431. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2432. POSTING_READ(reg);
  2433. udelay(100);
  2434. /* Ironlake workaround, disable clock pointer after downing FDI */
  2435. if (HAS_PCH_IBX(dev)) {
  2436. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2437. }
  2438. /* still set train pattern 1 */
  2439. reg = FDI_TX_CTL(pipe);
  2440. temp = I915_READ(reg);
  2441. temp &= ~FDI_LINK_TRAIN_NONE;
  2442. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2443. I915_WRITE(reg, temp);
  2444. reg = FDI_RX_CTL(pipe);
  2445. temp = I915_READ(reg);
  2446. if (HAS_PCH_CPT(dev)) {
  2447. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2448. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2449. } else {
  2450. temp &= ~FDI_LINK_TRAIN_NONE;
  2451. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2452. }
  2453. /* BPC in FDI rx is consistent with that in PIPECONF */
  2454. temp &= ~(0x07 << 16);
  2455. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2456. I915_WRITE(reg, temp);
  2457. POSTING_READ(reg);
  2458. udelay(100);
  2459. }
  2460. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2461. {
  2462. struct drm_device *dev = crtc->dev;
  2463. struct drm_i915_private *dev_priv = dev->dev_private;
  2464. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2465. unsigned long flags;
  2466. bool pending;
  2467. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2468. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2469. return false;
  2470. spin_lock_irqsave(&dev->event_lock, flags);
  2471. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2472. spin_unlock_irqrestore(&dev->event_lock, flags);
  2473. return pending;
  2474. }
  2475. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2476. {
  2477. struct drm_device *dev = crtc->dev;
  2478. struct drm_i915_private *dev_priv = dev->dev_private;
  2479. if (crtc->fb == NULL)
  2480. return;
  2481. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2482. wait_event(dev_priv->pending_flip_queue,
  2483. !intel_crtc_has_pending_flip(crtc));
  2484. mutex_lock(&dev->struct_mutex);
  2485. intel_finish_fb(crtc->fb);
  2486. mutex_unlock(&dev->struct_mutex);
  2487. }
  2488. /* Program iCLKIP clock to the desired frequency */
  2489. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2490. {
  2491. struct drm_device *dev = crtc->dev;
  2492. struct drm_i915_private *dev_priv = dev->dev_private;
  2493. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2494. u32 temp;
  2495. mutex_lock(&dev_priv->dpio_lock);
  2496. /* It is necessary to ungate the pixclk gate prior to programming
  2497. * the divisors, and gate it back when it is done.
  2498. */
  2499. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2500. /* Disable SSCCTL */
  2501. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2502. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2503. SBI_SSCCTL_DISABLE,
  2504. SBI_ICLK);
  2505. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2506. if (crtc->mode.clock == 20000) {
  2507. auxdiv = 1;
  2508. divsel = 0x41;
  2509. phaseinc = 0x20;
  2510. } else {
  2511. /* The iCLK virtual clock root frequency is in MHz,
  2512. * but the crtc->mode.clock in in KHz. To get the divisors,
  2513. * it is necessary to divide one by another, so we
  2514. * convert the virtual clock precision to KHz here for higher
  2515. * precision.
  2516. */
  2517. u32 iclk_virtual_root_freq = 172800 * 1000;
  2518. u32 iclk_pi_range = 64;
  2519. u32 desired_divisor, msb_divisor_value, pi_value;
  2520. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2521. msb_divisor_value = desired_divisor / iclk_pi_range;
  2522. pi_value = desired_divisor % iclk_pi_range;
  2523. auxdiv = 0;
  2524. divsel = msb_divisor_value - 2;
  2525. phaseinc = pi_value;
  2526. }
  2527. /* This should not happen with any sane values */
  2528. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2529. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2530. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2531. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2532. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2533. crtc->mode.clock,
  2534. auxdiv,
  2535. divsel,
  2536. phasedir,
  2537. phaseinc);
  2538. /* Program SSCDIVINTPHASE6 */
  2539. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2540. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2541. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2542. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2543. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2544. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2545. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2546. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2547. /* Program SSCAUXDIV */
  2548. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2549. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2550. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2551. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2552. /* Enable modulator and associated divider */
  2553. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2554. temp &= ~SBI_SSCCTL_DISABLE;
  2555. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2556. /* Wait for initialization time */
  2557. udelay(24);
  2558. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2559. mutex_unlock(&dev_priv->dpio_lock);
  2560. }
  2561. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2562. enum pipe pch_transcoder)
  2563. {
  2564. struct drm_device *dev = crtc->base.dev;
  2565. struct drm_i915_private *dev_priv = dev->dev_private;
  2566. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2567. I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2568. I915_READ(HTOTAL(cpu_transcoder)));
  2569. I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2570. I915_READ(HBLANK(cpu_transcoder)));
  2571. I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2572. I915_READ(HSYNC(cpu_transcoder)));
  2573. I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2574. I915_READ(VTOTAL(cpu_transcoder)));
  2575. I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2576. I915_READ(VBLANK(cpu_transcoder)));
  2577. I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2578. I915_READ(VSYNC(cpu_transcoder)));
  2579. I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2580. I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2581. }
  2582. /*
  2583. * Enable PCH resources required for PCH ports:
  2584. * - PCH PLLs
  2585. * - FDI training & RX/TX
  2586. * - update transcoder timings
  2587. * - DP transcoding bits
  2588. * - transcoder
  2589. */
  2590. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2591. {
  2592. struct drm_device *dev = crtc->dev;
  2593. struct drm_i915_private *dev_priv = dev->dev_private;
  2594. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2595. int pipe = intel_crtc->pipe;
  2596. u32 reg, temp;
  2597. assert_pch_transcoder_disabled(dev_priv, pipe);
  2598. /* Write the TU size bits before fdi link training, so that error
  2599. * detection works. */
  2600. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2601. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2602. /* For PCH output, training FDI link */
  2603. dev_priv->display.fdi_link_train(crtc);
  2604. /* We need to program the right clock selection before writing the pixel
  2605. * mutliplier into the DPLL. */
  2606. if (HAS_PCH_CPT(dev)) {
  2607. u32 sel;
  2608. temp = I915_READ(PCH_DPLL_SEL);
  2609. temp |= TRANS_DPLL_ENABLE(pipe);
  2610. sel = TRANS_DPLLB_SEL(pipe);
  2611. if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
  2612. temp |= sel;
  2613. else
  2614. temp &= ~sel;
  2615. I915_WRITE(PCH_DPLL_SEL, temp);
  2616. }
  2617. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2618. * transcoder, and we actually should do this to not upset any PCH
  2619. * transcoder that already use the clock when we share it.
  2620. *
  2621. * Note that enable_shared_dpll tries to do the right thing, but
  2622. * get_shared_dpll unconditionally resets the pll - we need that to have
  2623. * the right LVDS enable sequence. */
  2624. ironlake_enable_shared_dpll(intel_crtc);
  2625. /* set transcoder timing, panel must allow it */
  2626. assert_panel_unlocked(dev_priv, pipe);
  2627. ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  2628. intel_fdi_normal_train(crtc);
  2629. /* For PCH DP, enable TRANS_DP_CTL */
  2630. if (HAS_PCH_CPT(dev) &&
  2631. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2632. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2633. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2634. reg = TRANS_DP_CTL(pipe);
  2635. temp = I915_READ(reg);
  2636. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2637. TRANS_DP_SYNC_MASK |
  2638. TRANS_DP_BPC_MASK);
  2639. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2640. TRANS_DP_ENH_FRAMING);
  2641. temp |= bpc << 9; /* same format but at 11:9 */
  2642. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2643. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2644. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2645. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2646. switch (intel_trans_dp_port_sel(crtc)) {
  2647. case PCH_DP_B:
  2648. temp |= TRANS_DP_PORT_SEL_B;
  2649. break;
  2650. case PCH_DP_C:
  2651. temp |= TRANS_DP_PORT_SEL_C;
  2652. break;
  2653. case PCH_DP_D:
  2654. temp |= TRANS_DP_PORT_SEL_D;
  2655. break;
  2656. default:
  2657. BUG();
  2658. }
  2659. I915_WRITE(reg, temp);
  2660. }
  2661. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2662. }
  2663. static void lpt_pch_enable(struct drm_crtc *crtc)
  2664. {
  2665. struct drm_device *dev = crtc->dev;
  2666. struct drm_i915_private *dev_priv = dev->dev_private;
  2667. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2668. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2669. assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  2670. lpt_program_iclkip(crtc);
  2671. /* Set transcoder timing. */
  2672. ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  2673. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2674. }
  2675. static void intel_put_shared_dpll(struct intel_crtc *crtc)
  2676. {
  2677. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2678. if (pll == NULL)
  2679. return;
  2680. if (pll->refcount == 0) {
  2681. WARN(1, "bad %s refcount\n", pll->name);
  2682. return;
  2683. }
  2684. if (--pll->refcount == 0) {
  2685. WARN_ON(pll->on);
  2686. WARN_ON(pll->active);
  2687. }
  2688. crtc->config.shared_dpll = DPLL_ID_PRIVATE;
  2689. }
  2690. static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
  2691. {
  2692. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2693. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2694. enum intel_dpll_id i;
  2695. if (pll) {
  2696. DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
  2697. crtc->base.base.id, pll->name);
  2698. intel_put_shared_dpll(crtc);
  2699. }
  2700. if (HAS_PCH_IBX(dev_priv->dev)) {
  2701. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2702. i = (enum intel_dpll_id) crtc->pipe;
  2703. pll = &dev_priv->shared_dplls[i];
  2704. DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  2705. crtc->base.base.id, pll->name);
  2706. goto found;
  2707. }
  2708. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2709. pll = &dev_priv->shared_dplls[i];
  2710. /* Only want to check enabled timings first */
  2711. if (pll->refcount == 0)
  2712. continue;
  2713. if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
  2714. sizeof(pll->hw_state)) == 0) {
  2715. DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
  2716. crtc->base.base.id,
  2717. pll->name, pll->refcount, pll->active);
  2718. goto found;
  2719. }
  2720. }
  2721. /* Ok no matching timings, maybe there's a free one? */
  2722. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2723. pll = &dev_priv->shared_dplls[i];
  2724. if (pll->refcount == 0) {
  2725. DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
  2726. crtc->base.base.id, pll->name);
  2727. goto found;
  2728. }
  2729. }
  2730. return NULL;
  2731. found:
  2732. crtc->config.shared_dpll = i;
  2733. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  2734. pipe_name(crtc->pipe));
  2735. if (pll->active == 0) {
  2736. memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
  2737. sizeof(pll->hw_state));
  2738. DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  2739. WARN_ON(pll->on);
  2740. assert_shared_dpll_disabled(dev_priv, pll);
  2741. pll->mode_set(dev_priv, pll);
  2742. }
  2743. pll->refcount++;
  2744. return pll;
  2745. }
  2746. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  2747. {
  2748. struct drm_i915_private *dev_priv = dev->dev_private;
  2749. int dslreg = PIPEDSL(pipe);
  2750. u32 temp;
  2751. temp = I915_READ(dslreg);
  2752. udelay(500);
  2753. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2754. if (wait_for(I915_READ(dslreg) != temp, 5))
  2755. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2756. }
  2757. }
  2758. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2759. {
  2760. struct drm_device *dev = crtc->base.dev;
  2761. struct drm_i915_private *dev_priv = dev->dev_private;
  2762. int pipe = crtc->pipe;
  2763. if (crtc->config.pch_pfit.enabled) {
  2764. /* Force use of hard-coded filter coefficients
  2765. * as some pre-programmed values are broken,
  2766. * e.g. x201.
  2767. */
  2768. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2769. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2770. PF_PIPE_SEL_IVB(pipe));
  2771. else
  2772. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2773. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2774. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2775. }
  2776. }
  2777. static void intel_enable_planes(struct drm_crtc *crtc)
  2778. {
  2779. struct drm_device *dev = crtc->dev;
  2780. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2781. struct intel_plane *intel_plane;
  2782. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2783. if (intel_plane->pipe == pipe)
  2784. intel_plane_restore(&intel_plane->base);
  2785. }
  2786. static void intel_disable_planes(struct drm_crtc *crtc)
  2787. {
  2788. struct drm_device *dev = crtc->dev;
  2789. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2790. struct intel_plane *intel_plane;
  2791. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2792. if (intel_plane->pipe == pipe)
  2793. intel_plane_disable(&intel_plane->base);
  2794. }
  2795. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2796. {
  2797. struct drm_device *dev = crtc->dev;
  2798. struct drm_i915_private *dev_priv = dev->dev_private;
  2799. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2800. struct intel_encoder *encoder;
  2801. int pipe = intel_crtc->pipe;
  2802. int plane = intel_crtc->plane;
  2803. WARN_ON(!crtc->enabled);
  2804. if (intel_crtc->active)
  2805. return;
  2806. intel_crtc->active = true;
  2807. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2808. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2809. intel_update_watermarks(dev);
  2810. for_each_encoder_on_crtc(dev, crtc, encoder)
  2811. if (encoder->pre_enable)
  2812. encoder->pre_enable(encoder);
  2813. if (intel_crtc->config.has_pch_encoder) {
  2814. /* Note: FDI PLL enabling _must_ be done before we enable the
  2815. * cpu pipes, hence this is separate from all the other fdi/pch
  2816. * enabling. */
  2817. ironlake_fdi_pll_enable(intel_crtc);
  2818. } else {
  2819. assert_fdi_tx_disabled(dev_priv, pipe);
  2820. assert_fdi_rx_disabled(dev_priv, pipe);
  2821. }
  2822. ironlake_pfit_enable(intel_crtc);
  2823. /*
  2824. * On ILK+ LUT must be loaded before the pipe is running but with
  2825. * clocks enabled
  2826. */
  2827. intel_crtc_load_lut(crtc);
  2828. intel_enable_pipe(dev_priv, pipe,
  2829. intel_crtc->config.has_pch_encoder);
  2830. intel_enable_plane(dev_priv, plane, pipe);
  2831. intel_enable_planes(crtc);
  2832. intel_crtc_update_cursor(crtc, true);
  2833. if (intel_crtc->config.has_pch_encoder)
  2834. ironlake_pch_enable(crtc);
  2835. mutex_lock(&dev->struct_mutex);
  2836. intel_update_fbc(dev);
  2837. mutex_unlock(&dev->struct_mutex);
  2838. for_each_encoder_on_crtc(dev, crtc, encoder)
  2839. encoder->enable(encoder);
  2840. if (HAS_PCH_CPT(dev))
  2841. cpt_verify_modeset(dev, intel_crtc->pipe);
  2842. /*
  2843. * There seems to be a race in PCH platform hw (at least on some
  2844. * outputs) where an enabled pipe still completes any pageflip right
  2845. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2846. * as the first vblank happend, everything works as expected. Hence just
  2847. * wait for one vblank before returning to avoid strange things
  2848. * happening.
  2849. */
  2850. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2851. }
  2852. /* IPS only exists on ULT machines and is tied to pipe A. */
  2853. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  2854. {
  2855. return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
  2856. }
  2857. static void hsw_enable_ips(struct intel_crtc *crtc)
  2858. {
  2859. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2860. if (!crtc->config.ips_enabled)
  2861. return;
  2862. /* We can only enable IPS after we enable a plane and wait for a vblank.
  2863. * We guarantee that the plane is enabled by calling intel_enable_ips
  2864. * only after intel_enable_plane. And intel_enable_plane already waits
  2865. * for a vblank, so all we need to do here is to enable the IPS bit. */
  2866. assert_plane_enabled(dev_priv, crtc->plane);
  2867. I915_WRITE(IPS_CTL, IPS_ENABLE);
  2868. }
  2869. static void hsw_disable_ips(struct intel_crtc *crtc)
  2870. {
  2871. struct drm_device *dev = crtc->base.dev;
  2872. struct drm_i915_private *dev_priv = dev->dev_private;
  2873. if (!crtc->config.ips_enabled)
  2874. return;
  2875. assert_plane_enabled(dev_priv, crtc->plane);
  2876. I915_WRITE(IPS_CTL, 0);
  2877. /* We need to wait for a vblank before we can disable the plane. */
  2878. intel_wait_for_vblank(dev, crtc->pipe);
  2879. }
  2880. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2881. {
  2882. struct drm_device *dev = crtc->dev;
  2883. struct drm_i915_private *dev_priv = dev->dev_private;
  2884. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2885. struct intel_encoder *encoder;
  2886. int pipe = intel_crtc->pipe;
  2887. int plane = intel_crtc->plane;
  2888. WARN_ON(!crtc->enabled);
  2889. if (intel_crtc->active)
  2890. return;
  2891. intel_crtc->active = true;
  2892. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2893. if (intel_crtc->config.has_pch_encoder)
  2894. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2895. intel_update_watermarks(dev);
  2896. if (intel_crtc->config.has_pch_encoder)
  2897. dev_priv->display.fdi_link_train(crtc);
  2898. for_each_encoder_on_crtc(dev, crtc, encoder)
  2899. if (encoder->pre_enable)
  2900. encoder->pre_enable(encoder);
  2901. intel_ddi_enable_pipe_clock(intel_crtc);
  2902. ironlake_pfit_enable(intel_crtc);
  2903. /*
  2904. * On ILK+ LUT must be loaded before the pipe is running but with
  2905. * clocks enabled
  2906. */
  2907. intel_crtc_load_lut(crtc);
  2908. intel_ddi_set_pipe_settings(crtc);
  2909. intel_ddi_enable_transcoder_func(crtc);
  2910. intel_enable_pipe(dev_priv, pipe,
  2911. intel_crtc->config.has_pch_encoder);
  2912. intel_enable_plane(dev_priv, plane, pipe);
  2913. intel_enable_planes(crtc);
  2914. intel_crtc_update_cursor(crtc, true);
  2915. hsw_enable_ips(intel_crtc);
  2916. if (intel_crtc->config.has_pch_encoder)
  2917. lpt_pch_enable(crtc);
  2918. mutex_lock(&dev->struct_mutex);
  2919. intel_update_fbc(dev);
  2920. mutex_unlock(&dev->struct_mutex);
  2921. for_each_encoder_on_crtc(dev, crtc, encoder)
  2922. encoder->enable(encoder);
  2923. /*
  2924. * There seems to be a race in PCH platform hw (at least on some
  2925. * outputs) where an enabled pipe still completes any pageflip right
  2926. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2927. * as the first vblank happend, everything works as expected. Hence just
  2928. * wait for one vblank before returning to avoid strange things
  2929. * happening.
  2930. */
  2931. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2932. }
  2933. static void ironlake_pfit_disable(struct intel_crtc *crtc)
  2934. {
  2935. struct drm_device *dev = crtc->base.dev;
  2936. struct drm_i915_private *dev_priv = dev->dev_private;
  2937. int pipe = crtc->pipe;
  2938. /* To avoid upsetting the power well on haswell only disable the pfit if
  2939. * it's in use. The hw state code will make sure we get this right. */
  2940. if (crtc->config.pch_pfit.enabled) {
  2941. I915_WRITE(PF_CTL(pipe), 0);
  2942. I915_WRITE(PF_WIN_POS(pipe), 0);
  2943. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2944. }
  2945. }
  2946. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2947. {
  2948. struct drm_device *dev = crtc->dev;
  2949. struct drm_i915_private *dev_priv = dev->dev_private;
  2950. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2951. struct intel_encoder *encoder;
  2952. int pipe = intel_crtc->pipe;
  2953. int plane = intel_crtc->plane;
  2954. u32 reg, temp;
  2955. if (!intel_crtc->active)
  2956. return;
  2957. for_each_encoder_on_crtc(dev, crtc, encoder)
  2958. encoder->disable(encoder);
  2959. intel_crtc_wait_for_pending_flips(crtc);
  2960. drm_vblank_off(dev, pipe);
  2961. if (dev_priv->fbc.plane == plane)
  2962. intel_disable_fbc(dev);
  2963. intel_crtc_update_cursor(crtc, false);
  2964. intel_disable_planes(crtc);
  2965. intel_disable_plane(dev_priv, plane, pipe);
  2966. if (intel_crtc->config.has_pch_encoder)
  2967. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  2968. intel_disable_pipe(dev_priv, pipe);
  2969. ironlake_pfit_disable(intel_crtc);
  2970. for_each_encoder_on_crtc(dev, crtc, encoder)
  2971. if (encoder->post_disable)
  2972. encoder->post_disable(encoder);
  2973. if (intel_crtc->config.has_pch_encoder) {
  2974. ironlake_fdi_disable(crtc);
  2975. ironlake_disable_pch_transcoder(dev_priv, pipe);
  2976. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2977. if (HAS_PCH_CPT(dev)) {
  2978. /* disable TRANS_DP_CTL */
  2979. reg = TRANS_DP_CTL(pipe);
  2980. temp = I915_READ(reg);
  2981. temp &= ~(TRANS_DP_OUTPUT_ENABLE |
  2982. TRANS_DP_PORT_SEL_MASK);
  2983. temp |= TRANS_DP_PORT_SEL_NONE;
  2984. I915_WRITE(reg, temp);
  2985. /* disable DPLL_SEL */
  2986. temp = I915_READ(PCH_DPLL_SEL);
  2987. temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
  2988. I915_WRITE(PCH_DPLL_SEL, temp);
  2989. }
  2990. /* disable PCH DPLL */
  2991. intel_disable_shared_dpll(intel_crtc);
  2992. ironlake_fdi_pll_disable(intel_crtc);
  2993. }
  2994. intel_crtc->active = false;
  2995. intel_update_watermarks(dev);
  2996. mutex_lock(&dev->struct_mutex);
  2997. intel_update_fbc(dev);
  2998. mutex_unlock(&dev->struct_mutex);
  2999. }
  3000. static void haswell_crtc_disable(struct drm_crtc *crtc)
  3001. {
  3002. struct drm_device *dev = crtc->dev;
  3003. struct drm_i915_private *dev_priv = dev->dev_private;
  3004. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3005. struct intel_encoder *encoder;
  3006. int pipe = intel_crtc->pipe;
  3007. int plane = intel_crtc->plane;
  3008. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3009. if (!intel_crtc->active)
  3010. return;
  3011. for_each_encoder_on_crtc(dev, crtc, encoder)
  3012. encoder->disable(encoder);
  3013. intel_crtc_wait_for_pending_flips(crtc);
  3014. drm_vblank_off(dev, pipe);
  3015. /* FBC must be disabled before disabling the plane on HSW. */
  3016. if (dev_priv->fbc.plane == plane)
  3017. intel_disable_fbc(dev);
  3018. hsw_disable_ips(intel_crtc);
  3019. intel_crtc_update_cursor(crtc, false);
  3020. intel_disable_planes(crtc);
  3021. intel_disable_plane(dev_priv, plane, pipe);
  3022. if (intel_crtc->config.has_pch_encoder)
  3023. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  3024. intel_disable_pipe(dev_priv, pipe);
  3025. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3026. ironlake_pfit_disable(intel_crtc);
  3027. intel_ddi_disable_pipe_clock(intel_crtc);
  3028. for_each_encoder_on_crtc(dev, crtc, encoder)
  3029. if (encoder->post_disable)
  3030. encoder->post_disable(encoder);
  3031. if (intel_crtc->config.has_pch_encoder) {
  3032. lpt_disable_pch_transcoder(dev_priv);
  3033. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  3034. intel_ddi_fdi_disable(crtc);
  3035. }
  3036. intel_crtc->active = false;
  3037. intel_update_watermarks(dev);
  3038. mutex_lock(&dev->struct_mutex);
  3039. intel_update_fbc(dev);
  3040. mutex_unlock(&dev->struct_mutex);
  3041. }
  3042. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3043. {
  3044. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3045. intel_put_shared_dpll(intel_crtc);
  3046. }
  3047. static void haswell_crtc_off(struct drm_crtc *crtc)
  3048. {
  3049. intel_ddi_put_crtc_pll(crtc);
  3050. }
  3051. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3052. {
  3053. if (!enable && intel_crtc->overlay) {
  3054. struct drm_device *dev = intel_crtc->base.dev;
  3055. struct drm_i915_private *dev_priv = dev->dev_private;
  3056. mutex_lock(&dev->struct_mutex);
  3057. dev_priv->mm.interruptible = false;
  3058. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3059. dev_priv->mm.interruptible = true;
  3060. mutex_unlock(&dev->struct_mutex);
  3061. }
  3062. /* Let userspace switch the overlay on again. In most cases userspace
  3063. * has to recompute where to put it anyway.
  3064. */
  3065. }
  3066. /**
  3067. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3068. * cursor plane briefly if not already running after enabling the display
  3069. * plane.
  3070. * This workaround avoids occasional blank screens when self refresh is
  3071. * enabled.
  3072. */
  3073. static void
  3074. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3075. {
  3076. u32 cntl = I915_READ(CURCNTR(pipe));
  3077. if ((cntl & CURSOR_MODE) == 0) {
  3078. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3079. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3080. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3081. intel_wait_for_vblank(dev_priv->dev, pipe);
  3082. I915_WRITE(CURCNTR(pipe), cntl);
  3083. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3084. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3085. }
  3086. }
  3087. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3088. {
  3089. struct drm_device *dev = crtc->base.dev;
  3090. struct drm_i915_private *dev_priv = dev->dev_private;
  3091. struct intel_crtc_config *pipe_config = &crtc->config;
  3092. if (!crtc->config.gmch_pfit.control)
  3093. return;
  3094. /*
  3095. * The panel fitter should only be adjusted whilst the pipe is disabled,
  3096. * according to register description and PRM.
  3097. */
  3098. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3099. assert_pipe_disabled(dev_priv, crtc->pipe);
  3100. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3101. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3102. /* Border color in case we don't scale up to the full screen. Black by
  3103. * default, change to something else for debugging. */
  3104. I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3105. }
  3106. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3107. {
  3108. struct drm_device *dev = crtc->dev;
  3109. struct drm_i915_private *dev_priv = dev->dev_private;
  3110. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3111. struct intel_encoder *encoder;
  3112. int pipe = intel_crtc->pipe;
  3113. int plane = intel_crtc->plane;
  3114. WARN_ON(!crtc->enabled);
  3115. if (intel_crtc->active)
  3116. return;
  3117. intel_crtc->active = true;
  3118. intel_update_watermarks(dev);
  3119. for_each_encoder_on_crtc(dev, crtc, encoder)
  3120. if (encoder->pre_pll_enable)
  3121. encoder->pre_pll_enable(encoder);
  3122. vlv_enable_pll(intel_crtc);
  3123. for_each_encoder_on_crtc(dev, crtc, encoder)
  3124. if (encoder->pre_enable)
  3125. encoder->pre_enable(encoder);
  3126. i9xx_pfit_enable(intel_crtc);
  3127. intel_crtc_load_lut(crtc);
  3128. intel_enable_pipe(dev_priv, pipe, false);
  3129. intel_enable_plane(dev_priv, plane, pipe);
  3130. intel_enable_planes(crtc);
  3131. intel_crtc_update_cursor(crtc, true);
  3132. intel_update_fbc(dev);
  3133. for_each_encoder_on_crtc(dev, crtc, encoder)
  3134. encoder->enable(encoder);
  3135. }
  3136. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3137. {
  3138. struct drm_device *dev = crtc->dev;
  3139. struct drm_i915_private *dev_priv = dev->dev_private;
  3140. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3141. struct intel_encoder *encoder;
  3142. int pipe = intel_crtc->pipe;
  3143. int plane = intel_crtc->plane;
  3144. WARN_ON(!crtc->enabled);
  3145. if (intel_crtc->active)
  3146. return;
  3147. intel_crtc->active = true;
  3148. intel_update_watermarks(dev);
  3149. for_each_encoder_on_crtc(dev, crtc, encoder)
  3150. if (encoder->pre_enable)
  3151. encoder->pre_enable(encoder);
  3152. i9xx_enable_pll(intel_crtc);
  3153. i9xx_pfit_enable(intel_crtc);
  3154. intel_crtc_load_lut(crtc);
  3155. intel_enable_pipe(dev_priv, pipe, false);
  3156. intel_enable_plane(dev_priv, plane, pipe);
  3157. intel_enable_planes(crtc);
  3158. /* The fixup needs to happen before cursor is enabled */
  3159. if (IS_G4X(dev))
  3160. g4x_fixup_plane(dev_priv, pipe);
  3161. intel_crtc_update_cursor(crtc, true);
  3162. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3163. intel_crtc_dpms_overlay(intel_crtc, true);
  3164. intel_update_fbc(dev);
  3165. for_each_encoder_on_crtc(dev, crtc, encoder)
  3166. encoder->enable(encoder);
  3167. }
  3168. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3169. {
  3170. struct drm_device *dev = crtc->base.dev;
  3171. struct drm_i915_private *dev_priv = dev->dev_private;
  3172. if (!crtc->config.gmch_pfit.control)
  3173. return;
  3174. assert_pipe_disabled(dev_priv, crtc->pipe);
  3175. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  3176. I915_READ(PFIT_CONTROL));
  3177. I915_WRITE(PFIT_CONTROL, 0);
  3178. }
  3179. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3180. {
  3181. struct drm_device *dev = crtc->dev;
  3182. struct drm_i915_private *dev_priv = dev->dev_private;
  3183. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3184. struct intel_encoder *encoder;
  3185. int pipe = intel_crtc->pipe;
  3186. int plane = intel_crtc->plane;
  3187. if (!intel_crtc->active)
  3188. return;
  3189. for_each_encoder_on_crtc(dev, crtc, encoder)
  3190. encoder->disable(encoder);
  3191. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3192. intel_crtc_wait_for_pending_flips(crtc);
  3193. drm_vblank_off(dev, pipe);
  3194. if (dev_priv->fbc.plane == plane)
  3195. intel_disable_fbc(dev);
  3196. intel_crtc_dpms_overlay(intel_crtc, false);
  3197. intel_crtc_update_cursor(crtc, false);
  3198. intel_disable_planes(crtc);
  3199. intel_disable_plane(dev_priv, plane, pipe);
  3200. intel_disable_pipe(dev_priv, pipe);
  3201. i9xx_pfit_disable(intel_crtc);
  3202. for_each_encoder_on_crtc(dev, crtc, encoder)
  3203. if (encoder->post_disable)
  3204. encoder->post_disable(encoder);
  3205. i9xx_disable_pll(dev_priv, pipe);
  3206. intel_crtc->active = false;
  3207. intel_update_fbc(dev);
  3208. intel_update_watermarks(dev);
  3209. }
  3210. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3211. {
  3212. }
  3213. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3214. bool enabled)
  3215. {
  3216. struct drm_device *dev = crtc->dev;
  3217. struct drm_i915_master_private *master_priv;
  3218. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3219. int pipe = intel_crtc->pipe;
  3220. if (!dev->primary->master)
  3221. return;
  3222. master_priv = dev->primary->master->driver_priv;
  3223. if (!master_priv->sarea_priv)
  3224. return;
  3225. switch (pipe) {
  3226. case 0:
  3227. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3228. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3229. break;
  3230. case 1:
  3231. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3232. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3233. break;
  3234. default:
  3235. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3236. break;
  3237. }
  3238. }
  3239. /**
  3240. * Sets the power management mode of the pipe and plane.
  3241. */
  3242. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3243. {
  3244. struct drm_device *dev = crtc->dev;
  3245. struct drm_i915_private *dev_priv = dev->dev_private;
  3246. struct intel_encoder *intel_encoder;
  3247. bool enable = false;
  3248. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3249. enable |= intel_encoder->connectors_active;
  3250. if (enable)
  3251. dev_priv->display.crtc_enable(crtc);
  3252. else
  3253. dev_priv->display.crtc_disable(crtc);
  3254. intel_crtc_update_sarea(crtc, enable);
  3255. }
  3256. static void intel_crtc_disable(struct drm_crtc *crtc)
  3257. {
  3258. struct drm_device *dev = crtc->dev;
  3259. struct drm_connector *connector;
  3260. struct drm_i915_private *dev_priv = dev->dev_private;
  3261. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3262. /* crtc should still be enabled when we disable it. */
  3263. WARN_ON(!crtc->enabled);
  3264. dev_priv->display.crtc_disable(crtc);
  3265. intel_crtc->eld_vld = false;
  3266. intel_crtc_update_sarea(crtc, false);
  3267. dev_priv->display.off(crtc);
  3268. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3269. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3270. if (crtc->fb) {
  3271. mutex_lock(&dev->struct_mutex);
  3272. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3273. mutex_unlock(&dev->struct_mutex);
  3274. crtc->fb = NULL;
  3275. }
  3276. /* Update computed state. */
  3277. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3278. if (!connector->encoder || !connector->encoder->crtc)
  3279. continue;
  3280. if (connector->encoder->crtc != crtc)
  3281. continue;
  3282. connector->dpms = DRM_MODE_DPMS_OFF;
  3283. to_intel_encoder(connector->encoder)->connectors_active = false;
  3284. }
  3285. }
  3286. void intel_encoder_destroy(struct drm_encoder *encoder)
  3287. {
  3288. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3289. drm_encoder_cleanup(encoder);
  3290. kfree(intel_encoder);
  3291. }
  3292. /* Simple dpms helper for encoders with just one connector, no cloning and only
  3293. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3294. * state of the entire output pipe. */
  3295. static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3296. {
  3297. if (mode == DRM_MODE_DPMS_ON) {
  3298. encoder->connectors_active = true;
  3299. intel_crtc_update_dpms(encoder->base.crtc);
  3300. } else {
  3301. encoder->connectors_active = false;
  3302. intel_crtc_update_dpms(encoder->base.crtc);
  3303. }
  3304. }
  3305. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3306. * internal consistency). */
  3307. static void intel_connector_check_state(struct intel_connector *connector)
  3308. {
  3309. if (connector->get_hw_state(connector)) {
  3310. struct intel_encoder *encoder = connector->encoder;
  3311. struct drm_crtc *crtc;
  3312. bool encoder_enabled;
  3313. enum pipe pipe;
  3314. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3315. connector->base.base.id,
  3316. drm_get_connector_name(&connector->base));
  3317. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3318. "wrong connector dpms state\n");
  3319. WARN(connector->base.encoder != &encoder->base,
  3320. "active connector not linked to encoder\n");
  3321. WARN(!encoder->connectors_active,
  3322. "encoder->connectors_active not set\n");
  3323. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3324. WARN(!encoder_enabled, "encoder not enabled\n");
  3325. if (WARN_ON(!encoder->base.crtc))
  3326. return;
  3327. crtc = encoder->base.crtc;
  3328. WARN(!crtc->enabled, "crtc not enabled\n");
  3329. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3330. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3331. "encoder active on the wrong pipe\n");
  3332. }
  3333. }
  3334. /* Even simpler default implementation, if there's really no special case to
  3335. * consider. */
  3336. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3337. {
  3338. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3339. /* All the simple cases only support two dpms states. */
  3340. if (mode != DRM_MODE_DPMS_ON)
  3341. mode = DRM_MODE_DPMS_OFF;
  3342. if (mode == connector->dpms)
  3343. return;
  3344. connector->dpms = mode;
  3345. /* Only need to change hw state when actually enabled */
  3346. if (encoder->base.crtc)
  3347. intel_encoder_dpms(encoder, mode);
  3348. else
  3349. WARN_ON(encoder->connectors_active != false);
  3350. intel_modeset_check_state(connector->dev);
  3351. }
  3352. /* Simple connector->get_hw_state implementation for encoders that support only
  3353. * one connector and no cloning and hence the encoder state determines the state
  3354. * of the connector. */
  3355. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3356. {
  3357. enum pipe pipe = 0;
  3358. struct intel_encoder *encoder = connector->encoder;
  3359. return encoder->get_hw_state(encoder, &pipe);
  3360. }
  3361. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3362. struct intel_crtc_config *pipe_config)
  3363. {
  3364. struct drm_i915_private *dev_priv = dev->dev_private;
  3365. struct intel_crtc *pipe_B_crtc =
  3366. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3367. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3368. pipe_name(pipe), pipe_config->fdi_lanes);
  3369. if (pipe_config->fdi_lanes > 4) {
  3370. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3371. pipe_name(pipe), pipe_config->fdi_lanes);
  3372. return false;
  3373. }
  3374. if (IS_HASWELL(dev)) {
  3375. if (pipe_config->fdi_lanes > 2) {
  3376. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3377. pipe_config->fdi_lanes);
  3378. return false;
  3379. } else {
  3380. return true;
  3381. }
  3382. }
  3383. if (INTEL_INFO(dev)->num_pipes == 2)
  3384. return true;
  3385. /* Ivybridge 3 pipe is really complicated */
  3386. switch (pipe) {
  3387. case PIPE_A:
  3388. return true;
  3389. case PIPE_B:
  3390. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3391. pipe_config->fdi_lanes > 2) {
  3392. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3393. pipe_name(pipe), pipe_config->fdi_lanes);
  3394. return false;
  3395. }
  3396. return true;
  3397. case PIPE_C:
  3398. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3399. pipe_B_crtc->config.fdi_lanes <= 2) {
  3400. if (pipe_config->fdi_lanes > 2) {
  3401. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3402. pipe_name(pipe), pipe_config->fdi_lanes);
  3403. return false;
  3404. }
  3405. } else {
  3406. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3407. return false;
  3408. }
  3409. return true;
  3410. default:
  3411. BUG();
  3412. }
  3413. }
  3414. #define RETRY 1
  3415. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3416. struct intel_crtc_config *pipe_config)
  3417. {
  3418. struct drm_device *dev = intel_crtc->base.dev;
  3419. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3420. int lane, link_bw, fdi_dotclock;
  3421. bool setup_ok, needs_recompute = false;
  3422. retry:
  3423. /* FDI is a binary signal running at ~2.7GHz, encoding
  3424. * each output octet as 10 bits. The actual frequency
  3425. * is stored as a divider into a 100MHz clock, and the
  3426. * mode pixel clock is stored in units of 1KHz.
  3427. * Hence the bw of each lane in terms of the mode signal
  3428. * is:
  3429. */
  3430. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3431. fdi_dotclock = adjusted_mode->clock;
  3432. fdi_dotclock /= pipe_config->pixel_multiplier;
  3433. lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
  3434. pipe_config->pipe_bpp);
  3435. pipe_config->fdi_lanes = lane;
  3436. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
  3437. link_bw, &pipe_config->fdi_m_n);
  3438. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3439. intel_crtc->pipe, pipe_config);
  3440. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3441. pipe_config->pipe_bpp -= 2*3;
  3442. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3443. pipe_config->pipe_bpp);
  3444. needs_recompute = true;
  3445. pipe_config->bw_constrained = true;
  3446. goto retry;
  3447. }
  3448. if (needs_recompute)
  3449. return RETRY;
  3450. return setup_ok ? 0 : -EINVAL;
  3451. }
  3452. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  3453. struct intel_crtc_config *pipe_config)
  3454. {
  3455. pipe_config->ips_enabled = i915_enable_ips &&
  3456. hsw_crtc_supports_ips(crtc) &&
  3457. pipe_config->pipe_bpp <= 24;
  3458. }
  3459. static int intel_crtc_compute_config(struct intel_crtc *crtc,
  3460. struct intel_crtc_config *pipe_config)
  3461. {
  3462. struct drm_device *dev = crtc->base.dev;
  3463. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3464. if (HAS_PCH_SPLIT(dev)) {
  3465. /* FDI link clock is fixed at 2.7G */
  3466. if (pipe_config->requested_mode.clock * 3
  3467. > IRONLAKE_FDI_FREQ * 4)
  3468. return -EINVAL;
  3469. }
  3470. /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  3471. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  3472. */
  3473. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3474. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3475. return -EINVAL;
  3476. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3477. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3478. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3479. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3480. * for lvds. */
  3481. pipe_config->pipe_bpp = 8*3;
  3482. }
  3483. if (HAS_IPS(dev))
  3484. hsw_compute_ips_config(crtc, pipe_config);
  3485. /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
  3486. * clock survives for now. */
  3487. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  3488. pipe_config->shared_dpll = crtc->config.shared_dpll;
  3489. if (pipe_config->has_pch_encoder)
  3490. return ironlake_fdi_compute_config(crtc, pipe_config);
  3491. return 0;
  3492. }
  3493. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3494. {
  3495. return 400000; /* FIXME */
  3496. }
  3497. static int i945_get_display_clock_speed(struct drm_device *dev)
  3498. {
  3499. return 400000;
  3500. }
  3501. static int i915_get_display_clock_speed(struct drm_device *dev)
  3502. {
  3503. return 333000;
  3504. }
  3505. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3506. {
  3507. return 200000;
  3508. }
  3509. static int pnv_get_display_clock_speed(struct drm_device *dev)
  3510. {
  3511. u16 gcfgc = 0;
  3512. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3513. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3514. case GC_DISPLAY_CLOCK_267_MHZ_PNV:
  3515. return 267000;
  3516. case GC_DISPLAY_CLOCK_333_MHZ_PNV:
  3517. return 333000;
  3518. case GC_DISPLAY_CLOCK_444_MHZ_PNV:
  3519. return 444000;
  3520. case GC_DISPLAY_CLOCK_200_MHZ_PNV:
  3521. return 200000;
  3522. default:
  3523. DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
  3524. case GC_DISPLAY_CLOCK_133_MHZ_PNV:
  3525. return 133000;
  3526. case GC_DISPLAY_CLOCK_167_MHZ_PNV:
  3527. return 167000;
  3528. }
  3529. }
  3530. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3531. {
  3532. u16 gcfgc = 0;
  3533. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3534. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3535. return 133000;
  3536. else {
  3537. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3538. case GC_DISPLAY_CLOCK_333_MHZ:
  3539. return 333000;
  3540. default:
  3541. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3542. return 190000;
  3543. }
  3544. }
  3545. }
  3546. static int i865_get_display_clock_speed(struct drm_device *dev)
  3547. {
  3548. return 266000;
  3549. }
  3550. static int i855_get_display_clock_speed(struct drm_device *dev)
  3551. {
  3552. u16 hpllcc = 0;
  3553. /* Assume that the hardware is in the high speed state. This
  3554. * should be the default.
  3555. */
  3556. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3557. case GC_CLOCK_133_200:
  3558. case GC_CLOCK_100_200:
  3559. return 200000;
  3560. case GC_CLOCK_166_250:
  3561. return 250000;
  3562. case GC_CLOCK_100_133:
  3563. return 133000;
  3564. }
  3565. /* Shouldn't happen */
  3566. return 0;
  3567. }
  3568. static int i830_get_display_clock_speed(struct drm_device *dev)
  3569. {
  3570. return 133000;
  3571. }
  3572. static void
  3573. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  3574. {
  3575. while (*num > DATA_LINK_M_N_MASK ||
  3576. *den > DATA_LINK_M_N_MASK) {
  3577. *num >>= 1;
  3578. *den >>= 1;
  3579. }
  3580. }
  3581. static void compute_m_n(unsigned int m, unsigned int n,
  3582. uint32_t *ret_m, uint32_t *ret_n)
  3583. {
  3584. *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  3585. *ret_m = div_u64((uint64_t) m * *ret_n, n);
  3586. intel_reduce_m_n_ratio(ret_m, ret_n);
  3587. }
  3588. void
  3589. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3590. int pixel_clock, int link_clock,
  3591. struct intel_link_m_n *m_n)
  3592. {
  3593. m_n->tu = 64;
  3594. compute_m_n(bits_per_pixel * pixel_clock,
  3595. link_clock * nlanes * 8,
  3596. &m_n->gmch_m, &m_n->gmch_n);
  3597. compute_m_n(pixel_clock, link_clock,
  3598. &m_n->link_m, &m_n->link_n);
  3599. }
  3600. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3601. {
  3602. if (i915_panel_use_ssc >= 0)
  3603. return i915_panel_use_ssc != 0;
  3604. return dev_priv->vbt.lvds_use_ssc
  3605. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3606. }
  3607. static int vlv_get_refclk(struct drm_crtc *crtc)
  3608. {
  3609. struct drm_device *dev = crtc->dev;
  3610. struct drm_i915_private *dev_priv = dev->dev_private;
  3611. int refclk = 27000; /* for DP & HDMI */
  3612. return 100000; /* only one validated so far */
  3613. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3614. refclk = 96000;
  3615. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3616. if (intel_panel_use_ssc(dev_priv))
  3617. refclk = 100000;
  3618. else
  3619. refclk = 96000;
  3620. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3621. refclk = 100000;
  3622. }
  3623. return refclk;
  3624. }
  3625. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3626. {
  3627. struct drm_device *dev = crtc->dev;
  3628. struct drm_i915_private *dev_priv = dev->dev_private;
  3629. int refclk;
  3630. if (IS_VALLEYVIEW(dev)) {
  3631. refclk = vlv_get_refclk(crtc);
  3632. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3633. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3634. refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
  3635. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3636. refclk / 1000);
  3637. } else if (!IS_GEN2(dev)) {
  3638. refclk = 96000;
  3639. } else {
  3640. refclk = 48000;
  3641. }
  3642. return refclk;
  3643. }
  3644. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3645. {
  3646. return (1 << dpll->n) << 16 | dpll->m2;
  3647. }
  3648. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3649. {
  3650. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3651. }
  3652. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3653. intel_clock_t *reduced_clock)
  3654. {
  3655. struct drm_device *dev = crtc->base.dev;
  3656. struct drm_i915_private *dev_priv = dev->dev_private;
  3657. int pipe = crtc->pipe;
  3658. u32 fp, fp2 = 0;
  3659. if (IS_PINEVIEW(dev)) {
  3660. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3661. if (reduced_clock)
  3662. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3663. } else {
  3664. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3665. if (reduced_clock)
  3666. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3667. }
  3668. I915_WRITE(FP0(pipe), fp);
  3669. crtc->config.dpll_hw_state.fp0 = fp;
  3670. crtc->lowfreq_avail = false;
  3671. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3672. reduced_clock && i915_powersave) {
  3673. I915_WRITE(FP1(pipe), fp2);
  3674. crtc->config.dpll_hw_state.fp1 = fp2;
  3675. crtc->lowfreq_avail = true;
  3676. } else {
  3677. I915_WRITE(FP1(pipe), fp);
  3678. crtc->config.dpll_hw_state.fp1 = fp;
  3679. }
  3680. }
  3681. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
  3682. {
  3683. u32 reg_val;
  3684. /*
  3685. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3686. * and set it to a reasonable value instead.
  3687. */
  3688. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3689. reg_val &= 0xffffff00;
  3690. reg_val |= 0x00000030;
  3691. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3692. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3693. reg_val &= 0x8cffffff;
  3694. reg_val = 0x8c000000;
  3695. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3696. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3697. reg_val &= 0xffffff00;
  3698. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3699. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3700. reg_val &= 0x00ffffff;
  3701. reg_val |= 0xb0000000;
  3702. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3703. }
  3704. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  3705. struct intel_link_m_n *m_n)
  3706. {
  3707. struct drm_device *dev = crtc->base.dev;
  3708. struct drm_i915_private *dev_priv = dev->dev_private;
  3709. int pipe = crtc->pipe;
  3710. I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3711. I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  3712. I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  3713. I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  3714. }
  3715. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  3716. struct intel_link_m_n *m_n)
  3717. {
  3718. struct drm_device *dev = crtc->base.dev;
  3719. struct drm_i915_private *dev_priv = dev->dev_private;
  3720. int pipe = crtc->pipe;
  3721. enum transcoder transcoder = crtc->config.cpu_transcoder;
  3722. if (INTEL_INFO(dev)->gen >= 5) {
  3723. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3724. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  3725. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  3726. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  3727. } else {
  3728. I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3729. I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  3730. I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  3731. I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  3732. }
  3733. }
  3734. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3735. {
  3736. if (crtc->config.has_pch_encoder)
  3737. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3738. else
  3739. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3740. }
  3741. static void vlv_update_pll(struct intel_crtc *crtc)
  3742. {
  3743. struct drm_device *dev = crtc->base.dev;
  3744. struct drm_i915_private *dev_priv = dev->dev_private;
  3745. int pipe = crtc->pipe;
  3746. u32 dpll, mdiv;
  3747. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3748. u32 coreclk, reg_val, dpll_md;
  3749. mutex_lock(&dev_priv->dpio_lock);
  3750. bestn = crtc->config.dpll.n;
  3751. bestm1 = crtc->config.dpll.m1;
  3752. bestm2 = crtc->config.dpll.m2;
  3753. bestp1 = crtc->config.dpll.p1;
  3754. bestp2 = crtc->config.dpll.p2;
  3755. /* See eDP HDMI DPIO driver vbios notes doc */
  3756. /* PLL B needs special handling */
  3757. if (pipe)
  3758. vlv_pllb_recal_opamp(dev_priv);
  3759. /* Set up Tx target for periodic Rcomp update */
  3760. vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
  3761. /* Disable target IRef on PLL */
  3762. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
  3763. reg_val &= 0x00ffffff;
  3764. vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
  3765. /* Disable fast lock */
  3766. vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
  3767. /* Set idtafcrecal before PLL is enabled */
  3768. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3769. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3770. mdiv |= ((bestn << DPIO_N_SHIFT));
  3771. mdiv |= (1 << DPIO_K_SHIFT);
  3772. /*
  3773. * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  3774. * but we don't support that).
  3775. * Note: don't use the DAC post divider as it seems unstable.
  3776. */
  3777. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3778. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3779. mdiv |= DPIO_ENABLE_CALIBRATION;
  3780. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3781. /* Set HBR and RBR LPF coefficients */
  3782. if (crtc->config.port_clock == 162000 ||
  3783. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
  3784. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3785. vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
  3786. 0x009f0003);
  3787. else
  3788. vlv_dpio_write(dev_priv, DPIO_LPF_COEFF(pipe),
  3789. 0x00d0000f);
  3790. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3791. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3792. /* Use SSC source */
  3793. if (!pipe)
  3794. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3795. 0x0df40000);
  3796. else
  3797. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3798. 0x0df70000);
  3799. } else { /* HDMI or VGA */
  3800. /* Use bend source */
  3801. if (!pipe)
  3802. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3803. 0x0df70000);
  3804. else
  3805. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3806. 0x0df40000);
  3807. }
  3808. coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
  3809. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3810. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3811. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3812. coreclk |= 0x01000000;
  3813. vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
  3814. vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
  3815. /* Enable DPIO clock input */
  3816. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3817. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3818. if (pipe)
  3819. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3820. dpll |= DPLL_VCO_ENABLE;
  3821. crtc->config.dpll_hw_state.dpll = dpll;
  3822. dpll_md = (crtc->config.pixel_multiplier - 1)
  3823. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3824. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3825. if (crtc->config.has_dp_encoder)
  3826. intel_dp_set_m_n(crtc);
  3827. mutex_unlock(&dev_priv->dpio_lock);
  3828. }
  3829. static void i9xx_update_pll(struct intel_crtc *crtc,
  3830. intel_clock_t *reduced_clock,
  3831. int num_connectors)
  3832. {
  3833. struct drm_device *dev = crtc->base.dev;
  3834. struct drm_i915_private *dev_priv = dev->dev_private;
  3835. u32 dpll;
  3836. bool is_sdvo;
  3837. struct dpll *clock = &crtc->config.dpll;
  3838. i9xx_update_pll_dividers(crtc, reduced_clock);
  3839. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3840. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3841. dpll = DPLL_VGA_MODE_DIS;
  3842. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  3843. dpll |= DPLLB_MODE_LVDS;
  3844. else
  3845. dpll |= DPLLB_MODE_DAC_SERIAL;
  3846. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  3847. dpll |= (crtc->config.pixel_multiplier - 1)
  3848. << SDVO_MULTIPLIER_SHIFT_HIRES;
  3849. }
  3850. if (is_sdvo)
  3851. dpll |= DPLL_SDVO_HIGH_SPEED;
  3852. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3853. dpll |= DPLL_SDVO_HIGH_SPEED;
  3854. /* compute bitmask from p1 value */
  3855. if (IS_PINEVIEW(dev))
  3856. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3857. else {
  3858. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3859. if (IS_G4X(dev) && reduced_clock)
  3860. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3861. }
  3862. switch (clock->p2) {
  3863. case 5:
  3864. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3865. break;
  3866. case 7:
  3867. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3868. break;
  3869. case 10:
  3870. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3871. break;
  3872. case 14:
  3873. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3874. break;
  3875. }
  3876. if (INTEL_INFO(dev)->gen >= 4)
  3877. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3878. if (crtc->config.sdvo_tv_clock)
  3879. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3880. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3881. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3882. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3883. else
  3884. dpll |= PLL_REF_INPUT_DREFCLK;
  3885. dpll |= DPLL_VCO_ENABLE;
  3886. crtc->config.dpll_hw_state.dpll = dpll;
  3887. if (INTEL_INFO(dev)->gen >= 4) {
  3888. u32 dpll_md = (crtc->config.pixel_multiplier - 1)
  3889. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3890. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3891. }
  3892. if (crtc->config.has_dp_encoder)
  3893. intel_dp_set_m_n(crtc);
  3894. }
  3895. static void i8xx_update_pll(struct intel_crtc *crtc,
  3896. intel_clock_t *reduced_clock,
  3897. int num_connectors)
  3898. {
  3899. struct drm_device *dev = crtc->base.dev;
  3900. struct drm_i915_private *dev_priv = dev->dev_private;
  3901. u32 dpll;
  3902. struct dpll *clock = &crtc->config.dpll;
  3903. i9xx_update_pll_dividers(crtc, reduced_clock);
  3904. dpll = DPLL_VGA_MODE_DIS;
  3905. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  3906. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3907. } else {
  3908. if (clock->p1 == 2)
  3909. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3910. else
  3911. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3912. if (clock->p2 == 4)
  3913. dpll |= PLL_P2_DIVIDE_BY_4;
  3914. }
  3915. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
  3916. dpll |= DPLL_DVO_2X_MODE;
  3917. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3918. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3919. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3920. else
  3921. dpll |= PLL_REF_INPUT_DREFCLK;
  3922. dpll |= DPLL_VCO_ENABLE;
  3923. crtc->config.dpll_hw_state.dpll = dpll;
  3924. }
  3925. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
  3926. {
  3927. struct drm_device *dev = intel_crtc->base.dev;
  3928. struct drm_i915_private *dev_priv = dev->dev_private;
  3929. enum pipe pipe = intel_crtc->pipe;
  3930. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3931. struct drm_display_mode *adjusted_mode =
  3932. &intel_crtc->config.adjusted_mode;
  3933. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  3934. uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  3935. /* We need to be careful not to changed the adjusted mode, for otherwise
  3936. * the hw state checker will get angry at the mismatch. */
  3937. crtc_vtotal = adjusted_mode->crtc_vtotal;
  3938. crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  3939. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3940. /* the chip adds 2 halflines automatically */
  3941. crtc_vtotal -= 1;
  3942. crtc_vblank_end -= 1;
  3943. vsyncshift = adjusted_mode->crtc_hsync_start
  3944. - adjusted_mode->crtc_htotal / 2;
  3945. } else {
  3946. vsyncshift = 0;
  3947. }
  3948. if (INTEL_INFO(dev)->gen > 3)
  3949. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3950. I915_WRITE(HTOTAL(cpu_transcoder),
  3951. (adjusted_mode->crtc_hdisplay - 1) |
  3952. ((adjusted_mode->crtc_htotal - 1) << 16));
  3953. I915_WRITE(HBLANK(cpu_transcoder),
  3954. (adjusted_mode->crtc_hblank_start - 1) |
  3955. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3956. I915_WRITE(HSYNC(cpu_transcoder),
  3957. (adjusted_mode->crtc_hsync_start - 1) |
  3958. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3959. I915_WRITE(VTOTAL(cpu_transcoder),
  3960. (adjusted_mode->crtc_vdisplay - 1) |
  3961. ((crtc_vtotal - 1) << 16));
  3962. I915_WRITE(VBLANK(cpu_transcoder),
  3963. (adjusted_mode->crtc_vblank_start - 1) |
  3964. ((crtc_vblank_end - 1) << 16));
  3965. I915_WRITE(VSYNC(cpu_transcoder),
  3966. (adjusted_mode->crtc_vsync_start - 1) |
  3967. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3968. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  3969. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  3970. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  3971. * bits. */
  3972. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  3973. (pipe == PIPE_B || pipe == PIPE_C))
  3974. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  3975. /* pipesrc controls the size that is scaled from, which should
  3976. * always be the user's requested size.
  3977. */
  3978. I915_WRITE(PIPESRC(pipe),
  3979. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3980. }
  3981. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  3982. struct intel_crtc_config *pipe_config)
  3983. {
  3984. struct drm_device *dev = crtc->base.dev;
  3985. struct drm_i915_private *dev_priv = dev->dev_private;
  3986. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  3987. uint32_t tmp;
  3988. tmp = I915_READ(HTOTAL(cpu_transcoder));
  3989. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  3990. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  3991. tmp = I915_READ(HBLANK(cpu_transcoder));
  3992. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  3993. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  3994. tmp = I915_READ(HSYNC(cpu_transcoder));
  3995. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  3996. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  3997. tmp = I915_READ(VTOTAL(cpu_transcoder));
  3998. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  3999. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  4000. tmp = I915_READ(VBLANK(cpu_transcoder));
  4001. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  4002. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  4003. tmp = I915_READ(VSYNC(cpu_transcoder));
  4004. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  4005. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  4006. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  4007. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  4008. pipe_config->adjusted_mode.crtc_vtotal += 1;
  4009. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  4010. }
  4011. tmp = I915_READ(PIPESRC(crtc->pipe));
  4012. pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
  4013. pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
  4014. }
  4015. static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
  4016. struct intel_crtc_config *pipe_config)
  4017. {
  4018. struct drm_crtc *crtc = &intel_crtc->base;
  4019. crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
  4020. crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
  4021. crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
  4022. crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
  4023. crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
  4024. crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
  4025. crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
  4026. crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
  4027. crtc->mode.flags = pipe_config->adjusted_mode.flags;
  4028. crtc->mode.clock = pipe_config->adjusted_mode.clock;
  4029. crtc->mode.flags |= pipe_config->adjusted_mode.flags;
  4030. }
  4031. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  4032. {
  4033. struct drm_device *dev = intel_crtc->base.dev;
  4034. struct drm_i915_private *dev_priv = dev->dev_private;
  4035. uint32_t pipeconf;
  4036. pipeconf = 0;
  4037. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  4038. I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE)
  4039. pipeconf |= PIPECONF_ENABLE;
  4040. if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4041. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4042. * core speed.
  4043. *
  4044. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4045. * pipe == 0 check?
  4046. */
  4047. if (intel_crtc->config.requested_mode.clock >
  4048. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4049. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4050. }
  4051. /* only g4x and later have fancy bpc/dither controls */
  4052. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4053. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  4054. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  4055. pipeconf |= PIPECONF_DITHER_EN |
  4056. PIPECONF_DITHER_TYPE_SP;
  4057. switch (intel_crtc->config.pipe_bpp) {
  4058. case 18:
  4059. pipeconf |= PIPECONF_6BPC;
  4060. break;
  4061. case 24:
  4062. pipeconf |= PIPECONF_8BPC;
  4063. break;
  4064. case 30:
  4065. pipeconf |= PIPECONF_10BPC;
  4066. break;
  4067. default:
  4068. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4069. BUG();
  4070. }
  4071. }
  4072. if (HAS_PIPE_CXSR(dev)) {
  4073. if (intel_crtc->lowfreq_avail) {
  4074. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4075. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4076. } else {
  4077. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4078. }
  4079. }
  4080. if (!IS_GEN2(dev) &&
  4081. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4082. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4083. else
  4084. pipeconf |= PIPECONF_PROGRESSIVE;
  4085. if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
  4086. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4087. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4088. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4089. }
  4090. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4091. int x, int y,
  4092. struct drm_framebuffer *fb)
  4093. {
  4094. struct drm_device *dev = crtc->dev;
  4095. struct drm_i915_private *dev_priv = dev->dev_private;
  4096. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4097. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4098. int pipe = intel_crtc->pipe;
  4099. int plane = intel_crtc->plane;
  4100. int refclk, num_connectors = 0;
  4101. intel_clock_t clock, reduced_clock;
  4102. u32 dspcntr;
  4103. bool ok, has_reduced_clock = false;
  4104. bool is_lvds = false;
  4105. struct intel_encoder *encoder;
  4106. const intel_limit_t *limit;
  4107. int ret;
  4108. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4109. switch (encoder->type) {
  4110. case INTEL_OUTPUT_LVDS:
  4111. is_lvds = true;
  4112. break;
  4113. }
  4114. num_connectors++;
  4115. }
  4116. refclk = i9xx_get_refclk(crtc, num_connectors);
  4117. /*
  4118. * Returns a set of divisors for the desired target clock with the given
  4119. * refclk, or FALSE. The returned values represent the clock equation:
  4120. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4121. */
  4122. limit = intel_limit(crtc, refclk);
  4123. ok = dev_priv->display.find_dpll(limit, crtc,
  4124. intel_crtc->config.port_clock,
  4125. refclk, NULL, &clock);
  4126. if (!ok && !intel_crtc->config.clock_set) {
  4127. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4128. return -EINVAL;
  4129. }
  4130. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4131. /*
  4132. * Ensure we match the reduced clock's P to the target clock.
  4133. * If the clocks don't match, we can't switch the display clock
  4134. * by using the FP0/FP1. In such case we will disable the LVDS
  4135. * downclock feature.
  4136. */
  4137. has_reduced_clock =
  4138. dev_priv->display.find_dpll(limit, crtc,
  4139. dev_priv->lvds_downclock,
  4140. refclk, &clock,
  4141. &reduced_clock);
  4142. }
  4143. /* Compat-code for transition, will disappear. */
  4144. if (!intel_crtc->config.clock_set) {
  4145. intel_crtc->config.dpll.n = clock.n;
  4146. intel_crtc->config.dpll.m1 = clock.m1;
  4147. intel_crtc->config.dpll.m2 = clock.m2;
  4148. intel_crtc->config.dpll.p1 = clock.p1;
  4149. intel_crtc->config.dpll.p2 = clock.p2;
  4150. }
  4151. if (IS_GEN2(dev))
  4152. i8xx_update_pll(intel_crtc,
  4153. has_reduced_clock ? &reduced_clock : NULL,
  4154. num_connectors);
  4155. else if (IS_VALLEYVIEW(dev))
  4156. vlv_update_pll(intel_crtc);
  4157. else
  4158. i9xx_update_pll(intel_crtc,
  4159. has_reduced_clock ? &reduced_clock : NULL,
  4160. num_connectors);
  4161. /* Set up the display plane register */
  4162. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4163. if (!IS_VALLEYVIEW(dev)) {
  4164. if (pipe == 0)
  4165. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4166. else
  4167. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4168. }
  4169. intel_set_pipe_timings(intel_crtc);
  4170. /* pipesrc and dspsize control the size that is scaled from,
  4171. * which should always be the user's requested size.
  4172. */
  4173. I915_WRITE(DSPSIZE(plane),
  4174. ((mode->vdisplay - 1) << 16) |
  4175. (mode->hdisplay - 1));
  4176. I915_WRITE(DSPPOS(plane), 0);
  4177. i9xx_set_pipeconf(intel_crtc);
  4178. I915_WRITE(DSPCNTR(plane), dspcntr);
  4179. POSTING_READ(DSPCNTR(plane));
  4180. ret = intel_pipe_set_base(crtc, x, y, fb);
  4181. intel_update_watermarks(dev);
  4182. return ret;
  4183. }
  4184. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  4185. struct intel_crtc_config *pipe_config)
  4186. {
  4187. struct drm_device *dev = crtc->base.dev;
  4188. struct drm_i915_private *dev_priv = dev->dev_private;
  4189. uint32_t tmp;
  4190. tmp = I915_READ(PFIT_CONTROL);
  4191. if (!(tmp & PFIT_ENABLE))
  4192. return;
  4193. /* Check whether the pfit is attached to our pipe. */
  4194. if (INTEL_INFO(dev)->gen < 4) {
  4195. if (crtc->pipe != PIPE_B)
  4196. return;
  4197. } else {
  4198. if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  4199. return;
  4200. }
  4201. pipe_config->gmch_pfit.control = tmp;
  4202. pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  4203. if (INTEL_INFO(dev)->gen < 5)
  4204. pipe_config->gmch_pfit.lvds_border_bits =
  4205. I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  4206. }
  4207. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4208. struct intel_crtc_config *pipe_config)
  4209. {
  4210. struct drm_device *dev = crtc->base.dev;
  4211. struct drm_i915_private *dev_priv = dev->dev_private;
  4212. uint32_t tmp;
  4213. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  4214. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4215. tmp = I915_READ(PIPECONF(crtc->pipe));
  4216. if (!(tmp & PIPECONF_ENABLE))
  4217. return false;
  4218. intel_get_pipe_timings(crtc, pipe_config);
  4219. i9xx_get_pfit_config(crtc, pipe_config);
  4220. if (INTEL_INFO(dev)->gen >= 4) {
  4221. tmp = I915_READ(DPLL_MD(crtc->pipe));
  4222. pipe_config->pixel_multiplier =
  4223. ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
  4224. >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
  4225. pipe_config->dpll_hw_state.dpll_md = tmp;
  4226. } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  4227. tmp = I915_READ(DPLL(crtc->pipe));
  4228. pipe_config->pixel_multiplier =
  4229. ((tmp & SDVO_MULTIPLIER_MASK)
  4230. >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
  4231. } else {
  4232. /* Note that on i915G/GM the pixel multiplier is in the sdvo
  4233. * port and will be fixed up in the encoder->get_config
  4234. * function. */
  4235. pipe_config->pixel_multiplier = 1;
  4236. }
  4237. pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
  4238. if (!IS_VALLEYVIEW(dev)) {
  4239. pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
  4240. pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
  4241. } else {
  4242. /* Mask out read-only status bits. */
  4243. pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
  4244. DPLL_PORTC_READY_MASK |
  4245. DPLL_PORTB_READY_MASK);
  4246. }
  4247. return true;
  4248. }
  4249. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4250. {
  4251. struct drm_i915_private *dev_priv = dev->dev_private;
  4252. struct drm_mode_config *mode_config = &dev->mode_config;
  4253. struct intel_encoder *encoder;
  4254. u32 val, final;
  4255. bool has_lvds = false;
  4256. bool has_cpu_edp = false;
  4257. bool has_panel = false;
  4258. bool has_ck505 = false;
  4259. bool can_ssc = false;
  4260. /* We need to take the global config into account */
  4261. list_for_each_entry(encoder, &mode_config->encoder_list,
  4262. base.head) {
  4263. switch (encoder->type) {
  4264. case INTEL_OUTPUT_LVDS:
  4265. has_panel = true;
  4266. has_lvds = true;
  4267. break;
  4268. case INTEL_OUTPUT_EDP:
  4269. has_panel = true;
  4270. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4271. has_cpu_edp = true;
  4272. break;
  4273. }
  4274. }
  4275. if (HAS_PCH_IBX(dev)) {
  4276. has_ck505 = dev_priv->vbt.display_clock_mode;
  4277. can_ssc = has_ck505;
  4278. } else {
  4279. has_ck505 = false;
  4280. can_ssc = true;
  4281. }
  4282. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  4283. has_panel, has_lvds, has_ck505);
  4284. /* Ironlake: try to setup display ref clock before DPLL
  4285. * enabling. This is only under driver's control after
  4286. * PCH B stepping, previous chipset stepping should be
  4287. * ignoring this setting.
  4288. */
  4289. val = I915_READ(PCH_DREF_CONTROL);
  4290. /* As we must carefully and slowly disable/enable each source in turn,
  4291. * compute the final state we want first and check if we need to
  4292. * make any changes at all.
  4293. */
  4294. final = val;
  4295. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4296. if (has_ck505)
  4297. final |= DREF_NONSPREAD_CK505_ENABLE;
  4298. else
  4299. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4300. final &= ~DREF_SSC_SOURCE_MASK;
  4301. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4302. final &= ~DREF_SSC1_ENABLE;
  4303. if (has_panel) {
  4304. final |= DREF_SSC_SOURCE_ENABLE;
  4305. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4306. final |= DREF_SSC1_ENABLE;
  4307. if (has_cpu_edp) {
  4308. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4309. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4310. else
  4311. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4312. } else
  4313. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4314. } else {
  4315. final |= DREF_SSC_SOURCE_DISABLE;
  4316. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4317. }
  4318. if (final == val)
  4319. return;
  4320. /* Always enable nonspread source */
  4321. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4322. if (has_ck505)
  4323. val |= DREF_NONSPREAD_CK505_ENABLE;
  4324. else
  4325. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4326. if (has_panel) {
  4327. val &= ~DREF_SSC_SOURCE_MASK;
  4328. val |= DREF_SSC_SOURCE_ENABLE;
  4329. /* SSC must be turned on before enabling the CPU output */
  4330. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4331. DRM_DEBUG_KMS("Using SSC on panel\n");
  4332. val |= DREF_SSC1_ENABLE;
  4333. } else
  4334. val &= ~DREF_SSC1_ENABLE;
  4335. /* Get SSC going before enabling the outputs */
  4336. I915_WRITE(PCH_DREF_CONTROL, val);
  4337. POSTING_READ(PCH_DREF_CONTROL);
  4338. udelay(200);
  4339. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4340. /* Enable CPU source on CPU attached eDP */
  4341. if (has_cpu_edp) {
  4342. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4343. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4344. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4345. }
  4346. else
  4347. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4348. } else
  4349. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4350. I915_WRITE(PCH_DREF_CONTROL, val);
  4351. POSTING_READ(PCH_DREF_CONTROL);
  4352. udelay(200);
  4353. } else {
  4354. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4355. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4356. /* Turn off CPU output */
  4357. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4358. I915_WRITE(PCH_DREF_CONTROL, val);
  4359. POSTING_READ(PCH_DREF_CONTROL);
  4360. udelay(200);
  4361. /* Turn off the SSC source */
  4362. val &= ~DREF_SSC_SOURCE_MASK;
  4363. val |= DREF_SSC_SOURCE_DISABLE;
  4364. /* Turn off SSC1 */
  4365. val &= ~DREF_SSC1_ENABLE;
  4366. I915_WRITE(PCH_DREF_CONTROL, val);
  4367. POSTING_READ(PCH_DREF_CONTROL);
  4368. udelay(200);
  4369. }
  4370. BUG_ON(val != final);
  4371. }
  4372. static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
  4373. {
  4374. uint32_t tmp;
  4375. tmp = I915_READ(SOUTH_CHICKEN2);
  4376. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4377. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4378. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4379. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4380. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4381. tmp = I915_READ(SOUTH_CHICKEN2);
  4382. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4383. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4384. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4385. FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
  4386. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4387. }
  4388. /* WaMPhyProgramming:hsw */
  4389. static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
  4390. {
  4391. uint32_t tmp;
  4392. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4393. tmp &= ~(0xFF << 24);
  4394. tmp |= (0x12 << 24);
  4395. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4396. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4397. tmp |= (1 << 11);
  4398. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4399. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4400. tmp |= (1 << 11);
  4401. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4402. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4403. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4404. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4405. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4406. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4407. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4408. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4409. tmp &= ~(7 << 13);
  4410. tmp |= (5 << 13);
  4411. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4412. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4413. tmp &= ~(7 << 13);
  4414. tmp |= (5 << 13);
  4415. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4416. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4417. tmp &= ~0xFF;
  4418. tmp |= 0x1C;
  4419. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4420. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4421. tmp &= ~0xFF;
  4422. tmp |= 0x1C;
  4423. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4424. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4425. tmp &= ~(0xFF << 16);
  4426. tmp |= (0x1C << 16);
  4427. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4428. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4429. tmp &= ~(0xFF << 16);
  4430. tmp |= (0x1C << 16);
  4431. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4432. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4433. tmp |= (1 << 27);
  4434. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4435. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4436. tmp |= (1 << 27);
  4437. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4438. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4439. tmp &= ~(0xF << 28);
  4440. tmp |= (4 << 28);
  4441. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4442. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4443. tmp &= ~(0xF << 28);
  4444. tmp |= (4 << 28);
  4445. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4446. }
  4447. /* Implements 3 different sequences from BSpec chapter "Display iCLK
  4448. * Programming" based on the parameters passed:
  4449. * - Sequence to enable CLKOUT_DP
  4450. * - Sequence to enable CLKOUT_DP without spread
  4451. * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
  4452. */
  4453. static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
  4454. bool with_fdi)
  4455. {
  4456. struct drm_i915_private *dev_priv = dev->dev_private;
  4457. uint32_t reg, tmp;
  4458. if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
  4459. with_spread = true;
  4460. if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
  4461. with_fdi, "LP PCH doesn't have FDI\n"))
  4462. with_fdi = false;
  4463. mutex_lock(&dev_priv->dpio_lock);
  4464. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4465. tmp &= ~SBI_SSCCTL_DISABLE;
  4466. tmp |= SBI_SSCCTL_PATHALT;
  4467. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4468. udelay(24);
  4469. if (with_spread) {
  4470. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4471. tmp &= ~SBI_SSCCTL_PATHALT;
  4472. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4473. if (with_fdi) {
  4474. lpt_reset_fdi_mphy(dev_priv);
  4475. lpt_program_fdi_mphy(dev_priv);
  4476. }
  4477. }
  4478. reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  4479. SBI_GEN0 : SBI_DBUFF0;
  4480. tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  4481. tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  4482. intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  4483. mutex_unlock(&dev_priv->dpio_lock);
  4484. }
  4485. /* Sequence to disable CLKOUT_DP */
  4486. static void lpt_disable_clkout_dp(struct drm_device *dev)
  4487. {
  4488. struct drm_i915_private *dev_priv = dev->dev_private;
  4489. uint32_t reg, tmp;
  4490. mutex_lock(&dev_priv->dpio_lock);
  4491. reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  4492. SBI_GEN0 : SBI_DBUFF0;
  4493. tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  4494. tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  4495. intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  4496. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4497. if (!(tmp & SBI_SSCCTL_DISABLE)) {
  4498. if (!(tmp & SBI_SSCCTL_PATHALT)) {
  4499. tmp |= SBI_SSCCTL_PATHALT;
  4500. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4501. udelay(32);
  4502. }
  4503. tmp |= SBI_SSCCTL_DISABLE;
  4504. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4505. }
  4506. mutex_unlock(&dev_priv->dpio_lock);
  4507. }
  4508. static void lpt_init_pch_refclk(struct drm_device *dev)
  4509. {
  4510. struct drm_mode_config *mode_config = &dev->mode_config;
  4511. struct intel_encoder *encoder;
  4512. bool has_vga = false;
  4513. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4514. switch (encoder->type) {
  4515. case INTEL_OUTPUT_ANALOG:
  4516. has_vga = true;
  4517. break;
  4518. }
  4519. }
  4520. if (has_vga)
  4521. lpt_enable_clkout_dp(dev, true, true);
  4522. else
  4523. lpt_disable_clkout_dp(dev);
  4524. }
  4525. /*
  4526. * Initialize reference clocks when the driver loads
  4527. */
  4528. void intel_init_pch_refclk(struct drm_device *dev)
  4529. {
  4530. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4531. ironlake_init_pch_refclk(dev);
  4532. else if (HAS_PCH_LPT(dev))
  4533. lpt_init_pch_refclk(dev);
  4534. }
  4535. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4536. {
  4537. struct drm_device *dev = crtc->dev;
  4538. struct drm_i915_private *dev_priv = dev->dev_private;
  4539. struct intel_encoder *encoder;
  4540. int num_connectors = 0;
  4541. bool is_lvds = false;
  4542. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4543. switch (encoder->type) {
  4544. case INTEL_OUTPUT_LVDS:
  4545. is_lvds = true;
  4546. break;
  4547. }
  4548. num_connectors++;
  4549. }
  4550. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4551. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4552. dev_priv->vbt.lvds_ssc_freq);
  4553. return dev_priv->vbt.lvds_ssc_freq * 1000;
  4554. }
  4555. return 120000;
  4556. }
  4557. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4558. {
  4559. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4560. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4561. int pipe = intel_crtc->pipe;
  4562. uint32_t val;
  4563. val = 0;
  4564. switch (intel_crtc->config.pipe_bpp) {
  4565. case 18:
  4566. val |= PIPECONF_6BPC;
  4567. break;
  4568. case 24:
  4569. val |= PIPECONF_8BPC;
  4570. break;
  4571. case 30:
  4572. val |= PIPECONF_10BPC;
  4573. break;
  4574. case 36:
  4575. val |= PIPECONF_12BPC;
  4576. break;
  4577. default:
  4578. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4579. BUG();
  4580. }
  4581. if (intel_crtc->config.dither)
  4582. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4583. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4584. val |= PIPECONF_INTERLACED_ILK;
  4585. else
  4586. val |= PIPECONF_PROGRESSIVE;
  4587. if (intel_crtc->config.limited_color_range)
  4588. val |= PIPECONF_COLOR_RANGE_SELECT;
  4589. I915_WRITE(PIPECONF(pipe), val);
  4590. POSTING_READ(PIPECONF(pipe));
  4591. }
  4592. /*
  4593. * Set up the pipe CSC unit.
  4594. *
  4595. * Currently only full range RGB to limited range RGB conversion
  4596. * is supported, but eventually this should handle various
  4597. * RGB<->YCbCr scenarios as well.
  4598. */
  4599. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4600. {
  4601. struct drm_device *dev = crtc->dev;
  4602. struct drm_i915_private *dev_priv = dev->dev_private;
  4603. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4604. int pipe = intel_crtc->pipe;
  4605. uint16_t coeff = 0x7800; /* 1.0 */
  4606. /*
  4607. * TODO: Check what kind of values actually come out of the pipe
  4608. * with these coeff/postoff values and adjust to get the best
  4609. * accuracy. Perhaps we even need to take the bpc value into
  4610. * consideration.
  4611. */
  4612. if (intel_crtc->config.limited_color_range)
  4613. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4614. /*
  4615. * GY/GU and RY/RU should be the other way around according
  4616. * to BSpec, but reality doesn't agree. Just set them up in
  4617. * a way that results in the correct picture.
  4618. */
  4619. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4620. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4621. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4622. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4623. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4624. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4625. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4626. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4627. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4628. if (INTEL_INFO(dev)->gen > 6) {
  4629. uint16_t postoff = 0;
  4630. if (intel_crtc->config.limited_color_range)
  4631. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4632. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4633. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4634. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4635. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4636. } else {
  4637. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4638. if (intel_crtc->config.limited_color_range)
  4639. mode |= CSC_BLACK_SCREEN_OFFSET;
  4640. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4641. }
  4642. }
  4643. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4644. {
  4645. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4646. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4647. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4648. uint32_t val;
  4649. val = 0;
  4650. if (intel_crtc->config.dither)
  4651. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4652. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4653. val |= PIPECONF_INTERLACED_ILK;
  4654. else
  4655. val |= PIPECONF_PROGRESSIVE;
  4656. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4657. POSTING_READ(PIPECONF(cpu_transcoder));
  4658. I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
  4659. POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
  4660. }
  4661. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4662. intel_clock_t *clock,
  4663. bool *has_reduced_clock,
  4664. intel_clock_t *reduced_clock)
  4665. {
  4666. struct drm_device *dev = crtc->dev;
  4667. struct drm_i915_private *dev_priv = dev->dev_private;
  4668. struct intel_encoder *intel_encoder;
  4669. int refclk;
  4670. const intel_limit_t *limit;
  4671. bool ret, is_lvds = false;
  4672. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4673. switch (intel_encoder->type) {
  4674. case INTEL_OUTPUT_LVDS:
  4675. is_lvds = true;
  4676. break;
  4677. }
  4678. }
  4679. refclk = ironlake_get_refclk(crtc);
  4680. /*
  4681. * Returns a set of divisors for the desired target clock with the given
  4682. * refclk, or FALSE. The returned values represent the clock equation:
  4683. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4684. */
  4685. limit = intel_limit(crtc, refclk);
  4686. ret = dev_priv->display.find_dpll(limit, crtc,
  4687. to_intel_crtc(crtc)->config.port_clock,
  4688. refclk, NULL, clock);
  4689. if (!ret)
  4690. return false;
  4691. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4692. /*
  4693. * Ensure we match the reduced clock's P to the target clock.
  4694. * If the clocks don't match, we can't switch the display clock
  4695. * by using the FP0/FP1. In such case we will disable the LVDS
  4696. * downclock feature.
  4697. */
  4698. *has_reduced_clock =
  4699. dev_priv->display.find_dpll(limit, crtc,
  4700. dev_priv->lvds_downclock,
  4701. refclk, clock,
  4702. reduced_clock);
  4703. }
  4704. return true;
  4705. }
  4706. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4707. {
  4708. struct drm_i915_private *dev_priv = dev->dev_private;
  4709. uint32_t temp;
  4710. temp = I915_READ(SOUTH_CHICKEN1);
  4711. if (temp & FDI_BC_BIFURCATION_SELECT)
  4712. return;
  4713. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4714. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4715. temp |= FDI_BC_BIFURCATION_SELECT;
  4716. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4717. I915_WRITE(SOUTH_CHICKEN1, temp);
  4718. POSTING_READ(SOUTH_CHICKEN1);
  4719. }
  4720. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4721. {
  4722. struct drm_device *dev = intel_crtc->base.dev;
  4723. struct drm_i915_private *dev_priv = dev->dev_private;
  4724. switch (intel_crtc->pipe) {
  4725. case PIPE_A:
  4726. break;
  4727. case PIPE_B:
  4728. if (intel_crtc->config.fdi_lanes > 2)
  4729. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4730. else
  4731. cpt_enable_fdi_bc_bifurcation(dev);
  4732. break;
  4733. case PIPE_C:
  4734. cpt_enable_fdi_bc_bifurcation(dev);
  4735. break;
  4736. default:
  4737. BUG();
  4738. }
  4739. }
  4740. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4741. {
  4742. /*
  4743. * Account for spread spectrum to avoid
  4744. * oversubscribing the link. Max center spread
  4745. * is 2.5%; use 5% for safety's sake.
  4746. */
  4747. u32 bps = target_clock * bpp * 21 / 20;
  4748. return bps / (link_bw * 8) + 1;
  4749. }
  4750. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4751. {
  4752. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4753. }
  4754. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4755. u32 *fp,
  4756. intel_clock_t *reduced_clock, u32 *fp2)
  4757. {
  4758. struct drm_crtc *crtc = &intel_crtc->base;
  4759. struct drm_device *dev = crtc->dev;
  4760. struct drm_i915_private *dev_priv = dev->dev_private;
  4761. struct intel_encoder *intel_encoder;
  4762. uint32_t dpll;
  4763. int factor, num_connectors = 0;
  4764. bool is_lvds = false, is_sdvo = false;
  4765. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4766. switch (intel_encoder->type) {
  4767. case INTEL_OUTPUT_LVDS:
  4768. is_lvds = true;
  4769. break;
  4770. case INTEL_OUTPUT_SDVO:
  4771. case INTEL_OUTPUT_HDMI:
  4772. is_sdvo = true;
  4773. break;
  4774. }
  4775. num_connectors++;
  4776. }
  4777. /* Enable autotuning of the PLL clock (if permissible) */
  4778. factor = 21;
  4779. if (is_lvds) {
  4780. if ((intel_panel_use_ssc(dev_priv) &&
  4781. dev_priv->vbt.lvds_ssc_freq == 100) ||
  4782. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4783. factor = 25;
  4784. } else if (intel_crtc->config.sdvo_tv_clock)
  4785. factor = 20;
  4786. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  4787. *fp |= FP_CB_TUNE;
  4788. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4789. *fp2 |= FP_CB_TUNE;
  4790. dpll = 0;
  4791. if (is_lvds)
  4792. dpll |= DPLLB_MODE_LVDS;
  4793. else
  4794. dpll |= DPLLB_MODE_DAC_SERIAL;
  4795. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  4796. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4797. if (is_sdvo)
  4798. dpll |= DPLL_SDVO_HIGH_SPEED;
  4799. if (intel_crtc->config.has_dp_encoder)
  4800. dpll |= DPLL_SDVO_HIGH_SPEED;
  4801. /* compute bitmask from p1 value */
  4802. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4803. /* also FPA1 */
  4804. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4805. switch (intel_crtc->config.dpll.p2) {
  4806. case 5:
  4807. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4808. break;
  4809. case 7:
  4810. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4811. break;
  4812. case 10:
  4813. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4814. break;
  4815. case 14:
  4816. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4817. break;
  4818. }
  4819. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4820. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4821. else
  4822. dpll |= PLL_REF_INPUT_DREFCLK;
  4823. return dpll | DPLL_VCO_ENABLE;
  4824. }
  4825. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4826. int x, int y,
  4827. struct drm_framebuffer *fb)
  4828. {
  4829. struct drm_device *dev = crtc->dev;
  4830. struct drm_i915_private *dev_priv = dev->dev_private;
  4831. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4832. int pipe = intel_crtc->pipe;
  4833. int plane = intel_crtc->plane;
  4834. int num_connectors = 0;
  4835. intel_clock_t clock, reduced_clock;
  4836. u32 dpll = 0, fp = 0, fp2 = 0;
  4837. bool ok, has_reduced_clock = false;
  4838. bool is_lvds = false;
  4839. struct intel_encoder *encoder;
  4840. struct intel_shared_dpll *pll;
  4841. int ret;
  4842. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4843. switch (encoder->type) {
  4844. case INTEL_OUTPUT_LVDS:
  4845. is_lvds = true;
  4846. break;
  4847. }
  4848. num_connectors++;
  4849. }
  4850. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4851. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4852. ok = ironlake_compute_clocks(crtc, &clock,
  4853. &has_reduced_clock, &reduced_clock);
  4854. if (!ok && !intel_crtc->config.clock_set) {
  4855. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4856. return -EINVAL;
  4857. }
  4858. /* Compat-code for transition, will disappear. */
  4859. if (!intel_crtc->config.clock_set) {
  4860. intel_crtc->config.dpll.n = clock.n;
  4861. intel_crtc->config.dpll.m1 = clock.m1;
  4862. intel_crtc->config.dpll.m2 = clock.m2;
  4863. intel_crtc->config.dpll.p1 = clock.p1;
  4864. intel_crtc->config.dpll.p2 = clock.p2;
  4865. }
  4866. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4867. if (intel_crtc->config.has_pch_encoder) {
  4868. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  4869. if (has_reduced_clock)
  4870. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  4871. dpll = ironlake_compute_dpll(intel_crtc,
  4872. &fp, &reduced_clock,
  4873. has_reduced_clock ? &fp2 : NULL);
  4874. intel_crtc->config.dpll_hw_state.dpll = dpll;
  4875. intel_crtc->config.dpll_hw_state.fp0 = fp;
  4876. if (has_reduced_clock)
  4877. intel_crtc->config.dpll_hw_state.fp1 = fp2;
  4878. else
  4879. intel_crtc->config.dpll_hw_state.fp1 = fp;
  4880. pll = intel_get_shared_dpll(intel_crtc);
  4881. if (pll == NULL) {
  4882. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  4883. pipe_name(pipe));
  4884. return -EINVAL;
  4885. }
  4886. } else
  4887. intel_put_shared_dpll(intel_crtc);
  4888. if (intel_crtc->config.has_dp_encoder)
  4889. intel_dp_set_m_n(intel_crtc);
  4890. if (is_lvds && has_reduced_clock && i915_powersave)
  4891. intel_crtc->lowfreq_avail = true;
  4892. else
  4893. intel_crtc->lowfreq_avail = false;
  4894. if (intel_crtc->config.has_pch_encoder) {
  4895. pll = intel_crtc_to_shared_dpll(intel_crtc);
  4896. }
  4897. intel_set_pipe_timings(intel_crtc);
  4898. if (intel_crtc->config.has_pch_encoder) {
  4899. intel_cpu_transcoder_set_m_n(intel_crtc,
  4900. &intel_crtc->config.fdi_m_n);
  4901. }
  4902. if (IS_IVYBRIDGE(dev))
  4903. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  4904. ironlake_set_pipeconf(crtc);
  4905. /* Set up the display plane register */
  4906. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4907. POSTING_READ(DSPCNTR(plane));
  4908. ret = intel_pipe_set_base(crtc, x, y, fb);
  4909. intel_update_watermarks(dev);
  4910. return ret;
  4911. }
  4912. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  4913. struct intel_crtc_config *pipe_config)
  4914. {
  4915. struct drm_device *dev = crtc->base.dev;
  4916. struct drm_i915_private *dev_priv = dev->dev_private;
  4917. enum transcoder transcoder = pipe_config->cpu_transcoder;
  4918. pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
  4919. pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
  4920. pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  4921. & ~TU_SIZE_MASK;
  4922. pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  4923. pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  4924. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4925. }
  4926. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  4927. struct intel_crtc_config *pipe_config)
  4928. {
  4929. struct drm_device *dev = crtc->base.dev;
  4930. struct drm_i915_private *dev_priv = dev->dev_private;
  4931. uint32_t tmp;
  4932. tmp = I915_READ(PF_CTL(crtc->pipe));
  4933. if (tmp & PF_ENABLE) {
  4934. pipe_config->pch_pfit.enabled = true;
  4935. pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  4936. pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  4937. /* We currently do not free assignements of panel fitters on
  4938. * ivb/hsw (since we don't use the higher upscaling modes which
  4939. * differentiates them) so just WARN about this case for now. */
  4940. if (IS_GEN7(dev)) {
  4941. WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
  4942. PF_PIPE_SEL_IVB(crtc->pipe));
  4943. }
  4944. }
  4945. }
  4946. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  4947. struct intel_crtc_config *pipe_config)
  4948. {
  4949. struct drm_device *dev = crtc->base.dev;
  4950. struct drm_i915_private *dev_priv = dev->dev_private;
  4951. uint32_t tmp;
  4952. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  4953. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4954. tmp = I915_READ(PIPECONF(crtc->pipe));
  4955. if (!(tmp & PIPECONF_ENABLE))
  4956. return false;
  4957. if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  4958. struct intel_shared_dpll *pll;
  4959. pipe_config->has_pch_encoder = true;
  4960. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  4961. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  4962. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  4963. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  4964. if (HAS_PCH_IBX(dev_priv->dev)) {
  4965. pipe_config->shared_dpll =
  4966. (enum intel_dpll_id) crtc->pipe;
  4967. } else {
  4968. tmp = I915_READ(PCH_DPLL_SEL);
  4969. if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
  4970. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
  4971. else
  4972. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
  4973. }
  4974. pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  4975. WARN_ON(!pll->get_hw_state(dev_priv, pll,
  4976. &pipe_config->dpll_hw_state));
  4977. tmp = pipe_config->dpll_hw_state.dpll;
  4978. pipe_config->pixel_multiplier =
  4979. ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
  4980. >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
  4981. } else {
  4982. pipe_config->pixel_multiplier = 1;
  4983. }
  4984. intel_get_pipe_timings(crtc, pipe_config);
  4985. ironlake_get_pfit_config(crtc, pipe_config);
  4986. return true;
  4987. }
  4988. static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
  4989. {
  4990. struct drm_device *dev = dev_priv->dev;
  4991. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  4992. struct intel_crtc *crtc;
  4993. unsigned long irqflags;
  4994. uint32_t val;
  4995. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  4996. WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
  4997. pipe_name(crtc->pipe));
  4998. WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
  4999. WARN(plls->spll_refcount, "SPLL enabled\n");
  5000. WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
  5001. WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
  5002. WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
  5003. WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
  5004. "CPU PWM1 enabled\n");
  5005. WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
  5006. "CPU PWM2 enabled\n");
  5007. WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
  5008. "PCH PWM1 enabled\n");
  5009. WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
  5010. "Utility pin enabled\n");
  5011. WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
  5012. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  5013. val = I915_READ(DEIMR);
  5014. WARN((val & ~DE_PCH_EVENT_IVB) != val,
  5015. "Unexpected DEIMR bits enabled: 0x%x\n", val);
  5016. val = I915_READ(SDEIMR);
  5017. WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
  5018. "Unexpected SDEIMR bits enabled: 0x%x\n", val);
  5019. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  5020. }
  5021. /*
  5022. * This function implements pieces of two sequences from BSpec:
  5023. * - Sequence for display software to disable LCPLL
  5024. * - Sequence for display software to allow package C8+
  5025. * The steps implemented here are just the steps that actually touch the LCPLL
  5026. * register. Callers should take care of disabling all the display engine
  5027. * functions, doing the mode unset, fixing interrupts, etc.
  5028. */
  5029. void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
  5030. bool switch_to_fclk, bool allow_power_down)
  5031. {
  5032. uint32_t val;
  5033. assert_can_disable_lcpll(dev_priv);
  5034. val = I915_READ(LCPLL_CTL);
  5035. if (switch_to_fclk) {
  5036. val |= LCPLL_CD_SOURCE_FCLK;
  5037. I915_WRITE(LCPLL_CTL, val);
  5038. if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
  5039. LCPLL_CD_SOURCE_FCLK_DONE, 1))
  5040. DRM_ERROR("Switching to FCLK failed\n");
  5041. val = I915_READ(LCPLL_CTL);
  5042. }
  5043. val |= LCPLL_PLL_DISABLE;
  5044. I915_WRITE(LCPLL_CTL, val);
  5045. POSTING_READ(LCPLL_CTL);
  5046. if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
  5047. DRM_ERROR("LCPLL still locked\n");
  5048. val = I915_READ(D_COMP);
  5049. val |= D_COMP_COMP_DISABLE;
  5050. I915_WRITE(D_COMP, val);
  5051. POSTING_READ(D_COMP);
  5052. ndelay(100);
  5053. if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
  5054. DRM_ERROR("D_COMP RCOMP still in progress\n");
  5055. if (allow_power_down) {
  5056. val = I915_READ(LCPLL_CTL);
  5057. val |= LCPLL_POWER_DOWN_ALLOW;
  5058. I915_WRITE(LCPLL_CTL, val);
  5059. POSTING_READ(LCPLL_CTL);
  5060. }
  5061. }
  5062. /*
  5063. * Fully restores LCPLL, disallowing power down and switching back to LCPLL
  5064. * source.
  5065. */
  5066. void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
  5067. {
  5068. uint32_t val;
  5069. val = I915_READ(LCPLL_CTL);
  5070. if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
  5071. LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
  5072. return;
  5073. /* Make sure we're not on PC8 state before disabling PC8, otherwise
  5074. * we'll hang the machine! */
  5075. dev_priv->uncore.funcs.force_wake_get(dev_priv);
  5076. if (val & LCPLL_POWER_DOWN_ALLOW) {
  5077. val &= ~LCPLL_POWER_DOWN_ALLOW;
  5078. I915_WRITE(LCPLL_CTL, val);
  5079. POSTING_READ(LCPLL_CTL);
  5080. }
  5081. val = I915_READ(D_COMP);
  5082. val |= D_COMP_COMP_FORCE;
  5083. val &= ~D_COMP_COMP_DISABLE;
  5084. I915_WRITE(D_COMP, val);
  5085. POSTING_READ(D_COMP);
  5086. val = I915_READ(LCPLL_CTL);
  5087. val &= ~LCPLL_PLL_DISABLE;
  5088. I915_WRITE(LCPLL_CTL, val);
  5089. if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
  5090. DRM_ERROR("LCPLL not locked yet\n");
  5091. if (val & LCPLL_CD_SOURCE_FCLK) {
  5092. val = I915_READ(LCPLL_CTL);
  5093. val &= ~LCPLL_CD_SOURCE_FCLK;
  5094. I915_WRITE(LCPLL_CTL, val);
  5095. if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
  5096. LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
  5097. DRM_ERROR("Switching back to LCPLL failed\n");
  5098. }
  5099. dev_priv->uncore.funcs.force_wake_put(dev_priv);
  5100. }
  5101. void hsw_enable_pc8_work(struct work_struct *__work)
  5102. {
  5103. struct drm_i915_private *dev_priv =
  5104. container_of(to_delayed_work(__work), struct drm_i915_private,
  5105. pc8.enable_work);
  5106. struct drm_device *dev = dev_priv->dev;
  5107. uint32_t val;
  5108. if (dev_priv->pc8.enabled)
  5109. return;
  5110. DRM_DEBUG_KMS("Enabling package C8+\n");
  5111. dev_priv->pc8.enabled = true;
  5112. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5113. val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5114. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  5115. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5116. }
  5117. lpt_disable_clkout_dp(dev);
  5118. hsw_pc8_disable_interrupts(dev);
  5119. hsw_disable_lcpll(dev_priv, true, true);
  5120. }
  5121. static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  5122. {
  5123. WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  5124. WARN(dev_priv->pc8.disable_count < 1,
  5125. "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  5126. dev_priv->pc8.disable_count--;
  5127. if (dev_priv->pc8.disable_count != 0)
  5128. return;
  5129. schedule_delayed_work(&dev_priv->pc8.enable_work,
  5130. msecs_to_jiffies(i915_pc8_timeout));
  5131. }
  5132. static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  5133. {
  5134. struct drm_device *dev = dev_priv->dev;
  5135. uint32_t val;
  5136. WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  5137. WARN(dev_priv->pc8.disable_count < 0,
  5138. "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  5139. dev_priv->pc8.disable_count++;
  5140. if (dev_priv->pc8.disable_count != 1)
  5141. return;
  5142. cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
  5143. if (!dev_priv->pc8.enabled)
  5144. return;
  5145. DRM_DEBUG_KMS("Disabling package C8+\n");
  5146. hsw_restore_lcpll(dev_priv);
  5147. hsw_pc8_restore_interrupts(dev);
  5148. lpt_init_pch_refclk(dev);
  5149. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5150. val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5151. val |= PCH_LP_PARTITION_LEVEL_DISABLE;
  5152. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5153. }
  5154. intel_prepare_ddi(dev);
  5155. i915_gem_init_swizzling(dev);
  5156. mutex_lock(&dev_priv->rps.hw_lock);
  5157. gen6_update_ring_freq(dev);
  5158. mutex_unlock(&dev_priv->rps.hw_lock);
  5159. dev_priv->pc8.enabled = false;
  5160. }
  5161. void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  5162. {
  5163. mutex_lock(&dev_priv->pc8.lock);
  5164. __hsw_enable_package_c8(dev_priv);
  5165. mutex_unlock(&dev_priv->pc8.lock);
  5166. }
  5167. void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  5168. {
  5169. mutex_lock(&dev_priv->pc8.lock);
  5170. __hsw_disable_package_c8(dev_priv);
  5171. mutex_unlock(&dev_priv->pc8.lock);
  5172. }
  5173. static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
  5174. {
  5175. struct drm_device *dev = dev_priv->dev;
  5176. struct intel_crtc *crtc;
  5177. uint32_t val;
  5178. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  5179. if (crtc->base.enabled)
  5180. return false;
  5181. /* This case is still possible since we have the i915.disable_power_well
  5182. * parameter and also the KVMr or something else might be requesting the
  5183. * power well. */
  5184. val = I915_READ(HSW_PWR_WELL_DRIVER);
  5185. if (val != 0) {
  5186. DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
  5187. return false;
  5188. }
  5189. return true;
  5190. }
  5191. /* Since we're called from modeset_global_resources there's no way to
  5192. * symmetrically increase and decrease the refcount, so we use
  5193. * dev_priv->pc8.requirements_met to track whether we already have the refcount
  5194. * or not.
  5195. */
  5196. static void hsw_update_package_c8(struct drm_device *dev)
  5197. {
  5198. struct drm_i915_private *dev_priv = dev->dev_private;
  5199. bool allow;
  5200. if (!i915_enable_pc8)
  5201. return;
  5202. mutex_lock(&dev_priv->pc8.lock);
  5203. allow = hsw_can_enable_package_c8(dev_priv);
  5204. if (allow == dev_priv->pc8.requirements_met)
  5205. goto done;
  5206. dev_priv->pc8.requirements_met = allow;
  5207. if (allow)
  5208. __hsw_enable_package_c8(dev_priv);
  5209. else
  5210. __hsw_disable_package_c8(dev_priv);
  5211. done:
  5212. mutex_unlock(&dev_priv->pc8.lock);
  5213. }
  5214. static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
  5215. {
  5216. if (!dev_priv->pc8.gpu_idle) {
  5217. dev_priv->pc8.gpu_idle = true;
  5218. hsw_enable_package_c8(dev_priv);
  5219. }
  5220. }
  5221. static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
  5222. {
  5223. if (dev_priv->pc8.gpu_idle) {
  5224. dev_priv->pc8.gpu_idle = false;
  5225. hsw_disable_package_c8(dev_priv);
  5226. }
  5227. }
  5228. static void haswell_modeset_global_resources(struct drm_device *dev)
  5229. {
  5230. bool enable = false;
  5231. struct intel_crtc *crtc;
  5232. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  5233. if (!crtc->base.enabled)
  5234. continue;
  5235. if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.enabled ||
  5236. crtc->config.cpu_transcoder != TRANSCODER_EDP)
  5237. enable = true;
  5238. }
  5239. intel_set_power_well(dev, enable);
  5240. hsw_update_package_c8(dev);
  5241. }
  5242. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  5243. int x, int y,
  5244. struct drm_framebuffer *fb)
  5245. {
  5246. struct drm_device *dev = crtc->dev;
  5247. struct drm_i915_private *dev_priv = dev->dev_private;
  5248. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5249. int plane = intel_crtc->plane;
  5250. int ret;
  5251. if (!intel_ddi_pll_mode_set(crtc))
  5252. return -EINVAL;
  5253. if (intel_crtc->config.has_dp_encoder)
  5254. intel_dp_set_m_n(intel_crtc);
  5255. intel_crtc->lowfreq_avail = false;
  5256. intel_set_pipe_timings(intel_crtc);
  5257. if (intel_crtc->config.has_pch_encoder) {
  5258. intel_cpu_transcoder_set_m_n(intel_crtc,
  5259. &intel_crtc->config.fdi_m_n);
  5260. }
  5261. haswell_set_pipeconf(crtc);
  5262. intel_set_pipe_csc(crtc);
  5263. /* Set up the display plane register */
  5264. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  5265. POSTING_READ(DSPCNTR(plane));
  5266. ret = intel_pipe_set_base(crtc, x, y, fb);
  5267. intel_update_watermarks(dev);
  5268. return ret;
  5269. }
  5270. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  5271. struct intel_crtc_config *pipe_config)
  5272. {
  5273. struct drm_device *dev = crtc->base.dev;
  5274. struct drm_i915_private *dev_priv = dev->dev_private;
  5275. enum intel_display_power_domain pfit_domain;
  5276. uint32_t tmp;
  5277. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  5278. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  5279. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  5280. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  5281. enum pipe trans_edp_pipe;
  5282. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  5283. default:
  5284. WARN(1, "unknown pipe linked to edp transcoder\n");
  5285. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  5286. case TRANS_DDI_EDP_INPUT_A_ON:
  5287. trans_edp_pipe = PIPE_A;
  5288. break;
  5289. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  5290. trans_edp_pipe = PIPE_B;
  5291. break;
  5292. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  5293. trans_edp_pipe = PIPE_C;
  5294. break;
  5295. }
  5296. if (trans_edp_pipe == crtc->pipe)
  5297. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  5298. }
  5299. if (!intel_display_power_enabled(dev,
  5300. POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  5301. return false;
  5302. tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  5303. if (!(tmp & PIPECONF_ENABLE))
  5304. return false;
  5305. /*
  5306. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  5307. * DDI E. So just check whether this pipe is wired to DDI E and whether
  5308. * the PCH transcoder is on.
  5309. */
  5310. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  5311. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  5312. I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  5313. pipe_config->has_pch_encoder = true;
  5314. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  5315. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5316. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5317. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5318. }
  5319. intel_get_pipe_timings(crtc, pipe_config);
  5320. pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  5321. if (intel_display_power_enabled(dev, pfit_domain))
  5322. ironlake_get_pfit_config(crtc, pipe_config);
  5323. pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  5324. (I915_READ(IPS_CTL) & IPS_ENABLE);
  5325. pipe_config->pixel_multiplier = 1;
  5326. return true;
  5327. }
  5328. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5329. int x, int y,
  5330. struct drm_framebuffer *fb)
  5331. {
  5332. struct drm_device *dev = crtc->dev;
  5333. struct drm_i915_private *dev_priv = dev->dev_private;
  5334. struct intel_encoder *encoder;
  5335. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5336. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5337. int pipe = intel_crtc->pipe;
  5338. int ret;
  5339. drm_vblank_pre_modeset(dev, pipe);
  5340. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5341. drm_vblank_post_modeset(dev, pipe);
  5342. if (ret != 0)
  5343. return ret;
  5344. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5345. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5346. encoder->base.base.id,
  5347. drm_get_encoder_name(&encoder->base),
  5348. mode->base.id, mode->name);
  5349. encoder->mode_set(encoder);
  5350. }
  5351. return 0;
  5352. }
  5353. static bool intel_eld_uptodate(struct drm_connector *connector,
  5354. int reg_eldv, uint32_t bits_eldv,
  5355. int reg_elda, uint32_t bits_elda,
  5356. int reg_edid)
  5357. {
  5358. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5359. uint8_t *eld = connector->eld;
  5360. uint32_t i;
  5361. i = I915_READ(reg_eldv);
  5362. i &= bits_eldv;
  5363. if (!eld[0])
  5364. return !i;
  5365. if (!i)
  5366. return false;
  5367. i = I915_READ(reg_elda);
  5368. i &= ~bits_elda;
  5369. I915_WRITE(reg_elda, i);
  5370. for (i = 0; i < eld[2]; i++)
  5371. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5372. return false;
  5373. return true;
  5374. }
  5375. static void g4x_write_eld(struct drm_connector *connector,
  5376. struct drm_crtc *crtc)
  5377. {
  5378. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5379. uint8_t *eld = connector->eld;
  5380. uint32_t eldv;
  5381. uint32_t len;
  5382. uint32_t i;
  5383. i = I915_READ(G4X_AUD_VID_DID);
  5384. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5385. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5386. else
  5387. eldv = G4X_ELDV_DEVCTG;
  5388. if (intel_eld_uptodate(connector,
  5389. G4X_AUD_CNTL_ST, eldv,
  5390. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5391. G4X_HDMIW_HDMIEDID))
  5392. return;
  5393. i = I915_READ(G4X_AUD_CNTL_ST);
  5394. i &= ~(eldv | G4X_ELD_ADDR);
  5395. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5396. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5397. if (!eld[0])
  5398. return;
  5399. len = min_t(uint8_t, eld[2], len);
  5400. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5401. for (i = 0; i < len; i++)
  5402. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5403. i = I915_READ(G4X_AUD_CNTL_ST);
  5404. i |= eldv;
  5405. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5406. }
  5407. static void haswell_write_eld(struct drm_connector *connector,
  5408. struct drm_crtc *crtc)
  5409. {
  5410. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5411. uint8_t *eld = connector->eld;
  5412. struct drm_device *dev = crtc->dev;
  5413. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5414. uint32_t eldv;
  5415. uint32_t i;
  5416. int len;
  5417. int pipe = to_intel_crtc(crtc)->pipe;
  5418. int tmp;
  5419. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5420. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5421. int aud_config = HSW_AUD_CFG(pipe);
  5422. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5423. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5424. /* Audio output enable */
  5425. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5426. tmp = I915_READ(aud_cntrl_st2);
  5427. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5428. I915_WRITE(aud_cntrl_st2, tmp);
  5429. /* Wait for 1 vertical blank */
  5430. intel_wait_for_vblank(dev, pipe);
  5431. /* Set ELD valid state */
  5432. tmp = I915_READ(aud_cntrl_st2);
  5433. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%08x\n", tmp);
  5434. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5435. I915_WRITE(aud_cntrl_st2, tmp);
  5436. tmp = I915_READ(aud_cntrl_st2);
  5437. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%08x\n", tmp);
  5438. /* Enable HDMI mode */
  5439. tmp = I915_READ(aud_config);
  5440. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%08x\n", tmp);
  5441. /* clear N_programing_enable and N_value_index */
  5442. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5443. I915_WRITE(aud_config, tmp);
  5444. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5445. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5446. intel_crtc->eld_vld = true;
  5447. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5448. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5449. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5450. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5451. } else
  5452. I915_WRITE(aud_config, 0);
  5453. if (intel_eld_uptodate(connector,
  5454. aud_cntrl_st2, eldv,
  5455. aud_cntl_st, IBX_ELD_ADDRESS,
  5456. hdmiw_hdmiedid))
  5457. return;
  5458. i = I915_READ(aud_cntrl_st2);
  5459. i &= ~eldv;
  5460. I915_WRITE(aud_cntrl_st2, i);
  5461. if (!eld[0])
  5462. return;
  5463. i = I915_READ(aud_cntl_st);
  5464. i &= ~IBX_ELD_ADDRESS;
  5465. I915_WRITE(aud_cntl_st, i);
  5466. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5467. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5468. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5469. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5470. for (i = 0; i < len; i++)
  5471. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5472. i = I915_READ(aud_cntrl_st2);
  5473. i |= eldv;
  5474. I915_WRITE(aud_cntrl_st2, i);
  5475. }
  5476. static void ironlake_write_eld(struct drm_connector *connector,
  5477. struct drm_crtc *crtc)
  5478. {
  5479. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5480. uint8_t *eld = connector->eld;
  5481. uint32_t eldv;
  5482. uint32_t i;
  5483. int len;
  5484. int hdmiw_hdmiedid;
  5485. int aud_config;
  5486. int aud_cntl_st;
  5487. int aud_cntrl_st2;
  5488. int pipe = to_intel_crtc(crtc)->pipe;
  5489. if (HAS_PCH_IBX(connector->dev)) {
  5490. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5491. aud_config = IBX_AUD_CFG(pipe);
  5492. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5493. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5494. } else {
  5495. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5496. aud_config = CPT_AUD_CFG(pipe);
  5497. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5498. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5499. }
  5500. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5501. i = I915_READ(aud_cntl_st);
  5502. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5503. if (!i) {
  5504. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5505. /* operate blindly on all ports */
  5506. eldv = IBX_ELD_VALIDB;
  5507. eldv |= IBX_ELD_VALIDB << 4;
  5508. eldv |= IBX_ELD_VALIDB << 8;
  5509. } else {
  5510. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5511. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5512. }
  5513. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5514. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5515. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5516. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5517. } else
  5518. I915_WRITE(aud_config, 0);
  5519. if (intel_eld_uptodate(connector,
  5520. aud_cntrl_st2, eldv,
  5521. aud_cntl_st, IBX_ELD_ADDRESS,
  5522. hdmiw_hdmiedid))
  5523. return;
  5524. i = I915_READ(aud_cntrl_st2);
  5525. i &= ~eldv;
  5526. I915_WRITE(aud_cntrl_st2, i);
  5527. if (!eld[0])
  5528. return;
  5529. i = I915_READ(aud_cntl_st);
  5530. i &= ~IBX_ELD_ADDRESS;
  5531. I915_WRITE(aud_cntl_st, i);
  5532. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5533. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5534. for (i = 0; i < len; i++)
  5535. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5536. i = I915_READ(aud_cntrl_st2);
  5537. i |= eldv;
  5538. I915_WRITE(aud_cntrl_st2, i);
  5539. }
  5540. void intel_write_eld(struct drm_encoder *encoder,
  5541. struct drm_display_mode *mode)
  5542. {
  5543. struct drm_crtc *crtc = encoder->crtc;
  5544. struct drm_connector *connector;
  5545. struct drm_device *dev = encoder->dev;
  5546. struct drm_i915_private *dev_priv = dev->dev_private;
  5547. connector = drm_select_eld(encoder, mode);
  5548. if (!connector)
  5549. return;
  5550. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5551. connector->base.id,
  5552. drm_get_connector_name(connector),
  5553. connector->encoder->base.id,
  5554. drm_get_encoder_name(connector->encoder));
  5555. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5556. if (dev_priv->display.write_eld)
  5557. dev_priv->display.write_eld(connector, crtc);
  5558. }
  5559. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5560. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5561. {
  5562. struct drm_device *dev = crtc->dev;
  5563. struct drm_i915_private *dev_priv = dev->dev_private;
  5564. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5565. enum pipe pipe = intel_crtc->pipe;
  5566. int palreg = PALETTE(pipe);
  5567. int i;
  5568. bool reenable_ips = false;
  5569. /* The clocks have to be on to load the palette. */
  5570. if (!crtc->enabled || !intel_crtc->active)
  5571. return;
  5572. if (!HAS_PCH_SPLIT(dev_priv->dev))
  5573. assert_pll_enabled(dev_priv, pipe);
  5574. /* use legacy palette for Ironlake */
  5575. if (HAS_PCH_SPLIT(dev))
  5576. palreg = LGC_PALETTE(pipe);
  5577. /* Workaround : Do not read or write the pipe palette/gamma data while
  5578. * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  5579. */
  5580. if (intel_crtc->config.ips_enabled &&
  5581. ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  5582. GAMMA_MODE_MODE_SPLIT)) {
  5583. hsw_disable_ips(intel_crtc);
  5584. reenable_ips = true;
  5585. }
  5586. for (i = 0; i < 256; i++) {
  5587. I915_WRITE(palreg + 4 * i,
  5588. (intel_crtc->lut_r[i] << 16) |
  5589. (intel_crtc->lut_g[i] << 8) |
  5590. intel_crtc->lut_b[i]);
  5591. }
  5592. if (reenable_ips)
  5593. hsw_enable_ips(intel_crtc);
  5594. }
  5595. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5596. {
  5597. struct drm_device *dev = crtc->dev;
  5598. struct drm_i915_private *dev_priv = dev->dev_private;
  5599. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5600. bool visible = base != 0;
  5601. u32 cntl;
  5602. if (intel_crtc->cursor_visible == visible)
  5603. return;
  5604. cntl = I915_READ(_CURACNTR);
  5605. if (visible) {
  5606. /* On these chipsets we can only modify the base whilst
  5607. * the cursor is disabled.
  5608. */
  5609. I915_WRITE(_CURABASE, base);
  5610. cntl &= ~(CURSOR_FORMAT_MASK);
  5611. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5612. cntl |= CURSOR_ENABLE |
  5613. CURSOR_GAMMA_ENABLE |
  5614. CURSOR_FORMAT_ARGB;
  5615. } else
  5616. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5617. I915_WRITE(_CURACNTR, cntl);
  5618. intel_crtc->cursor_visible = visible;
  5619. }
  5620. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5621. {
  5622. struct drm_device *dev = crtc->dev;
  5623. struct drm_i915_private *dev_priv = dev->dev_private;
  5624. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5625. int pipe = intel_crtc->pipe;
  5626. bool visible = base != 0;
  5627. if (intel_crtc->cursor_visible != visible) {
  5628. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5629. if (base) {
  5630. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5631. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5632. cntl |= pipe << 28; /* Connect to correct pipe */
  5633. } else {
  5634. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5635. cntl |= CURSOR_MODE_DISABLE;
  5636. }
  5637. I915_WRITE(CURCNTR(pipe), cntl);
  5638. intel_crtc->cursor_visible = visible;
  5639. }
  5640. /* and commit changes on next vblank */
  5641. I915_WRITE(CURBASE(pipe), base);
  5642. }
  5643. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5644. {
  5645. struct drm_device *dev = crtc->dev;
  5646. struct drm_i915_private *dev_priv = dev->dev_private;
  5647. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5648. int pipe = intel_crtc->pipe;
  5649. bool visible = base != 0;
  5650. if (intel_crtc->cursor_visible != visible) {
  5651. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5652. if (base) {
  5653. cntl &= ~CURSOR_MODE;
  5654. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5655. } else {
  5656. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5657. cntl |= CURSOR_MODE_DISABLE;
  5658. }
  5659. if (IS_HASWELL(dev)) {
  5660. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5661. cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
  5662. }
  5663. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5664. intel_crtc->cursor_visible = visible;
  5665. }
  5666. /* and commit changes on next vblank */
  5667. I915_WRITE(CURBASE_IVB(pipe), base);
  5668. }
  5669. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5670. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5671. bool on)
  5672. {
  5673. struct drm_device *dev = crtc->dev;
  5674. struct drm_i915_private *dev_priv = dev->dev_private;
  5675. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5676. int pipe = intel_crtc->pipe;
  5677. int x = intel_crtc->cursor_x;
  5678. int y = intel_crtc->cursor_y;
  5679. u32 base, pos;
  5680. bool visible;
  5681. pos = 0;
  5682. if (on && crtc->enabled && crtc->fb) {
  5683. base = intel_crtc->cursor_addr;
  5684. if (x > (int) crtc->fb->width)
  5685. base = 0;
  5686. if (y > (int) crtc->fb->height)
  5687. base = 0;
  5688. } else
  5689. base = 0;
  5690. if (x < 0) {
  5691. if (x + intel_crtc->cursor_width < 0)
  5692. base = 0;
  5693. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5694. x = -x;
  5695. }
  5696. pos |= x << CURSOR_X_SHIFT;
  5697. if (y < 0) {
  5698. if (y + intel_crtc->cursor_height < 0)
  5699. base = 0;
  5700. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5701. y = -y;
  5702. }
  5703. pos |= y << CURSOR_Y_SHIFT;
  5704. visible = base != 0;
  5705. if (!visible && !intel_crtc->cursor_visible)
  5706. return;
  5707. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5708. I915_WRITE(CURPOS_IVB(pipe), pos);
  5709. ivb_update_cursor(crtc, base);
  5710. } else {
  5711. I915_WRITE(CURPOS(pipe), pos);
  5712. if (IS_845G(dev) || IS_I865G(dev))
  5713. i845_update_cursor(crtc, base);
  5714. else
  5715. i9xx_update_cursor(crtc, base);
  5716. }
  5717. }
  5718. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5719. struct drm_file *file,
  5720. uint32_t handle,
  5721. uint32_t width, uint32_t height)
  5722. {
  5723. struct drm_device *dev = crtc->dev;
  5724. struct drm_i915_private *dev_priv = dev->dev_private;
  5725. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5726. struct drm_i915_gem_object *obj;
  5727. uint32_t addr;
  5728. int ret;
  5729. /* if we want to turn off the cursor ignore width and height */
  5730. if (!handle) {
  5731. DRM_DEBUG_KMS("cursor off\n");
  5732. addr = 0;
  5733. obj = NULL;
  5734. mutex_lock(&dev->struct_mutex);
  5735. goto finish;
  5736. }
  5737. /* Currently we only support 64x64 cursors */
  5738. if (width != 64 || height != 64) {
  5739. DRM_ERROR("we currently only support 64x64 cursors\n");
  5740. return -EINVAL;
  5741. }
  5742. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5743. if (&obj->base == NULL)
  5744. return -ENOENT;
  5745. if (obj->base.size < width * height * 4) {
  5746. DRM_ERROR("buffer is to small\n");
  5747. ret = -ENOMEM;
  5748. goto fail;
  5749. }
  5750. /* we only need to pin inside GTT if cursor is non-phy */
  5751. mutex_lock(&dev->struct_mutex);
  5752. if (!dev_priv->info->cursor_needs_physical) {
  5753. unsigned alignment;
  5754. if (obj->tiling_mode) {
  5755. DRM_ERROR("cursor cannot be tiled\n");
  5756. ret = -EINVAL;
  5757. goto fail_locked;
  5758. }
  5759. /* Note that the w/a also requires 2 PTE of padding following
  5760. * the bo. We currently fill all unused PTE with the shadow
  5761. * page and so we should always have valid PTE following the
  5762. * cursor preventing the VT-d warning.
  5763. */
  5764. alignment = 0;
  5765. if (need_vtd_wa(dev))
  5766. alignment = 64*1024;
  5767. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5768. if (ret) {
  5769. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5770. goto fail_locked;
  5771. }
  5772. ret = i915_gem_object_put_fence(obj);
  5773. if (ret) {
  5774. DRM_ERROR("failed to release fence for cursor");
  5775. goto fail_unpin;
  5776. }
  5777. addr = i915_gem_obj_ggtt_offset(obj);
  5778. } else {
  5779. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5780. ret = i915_gem_attach_phys_object(dev, obj,
  5781. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5782. align);
  5783. if (ret) {
  5784. DRM_ERROR("failed to attach phys object\n");
  5785. goto fail_locked;
  5786. }
  5787. addr = obj->phys_obj->handle->busaddr;
  5788. }
  5789. if (IS_GEN2(dev))
  5790. I915_WRITE(CURSIZE, (height << 12) | width);
  5791. finish:
  5792. if (intel_crtc->cursor_bo) {
  5793. if (dev_priv->info->cursor_needs_physical) {
  5794. if (intel_crtc->cursor_bo != obj)
  5795. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5796. } else
  5797. i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
  5798. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5799. }
  5800. mutex_unlock(&dev->struct_mutex);
  5801. intel_crtc->cursor_addr = addr;
  5802. intel_crtc->cursor_bo = obj;
  5803. intel_crtc->cursor_width = width;
  5804. intel_crtc->cursor_height = height;
  5805. if (intel_crtc->active)
  5806. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5807. return 0;
  5808. fail_unpin:
  5809. i915_gem_object_unpin_from_display_plane(obj);
  5810. fail_locked:
  5811. mutex_unlock(&dev->struct_mutex);
  5812. fail:
  5813. drm_gem_object_unreference_unlocked(&obj->base);
  5814. return ret;
  5815. }
  5816. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5817. {
  5818. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5819. intel_crtc->cursor_x = x;
  5820. intel_crtc->cursor_y = y;
  5821. if (intel_crtc->active)
  5822. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5823. return 0;
  5824. }
  5825. /** Sets the color ramps on behalf of RandR */
  5826. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5827. u16 blue, int regno)
  5828. {
  5829. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5830. intel_crtc->lut_r[regno] = red >> 8;
  5831. intel_crtc->lut_g[regno] = green >> 8;
  5832. intel_crtc->lut_b[regno] = blue >> 8;
  5833. }
  5834. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5835. u16 *blue, int regno)
  5836. {
  5837. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5838. *red = intel_crtc->lut_r[regno] << 8;
  5839. *green = intel_crtc->lut_g[regno] << 8;
  5840. *blue = intel_crtc->lut_b[regno] << 8;
  5841. }
  5842. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5843. u16 *blue, uint32_t start, uint32_t size)
  5844. {
  5845. int end = (start + size > 256) ? 256 : start + size, i;
  5846. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5847. for (i = start; i < end; i++) {
  5848. intel_crtc->lut_r[i] = red[i] >> 8;
  5849. intel_crtc->lut_g[i] = green[i] >> 8;
  5850. intel_crtc->lut_b[i] = blue[i] >> 8;
  5851. }
  5852. intel_crtc_load_lut(crtc);
  5853. }
  5854. /* VESA 640x480x72Hz mode to set on the pipe */
  5855. static struct drm_display_mode load_detect_mode = {
  5856. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5857. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5858. };
  5859. static struct drm_framebuffer *
  5860. intel_framebuffer_create(struct drm_device *dev,
  5861. struct drm_mode_fb_cmd2 *mode_cmd,
  5862. struct drm_i915_gem_object *obj)
  5863. {
  5864. struct intel_framebuffer *intel_fb;
  5865. int ret;
  5866. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5867. if (!intel_fb) {
  5868. drm_gem_object_unreference_unlocked(&obj->base);
  5869. return ERR_PTR(-ENOMEM);
  5870. }
  5871. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5872. if (ret) {
  5873. drm_gem_object_unreference_unlocked(&obj->base);
  5874. kfree(intel_fb);
  5875. return ERR_PTR(ret);
  5876. }
  5877. return &intel_fb->base;
  5878. }
  5879. static u32
  5880. intel_framebuffer_pitch_for_width(int width, int bpp)
  5881. {
  5882. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5883. return ALIGN(pitch, 64);
  5884. }
  5885. static u32
  5886. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5887. {
  5888. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5889. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5890. }
  5891. static struct drm_framebuffer *
  5892. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5893. struct drm_display_mode *mode,
  5894. int depth, int bpp)
  5895. {
  5896. struct drm_i915_gem_object *obj;
  5897. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5898. obj = i915_gem_alloc_object(dev,
  5899. intel_framebuffer_size_for_mode(mode, bpp));
  5900. if (obj == NULL)
  5901. return ERR_PTR(-ENOMEM);
  5902. mode_cmd.width = mode->hdisplay;
  5903. mode_cmd.height = mode->vdisplay;
  5904. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5905. bpp);
  5906. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5907. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5908. }
  5909. static struct drm_framebuffer *
  5910. mode_fits_in_fbdev(struct drm_device *dev,
  5911. struct drm_display_mode *mode)
  5912. {
  5913. struct drm_i915_private *dev_priv = dev->dev_private;
  5914. struct drm_i915_gem_object *obj;
  5915. struct drm_framebuffer *fb;
  5916. if (dev_priv->fbdev == NULL)
  5917. return NULL;
  5918. obj = dev_priv->fbdev->ifb.obj;
  5919. if (obj == NULL)
  5920. return NULL;
  5921. fb = &dev_priv->fbdev->ifb.base;
  5922. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5923. fb->bits_per_pixel))
  5924. return NULL;
  5925. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5926. return NULL;
  5927. return fb;
  5928. }
  5929. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5930. struct drm_display_mode *mode,
  5931. struct intel_load_detect_pipe *old)
  5932. {
  5933. struct intel_crtc *intel_crtc;
  5934. struct intel_encoder *intel_encoder =
  5935. intel_attached_encoder(connector);
  5936. struct drm_crtc *possible_crtc;
  5937. struct drm_encoder *encoder = &intel_encoder->base;
  5938. struct drm_crtc *crtc = NULL;
  5939. struct drm_device *dev = encoder->dev;
  5940. struct drm_framebuffer *fb;
  5941. int i = -1;
  5942. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5943. connector->base.id, drm_get_connector_name(connector),
  5944. encoder->base.id, drm_get_encoder_name(encoder));
  5945. /*
  5946. * Algorithm gets a little messy:
  5947. *
  5948. * - if the connector already has an assigned crtc, use it (but make
  5949. * sure it's on first)
  5950. *
  5951. * - try to find the first unused crtc that can drive this connector,
  5952. * and use that if we find one
  5953. */
  5954. /* See if we already have a CRTC for this connector */
  5955. if (encoder->crtc) {
  5956. crtc = encoder->crtc;
  5957. mutex_lock(&crtc->mutex);
  5958. old->dpms_mode = connector->dpms;
  5959. old->load_detect_temp = false;
  5960. /* Make sure the crtc and connector are running */
  5961. if (connector->dpms != DRM_MODE_DPMS_ON)
  5962. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5963. return true;
  5964. }
  5965. /* Find an unused one (if possible) */
  5966. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5967. i++;
  5968. if (!(encoder->possible_crtcs & (1 << i)))
  5969. continue;
  5970. if (!possible_crtc->enabled) {
  5971. crtc = possible_crtc;
  5972. break;
  5973. }
  5974. }
  5975. /*
  5976. * If we didn't find an unused CRTC, don't use any.
  5977. */
  5978. if (!crtc) {
  5979. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5980. return false;
  5981. }
  5982. mutex_lock(&crtc->mutex);
  5983. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5984. to_intel_connector(connector)->new_encoder = intel_encoder;
  5985. intel_crtc = to_intel_crtc(crtc);
  5986. old->dpms_mode = connector->dpms;
  5987. old->load_detect_temp = true;
  5988. old->release_fb = NULL;
  5989. if (!mode)
  5990. mode = &load_detect_mode;
  5991. /* We need a framebuffer large enough to accommodate all accesses
  5992. * that the plane may generate whilst we perform load detection.
  5993. * We can not rely on the fbcon either being present (we get called
  5994. * during its initialisation to detect all boot displays, or it may
  5995. * not even exist) or that it is large enough to satisfy the
  5996. * requested mode.
  5997. */
  5998. fb = mode_fits_in_fbdev(dev, mode);
  5999. if (fb == NULL) {
  6000. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  6001. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  6002. old->release_fb = fb;
  6003. } else
  6004. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  6005. if (IS_ERR(fb)) {
  6006. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  6007. mutex_unlock(&crtc->mutex);
  6008. return false;
  6009. }
  6010. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  6011. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  6012. if (old->release_fb)
  6013. old->release_fb->funcs->destroy(old->release_fb);
  6014. mutex_unlock(&crtc->mutex);
  6015. return false;
  6016. }
  6017. /* let the connector get through one full cycle before testing */
  6018. intel_wait_for_vblank(dev, intel_crtc->pipe);
  6019. return true;
  6020. }
  6021. void intel_release_load_detect_pipe(struct drm_connector *connector,
  6022. struct intel_load_detect_pipe *old)
  6023. {
  6024. struct intel_encoder *intel_encoder =
  6025. intel_attached_encoder(connector);
  6026. struct drm_encoder *encoder = &intel_encoder->base;
  6027. struct drm_crtc *crtc = encoder->crtc;
  6028. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6029. connector->base.id, drm_get_connector_name(connector),
  6030. encoder->base.id, drm_get_encoder_name(encoder));
  6031. if (old->load_detect_temp) {
  6032. to_intel_connector(connector)->new_encoder = NULL;
  6033. intel_encoder->new_crtc = NULL;
  6034. intel_set_mode(crtc, NULL, 0, 0, NULL);
  6035. if (old->release_fb) {
  6036. drm_framebuffer_unregister_private(old->release_fb);
  6037. drm_framebuffer_unreference(old->release_fb);
  6038. }
  6039. mutex_unlock(&crtc->mutex);
  6040. return;
  6041. }
  6042. /* Switch crtc and encoder back off if necessary */
  6043. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  6044. connector->funcs->dpms(connector, old->dpms_mode);
  6045. mutex_unlock(&crtc->mutex);
  6046. }
  6047. /* Returns the clock of the currently programmed mode of the given pipe. */
  6048. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  6049. struct intel_crtc_config *pipe_config)
  6050. {
  6051. struct drm_device *dev = crtc->base.dev;
  6052. struct drm_i915_private *dev_priv = dev->dev_private;
  6053. int pipe = pipe_config->cpu_transcoder;
  6054. u32 dpll = I915_READ(DPLL(pipe));
  6055. u32 fp;
  6056. intel_clock_t clock;
  6057. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  6058. fp = I915_READ(FP0(pipe));
  6059. else
  6060. fp = I915_READ(FP1(pipe));
  6061. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  6062. if (IS_PINEVIEW(dev)) {
  6063. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  6064. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6065. } else {
  6066. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  6067. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6068. }
  6069. if (!IS_GEN2(dev)) {
  6070. if (IS_PINEVIEW(dev))
  6071. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  6072. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  6073. else
  6074. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  6075. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6076. switch (dpll & DPLL_MODE_MASK) {
  6077. case DPLLB_MODE_DAC_SERIAL:
  6078. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  6079. 5 : 10;
  6080. break;
  6081. case DPLLB_MODE_LVDS:
  6082. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  6083. 7 : 14;
  6084. break;
  6085. default:
  6086. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  6087. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  6088. pipe_config->adjusted_mode.clock = 0;
  6089. return;
  6090. }
  6091. if (IS_PINEVIEW(dev))
  6092. pineview_clock(96000, &clock);
  6093. else
  6094. i9xx_clock(96000, &clock);
  6095. } else {
  6096. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  6097. if (is_lvds) {
  6098. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  6099. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6100. clock.p2 = 14;
  6101. if ((dpll & PLL_REF_INPUT_MASK) ==
  6102. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  6103. /* XXX: might not be 66MHz */
  6104. i9xx_clock(66000, &clock);
  6105. } else
  6106. i9xx_clock(48000, &clock);
  6107. } else {
  6108. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  6109. clock.p1 = 2;
  6110. else {
  6111. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  6112. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  6113. }
  6114. if (dpll & PLL_P2_DIVIDE_BY_4)
  6115. clock.p2 = 4;
  6116. else
  6117. clock.p2 = 2;
  6118. i9xx_clock(48000, &clock);
  6119. }
  6120. }
  6121. pipe_config->adjusted_mode.clock = clock.dot;
  6122. }
  6123. static void ironlake_crtc_clock_get(struct intel_crtc *crtc,
  6124. struct intel_crtc_config *pipe_config)
  6125. {
  6126. struct drm_device *dev = crtc->base.dev;
  6127. struct drm_i915_private *dev_priv = dev->dev_private;
  6128. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  6129. int link_freq, repeat;
  6130. u64 clock;
  6131. u32 link_m, link_n;
  6132. repeat = pipe_config->pixel_multiplier;
  6133. /*
  6134. * The calculation for the data clock is:
  6135. * pixel_clock = ((m/n)*(link_clock * nr_lanes * repeat))/bpp
  6136. * But we want to avoid losing precison if possible, so:
  6137. * pixel_clock = ((m * link_clock * nr_lanes * repeat)/(n*bpp))
  6138. *
  6139. * and the link clock is simpler:
  6140. * link_clock = (m * link_clock * repeat) / n
  6141. */
  6142. /*
  6143. * We need to get the FDI or DP link clock here to derive
  6144. * the M/N dividers.
  6145. *
  6146. * For FDI, we read it from the BIOS or use a fixed 2.7GHz.
  6147. * For DP, it's either 1.62GHz or 2.7GHz.
  6148. * We do our calculations in 10*MHz since we don't need much precison.
  6149. */
  6150. if (pipe_config->has_pch_encoder)
  6151. link_freq = intel_fdi_link_freq(dev) * 10000;
  6152. else
  6153. link_freq = pipe_config->port_clock;
  6154. link_m = I915_READ(PIPE_LINK_M1(cpu_transcoder));
  6155. link_n = I915_READ(PIPE_LINK_N1(cpu_transcoder));
  6156. if (!link_m || !link_n)
  6157. return;
  6158. clock = ((u64)link_m * (u64)link_freq * (u64)repeat);
  6159. do_div(clock, link_n);
  6160. pipe_config->adjusted_mode.clock = clock;
  6161. }
  6162. /** Returns the currently programmed mode of the given pipe. */
  6163. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  6164. struct drm_crtc *crtc)
  6165. {
  6166. struct drm_i915_private *dev_priv = dev->dev_private;
  6167. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6168. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  6169. struct drm_display_mode *mode;
  6170. struct intel_crtc_config pipe_config;
  6171. int htot = I915_READ(HTOTAL(cpu_transcoder));
  6172. int hsync = I915_READ(HSYNC(cpu_transcoder));
  6173. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  6174. int vsync = I915_READ(VSYNC(cpu_transcoder));
  6175. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  6176. if (!mode)
  6177. return NULL;
  6178. /*
  6179. * Construct a pipe_config sufficient for getting the clock info
  6180. * back out of crtc_clock_get.
  6181. *
  6182. * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
  6183. * to use a real value here instead.
  6184. */
  6185. pipe_config.cpu_transcoder = (enum transcoder) intel_crtc->pipe;
  6186. pipe_config.pixel_multiplier = 1;
  6187. i9xx_crtc_clock_get(intel_crtc, &pipe_config);
  6188. mode->clock = pipe_config.adjusted_mode.clock;
  6189. mode->hdisplay = (htot & 0xffff) + 1;
  6190. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  6191. mode->hsync_start = (hsync & 0xffff) + 1;
  6192. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  6193. mode->vdisplay = (vtot & 0xffff) + 1;
  6194. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  6195. mode->vsync_start = (vsync & 0xffff) + 1;
  6196. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  6197. drm_mode_set_name(mode);
  6198. return mode;
  6199. }
  6200. static void intel_increase_pllclock(struct drm_crtc *crtc)
  6201. {
  6202. struct drm_device *dev = crtc->dev;
  6203. drm_i915_private_t *dev_priv = dev->dev_private;
  6204. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6205. int pipe = intel_crtc->pipe;
  6206. int dpll_reg = DPLL(pipe);
  6207. int dpll;
  6208. if (HAS_PCH_SPLIT(dev))
  6209. return;
  6210. if (!dev_priv->lvds_downclock_avail)
  6211. return;
  6212. dpll = I915_READ(dpll_reg);
  6213. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  6214. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  6215. assert_panel_unlocked(dev_priv, pipe);
  6216. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  6217. I915_WRITE(dpll_reg, dpll);
  6218. intel_wait_for_vblank(dev, pipe);
  6219. dpll = I915_READ(dpll_reg);
  6220. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  6221. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  6222. }
  6223. }
  6224. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  6225. {
  6226. struct drm_device *dev = crtc->dev;
  6227. drm_i915_private_t *dev_priv = dev->dev_private;
  6228. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6229. if (HAS_PCH_SPLIT(dev))
  6230. return;
  6231. if (!dev_priv->lvds_downclock_avail)
  6232. return;
  6233. /*
  6234. * Since this is called by a timer, we should never get here in
  6235. * the manual case.
  6236. */
  6237. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  6238. int pipe = intel_crtc->pipe;
  6239. int dpll_reg = DPLL(pipe);
  6240. int dpll;
  6241. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  6242. assert_panel_unlocked(dev_priv, pipe);
  6243. dpll = I915_READ(dpll_reg);
  6244. dpll |= DISPLAY_RATE_SELECT_FPA1;
  6245. I915_WRITE(dpll_reg, dpll);
  6246. intel_wait_for_vblank(dev, pipe);
  6247. dpll = I915_READ(dpll_reg);
  6248. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  6249. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  6250. }
  6251. }
  6252. void intel_mark_busy(struct drm_device *dev)
  6253. {
  6254. struct drm_i915_private *dev_priv = dev->dev_private;
  6255. hsw_package_c8_gpu_busy(dev_priv);
  6256. i915_update_gfx_val(dev_priv);
  6257. }
  6258. void intel_mark_idle(struct drm_device *dev)
  6259. {
  6260. struct drm_i915_private *dev_priv = dev->dev_private;
  6261. struct drm_crtc *crtc;
  6262. hsw_package_c8_gpu_idle(dev_priv);
  6263. if (!i915_powersave)
  6264. return;
  6265. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6266. if (!crtc->fb)
  6267. continue;
  6268. intel_decrease_pllclock(crtc);
  6269. }
  6270. }
  6271. void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
  6272. struct intel_ring_buffer *ring)
  6273. {
  6274. struct drm_device *dev = obj->base.dev;
  6275. struct drm_crtc *crtc;
  6276. if (!i915_powersave)
  6277. return;
  6278. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6279. if (!crtc->fb)
  6280. continue;
  6281. if (to_intel_framebuffer(crtc->fb)->obj != obj)
  6282. continue;
  6283. intel_increase_pllclock(crtc);
  6284. if (ring && intel_fbc_enabled(dev))
  6285. ring->fbc_dirty = true;
  6286. }
  6287. }
  6288. static void intel_crtc_destroy(struct drm_crtc *crtc)
  6289. {
  6290. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6291. struct drm_device *dev = crtc->dev;
  6292. struct intel_unpin_work *work;
  6293. unsigned long flags;
  6294. spin_lock_irqsave(&dev->event_lock, flags);
  6295. work = intel_crtc->unpin_work;
  6296. intel_crtc->unpin_work = NULL;
  6297. spin_unlock_irqrestore(&dev->event_lock, flags);
  6298. if (work) {
  6299. cancel_work_sync(&work->work);
  6300. kfree(work);
  6301. }
  6302. intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
  6303. drm_crtc_cleanup(crtc);
  6304. kfree(intel_crtc);
  6305. }
  6306. static void intel_unpin_work_fn(struct work_struct *__work)
  6307. {
  6308. struct intel_unpin_work *work =
  6309. container_of(__work, struct intel_unpin_work, work);
  6310. struct drm_device *dev = work->crtc->dev;
  6311. mutex_lock(&dev->struct_mutex);
  6312. intel_unpin_fb_obj(work->old_fb_obj);
  6313. drm_gem_object_unreference(&work->pending_flip_obj->base);
  6314. drm_gem_object_unreference(&work->old_fb_obj->base);
  6315. intel_update_fbc(dev);
  6316. mutex_unlock(&dev->struct_mutex);
  6317. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  6318. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  6319. kfree(work);
  6320. }
  6321. static void do_intel_finish_page_flip(struct drm_device *dev,
  6322. struct drm_crtc *crtc)
  6323. {
  6324. drm_i915_private_t *dev_priv = dev->dev_private;
  6325. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6326. struct intel_unpin_work *work;
  6327. unsigned long flags;
  6328. /* Ignore early vblank irqs */
  6329. if (intel_crtc == NULL)
  6330. return;
  6331. spin_lock_irqsave(&dev->event_lock, flags);
  6332. work = intel_crtc->unpin_work;
  6333. /* Ensure we don't miss a work->pending update ... */
  6334. smp_rmb();
  6335. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  6336. spin_unlock_irqrestore(&dev->event_lock, flags);
  6337. return;
  6338. }
  6339. /* and that the unpin work is consistent wrt ->pending. */
  6340. smp_rmb();
  6341. intel_crtc->unpin_work = NULL;
  6342. if (work->event)
  6343. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  6344. drm_vblank_put(dev, intel_crtc->pipe);
  6345. spin_unlock_irqrestore(&dev->event_lock, flags);
  6346. wake_up_all(&dev_priv->pending_flip_queue);
  6347. queue_work(dev_priv->wq, &work->work);
  6348. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6349. }
  6350. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6351. {
  6352. drm_i915_private_t *dev_priv = dev->dev_private;
  6353. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6354. do_intel_finish_page_flip(dev, crtc);
  6355. }
  6356. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6357. {
  6358. drm_i915_private_t *dev_priv = dev->dev_private;
  6359. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6360. do_intel_finish_page_flip(dev, crtc);
  6361. }
  6362. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6363. {
  6364. drm_i915_private_t *dev_priv = dev->dev_private;
  6365. struct intel_crtc *intel_crtc =
  6366. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6367. unsigned long flags;
  6368. /* NB: An MMIO update of the plane base pointer will also
  6369. * generate a page-flip completion irq, i.e. every modeset
  6370. * is also accompanied by a spurious intel_prepare_page_flip().
  6371. */
  6372. spin_lock_irqsave(&dev->event_lock, flags);
  6373. if (intel_crtc->unpin_work)
  6374. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6375. spin_unlock_irqrestore(&dev->event_lock, flags);
  6376. }
  6377. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6378. {
  6379. /* Ensure that the work item is consistent when activating it ... */
  6380. smp_wmb();
  6381. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6382. /* and that it is marked active as soon as the irq could fire. */
  6383. smp_wmb();
  6384. }
  6385. static int intel_gen2_queue_flip(struct drm_device *dev,
  6386. struct drm_crtc *crtc,
  6387. struct drm_framebuffer *fb,
  6388. struct drm_i915_gem_object *obj,
  6389. uint32_t flags)
  6390. {
  6391. struct drm_i915_private *dev_priv = dev->dev_private;
  6392. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6393. u32 flip_mask;
  6394. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6395. int ret;
  6396. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6397. if (ret)
  6398. goto err;
  6399. ret = intel_ring_begin(ring, 6);
  6400. if (ret)
  6401. goto err_unpin;
  6402. /* Can't queue multiple flips, so wait for the previous
  6403. * one to finish before executing the next.
  6404. */
  6405. if (intel_crtc->plane)
  6406. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6407. else
  6408. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6409. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6410. intel_ring_emit(ring, MI_NOOP);
  6411. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6412. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6413. intel_ring_emit(ring, fb->pitches[0]);
  6414. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6415. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6416. intel_mark_page_flip_active(intel_crtc);
  6417. intel_ring_advance(ring);
  6418. return 0;
  6419. err_unpin:
  6420. intel_unpin_fb_obj(obj);
  6421. err:
  6422. return ret;
  6423. }
  6424. static int intel_gen3_queue_flip(struct drm_device *dev,
  6425. struct drm_crtc *crtc,
  6426. struct drm_framebuffer *fb,
  6427. struct drm_i915_gem_object *obj,
  6428. uint32_t flags)
  6429. {
  6430. struct drm_i915_private *dev_priv = dev->dev_private;
  6431. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6432. u32 flip_mask;
  6433. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6434. int ret;
  6435. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6436. if (ret)
  6437. goto err;
  6438. ret = intel_ring_begin(ring, 6);
  6439. if (ret)
  6440. goto err_unpin;
  6441. if (intel_crtc->plane)
  6442. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6443. else
  6444. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6445. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6446. intel_ring_emit(ring, MI_NOOP);
  6447. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6448. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6449. intel_ring_emit(ring, fb->pitches[0]);
  6450. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6451. intel_ring_emit(ring, MI_NOOP);
  6452. intel_mark_page_flip_active(intel_crtc);
  6453. intel_ring_advance(ring);
  6454. return 0;
  6455. err_unpin:
  6456. intel_unpin_fb_obj(obj);
  6457. err:
  6458. return ret;
  6459. }
  6460. static int intel_gen4_queue_flip(struct drm_device *dev,
  6461. struct drm_crtc *crtc,
  6462. struct drm_framebuffer *fb,
  6463. struct drm_i915_gem_object *obj,
  6464. uint32_t flags)
  6465. {
  6466. struct drm_i915_private *dev_priv = dev->dev_private;
  6467. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6468. uint32_t pf, pipesrc;
  6469. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6470. int ret;
  6471. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6472. if (ret)
  6473. goto err;
  6474. ret = intel_ring_begin(ring, 4);
  6475. if (ret)
  6476. goto err_unpin;
  6477. /* i965+ uses the linear or tiled offsets from the
  6478. * Display Registers (which do not change across a page-flip)
  6479. * so we need only reprogram the base address.
  6480. */
  6481. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6482. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6483. intel_ring_emit(ring, fb->pitches[0]);
  6484. intel_ring_emit(ring,
  6485. (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
  6486. obj->tiling_mode);
  6487. /* XXX Enabling the panel-fitter across page-flip is so far
  6488. * untested on non-native modes, so ignore it for now.
  6489. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6490. */
  6491. pf = 0;
  6492. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6493. intel_ring_emit(ring, pf | pipesrc);
  6494. intel_mark_page_flip_active(intel_crtc);
  6495. intel_ring_advance(ring);
  6496. return 0;
  6497. err_unpin:
  6498. intel_unpin_fb_obj(obj);
  6499. err:
  6500. return ret;
  6501. }
  6502. static int intel_gen6_queue_flip(struct drm_device *dev,
  6503. struct drm_crtc *crtc,
  6504. struct drm_framebuffer *fb,
  6505. struct drm_i915_gem_object *obj,
  6506. uint32_t flags)
  6507. {
  6508. struct drm_i915_private *dev_priv = dev->dev_private;
  6509. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6510. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6511. uint32_t pf, pipesrc;
  6512. int ret;
  6513. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6514. if (ret)
  6515. goto err;
  6516. ret = intel_ring_begin(ring, 4);
  6517. if (ret)
  6518. goto err_unpin;
  6519. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6520. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6521. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6522. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6523. /* Contrary to the suggestions in the documentation,
  6524. * "Enable Panel Fitter" does not seem to be required when page
  6525. * flipping with a non-native mode, and worse causes a normal
  6526. * modeset to fail.
  6527. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6528. */
  6529. pf = 0;
  6530. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6531. intel_ring_emit(ring, pf | pipesrc);
  6532. intel_mark_page_flip_active(intel_crtc);
  6533. intel_ring_advance(ring);
  6534. return 0;
  6535. err_unpin:
  6536. intel_unpin_fb_obj(obj);
  6537. err:
  6538. return ret;
  6539. }
  6540. static int intel_gen7_queue_flip(struct drm_device *dev,
  6541. struct drm_crtc *crtc,
  6542. struct drm_framebuffer *fb,
  6543. struct drm_i915_gem_object *obj,
  6544. uint32_t flags)
  6545. {
  6546. struct drm_i915_private *dev_priv = dev->dev_private;
  6547. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6548. struct intel_ring_buffer *ring;
  6549. uint32_t plane_bit = 0;
  6550. int len, ret;
  6551. ring = obj->ring;
  6552. if (IS_VALLEYVIEW(dev) || ring == NULL || ring->id != RCS)
  6553. ring = &dev_priv->ring[BCS];
  6554. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6555. if (ret)
  6556. goto err;
  6557. switch(intel_crtc->plane) {
  6558. case PLANE_A:
  6559. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6560. break;
  6561. case PLANE_B:
  6562. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6563. break;
  6564. case PLANE_C:
  6565. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6566. break;
  6567. default:
  6568. WARN_ONCE(1, "unknown plane in flip command\n");
  6569. ret = -ENODEV;
  6570. goto err_unpin;
  6571. }
  6572. len = 4;
  6573. if (ring->id == RCS)
  6574. len += 6;
  6575. ret = intel_ring_begin(ring, len);
  6576. if (ret)
  6577. goto err_unpin;
  6578. /* Unmask the flip-done completion message. Note that the bspec says that
  6579. * we should do this for both the BCS and RCS, and that we must not unmask
  6580. * more than one flip event at any time (or ensure that one flip message
  6581. * can be sent by waiting for flip-done prior to queueing new flips).
  6582. * Experimentation says that BCS works despite DERRMR masking all
  6583. * flip-done completion events and that unmasking all planes at once
  6584. * for the RCS also doesn't appear to drop events. Setting the DERRMR
  6585. * to zero does lead to lockups within MI_DISPLAY_FLIP.
  6586. */
  6587. if (ring->id == RCS) {
  6588. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  6589. intel_ring_emit(ring, DERRMR);
  6590. intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
  6591. DERRMR_PIPEB_PRI_FLIP_DONE |
  6592. DERRMR_PIPEC_PRI_FLIP_DONE));
  6593. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
  6594. intel_ring_emit(ring, DERRMR);
  6595. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  6596. }
  6597. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6598. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6599. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6600. intel_ring_emit(ring, (MI_NOOP));
  6601. intel_mark_page_flip_active(intel_crtc);
  6602. intel_ring_advance(ring);
  6603. return 0;
  6604. err_unpin:
  6605. intel_unpin_fb_obj(obj);
  6606. err:
  6607. return ret;
  6608. }
  6609. static int intel_default_queue_flip(struct drm_device *dev,
  6610. struct drm_crtc *crtc,
  6611. struct drm_framebuffer *fb,
  6612. struct drm_i915_gem_object *obj,
  6613. uint32_t flags)
  6614. {
  6615. return -ENODEV;
  6616. }
  6617. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6618. struct drm_framebuffer *fb,
  6619. struct drm_pending_vblank_event *event,
  6620. uint32_t page_flip_flags)
  6621. {
  6622. struct drm_device *dev = crtc->dev;
  6623. struct drm_i915_private *dev_priv = dev->dev_private;
  6624. struct drm_framebuffer *old_fb = crtc->fb;
  6625. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6626. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6627. struct intel_unpin_work *work;
  6628. unsigned long flags;
  6629. int ret;
  6630. /* Can't change pixel format via MI display flips. */
  6631. if (fb->pixel_format != crtc->fb->pixel_format)
  6632. return -EINVAL;
  6633. /*
  6634. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6635. * Note that pitch changes could also affect these register.
  6636. */
  6637. if (INTEL_INFO(dev)->gen > 3 &&
  6638. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6639. fb->pitches[0] != crtc->fb->pitches[0]))
  6640. return -EINVAL;
  6641. work = kzalloc(sizeof *work, GFP_KERNEL);
  6642. if (work == NULL)
  6643. return -ENOMEM;
  6644. work->event = event;
  6645. work->crtc = crtc;
  6646. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6647. INIT_WORK(&work->work, intel_unpin_work_fn);
  6648. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6649. if (ret)
  6650. goto free_work;
  6651. /* We borrow the event spin lock for protecting unpin_work */
  6652. spin_lock_irqsave(&dev->event_lock, flags);
  6653. if (intel_crtc->unpin_work) {
  6654. spin_unlock_irqrestore(&dev->event_lock, flags);
  6655. kfree(work);
  6656. drm_vblank_put(dev, intel_crtc->pipe);
  6657. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6658. return -EBUSY;
  6659. }
  6660. intel_crtc->unpin_work = work;
  6661. spin_unlock_irqrestore(&dev->event_lock, flags);
  6662. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6663. flush_workqueue(dev_priv->wq);
  6664. ret = i915_mutex_lock_interruptible(dev);
  6665. if (ret)
  6666. goto cleanup;
  6667. /* Reference the objects for the scheduled work. */
  6668. drm_gem_object_reference(&work->old_fb_obj->base);
  6669. drm_gem_object_reference(&obj->base);
  6670. crtc->fb = fb;
  6671. work->pending_flip_obj = obj;
  6672. work->enable_stall_check = true;
  6673. atomic_inc(&intel_crtc->unpin_work_count);
  6674. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6675. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
  6676. if (ret)
  6677. goto cleanup_pending;
  6678. intel_disable_fbc(dev);
  6679. intel_mark_fb_busy(obj, NULL);
  6680. mutex_unlock(&dev->struct_mutex);
  6681. trace_i915_flip_request(intel_crtc->plane, obj);
  6682. return 0;
  6683. cleanup_pending:
  6684. atomic_dec(&intel_crtc->unpin_work_count);
  6685. crtc->fb = old_fb;
  6686. drm_gem_object_unreference(&work->old_fb_obj->base);
  6687. drm_gem_object_unreference(&obj->base);
  6688. mutex_unlock(&dev->struct_mutex);
  6689. cleanup:
  6690. spin_lock_irqsave(&dev->event_lock, flags);
  6691. intel_crtc->unpin_work = NULL;
  6692. spin_unlock_irqrestore(&dev->event_lock, flags);
  6693. drm_vblank_put(dev, intel_crtc->pipe);
  6694. free_work:
  6695. kfree(work);
  6696. return ret;
  6697. }
  6698. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6699. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6700. .load_lut = intel_crtc_load_lut,
  6701. };
  6702. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6703. struct drm_crtc *crtc)
  6704. {
  6705. struct drm_device *dev;
  6706. struct drm_crtc *tmp;
  6707. int crtc_mask = 1;
  6708. WARN(!crtc, "checking null crtc?\n");
  6709. dev = crtc->dev;
  6710. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6711. if (tmp == crtc)
  6712. break;
  6713. crtc_mask <<= 1;
  6714. }
  6715. if (encoder->possible_crtcs & crtc_mask)
  6716. return true;
  6717. return false;
  6718. }
  6719. /**
  6720. * intel_modeset_update_staged_output_state
  6721. *
  6722. * Updates the staged output configuration state, e.g. after we've read out the
  6723. * current hw state.
  6724. */
  6725. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6726. {
  6727. struct intel_encoder *encoder;
  6728. struct intel_connector *connector;
  6729. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6730. base.head) {
  6731. connector->new_encoder =
  6732. to_intel_encoder(connector->base.encoder);
  6733. }
  6734. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6735. base.head) {
  6736. encoder->new_crtc =
  6737. to_intel_crtc(encoder->base.crtc);
  6738. }
  6739. }
  6740. /**
  6741. * intel_modeset_commit_output_state
  6742. *
  6743. * This function copies the stage display pipe configuration to the real one.
  6744. */
  6745. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6746. {
  6747. struct intel_encoder *encoder;
  6748. struct intel_connector *connector;
  6749. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6750. base.head) {
  6751. connector->base.encoder = &connector->new_encoder->base;
  6752. }
  6753. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6754. base.head) {
  6755. encoder->base.crtc = &encoder->new_crtc->base;
  6756. }
  6757. }
  6758. static void
  6759. connected_sink_compute_bpp(struct intel_connector * connector,
  6760. struct intel_crtc_config *pipe_config)
  6761. {
  6762. int bpp = pipe_config->pipe_bpp;
  6763. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  6764. connector->base.base.id,
  6765. drm_get_connector_name(&connector->base));
  6766. /* Don't use an invalid EDID bpc value */
  6767. if (connector->base.display_info.bpc &&
  6768. connector->base.display_info.bpc * 3 < bpp) {
  6769. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6770. bpp, connector->base.display_info.bpc*3);
  6771. pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  6772. }
  6773. /* Clamp bpp to 8 on screens without EDID 1.4 */
  6774. if (connector->base.display_info.bpc == 0 && bpp > 24) {
  6775. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  6776. bpp);
  6777. pipe_config->pipe_bpp = 24;
  6778. }
  6779. }
  6780. static int
  6781. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  6782. struct drm_framebuffer *fb,
  6783. struct intel_crtc_config *pipe_config)
  6784. {
  6785. struct drm_device *dev = crtc->base.dev;
  6786. struct intel_connector *connector;
  6787. int bpp;
  6788. switch (fb->pixel_format) {
  6789. case DRM_FORMAT_C8:
  6790. bpp = 8*3; /* since we go through a colormap */
  6791. break;
  6792. case DRM_FORMAT_XRGB1555:
  6793. case DRM_FORMAT_ARGB1555:
  6794. /* checked in intel_framebuffer_init already */
  6795. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  6796. return -EINVAL;
  6797. case DRM_FORMAT_RGB565:
  6798. bpp = 6*3; /* min is 18bpp */
  6799. break;
  6800. case DRM_FORMAT_XBGR8888:
  6801. case DRM_FORMAT_ABGR8888:
  6802. /* checked in intel_framebuffer_init already */
  6803. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6804. return -EINVAL;
  6805. case DRM_FORMAT_XRGB8888:
  6806. case DRM_FORMAT_ARGB8888:
  6807. bpp = 8*3;
  6808. break;
  6809. case DRM_FORMAT_XRGB2101010:
  6810. case DRM_FORMAT_ARGB2101010:
  6811. case DRM_FORMAT_XBGR2101010:
  6812. case DRM_FORMAT_ABGR2101010:
  6813. /* checked in intel_framebuffer_init already */
  6814. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6815. return -EINVAL;
  6816. bpp = 10*3;
  6817. break;
  6818. /* TODO: gen4+ supports 16 bpc floating point, too. */
  6819. default:
  6820. DRM_DEBUG_KMS("unsupported depth\n");
  6821. return -EINVAL;
  6822. }
  6823. pipe_config->pipe_bpp = bpp;
  6824. /* Clamp display bpp to EDID value */
  6825. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6826. base.head) {
  6827. if (!connector->new_encoder ||
  6828. connector->new_encoder->new_crtc != crtc)
  6829. continue;
  6830. connected_sink_compute_bpp(connector, pipe_config);
  6831. }
  6832. return bpp;
  6833. }
  6834. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  6835. struct intel_crtc_config *pipe_config,
  6836. const char *context)
  6837. {
  6838. DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
  6839. context, pipe_name(crtc->pipe));
  6840. DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  6841. DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  6842. pipe_config->pipe_bpp, pipe_config->dither);
  6843. DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  6844. pipe_config->has_pch_encoder,
  6845. pipe_config->fdi_lanes,
  6846. pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  6847. pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  6848. pipe_config->fdi_m_n.tu);
  6849. DRM_DEBUG_KMS("requested mode:\n");
  6850. drm_mode_debug_printmodeline(&pipe_config->requested_mode);
  6851. DRM_DEBUG_KMS("adjusted mode:\n");
  6852. drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
  6853. DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  6854. pipe_config->gmch_pfit.control,
  6855. pipe_config->gmch_pfit.pgm_ratios,
  6856. pipe_config->gmch_pfit.lvds_border_bits);
  6857. DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
  6858. pipe_config->pch_pfit.pos,
  6859. pipe_config->pch_pfit.size,
  6860. pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
  6861. DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  6862. }
  6863. static bool check_encoder_cloning(struct drm_crtc *crtc)
  6864. {
  6865. int num_encoders = 0;
  6866. bool uncloneable_encoders = false;
  6867. struct intel_encoder *encoder;
  6868. list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
  6869. base.head) {
  6870. if (&encoder->new_crtc->base != crtc)
  6871. continue;
  6872. num_encoders++;
  6873. if (!encoder->cloneable)
  6874. uncloneable_encoders = true;
  6875. }
  6876. return !(num_encoders > 1 && uncloneable_encoders);
  6877. }
  6878. static struct intel_crtc_config *
  6879. intel_modeset_pipe_config(struct drm_crtc *crtc,
  6880. struct drm_framebuffer *fb,
  6881. struct drm_display_mode *mode)
  6882. {
  6883. struct drm_device *dev = crtc->dev;
  6884. struct intel_encoder *encoder;
  6885. struct intel_crtc_config *pipe_config;
  6886. int plane_bpp, ret = -EINVAL;
  6887. bool retry = true;
  6888. if (!check_encoder_cloning(crtc)) {
  6889. DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
  6890. return ERR_PTR(-EINVAL);
  6891. }
  6892. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  6893. if (!pipe_config)
  6894. return ERR_PTR(-ENOMEM);
  6895. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  6896. drm_mode_copy(&pipe_config->requested_mode, mode);
  6897. pipe_config->cpu_transcoder =
  6898. (enum transcoder) to_intel_crtc(crtc)->pipe;
  6899. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  6900. /*
  6901. * Sanitize sync polarity flags based on requested ones. If neither
  6902. * positive or negative polarity is requested, treat this as meaning
  6903. * negative polarity.
  6904. */
  6905. if (!(pipe_config->adjusted_mode.flags &
  6906. (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
  6907. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
  6908. if (!(pipe_config->adjusted_mode.flags &
  6909. (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
  6910. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
  6911. /* Compute a starting value for pipe_config->pipe_bpp taking the source
  6912. * plane pixel format and any sink constraints into account. Returns the
  6913. * source plane bpp so that dithering can be selected on mismatches
  6914. * after encoders and crtc also have had their say. */
  6915. plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  6916. fb, pipe_config);
  6917. if (plane_bpp < 0)
  6918. goto fail;
  6919. encoder_retry:
  6920. /* Ensure the port clock defaults are reset when retrying. */
  6921. pipe_config->port_clock = 0;
  6922. pipe_config->pixel_multiplier = 1;
  6923. /* Fill in default crtc timings, allow encoders to overwrite them. */
  6924. drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, 0);
  6925. /* Pass our mode to the connectors and the CRTC to give them a chance to
  6926. * adjust it according to limitations or connector properties, and also
  6927. * a chance to reject the mode entirely.
  6928. */
  6929. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6930. base.head) {
  6931. if (&encoder->new_crtc->base != crtc)
  6932. continue;
  6933. if (!(encoder->compute_config(encoder, pipe_config))) {
  6934. DRM_DEBUG_KMS("Encoder config failure\n");
  6935. goto fail;
  6936. }
  6937. }
  6938. /* Set default port clock if not overwritten by the encoder. Needs to be
  6939. * done afterwards in case the encoder adjusts the mode. */
  6940. if (!pipe_config->port_clock)
  6941. pipe_config->port_clock = pipe_config->adjusted_mode.clock;
  6942. ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
  6943. if (ret < 0) {
  6944. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6945. goto fail;
  6946. }
  6947. if (ret == RETRY) {
  6948. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  6949. ret = -EINVAL;
  6950. goto fail;
  6951. }
  6952. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  6953. retry = false;
  6954. goto encoder_retry;
  6955. }
  6956. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  6957. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  6958. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  6959. return pipe_config;
  6960. fail:
  6961. kfree(pipe_config);
  6962. return ERR_PTR(ret);
  6963. }
  6964. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6965. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6966. static void
  6967. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6968. unsigned *prepare_pipes, unsigned *disable_pipes)
  6969. {
  6970. struct intel_crtc *intel_crtc;
  6971. struct drm_device *dev = crtc->dev;
  6972. struct intel_encoder *encoder;
  6973. struct intel_connector *connector;
  6974. struct drm_crtc *tmp_crtc;
  6975. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6976. /* Check which crtcs have changed outputs connected to them, these need
  6977. * to be part of the prepare_pipes mask. We don't (yet) support global
  6978. * modeset across multiple crtcs, so modeset_pipes will only have one
  6979. * bit set at most. */
  6980. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6981. base.head) {
  6982. if (connector->base.encoder == &connector->new_encoder->base)
  6983. continue;
  6984. if (connector->base.encoder) {
  6985. tmp_crtc = connector->base.encoder->crtc;
  6986. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6987. }
  6988. if (connector->new_encoder)
  6989. *prepare_pipes |=
  6990. 1 << connector->new_encoder->new_crtc->pipe;
  6991. }
  6992. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6993. base.head) {
  6994. if (encoder->base.crtc == &encoder->new_crtc->base)
  6995. continue;
  6996. if (encoder->base.crtc) {
  6997. tmp_crtc = encoder->base.crtc;
  6998. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6999. }
  7000. if (encoder->new_crtc)
  7001. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  7002. }
  7003. /* Check for any pipes that will be fully disabled ... */
  7004. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  7005. base.head) {
  7006. bool used = false;
  7007. /* Don't try to disable disabled crtcs. */
  7008. if (!intel_crtc->base.enabled)
  7009. continue;
  7010. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7011. base.head) {
  7012. if (encoder->new_crtc == intel_crtc)
  7013. used = true;
  7014. }
  7015. if (!used)
  7016. *disable_pipes |= 1 << intel_crtc->pipe;
  7017. }
  7018. /* set_mode is also used to update properties on life display pipes. */
  7019. intel_crtc = to_intel_crtc(crtc);
  7020. if (crtc->enabled)
  7021. *prepare_pipes |= 1 << intel_crtc->pipe;
  7022. /*
  7023. * For simplicity do a full modeset on any pipe where the output routing
  7024. * changed. We could be more clever, but that would require us to be
  7025. * more careful with calling the relevant encoder->mode_set functions.
  7026. */
  7027. if (*prepare_pipes)
  7028. *modeset_pipes = *prepare_pipes;
  7029. /* ... and mask these out. */
  7030. *modeset_pipes &= ~(*disable_pipes);
  7031. *prepare_pipes &= ~(*disable_pipes);
  7032. /*
  7033. * HACK: We don't (yet) fully support global modesets. intel_set_config
  7034. * obies this rule, but the modeset restore mode of
  7035. * intel_modeset_setup_hw_state does not.
  7036. */
  7037. *modeset_pipes &= 1 << intel_crtc->pipe;
  7038. *prepare_pipes &= 1 << intel_crtc->pipe;
  7039. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  7040. *modeset_pipes, *prepare_pipes, *disable_pipes);
  7041. }
  7042. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  7043. {
  7044. struct drm_encoder *encoder;
  7045. struct drm_device *dev = crtc->dev;
  7046. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  7047. if (encoder->crtc == crtc)
  7048. return true;
  7049. return false;
  7050. }
  7051. static void
  7052. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  7053. {
  7054. struct intel_encoder *intel_encoder;
  7055. struct intel_crtc *intel_crtc;
  7056. struct drm_connector *connector;
  7057. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  7058. base.head) {
  7059. if (!intel_encoder->base.crtc)
  7060. continue;
  7061. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  7062. if (prepare_pipes & (1 << intel_crtc->pipe))
  7063. intel_encoder->connectors_active = false;
  7064. }
  7065. intel_modeset_commit_output_state(dev);
  7066. /* Update computed state. */
  7067. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  7068. base.head) {
  7069. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  7070. }
  7071. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7072. if (!connector->encoder || !connector->encoder->crtc)
  7073. continue;
  7074. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  7075. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  7076. struct drm_property *dpms_property =
  7077. dev->mode_config.dpms_property;
  7078. connector->dpms = DRM_MODE_DPMS_ON;
  7079. drm_object_property_set_value(&connector->base,
  7080. dpms_property,
  7081. DRM_MODE_DPMS_ON);
  7082. intel_encoder = to_intel_encoder(connector->encoder);
  7083. intel_encoder->connectors_active = true;
  7084. }
  7085. }
  7086. }
  7087. static bool intel_fuzzy_clock_check(struct intel_crtc_config *cur,
  7088. struct intel_crtc_config *new)
  7089. {
  7090. int clock1, clock2, diff;
  7091. clock1 = cur->adjusted_mode.clock;
  7092. clock2 = new->adjusted_mode.clock;
  7093. if (clock1 == clock2)
  7094. return true;
  7095. if (!clock1 || !clock2)
  7096. return false;
  7097. diff = abs(clock1 - clock2);
  7098. if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
  7099. return true;
  7100. return false;
  7101. }
  7102. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  7103. list_for_each_entry((intel_crtc), \
  7104. &(dev)->mode_config.crtc_list, \
  7105. base.head) \
  7106. if (mask & (1 <<(intel_crtc)->pipe))
  7107. static bool
  7108. intel_pipe_config_compare(struct drm_device *dev,
  7109. struct intel_crtc_config *current_config,
  7110. struct intel_crtc_config *pipe_config)
  7111. {
  7112. #define PIPE_CONF_CHECK_X(name) \
  7113. if (current_config->name != pipe_config->name) { \
  7114. DRM_ERROR("mismatch in " #name " " \
  7115. "(expected 0x%08x, found 0x%08x)\n", \
  7116. current_config->name, \
  7117. pipe_config->name); \
  7118. return false; \
  7119. }
  7120. #define PIPE_CONF_CHECK_I(name) \
  7121. if (current_config->name != pipe_config->name) { \
  7122. DRM_ERROR("mismatch in " #name " " \
  7123. "(expected %i, found %i)\n", \
  7124. current_config->name, \
  7125. pipe_config->name); \
  7126. return false; \
  7127. }
  7128. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  7129. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  7130. DRM_ERROR("mismatch in " #name "(" #mask ") " \
  7131. "(expected %i, found %i)\n", \
  7132. current_config->name & (mask), \
  7133. pipe_config->name & (mask)); \
  7134. return false; \
  7135. }
  7136. #define PIPE_CONF_QUIRK(quirk) \
  7137. ((current_config->quirks | pipe_config->quirks) & (quirk))
  7138. PIPE_CONF_CHECK_I(cpu_transcoder);
  7139. PIPE_CONF_CHECK_I(has_pch_encoder);
  7140. PIPE_CONF_CHECK_I(fdi_lanes);
  7141. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  7142. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  7143. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  7144. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  7145. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  7146. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  7147. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  7148. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  7149. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  7150. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  7151. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  7152. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  7153. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  7154. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  7155. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  7156. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  7157. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  7158. PIPE_CONF_CHECK_I(pixel_multiplier);
  7159. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7160. DRM_MODE_FLAG_INTERLACE);
  7161. if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
  7162. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7163. DRM_MODE_FLAG_PHSYNC);
  7164. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7165. DRM_MODE_FLAG_NHSYNC);
  7166. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7167. DRM_MODE_FLAG_PVSYNC);
  7168. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7169. DRM_MODE_FLAG_NVSYNC);
  7170. }
  7171. PIPE_CONF_CHECK_I(requested_mode.hdisplay);
  7172. PIPE_CONF_CHECK_I(requested_mode.vdisplay);
  7173. PIPE_CONF_CHECK_I(gmch_pfit.control);
  7174. /* pfit ratios are autocomputed by the hw on gen4+ */
  7175. if (INTEL_INFO(dev)->gen < 4)
  7176. PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  7177. PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
  7178. PIPE_CONF_CHECK_I(pch_pfit.enabled);
  7179. if (current_config->pch_pfit.enabled) {
  7180. PIPE_CONF_CHECK_I(pch_pfit.pos);
  7181. PIPE_CONF_CHECK_I(pch_pfit.size);
  7182. }
  7183. PIPE_CONF_CHECK_I(ips_enabled);
  7184. PIPE_CONF_CHECK_I(shared_dpll);
  7185. PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
  7186. PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
  7187. PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
  7188. PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
  7189. #undef PIPE_CONF_CHECK_X
  7190. #undef PIPE_CONF_CHECK_I
  7191. #undef PIPE_CONF_CHECK_FLAGS
  7192. #undef PIPE_CONF_QUIRK
  7193. if (!IS_HASWELL(dev)) {
  7194. if (!intel_fuzzy_clock_check(current_config, pipe_config)) {
  7195. DRM_ERROR("mismatch in clock (expected %d, found %d)\n",
  7196. current_config->adjusted_mode.clock,
  7197. pipe_config->adjusted_mode.clock);
  7198. return false;
  7199. }
  7200. }
  7201. return true;
  7202. }
  7203. static void
  7204. check_connector_state(struct drm_device *dev)
  7205. {
  7206. struct intel_connector *connector;
  7207. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7208. base.head) {
  7209. /* This also checks the encoder/connector hw state with the
  7210. * ->get_hw_state callbacks. */
  7211. intel_connector_check_state(connector);
  7212. WARN(&connector->new_encoder->base != connector->base.encoder,
  7213. "connector's staged encoder doesn't match current encoder\n");
  7214. }
  7215. }
  7216. static void
  7217. check_encoder_state(struct drm_device *dev)
  7218. {
  7219. struct intel_encoder *encoder;
  7220. struct intel_connector *connector;
  7221. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7222. base.head) {
  7223. bool enabled = false;
  7224. bool active = false;
  7225. enum pipe pipe, tracked_pipe;
  7226. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  7227. encoder->base.base.id,
  7228. drm_get_encoder_name(&encoder->base));
  7229. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  7230. "encoder's stage crtc doesn't match current crtc\n");
  7231. WARN(encoder->connectors_active && !encoder->base.crtc,
  7232. "encoder's active_connectors set, but no crtc\n");
  7233. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7234. base.head) {
  7235. if (connector->base.encoder != &encoder->base)
  7236. continue;
  7237. enabled = true;
  7238. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  7239. active = true;
  7240. }
  7241. WARN(!!encoder->base.crtc != enabled,
  7242. "encoder's enabled state mismatch "
  7243. "(expected %i, found %i)\n",
  7244. !!encoder->base.crtc, enabled);
  7245. WARN(active && !encoder->base.crtc,
  7246. "active encoder with no crtc\n");
  7247. WARN(encoder->connectors_active != active,
  7248. "encoder's computed active state doesn't match tracked active state "
  7249. "(expected %i, found %i)\n", active, encoder->connectors_active);
  7250. active = encoder->get_hw_state(encoder, &pipe);
  7251. WARN(active != encoder->connectors_active,
  7252. "encoder's hw state doesn't match sw tracking "
  7253. "(expected %i, found %i)\n",
  7254. encoder->connectors_active, active);
  7255. if (!encoder->base.crtc)
  7256. continue;
  7257. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  7258. WARN(active && pipe != tracked_pipe,
  7259. "active encoder's pipe doesn't match"
  7260. "(expected %i, found %i)\n",
  7261. tracked_pipe, pipe);
  7262. }
  7263. }
  7264. static void
  7265. check_crtc_state(struct drm_device *dev)
  7266. {
  7267. drm_i915_private_t *dev_priv = dev->dev_private;
  7268. struct intel_crtc *crtc;
  7269. struct intel_encoder *encoder;
  7270. struct intel_crtc_config pipe_config;
  7271. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7272. base.head) {
  7273. bool enabled = false;
  7274. bool active = false;
  7275. memset(&pipe_config, 0, sizeof(pipe_config));
  7276. DRM_DEBUG_KMS("[CRTC:%d]\n",
  7277. crtc->base.base.id);
  7278. WARN(crtc->active && !crtc->base.enabled,
  7279. "active crtc, but not enabled in sw tracking\n");
  7280. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7281. base.head) {
  7282. if (encoder->base.crtc != &crtc->base)
  7283. continue;
  7284. enabled = true;
  7285. if (encoder->connectors_active)
  7286. active = true;
  7287. }
  7288. WARN(active != crtc->active,
  7289. "crtc's computed active state doesn't match tracked active state "
  7290. "(expected %i, found %i)\n", active, crtc->active);
  7291. WARN(enabled != crtc->base.enabled,
  7292. "crtc's computed enabled state doesn't match tracked enabled state "
  7293. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  7294. active = dev_priv->display.get_pipe_config(crtc,
  7295. &pipe_config);
  7296. /* hw state is inconsistent with the pipe A quirk */
  7297. if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  7298. active = crtc->active;
  7299. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7300. base.head) {
  7301. enum pipe pipe;
  7302. if (encoder->base.crtc != &crtc->base)
  7303. continue;
  7304. if (encoder->get_config &&
  7305. encoder->get_hw_state(encoder, &pipe))
  7306. encoder->get_config(encoder, &pipe_config);
  7307. }
  7308. if (dev_priv->display.get_clock)
  7309. dev_priv->display.get_clock(crtc, &pipe_config);
  7310. WARN(crtc->active != active,
  7311. "crtc active state doesn't match with hw state "
  7312. "(expected %i, found %i)\n", crtc->active, active);
  7313. if (active &&
  7314. !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
  7315. WARN(1, "pipe state doesn't match!\n");
  7316. intel_dump_pipe_config(crtc, &pipe_config,
  7317. "[hw state]");
  7318. intel_dump_pipe_config(crtc, &crtc->config,
  7319. "[sw state]");
  7320. }
  7321. }
  7322. }
  7323. static void
  7324. check_shared_dpll_state(struct drm_device *dev)
  7325. {
  7326. drm_i915_private_t *dev_priv = dev->dev_private;
  7327. struct intel_crtc *crtc;
  7328. struct intel_dpll_hw_state dpll_hw_state;
  7329. int i;
  7330. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7331. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  7332. int enabled_crtcs = 0, active_crtcs = 0;
  7333. bool active;
  7334. memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  7335. DRM_DEBUG_KMS("%s\n", pll->name);
  7336. active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
  7337. WARN(pll->active > pll->refcount,
  7338. "more active pll users than references: %i vs %i\n",
  7339. pll->active, pll->refcount);
  7340. WARN(pll->active && !pll->on,
  7341. "pll in active use but not on in sw tracking\n");
  7342. WARN(pll->on && !pll->active,
  7343. "pll in on but not on in use in sw tracking\n");
  7344. WARN(pll->on != active,
  7345. "pll on state mismatch (expected %i, found %i)\n",
  7346. pll->on, active);
  7347. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7348. base.head) {
  7349. if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
  7350. enabled_crtcs++;
  7351. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  7352. active_crtcs++;
  7353. }
  7354. WARN(pll->active != active_crtcs,
  7355. "pll active crtcs mismatch (expected %i, found %i)\n",
  7356. pll->active, active_crtcs);
  7357. WARN(pll->refcount != enabled_crtcs,
  7358. "pll enabled crtcs mismatch (expected %i, found %i)\n",
  7359. pll->refcount, enabled_crtcs);
  7360. WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
  7361. sizeof(dpll_hw_state)),
  7362. "pll hw state mismatch\n");
  7363. }
  7364. }
  7365. void
  7366. intel_modeset_check_state(struct drm_device *dev)
  7367. {
  7368. check_connector_state(dev);
  7369. check_encoder_state(dev);
  7370. check_crtc_state(dev);
  7371. check_shared_dpll_state(dev);
  7372. }
  7373. static int __intel_set_mode(struct drm_crtc *crtc,
  7374. struct drm_display_mode *mode,
  7375. int x, int y, struct drm_framebuffer *fb)
  7376. {
  7377. struct drm_device *dev = crtc->dev;
  7378. drm_i915_private_t *dev_priv = dev->dev_private;
  7379. struct drm_display_mode *saved_mode, *saved_hwmode;
  7380. struct intel_crtc_config *pipe_config = NULL;
  7381. struct intel_crtc *intel_crtc;
  7382. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  7383. int ret = 0;
  7384. saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
  7385. if (!saved_mode)
  7386. return -ENOMEM;
  7387. saved_hwmode = saved_mode + 1;
  7388. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  7389. &prepare_pipes, &disable_pipes);
  7390. *saved_hwmode = crtc->hwmode;
  7391. *saved_mode = crtc->mode;
  7392. /* Hack: Because we don't (yet) support global modeset on multiple
  7393. * crtcs, we don't keep track of the new mode for more than one crtc.
  7394. * Hence simply check whether any bit is set in modeset_pipes in all the
  7395. * pieces of code that are not yet converted to deal with mutliple crtcs
  7396. * changing their mode at the same time. */
  7397. if (modeset_pipes) {
  7398. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  7399. if (IS_ERR(pipe_config)) {
  7400. ret = PTR_ERR(pipe_config);
  7401. pipe_config = NULL;
  7402. goto out;
  7403. }
  7404. intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  7405. "[modeset]");
  7406. }
  7407. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  7408. intel_crtc_disable(&intel_crtc->base);
  7409. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  7410. if (intel_crtc->base.enabled)
  7411. dev_priv->display.crtc_disable(&intel_crtc->base);
  7412. }
  7413. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  7414. * to set it here already despite that we pass it down the callchain.
  7415. */
  7416. if (modeset_pipes) {
  7417. crtc->mode = *mode;
  7418. /* mode_set/enable/disable functions rely on a correct pipe
  7419. * config. */
  7420. to_intel_crtc(crtc)->config = *pipe_config;
  7421. }
  7422. /* Only after disabling all output pipelines that will be changed can we
  7423. * update the the output configuration. */
  7424. intel_modeset_update_state(dev, prepare_pipes);
  7425. if (dev_priv->display.modeset_global_resources)
  7426. dev_priv->display.modeset_global_resources(dev);
  7427. /* Set up the DPLL and any encoders state that needs to adjust or depend
  7428. * on the DPLL.
  7429. */
  7430. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  7431. ret = intel_crtc_mode_set(&intel_crtc->base,
  7432. x, y, fb);
  7433. if (ret)
  7434. goto done;
  7435. }
  7436. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  7437. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  7438. dev_priv->display.crtc_enable(&intel_crtc->base);
  7439. if (modeset_pipes) {
  7440. /* Store real post-adjustment hardware mode. */
  7441. crtc->hwmode = pipe_config->adjusted_mode;
  7442. /* Calculate and store various constants which
  7443. * are later needed by vblank and swap-completion
  7444. * timestamping. They are derived from true hwmode.
  7445. */
  7446. drm_calc_timestamping_constants(crtc);
  7447. }
  7448. /* FIXME: add subpixel order */
  7449. done:
  7450. if (ret && crtc->enabled) {
  7451. crtc->hwmode = *saved_hwmode;
  7452. crtc->mode = *saved_mode;
  7453. }
  7454. out:
  7455. kfree(pipe_config);
  7456. kfree(saved_mode);
  7457. return ret;
  7458. }
  7459. static int intel_set_mode(struct drm_crtc *crtc,
  7460. struct drm_display_mode *mode,
  7461. int x, int y, struct drm_framebuffer *fb)
  7462. {
  7463. int ret;
  7464. ret = __intel_set_mode(crtc, mode, x, y, fb);
  7465. if (ret == 0)
  7466. intel_modeset_check_state(crtc->dev);
  7467. return ret;
  7468. }
  7469. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  7470. {
  7471. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  7472. }
  7473. #undef for_each_intel_crtc_masked
  7474. static void intel_set_config_free(struct intel_set_config *config)
  7475. {
  7476. if (!config)
  7477. return;
  7478. kfree(config->save_connector_encoders);
  7479. kfree(config->save_encoder_crtcs);
  7480. kfree(config);
  7481. }
  7482. static int intel_set_config_save_state(struct drm_device *dev,
  7483. struct intel_set_config *config)
  7484. {
  7485. struct drm_encoder *encoder;
  7486. struct drm_connector *connector;
  7487. int count;
  7488. config->save_encoder_crtcs =
  7489. kcalloc(dev->mode_config.num_encoder,
  7490. sizeof(struct drm_crtc *), GFP_KERNEL);
  7491. if (!config->save_encoder_crtcs)
  7492. return -ENOMEM;
  7493. config->save_connector_encoders =
  7494. kcalloc(dev->mode_config.num_connector,
  7495. sizeof(struct drm_encoder *), GFP_KERNEL);
  7496. if (!config->save_connector_encoders)
  7497. return -ENOMEM;
  7498. /* Copy data. Note that driver private data is not affected.
  7499. * Should anything bad happen only the expected state is
  7500. * restored, not the drivers personal bookkeeping.
  7501. */
  7502. count = 0;
  7503. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  7504. config->save_encoder_crtcs[count++] = encoder->crtc;
  7505. }
  7506. count = 0;
  7507. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7508. config->save_connector_encoders[count++] = connector->encoder;
  7509. }
  7510. return 0;
  7511. }
  7512. static void intel_set_config_restore_state(struct drm_device *dev,
  7513. struct intel_set_config *config)
  7514. {
  7515. struct intel_encoder *encoder;
  7516. struct intel_connector *connector;
  7517. int count;
  7518. count = 0;
  7519. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7520. encoder->new_crtc =
  7521. to_intel_crtc(config->save_encoder_crtcs[count++]);
  7522. }
  7523. count = 0;
  7524. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  7525. connector->new_encoder =
  7526. to_intel_encoder(config->save_connector_encoders[count++]);
  7527. }
  7528. }
  7529. static bool
  7530. is_crtc_connector_off(struct drm_mode_set *set)
  7531. {
  7532. int i;
  7533. if (set->num_connectors == 0)
  7534. return false;
  7535. if (WARN_ON(set->connectors == NULL))
  7536. return false;
  7537. for (i = 0; i < set->num_connectors; i++)
  7538. if (set->connectors[i]->encoder &&
  7539. set->connectors[i]->encoder->crtc == set->crtc &&
  7540. set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
  7541. return true;
  7542. return false;
  7543. }
  7544. static void
  7545. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7546. struct intel_set_config *config)
  7547. {
  7548. /* We should be able to check here if the fb has the same properties
  7549. * and then just flip_or_move it */
  7550. if (is_crtc_connector_off(set)) {
  7551. config->mode_changed = true;
  7552. } else if (set->crtc->fb != set->fb) {
  7553. /* If we have no fb then treat it as a full mode set */
  7554. if (set->crtc->fb == NULL) {
  7555. struct intel_crtc *intel_crtc =
  7556. to_intel_crtc(set->crtc);
  7557. if (intel_crtc->active && i915_fastboot) {
  7558. DRM_DEBUG_KMS("crtc has no fb, will flip\n");
  7559. config->fb_changed = true;
  7560. } else {
  7561. DRM_DEBUG_KMS("inactive crtc, full mode set\n");
  7562. config->mode_changed = true;
  7563. }
  7564. } else if (set->fb == NULL) {
  7565. config->mode_changed = true;
  7566. } else if (set->fb->pixel_format !=
  7567. set->crtc->fb->pixel_format) {
  7568. config->mode_changed = true;
  7569. } else {
  7570. config->fb_changed = true;
  7571. }
  7572. }
  7573. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7574. config->fb_changed = true;
  7575. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7576. DRM_DEBUG_KMS("modes are different, full mode set\n");
  7577. drm_mode_debug_printmodeline(&set->crtc->mode);
  7578. drm_mode_debug_printmodeline(set->mode);
  7579. config->mode_changed = true;
  7580. }
  7581. DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
  7582. set->crtc->base.id, config->mode_changed, config->fb_changed);
  7583. }
  7584. static int
  7585. intel_modeset_stage_output_state(struct drm_device *dev,
  7586. struct drm_mode_set *set,
  7587. struct intel_set_config *config)
  7588. {
  7589. struct drm_crtc *new_crtc;
  7590. struct intel_connector *connector;
  7591. struct intel_encoder *encoder;
  7592. int ro;
  7593. /* The upper layers ensure that we either disable a crtc or have a list
  7594. * of connectors. For paranoia, double-check this. */
  7595. WARN_ON(!set->fb && (set->num_connectors != 0));
  7596. WARN_ON(set->fb && (set->num_connectors == 0));
  7597. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7598. base.head) {
  7599. /* Otherwise traverse passed in connector list and get encoders
  7600. * for them. */
  7601. for (ro = 0; ro < set->num_connectors; ro++) {
  7602. if (set->connectors[ro] == &connector->base) {
  7603. connector->new_encoder = connector->encoder;
  7604. break;
  7605. }
  7606. }
  7607. /* If we disable the crtc, disable all its connectors. Also, if
  7608. * the connector is on the changing crtc but not on the new
  7609. * connector list, disable it. */
  7610. if ((!set->fb || ro == set->num_connectors) &&
  7611. connector->base.encoder &&
  7612. connector->base.encoder->crtc == set->crtc) {
  7613. connector->new_encoder = NULL;
  7614. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7615. connector->base.base.id,
  7616. drm_get_connector_name(&connector->base));
  7617. }
  7618. if (&connector->new_encoder->base != connector->base.encoder) {
  7619. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7620. config->mode_changed = true;
  7621. }
  7622. }
  7623. /* connector->new_encoder is now updated for all connectors. */
  7624. /* Update crtc of enabled connectors. */
  7625. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7626. base.head) {
  7627. if (!connector->new_encoder)
  7628. continue;
  7629. new_crtc = connector->new_encoder->base.crtc;
  7630. for (ro = 0; ro < set->num_connectors; ro++) {
  7631. if (set->connectors[ro] == &connector->base)
  7632. new_crtc = set->crtc;
  7633. }
  7634. /* Make sure the new CRTC will work with the encoder */
  7635. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7636. new_crtc)) {
  7637. return -EINVAL;
  7638. }
  7639. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7640. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7641. connector->base.base.id,
  7642. drm_get_connector_name(&connector->base),
  7643. new_crtc->base.id);
  7644. }
  7645. /* Check for any encoders that needs to be disabled. */
  7646. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7647. base.head) {
  7648. list_for_each_entry(connector,
  7649. &dev->mode_config.connector_list,
  7650. base.head) {
  7651. if (connector->new_encoder == encoder) {
  7652. WARN_ON(!connector->new_encoder->new_crtc);
  7653. goto next_encoder;
  7654. }
  7655. }
  7656. encoder->new_crtc = NULL;
  7657. next_encoder:
  7658. /* Only now check for crtc changes so we don't miss encoders
  7659. * that will be disabled. */
  7660. if (&encoder->new_crtc->base != encoder->base.crtc) {
  7661. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7662. config->mode_changed = true;
  7663. }
  7664. }
  7665. /* Now we've also updated encoder->new_crtc for all encoders. */
  7666. return 0;
  7667. }
  7668. static int intel_crtc_set_config(struct drm_mode_set *set)
  7669. {
  7670. struct drm_device *dev;
  7671. struct drm_mode_set save_set;
  7672. struct intel_set_config *config;
  7673. int ret;
  7674. BUG_ON(!set);
  7675. BUG_ON(!set->crtc);
  7676. BUG_ON(!set->crtc->helper_private);
  7677. /* Enforce sane interface api - has been abused by the fb helper. */
  7678. BUG_ON(!set->mode && set->fb);
  7679. BUG_ON(set->fb && set->num_connectors == 0);
  7680. if (set->fb) {
  7681. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7682. set->crtc->base.id, set->fb->base.id,
  7683. (int)set->num_connectors, set->x, set->y);
  7684. } else {
  7685. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7686. }
  7687. dev = set->crtc->dev;
  7688. ret = -ENOMEM;
  7689. config = kzalloc(sizeof(*config), GFP_KERNEL);
  7690. if (!config)
  7691. goto out_config;
  7692. ret = intel_set_config_save_state(dev, config);
  7693. if (ret)
  7694. goto out_config;
  7695. save_set.crtc = set->crtc;
  7696. save_set.mode = &set->crtc->mode;
  7697. save_set.x = set->crtc->x;
  7698. save_set.y = set->crtc->y;
  7699. save_set.fb = set->crtc->fb;
  7700. /* Compute whether we need a full modeset, only an fb base update or no
  7701. * change at all. In the future we might also check whether only the
  7702. * mode changed, e.g. for LVDS where we only change the panel fitter in
  7703. * such cases. */
  7704. intel_set_config_compute_mode_changes(set, config);
  7705. ret = intel_modeset_stage_output_state(dev, set, config);
  7706. if (ret)
  7707. goto fail;
  7708. if (config->mode_changed) {
  7709. ret = intel_set_mode(set->crtc, set->mode,
  7710. set->x, set->y, set->fb);
  7711. } else if (config->fb_changed) {
  7712. intel_crtc_wait_for_pending_flips(set->crtc);
  7713. ret = intel_pipe_set_base(set->crtc,
  7714. set->x, set->y, set->fb);
  7715. }
  7716. if (ret) {
  7717. DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
  7718. set->crtc->base.id, ret);
  7719. fail:
  7720. intel_set_config_restore_state(dev, config);
  7721. /* Try to restore the config */
  7722. if (config->mode_changed &&
  7723. intel_set_mode(save_set.crtc, save_set.mode,
  7724. save_set.x, save_set.y, save_set.fb))
  7725. DRM_ERROR("failed to restore config after modeset failure\n");
  7726. }
  7727. out_config:
  7728. intel_set_config_free(config);
  7729. return ret;
  7730. }
  7731. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7732. .cursor_set = intel_crtc_cursor_set,
  7733. .cursor_move = intel_crtc_cursor_move,
  7734. .gamma_set = intel_crtc_gamma_set,
  7735. .set_config = intel_crtc_set_config,
  7736. .destroy = intel_crtc_destroy,
  7737. .page_flip = intel_crtc_page_flip,
  7738. };
  7739. static void intel_cpu_pll_init(struct drm_device *dev)
  7740. {
  7741. if (HAS_DDI(dev))
  7742. intel_ddi_pll_init(dev);
  7743. }
  7744. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  7745. struct intel_shared_dpll *pll,
  7746. struct intel_dpll_hw_state *hw_state)
  7747. {
  7748. uint32_t val;
  7749. val = I915_READ(PCH_DPLL(pll->id));
  7750. hw_state->dpll = val;
  7751. hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  7752. hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  7753. return val & DPLL_VCO_ENABLE;
  7754. }
  7755. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  7756. struct intel_shared_dpll *pll)
  7757. {
  7758. I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
  7759. I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
  7760. }
  7761. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  7762. struct intel_shared_dpll *pll)
  7763. {
  7764. /* PCH refclock must be enabled first */
  7765. assert_pch_refclk_enabled(dev_priv);
  7766. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7767. /* Wait for the clocks to stabilize. */
  7768. POSTING_READ(PCH_DPLL(pll->id));
  7769. udelay(150);
  7770. /* The pixel multiplier can only be updated once the
  7771. * DPLL is enabled and the clocks are stable.
  7772. *
  7773. * So write it again.
  7774. */
  7775. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7776. POSTING_READ(PCH_DPLL(pll->id));
  7777. udelay(200);
  7778. }
  7779. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  7780. struct intel_shared_dpll *pll)
  7781. {
  7782. struct drm_device *dev = dev_priv->dev;
  7783. struct intel_crtc *crtc;
  7784. /* Make sure no transcoder isn't still depending on us. */
  7785. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  7786. if (intel_crtc_to_shared_dpll(crtc) == pll)
  7787. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  7788. }
  7789. I915_WRITE(PCH_DPLL(pll->id), 0);
  7790. POSTING_READ(PCH_DPLL(pll->id));
  7791. udelay(200);
  7792. }
  7793. static char *ibx_pch_dpll_names[] = {
  7794. "PCH DPLL A",
  7795. "PCH DPLL B",
  7796. };
  7797. static void ibx_pch_dpll_init(struct drm_device *dev)
  7798. {
  7799. struct drm_i915_private *dev_priv = dev->dev_private;
  7800. int i;
  7801. dev_priv->num_shared_dpll = 2;
  7802. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7803. dev_priv->shared_dplls[i].id = i;
  7804. dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
  7805. dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
  7806. dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
  7807. dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
  7808. dev_priv->shared_dplls[i].get_hw_state =
  7809. ibx_pch_dpll_get_hw_state;
  7810. }
  7811. }
  7812. static void intel_shared_dpll_init(struct drm_device *dev)
  7813. {
  7814. struct drm_i915_private *dev_priv = dev->dev_private;
  7815. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  7816. ibx_pch_dpll_init(dev);
  7817. else
  7818. dev_priv->num_shared_dpll = 0;
  7819. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  7820. DRM_DEBUG_KMS("%i shared PLLs initialized\n",
  7821. dev_priv->num_shared_dpll);
  7822. }
  7823. static void intel_crtc_init(struct drm_device *dev, int pipe)
  7824. {
  7825. drm_i915_private_t *dev_priv = dev->dev_private;
  7826. struct intel_crtc *intel_crtc;
  7827. int i;
  7828. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  7829. if (intel_crtc == NULL)
  7830. return;
  7831. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  7832. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  7833. for (i = 0; i < 256; i++) {
  7834. intel_crtc->lut_r[i] = i;
  7835. intel_crtc->lut_g[i] = i;
  7836. intel_crtc->lut_b[i] = i;
  7837. }
  7838. /* Swap pipes & planes for FBC on pre-965 */
  7839. intel_crtc->pipe = pipe;
  7840. intel_crtc->plane = pipe;
  7841. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  7842. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  7843. intel_crtc->plane = !pipe;
  7844. }
  7845. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  7846. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  7847. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  7848. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  7849. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  7850. }
  7851. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  7852. struct drm_file *file)
  7853. {
  7854. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  7855. struct drm_mode_object *drmmode_obj;
  7856. struct intel_crtc *crtc;
  7857. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  7858. return -ENODEV;
  7859. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  7860. DRM_MODE_OBJECT_CRTC);
  7861. if (!drmmode_obj) {
  7862. DRM_ERROR("no such CRTC id\n");
  7863. return -EINVAL;
  7864. }
  7865. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  7866. pipe_from_crtc_id->pipe = crtc->pipe;
  7867. return 0;
  7868. }
  7869. static int intel_encoder_clones(struct intel_encoder *encoder)
  7870. {
  7871. struct drm_device *dev = encoder->base.dev;
  7872. struct intel_encoder *source_encoder;
  7873. int index_mask = 0;
  7874. int entry = 0;
  7875. list_for_each_entry(source_encoder,
  7876. &dev->mode_config.encoder_list, base.head) {
  7877. if (encoder == source_encoder)
  7878. index_mask |= (1 << entry);
  7879. /* Intel hw has only one MUX where enocoders could be cloned. */
  7880. if (encoder->cloneable && source_encoder->cloneable)
  7881. index_mask |= (1 << entry);
  7882. entry++;
  7883. }
  7884. return index_mask;
  7885. }
  7886. static bool has_edp_a(struct drm_device *dev)
  7887. {
  7888. struct drm_i915_private *dev_priv = dev->dev_private;
  7889. if (!IS_MOBILE(dev))
  7890. return false;
  7891. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  7892. return false;
  7893. if (IS_GEN5(dev) &&
  7894. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  7895. return false;
  7896. return true;
  7897. }
  7898. static void intel_setup_outputs(struct drm_device *dev)
  7899. {
  7900. struct drm_i915_private *dev_priv = dev->dev_private;
  7901. struct intel_encoder *encoder;
  7902. bool dpd_is_edp = false;
  7903. intel_lvds_init(dev);
  7904. if (!IS_ULT(dev))
  7905. intel_crt_init(dev);
  7906. if (HAS_DDI(dev)) {
  7907. int found;
  7908. /* Haswell uses DDI functions to detect digital outputs */
  7909. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  7910. /* DDI A only supports eDP */
  7911. if (found)
  7912. intel_ddi_init(dev, PORT_A);
  7913. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  7914. * register */
  7915. found = I915_READ(SFUSE_STRAP);
  7916. if (found & SFUSE_STRAP_DDIB_DETECTED)
  7917. intel_ddi_init(dev, PORT_B);
  7918. if (found & SFUSE_STRAP_DDIC_DETECTED)
  7919. intel_ddi_init(dev, PORT_C);
  7920. if (found & SFUSE_STRAP_DDID_DETECTED)
  7921. intel_ddi_init(dev, PORT_D);
  7922. } else if (HAS_PCH_SPLIT(dev)) {
  7923. int found;
  7924. dpd_is_edp = intel_dpd_is_edp(dev);
  7925. if (has_edp_a(dev))
  7926. intel_dp_init(dev, DP_A, PORT_A);
  7927. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  7928. /* PCH SDVOB multiplex with HDMIB */
  7929. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  7930. if (!found)
  7931. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  7932. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  7933. intel_dp_init(dev, PCH_DP_B, PORT_B);
  7934. }
  7935. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  7936. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  7937. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  7938. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  7939. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  7940. intel_dp_init(dev, PCH_DP_C, PORT_C);
  7941. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  7942. intel_dp_init(dev, PCH_DP_D, PORT_D);
  7943. } else if (IS_VALLEYVIEW(dev)) {
  7944. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  7945. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
  7946. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
  7947. PORT_C);
  7948. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  7949. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
  7950. PORT_C);
  7951. }
  7952. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  7953. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  7954. PORT_B);
  7955. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  7956. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  7957. }
  7958. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  7959. bool found = false;
  7960. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7961. DRM_DEBUG_KMS("probing SDVOB\n");
  7962. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  7963. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  7964. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  7965. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  7966. }
  7967. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  7968. intel_dp_init(dev, DP_B, PORT_B);
  7969. }
  7970. /* Before G4X SDVOC doesn't have its own detect register */
  7971. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7972. DRM_DEBUG_KMS("probing SDVOC\n");
  7973. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  7974. }
  7975. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  7976. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  7977. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  7978. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  7979. }
  7980. if (SUPPORTS_INTEGRATED_DP(dev))
  7981. intel_dp_init(dev, DP_C, PORT_C);
  7982. }
  7983. if (SUPPORTS_INTEGRATED_DP(dev) &&
  7984. (I915_READ(DP_D) & DP_DETECTED))
  7985. intel_dp_init(dev, DP_D, PORT_D);
  7986. } else if (IS_GEN2(dev))
  7987. intel_dvo_init(dev);
  7988. if (SUPPORTS_TV(dev))
  7989. intel_tv_init(dev);
  7990. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7991. encoder->base.possible_crtcs = encoder->crtc_mask;
  7992. encoder->base.possible_clones =
  7993. intel_encoder_clones(encoder);
  7994. }
  7995. intel_init_pch_refclk(dev);
  7996. drm_helper_move_panel_connectors_to_head(dev);
  7997. }
  7998. void intel_framebuffer_fini(struct intel_framebuffer *fb)
  7999. {
  8000. drm_framebuffer_cleanup(&fb->base);
  8001. drm_gem_object_unreference_unlocked(&fb->obj->base);
  8002. }
  8003. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  8004. {
  8005. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  8006. intel_framebuffer_fini(intel_fb);
  8007. kfree(intel_fb);
  8008. }
  8009. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  8010. struct drm_file *file,
  8011. unsigned int *handle)
  8012. {
  8013. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  8014. struct drm_i915_gem_object *obj = intel_fb->obj;
  8015. return drm_gem_handle_create(file, &obj->base, handle);
  8016. }
  8017. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  8018. .destroy = intel_user_framebuffer_destroy,
  8019. .create_handle = intel_user_framebuffer_create_handle,
  8020. };
  8021. int intel_framebuffer_init(struct drm_device *dev,
  8022. struct intel_framebuffer *intel_fb,
  8023. struct drm_mode_fb_cmd2 *mode_cmd,
  8024. struct drm_i915_gem_object *obj)
  8025. {
  8026. int pitch_limit;
  8027. int ret;
  8028. if (obj->tiling_mode == I915_TILING_Y) {
  8029. DRM_DEBUG("hardware does not support tiling Y\n");
  8030. return -EINVAL;
  8031. }
  8032. if (mode_cmd->pitches[0] & 63) {
  8033. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  8034. mode_cmd->pitches[0]);
  8035. return -EINVAL;
  8036. }
  8037. if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
  8038. pitch_limit = 32*1024;
  8039. } else if (INTEL_INFO(dev)->gen >= 4) {
  8040. if (obj->tiling_mode)
  8041. pitch_limit = 16*1024;
  8042. else
  8043. pitch_limit = 32*1024;
  8044. } else if (INTEL_INFO(dev)->gen >= 3) {
  8045. if (obj->tiling_mode)
  8046. pitch_limit = 8*1024;
  8047. else
  8048. pitch_limit = 16*1024;
  8049. } else
  8050. /* XXX DSPC is limited to 4k tiled */
  8051. pitch_limit = 8*1024;
  8052. if (mode_cmd->pitches[0] > pitch_limit) {
  8053. DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
  8054. obj->tiling_mode ? "tiled" : "linear",
  8055. mode_cmd->pitches[0], pitch_limit);
  8056. return -EINVAL;
  8057. }
  8058. if (obj->tiling_mode != I915_TILING_NONE &&
  8059. mode_cmd->pitches[0] != obj->stride) {
  8060. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  8061. mode_cmd->pitches[0], obj->stride);
  8062. return -EINVAL;
  8063. }
  8064. /* Reject formats not supported by any plane early. */
  8065. switch (mode_cmd->pixel_format) {
  8066. case DRM_FORMAT_C8:
  8067. case DRM_FORMAT_RGB565:
  8068. case DRM_FORMAT_XRGB8888:
  8069. case DRM_FORMAT_ARGB8888:
  8070. break;
  8071. case DRM_FORMAT_XRGB1555:
  8072. case DRM_FORMAT_ARGB1555:
  8073. if (INTEL_INFO(dev)->gen > 3) {
  8074. DRM_DEBUG("unsupported pixel format: %s\n",
  8075. drm_get_format_name(mode_cmd->pixel_format));
  8076. return -EINVAL;
  8077. }
  8078. break;
  8079. case DRM_FORMAT_XBGR8888:
  8080. case DRM_FORMAT_ABGR8888:
  8081. case DRM_FORMAT_XRGB2101010:
  8082. case DRM_FORMAT_ARGB2101010:
  8083. case DRM_FORMAT_XBGR2101010:
  8084. case DRM_FORMAT_ABGR2101010:
  8085. if (INTEL_INFO(dev)->gen < 4) {
  8086. DRM_DEBUG("unsupported pixel format: %s\n",
  8087. drm_get_format_name(mode_cmd->pixel_format));
  8088. return -EINVAL;
  8089. }
  8090. break;
  8091. case DRM_FORMAT_YUYV:
  8092. case DRM_FORMAT_UYVY:
  8093. case DRM_FORMAT_YVYU:
  8094. case DRM_FORMAT_VYUY:
  8095. if (INTEL_INFO(dev)->gen < 5) {
  8096. DRM_DEBUG("unsupported pixel format: %s\n",
  8097. drm_get_format_name(mode_cmd->pixel_format));
  8098. return -EINVAL;
  8099. }
  8100. break;
  8101. default:
  8102. DRM_DEBUG("unsupported pixel format: %s\n",
  8103. drm_get_format_name(mode_cmd->pixel_format));
  8104. return -EINVAL;
  8105. }
  8106. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  8107. if (mode_cmd->offsets[0] != 0)
  8108. return -EINVAL;
  8109. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  8110. intel_fb->obj = obj;
  8111. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  8112. if (ret) {
  8113. DRM_ERROR("framebuffer init failed %d\n", ret);
  8114. return ret;
  8115. }
  8116. return 0;
  8117. }
  8118. static struct drm_framebuffer *
  8119. intel_user_framebuffer_create(struct drm_device *dev,
  8120. struct drm_file *filp,
  8121. struct drm_mode_fb_cmd2 *mode_cmd)
  8122. {
  8123. struct drm_i915_gem_object *obj;
  8124. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  8125. mode_cmd->handles[0]));
  8126. if (&obj->base == NULL)
  8127. return ERR_PTR(-ENOENT);
  8128. return intel_framebuffer_create(dev, mode_cmd, obj);
  8129. }
  8130. static const struct drm_mode_config_funcs intel_mode_funcs = {
  8131. .fb_create = intel_user_framebuffer_create,
  8132. .output_poll_changed = intel_fb_output_poll_changed,
  8133. };
  8134. /* Set up chip specific display functions */
  8135. static void intel_init_display(struct drm_device *dev)
  8136. {
  8137. struct drm_i915_private *dev_priv = dev->dev_private;
  8138. if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
  8139. dev_priv->display.find_dpll = g4x_find_best_dpll;
  8140. else if (IS_VALLEYVIEW(dev))
  8141. dev_priv->display.find_dpll = vlv_find_best_dpll;
  8142. else if (IS_PINEVIEW(dev))
  8143. dev_priv->display.find_dpll = pnv_find_best_dpll;
  8144. else
  8145. dev_priv->display.find_dpll = i9xx_find_best_dpll;
  8146. if (HAS_DDI(dev)) {
  8147. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  8148. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  8149. dev_priv->display.crtc_enable = haswell_crtc_enable;
  8150. dev_priv->display.crtc_disable = haswell_crtc_disable;
  8151. dev_priv->display.off = haswell_crtc_off;
  8152. dev_priv->display.update_plane = ironlake_update_plane;
  8153. } else if (HAS_PCH_SPLIT(dev)) {
  8154. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  8155. dev_priv->display.get_clock = ironlake_crtc_clock_get;
  8156. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  8157. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  8158. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  8159. dev_priv->display.off = ironlake_crtc_off;
  8160. dev_priv->display.update_plane = ironlake_update_plane;
  8161. } else if (IS_VALLEYVIEW(dev)) {
  8162. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  8163. dev_priv->display.get_clock = i9xx_crtc_clock_get;
  8164. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  8165. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  8166. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  8167. dev_priv->display.off = i9xx_crtc_off;
  8168. dev_priv->display.update_plane = i9xx_update_plane;
  8169. } else {
  8170. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  8171. dev_priv->display.get_clock = i9xx_crtc_clock_get;
  8172. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  8173. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  8174. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  8175. dev_priv->display.off = i9xx_crtc_off;
  8176. dev_priv->display.update_plane = i9xx_update_plane;
  8177. }
  8178. /* Returns the core display clock speed */
  8179. if (IS_VALLEYVIEW(dev))
  8180. dev_priv->display.get_display_clock_speed =
  8181. valleyview_get_display_clock_speed;
  8182. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  8183. dev_priv->display.get_display_clock_speed =
  8184. i945_get_display_clock_speed;
  8185. else if (IS_I915G(dev))
  8186. dev_priv->display.get_display_clock_speed =
  8187. i915_get_display_clock_speed;
  8188. else if (IS_I945GM(dev) || IS_845G(dev))
  8189. dev_priv->display.get_display_clock_speed =
  8190. i9xx_misc_get_display_clock_speed;
  8191. else if (IS_PINEVIEW(dev))
  8192. dev_priv->display.get_display_clock_speed =
  8193. pnv_get_display_clock_speed;
  8194. else if (IS_I915GM(dev))
  8195. dev_priv->display.get_display_clock_speed =
  8196. i915gm_get_display_clock_speed;
  8197. else if (IS_I865G(dev))
  8198. dev_priv->display.get_display_clock_speed =
  8199. i865_get_display_clock_speed;
  8200. else if (IS_I85X(dev))
  8201. dev_priv->display.get_display_clock_speed =
  8202. i855_get_display_clock_speed;
  8203. else /* 852, 830 */
  8204. dev_priv->display.get_display_clock_speed =
  8205. i830_get_display_clock_speed;
  8206. if (HAS_PCH_SPLIT(dev)) {
  8207. if (IS_GEN5(dev)) {
  8208. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  8209. dev_priv->display.write_eld = ironlake_write_eld;
  8210. } else if (IS_GEN6(dev)) {
  8211. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  8212. dev_priv->display.write_eld = ironlake_write_eld;
  8213. } else if (IS_IVYBRIDGE(dev)) {
  8214. /* FIXME: detect B0+ stepping and use auto training */
  8215. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  8216. dev_priv->display.write_eld = ironlake_write_eld;
  8217. dev_priv->display.modeset_global_resources =
  8218. ivb_modeset_global_resources;
  8219. } else if (IS_HASWELL(dev)) {
  8220. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  8221. dev_priv->display.write_eld = haswell_write_eld;
  8222. dev_priv->display.modeset_global_resources =
  8223. haswell_modeset_global_resources;
  8224. }
  8225. } else if (IS_G4X(dev)) {
  8226. dev_priv->display.write_eld = g4x_write_eld;
  8227. }
  8228. /* Default just returns -ENODEV to indicate unsupported */
  8229. dev_priv->display.queue_flip = intel_default_queue_flip;
  8230. switch (INTEL_INFO(dev)->gen) {
  8231. case 2:
  8232. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  8233. break;
  8234. case 3:
  8235. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  8236. break;
  8237. case 4:
  8238. case 5:
  8239. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  8240. break;
  8241. case 6:
  8242. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  8243. break;
  8244. case 7:
  8245. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  8246. break;
  8247. }
  8248. }
  8249. /*
  8250. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  8251. * resume, or other times. This quirk makes sure that's the case for
  8252. * affected systems.
  8253. */
  8254. static void quirk_pipea_force(struct drm_device *dev)
  8255. {
  8256. struct drm_i915_private *dev_priv = dev->dev_private;
  8257. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  8258. DRM_INFO("applying pipe a force quirk\n");
  8259. }
  8260. /*
  8261. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  8262. */
  8263. static void quirk_ssc_force_disable(struct drm_device *dev)
  8264. {
  8265. struct drm_i915_private *dev_priv = dev->dev_private;
  8266. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  8267. DRM_INFO("applying lvds SSC disable quirk\n");
  8268. }
  8269. /*
  8270. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  8271. * brightness value
  8272. */
  8273. static void quirk_invert_brightness(struct drm_device *dev)
  8274. {
  8275. struct drm_i915_private *dev_priv = dev->dev_private;
  8276. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  8277. DRM_INFO("applying inverted panel brightness quirk\n");
  8278. }
  8279. /*
  8280. * Some machines (Dell XPS13) suffer broken backlight controls if
  8281. * BLM_PCH_PWM_ENABLE is set.
  8282. */
  8283. static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
  8284. {
  8285. struct drm_i915_private *dev_priv = dev->dev_private;
  8286. dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
  8287. DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
  8288. }
  8289. struct intel_quirk {
  8290. int device;
  8291. int subsystem_vendor;
  8292. int subsystem_device;
  8293. void (*hook)(struct drm_device *dev);
  8294. };
  8295. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  8296. struct intel_dmi_quirk {
  8297. void (*hook)(struct drm_device *dev);
  8298. const struct dmi_system_id (*dmi_id_list)[];
  8299. };
  8300. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  8301. {
  8302. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  8303. return 1;
  8304. }
  8305. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  8306. {
  8307. .dmi_id_list = &(const struct dmi_system_id[]) {
  8308. {
  8309. .callback = intel_dmi_reverse_brightness,
  8310. .ident = "NCR Corporation",
  8311. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  8312. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  8313. },
  8314. },
  8315. { } /* terminating entry */
  8316. },
  8317. .hook = quirk_invert_brightness,
  8318. },
  8319. };
  8320. static struct intel_quirk intel_quirks[] = {
  8321. /* HP Mini needs pipe A force quirk (LP: #322104) */
  8322. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  8323. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  8324. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  8325. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  8326. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  8327. /* 830/845 need to leave pipe A & dpll A up */
  8328. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8329. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8330. /* Lenovo U160 cannot use SSC on LVDS */
  8331. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  8332. /* Sony Vaio Y cannot use SSC on LVDS */
  8333. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  8334. /* Acer Aspire 5734Z must invert backlight brightness */
  8335. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  8336. /* Acer/eMachines G725 */
  8337. { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  8338. /* Acer/eMachines e725 */
  8339. { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  8340. /* Acer/Packard Bell NCL20 */
  8341. { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  8342. /* Acer Aspire 4736Z */
  8343. { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  8344. /* Dell XPS13 HD Sandy Bridge */
  8345. { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
  8346. /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
  8347. { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
  8348. };
  8349. static void intel_init_quirks(struct drm_device *dev)
  8350. {
  8351. struct pci_dev *d = dev->pdev;
  8352. int i;
  8353. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  8354. struct intel_quirk *q = &intel_quirks[i];
  8355. if (d->device == q->device &&
  8356. (d->subsystem_vendor == q->subsystem_vendor ||
  8357. q->subsystem_vendor == PCI_ANY_ID) &&
  8358. (d->subsystem_device == q->subsystem_device ||
  8359. q->subsystem_device == PCI_ANY_ID))
  8360. q->hook(dev);
  8361. }
  8362. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  8363. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  8364. intel_dmi_quirks[i].hook(dev);
  8365. }
  8366. }
  8367. /* Disable the VGA plane that we never use */
  8368. static void i915_disable_vga(struct drm_device *dev)
  8369. {
  8370. struct drm_i915_private *dev_priv = dev->dev_private;
  8371. u8 sr1;
  8372. u32 vga_reg = i915_vgacntrl_reg(dev);
  8373. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8374. outb(SR01, VGA_SR_INDEX);
  8375. sr1 = inb(VGA_SR_DATA);
  8376. outb(sr1 | 1<<5, VGA_SR_DATA);
  8377. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8378. udelay(300);
  8379. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  8380. POSTING_READ(vga_reg);
  8381. }
  8382. static void i915_enable_vga_mem(struct drm_device *dev)
  8383. {
  8384. /* Enable VGA memory on Intel HD */
  8385. if (HAS_PCH_SPLIT(dev)) {
  8386. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8387. outb(inb(VGA_MSR_READ) | VGA_MSR_MEM_EN, VGA_MSR_WRITE);
  8388. vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
  8389. VGA_RSRC_LEGACY_MEM |
  8390. VGA_RSRC_NORMAL_IO |
  8391. VGA_RSRC_NORMAL_MEM);
  8392. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8393. }
  8394. }
  8395. void i915_disable_vga_mem(struct drm_device *dev)
  8396. {
  8397. /* Disable VGA memory on Intel HD */
  8398. if (HAS_PCH_SPLIT(dev)) {
  8399. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8400. outb(inb(VGA_MSR_READ) & ~VGA_MSR_MEM_EN, VGA_MSR_WRITE);
  8401. vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
  8402. VGA_RSRC_NORMAL_IO |
  8403. VGA_RSRC_NORMAL_MEM);
  8404. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8405. }
  8406. }
  8407. void intel_modeset_init_hw(struct drm_device *dev)
  8408. {
  8409. intel_init_power_well(dev);
  8410. intel_prepare_ddi(dev);
  8411. intel_init_clock_gating(dev);
  8412. mutex_lock(&dev->struct_mutex);
  8413. intel_enable_gt_powersave(dev);
  8414. mutex_unlock(&dev->struct_mutex);
  8415. }
  8416. void intel_modeset_suspend_hw(struct drm_device *dev)
  8417. {
  8418. intel_suspend_hw(dev);
  8419. }
  8420. void intel_modeset_init(struct drm_device *dev)
  8421. {
  8422. struct drm_i915_private *dev_priv = dev->dev_private;
  8423. int i, j, ret;
  8424. drm_mode_config_init(dev);
  8425. dev->mode_config.min_width = 0;
  8426. dev->mode_config.min_height = 0;
  8427. dev->mode_config.preferred_depth = 24;
  8428. dev->mode_config.prefer_shadow = 1;
  8429. dev->mode_config.funcs = &intel_mode_funcs;
  8430. intel_init_quirks(dev);
  8431. intel_init_pm(dev);
  8432. if (INTEL_INFO(dev)->num_pipes == 0)
  8433. return;
  8434. intel_init_display(dev);
  8435. if (IS_GEN2(dev)) {
  8436. dev->mode_config.max_width = 2048;
  8437. dev->mode_config.max_height = 2048;
  8438. } else if (IS_GEN3(dev)) {
  8439. dev->mode_config.max_width = 4096;
  8440. dev->mode_config.max_height = 4096;
  8441. } else {
  8442. dev->mode_config.max_width = 8192;
  8443. dev->mode_config.max_height = 8192;
  8444. }
  8445. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  8446. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  8447. INTEL_INFO(dev)->num_pipes,
  8448. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  8449. for_each_pipe(i) {
  8450. intel_crtc_init(dev, i);
  8451. for (j = 0; j < dev_priv->num_plane; j++) {
  8452. ret = intel_plane_init(dev, i, j);
  8453. if (ret)
  8454. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  8455. pipe_name(i), sprite_name(i, j), ret);
  8456. }
  8457. }
  8458. intel_cpu_pll_init(dev);
  8459. intel_shared_dpll_init(dev);
  8460. /* Just disable it once at startup */
  8461. i915_disable_vga(dev);
  8462. intel_setup_outputs(dev);
  8463. /* Just in case the BIOS is doing something questionable. */
  8464. intel_disable_fbc(dev);
  8465. }
  8466. static void
  8467. intel_connector_break_all_links(struct intel_connector *connector)
  8468. {
  8469. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8470. connector->base.encoder = NULL;
  8471. connector->encoder->connectors_active = false;
  8472. connector->encoder->base.crtc = NULL;
  8473. }
  8474. static void intel_enable_pipe_a(struct drm_device *dev)
  8475. {
  8476. struct intel_connector *connector;
  8477. struct drm_connector *crt = NULL;
  8478. struct intel_load_detect_pipe load_detect_temp;
  8479. /* We can't just switch on the pipe A, we need to set things up with a
  8480. * proper mode and output configuration. As a gross hack, enable pipe A
  8481. * by enabling the load detect pipe once. */
  8482. list_for_each_entry(connector,
  8483. &dev->mode_config.connector_list,
  8484. base.head) {
  8485. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  8486. crt = &connector->base;
  8487. break;
  8488. }
  8489. }
  8490. if (!crt)
  8491. return;
  8492. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  8493. intel_release_load_detect_pipe(crt, &load_detect_temp);
  8494. }
  8495. static bool
  8496. intel_check_plane_mapping(struct intel_crtc *crtc)
  8497. {
  8498. struct drm_device *dev = crtc->base.dev;
  8499. struct drm_i915_private *dev_priv = dev->dev_private;
  8500. u32 reg, val;
  8501. if (INTEL_INFO(dev)->num_pipes == 1)
  8502. return true;
  8503. reg = DSPCNTR(!crtc->plane);
  8504. val = I915_READ(reg);
  8505. if ((val & DISPLAY_PLANE_ENABLE) &&
  8506. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  8507. return false;
  8508. return true;
  8509. }
  8510. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  8511. {
  8512. struct drm_device *dev = crtc->base.dev;
  8513. struct drm_i915_private *dev_priv = dev->dev_private;
  8514. u32 reg;
  8515. /* Clear any frame start delays used for debugging left by the BIOS */
  8516. reg = PIPECONF(crtc->config.cpu_transcoder);
  8517. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  8518. /* We need to sanitize the plane -> pipe mapping first because this will
  8519. * disable the crtc (and hence change the state) if it is wrong. Note
  8520. * that gen4+ has a fixed plane -> pipe mapping. */
  8521. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  8522. struct intel_connector *connector;
  8523. bool plane;
  8524. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  8525. crtc->base.base.id);
  8526. /* Pipe has the wrong plane attached and the plane is active.
  8527. * Temporarily change the plane mapping and disable everything
  8528. * ... */
  8529. plane = crtc->plane;
  8530. crtc->plane = !plane;
  8531. dev_priv->display.crtc_disable(&crtc->base);
  8532. crtc->plane = plane;
  8533. /* ... and break all links. */
  8534. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8535. base.head) {
  8536. if (connector->encoder->base.crtc != &crtc->base)
  8537. continue;
  8538. intel_connector_break_all_links(connector);
  8539. }
  8540. WARN_ON(crtc->active);
  8541. crtc->base.enabled = false;
  8542. }
  8543. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  8544. crtc->pipe == PIPE_A && !crtc->active) {
  8545. /* BIOS forgot to enable pipe A, this mostly happens after
  8546. * resume. Force-enable the pipe to fix this, the update_dpms
  8547. * call below we restore the pipe to the right state, but leave
  8548. * the required bits on. */
  8549. intel_enable_pipe_a(dev);
  8550. }
  8551. /* Adjust the state of the output pipe according to whether we
  8552. * have active connectors/encoders. */
  8553. intel_crtc_update_dpms(&crtc->base);
  8554. if (crtc->active != crtc->base.enabled) {
  8555. struct intel_encoder *encoder;
  8556. /* This can happen either due to bugs in the get_hw_state
  8557. * functions or because the pipe is force-enabled due to the
  8558. * pipe A quirk. */
  8559. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  8560. crtc->base.base.id,
  8561. crtc->base.enabled ? "enabled" : "disabled",
  8562. crtc->active ? "enabled" : "disabled");
  8563. crtc->base.enabled = crtc->active;
  8564. /* Because we only establish the connector -> encoder ->
  8565. * crtc links if something is active, this means the
  8566. * crtc is now deactivated. Break the links. connector
  8567. * -> encoder links are only establish when things are
  8568. * actually up, hence no need to break them. */
  8569. WARN_ON(crtc->active);
  8570. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  8571. WARN_ON(encoder->connectors_active);
  8572. encoder->base.crtc = NULL;
  8573. }
  8574. }
  8575. }
  8576. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  8577. {
  8578. struct intel_connector *connector;
  8579. struct drm_device *dev = encoder->base.dev;
  8580. /* We need to check both for a crtc link (meaning that the
  8581. * encoder is active and trying to read from a pipe) and the
  8582. * pipe itself being active. */
  8583. bool has_active_crtc = encoder->base.crtc &&
  8584. to_intel_crtc(encoder->base.crtc)->active;
  8585. if (encoder->connectors_active && !has_active_crtc) {
  8586. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  8587. encoder->base.base.id,
  8588. drm_get_encoder_name(&encoder->base));
  8589. /* Connector is active, but has no active pipe. This is
  8590. * fallout from our resume register restoring. Disable
  8591. * the encoder manually again. */
  8592. if (encoder->base.crtc) {
  8593. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  8594. encoder->base.base.id,
  8595. drm_get_encoder_name(&encoder->base));
  8596. encoder->disable(encoder);
  8597. }
  8598. /* Inconsistent output/port/pipe state happens presumably due to
  8599. * a bug in one of the get_hw_state functions. Or someplace else
  8600. * in our code, like the register restore mess on resume. Clamp
  8601. * things to off as a safer default. */
  8602. list_for_each_entry(connector,
  8603. &dev->mode_config.connector_list,
  8604. base.head) {
  8605. if (connector->encoder != encoder)
  8606. continue;
  8607. intel_connector_break_all_links(connector);
  8608. }
  8609. }
  8610. /* Enabled encoders without active connectors will be fixed in
  8611. * the crtc fixup. */
  8612. }
  8613. void i915_redisable_vga(struct drm_device *dev)
  8614. {
  8615. struct drm_i915_private *dev_priv = dev->dev_private;
  8616. u32 vga_reg = i915_vgacntrl_reg(dev);
  8617. /* This function can be called both from intel_modeset_setup_hw_state or
  8618. * at a very early point in our resume sequence, where the power well
  8619. * structures are not yet restored. Since this function is at a very
  8620. * paranoid "someone might have enabled VGA while we were not looking"
  8621. * level, just check if the power well is enabled instead of trying to
  8622. * follow the "don't touch the power well if we don't need it" policy
  8623. * the rest of the driver uses. */
  8624. if (HAS_POWER_WELL(dev) &&
  8625. (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
  8626. return;
  8627. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  8628. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  8629. i915_disable_vga(dev);
  8630. i915_disable_vga_mem(dev);
  8631. }
  8632. }
  8633. static void intel_modeset_readout_hw_state(struct drm_device *dev)
  8634. {
  8635. struct drm_i915_private *dev_priv = dev->dev_private;
  8636. enum pipe pipe;
  8637. struct intel_crtc *crtc;
  8638. struct intel_encoder *encoder;
  8639. struct intel_connector *connector;
  8640. int i;
  8641. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8642. base.head) {
  8643. memset(&crtc->config, 0, sizeof(crtc->config));
  8644. crtc->active = dev_priv->display.get_pipe_config(crtc,
  8645. &crtc->config);
  8646. crtc->base.enabled = crtc->active;
  8647. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  8648. crtc->base.base.id,
  8649. crtc->active ? "enabled" : "disabled");
  8650. }
  8651. /* FIXME: Smash this into the new shared dpll infrastructure. */
  8652. if (HAS_DDI(dev))
  8653. intel_ddi_setup_hw_pll_state(dev);
  8654. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8655. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8656. pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
  8657. pll->active = 0;
  8658. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8659. base.head) {
  8660. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  8661. pll->active++;
  8662. }
  8663. pll->refcount = pll->active;
  8664. DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
  8665. pll->name, pll->refcount, pll->on);
  8666. }
  8667. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8668. base.head) {
  8669. pipe = 0;
  8670. if (encoder->get_hw_state(encoder, &pipe)) {
  8671. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8672. encoder->base.crtc = &crtc->base;
  8673. if (encoder->get_config)
  8674. encoder->get_config(encoder, &crtc->config);
  8675. } else {
  8676. encoder->base.crtc = NULL;
  8677. }
  8678. encoder->connectors_active = false;
  8679. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  8680. encoder->base.base.id,
  8681. drm_get_encoder_name(&encoder->base),
  8682. encoder->base.crtc ? "enabled" : "disabled",
  8683. pipe);
  8684. }
  8685. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8686. base.head) {
  8687. if (!crtc->active)
  8688. continue;
  8689. if (dev_priv->display.get_clock)
  8690. dev_priv->display.get_clock(crtc,
  8691. &crtc->config);
  8692. }
  8693. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8694. base.head) {
  8695. if (connector->get_hw_state(connector)) {
  8696. connector->base.dpms = DRM_MODE_DPMS_ON;
  8697. connector->encoder->connectors_active = true;
  8698. connector->base.encoder = &connector->encoder->base;
  8699. } else {
  8700. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8701. connector->base.encoder = NULL;
  8702. }
  8703. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  8704. connector->base.base.id,
  8705. drm_get_connector_name(&connector->base),
  8706. connector->base.encoder ? "enabled" : "disabled");
  8707. }
  8708. }
  8709. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  8710. * and i915 state tracking structures. */
  8711. void intel_modeset_setup_hw_state(struct drm_device *dev,
  8712. bool force_restore)
  8713. {
  8714. struct drm_i915_private *dev_priv = dev->dev_private;
  8715. enum pipe pipe;
  8716. struct drm_plane *plane;
  8717. struct intel_crtc *crtc;
  8718. struct intel_encoder *encoder;
  8719. int i;
  8720. intel_modeset_readout_hw_state(dev);
  8721. /*
  8722. * Now that we have the config, copy it to each CRTC struct
  8723. * Note that this could go away if we move to using crtc_config
  8724. * checking everywhere.
  8725. */
  8726. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8727. base.head) {
  8728. if (crtc->active && i915_fastboot) {
  8729. intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
  8730. DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
  8731. crtc->base.base.id);
  8732. drm_mode_debug_printmodeline(&crtc->base.mode);
  8733. }
  8734. }
  8735. /* HW state is read out, now we need to sanitize this mess. */
  8736. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8737. base.head) {
  8738. intel_sanitize_encoder(encoder);
  8739. }
  8740. for_each_pipe(pipe) {
  8741. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8742. intel_sanitize_crtc(crtc);
  8743. intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
  8744. }
  8745. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8746. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8747. if (!pll->on || pll->active)
  8748. continue;
  8749. DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
  8750. pll->disable(dev_priv, pll);
  8751. pll->on = false;
  8752. }
  8753. if (force_restore) {
  8754. /*
  8755. * We need to use raw interfaces for restoring state to avoid
  8756. * checking (bogus) intermediate states.
  8757. */
  8758. for_each_pipe(pipe) {
  8759. struct drm_crtc *crtc =
  8760. dev_priv->pipe_to_crtc_mapping[pipe];
  8761. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  8762. crtc->fb);
  8763. }
  8764. list_for_each_entry(plane, &dev->mode_config.plane_list, head)
  8765. intel_plane_restore(plane);
  8766. i915_redisable_vga(dev);
  8767. } else {
  8768. intel_modeset_update_staged_output_state(dev);
  8769. }
  8770. intel_modeset_check_state(dev);
  8771. drm_mode_config_reset(dev);
  8772. }
  8773. void intel_modeset_gem_init(struct drm_device *dev)
  8774. {
  8775. intel_modeset_init_hw(dev);
  8776. intel_setup_overlay(dev);
  8777. intel_modeset_setup_hw_state(dev, false);
  8778. }
  8779. void intel_modeset_cleanup(struct drm_device *dev)
  8780. {
  8781. struct drm_i915_private *dev_priv = dev->dev_private;
  8782. struct drm_crtc *crtc;
  8783. /*
  8784. * Interrupts and polling as the first thing to avoid creating havoc.
  8785. * Too much stuff here (turning of rps, connectors, ...) would
  8786. * experience fancy races otherwise.
  8787. */
  8788. drm_irq_uninstall(dev);
  8789. cancel_work_sync(&dev_priv->hotplug_work);
  8790. /*
  8791. * Due to the hpd irq storm handling the hotplug work can re-arm the
  8792. * poll handlers. Hence disable polling after hpd handling is shut down.
  8793. */
  8794. drm_kms_helper_poll_fini(dev);
  8795. mutex_lock(&dev->struct_mutex);
  8796. intel_unregister_dsm_handler();
  8797. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8798. /* Skip inactive CRTCs */
  8799. if (!crtc->fb)
  8800. continue;
  8801. intel_increase_pllclock(crtc);
  8802. }
  8803. intel_disable_fbc(dev);
  8804. i915_enable_vga_mem(dev);
  8805. intel_disable_gt_powersave(dev);
  8806. ironlake_teardown_rc6(dev);
  8807. mutex_unlock(&dev->struct_mutex);
  8808. /* flush any delayed tasks or pending work */
  8809. flush_scheduled_work();
  8810. /* destroy backlight, if any, before the connectors */
  8811. intel_panel_destroy_backlight(dev);
  8812. drm_mode_config_cleanup(dev);
  8813. intel_cleanup_overlay(dev);
  8814. }
  8815. /*
  8816. * Return which encoder is currently attached for connector.
  8817. */
  8818. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8819. {
  8820. return &intel_attached_encoder(connector)->base;
  8821. }
  8822. void intel_connector_attach_encoder(struct intel_connector *connector,
  8823. struct intel_encoder *encoder)
  8824. {
  8825. connector->encoder = encoder;
  8826. drm_mode_connector_attach_encoder(&connector->base,
  8827. &encoder->base);
  8828. }
  8829. /*
  8830. * set vga decode state - true == enable VGA decode
  8831. */
  8832. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8833. {
  8834. struct drm_i915_private *dev_priv = dev->dev_private;
  8835. u16 gmch_ctrl;
  8836. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8837. if (state)
  8838. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8839. else
  8840. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8841. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8842. return 0;
  8843. }
  8844. struct intel_display_error_state {
  8845. u32 power_well_driver;
  8846. int num_transcoders;
  8847. struct intel_cursor_error_state {
  8848. u32 control;
  8849. u32 position;
  8850. u32 base;
  8851. u32 size;
  8852. } cursor[I915_MAX_PIPES];
  8853. struct intel_pipe_error_state {
  8854. u32 source;
  8855. } pipe[I915_MAX_PIPES];
  8856. struct intel_plane_error_state {
  8857. u32 control;
  8858. u32 stride;
  8859. u32 size;
  8860. u32 pos;
  8861. u32 addr;
  8862. u32 surface;
  8863. u32 tile_offset;
  8864. } plane[I915_MAX_PIPES];
  8865. struct intel_transcoder_error_state {
  8866. enum transcoder cpu_transcoder;
  8867. u32 conf;
  8868. u32 htotal;
  8869. u32 hblank;
  8870. u32 hsync;
  8871. u32 vtotal;
  8872. u32 vblank;
  8873. u32 vsync;
  8874. } transcoder[4];
  8875. };
  8876. struct intel_display_error_state *
  8877. intel_display_capture_error_state(struct drm_device *dev)
  8878. {
  8879. drm_i915_private_t *dev_priv = dev->dev_private;
  8880. struct intel_display_error_state *error;
  8881. int transcoders[] = {
  8882. TRANSCODER_A,
  8883. TRANSCODER_B,
  8884. TRANSCODER_C,
  8885. TRANSCODER_EDP,
  8886. };
  8887. int i;
  8888. if (INTEL_INFO(dev)->num_pipes == 0)
  8889. return NULL;
  8890. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  8891. if (error == NULL)
  8892. return NULL;
  8893. if (HAS_POWER_WELL(dev))
  8894. error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  8895. for_each_pipe(i) {
  8896. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  8897. error->cursor[i].control = I915_READ(CURCNTR(i));
  8898. error->cursor[i].position = I915_READ(CURPOS(i));
  8899. error->cursor[i].base = I915_READ(CURBASE(i));
  8900. } else {
  8901. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  8902. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  8903. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  8904. }
  8905. error->plane[i].control = I915_READ(DSPCNTR(i));
  8906. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  8907. if (INTEL_INFO(dev)->gen <= 3) {
  8908. error->plane[i].size = I915_READ(DSPSIZE(i));
  8909. error->plane[i].pos = I915_READ(DSPPOS(i));
  8910. }
  8911. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8912. error->plane[i].addr = I915_READ(DSPADDR(i));
  8913. if (INTEL_INFO(dev)->gen >= 4) {
  8914. error->plane[i].surface = I915_READ(DSPSURF(i));
  8915. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  8916. }
  8917. error->pipe[i].source = I915_READ(PIPESRC(i));
  8918. }
  8919. error->num_transcoders = INTEL_INFO(dev)->num_pipes;
  8920. if (HAS_DDI(dev_priv->dev))
  8921. error->num_transcoders++; /* Account for eDP. */
  8922. for (i = 0; i < error->num_transcoders; i++) {
  8923. enum transcoder cpu_transcoder = transcoders[i];
  8924. error->transcoder[i].cpu_transcoder = cpu_transcoder;
  8925. error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  8926. error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  8927. error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  8928. error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  8929. error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  8930. error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  8931. error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  8932. }
  8933. /* In the code above we read the registers without checking if the power
  8934. * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
  8935. * prevent the next I915_WRITE from detecting it and printing an error
  8936. * message. */
  8937. intel_uncore_clear_errors(dev);
  8938. return error;
  8939. }
  8940. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  8941. void
  8942. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  8943. struct drm_device *dev,
  8944. struct intel_display_error_state *error)
  8945. {
  8946. int i;
  8947. if (!error)
  8948. return;
  8949. err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  8950. if (HAS_POWER_WELL(dev))
  8951. err_printf(m, "PWR_WELL_CTL2: %08x\n",
  8952. error->power_well_driver);
  8953. for_each_pipe(i) {
  8954. err_printf(m, "Pipe [%d]:\n", i);
  8955. err_printf(m, " SRC: %08x\n", error->pipe[i].source);
  8956. err_printf(m, "Plane [%d]:\n", i);
  8957. err_printf(m, " CNTR: %08x\n", error->plane[i].control);
  8958. err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  8959. if (INTEL_INFO(dev)->gen <= 3) {
  8960. err_printf(m, " SIZE: %08x\n", error->plane[i].size);
  8961. err_printf(m, " POS: %08x\n", error->plane[i].pos);
  8962. }
  8963. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8964. err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  8965. if (INTEL_INFO(dev)->gen >= 4) {
  8966. err_printf(m, " SURF: %08x\n", error->plane[i].surface);
  8967. err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  8968. }
  8969. err_printf(m, "Cursor [%d]:\n", i);
  8970. err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  8971. err_printf(m, " POS: %08x\n", error->cursor[i].position);
  8972. err_printf(m, " BASE: %08x\n", error->cursor[i].base);
  8973. }
  8974. for (i = 0; i < error->num_transcoders; i++) {
  8975. err_printf(m, " CPU transcoder: %c\n",
  8976. transcoder_name(error->transcoder[i].cpu_transcoder));
  8977. err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
  8978. err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
  8979. err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
  8980. err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
  8981. err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
  8982. err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
  8983. err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
  8984. }
  8985. }