imx6q-cpufreq.c 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321
  1. /*
  2. * Copyright (C) 2013 Freescale Semiconductor, Inc.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. */
  8. #include <linux/clk.h>
  9. #include <linux/cpu.h>
  10. #include <linux/cpufreq.h>
  11. #include <linux/delay.h>
  12. #include <linux/err.h>
  13. #include <linux/module.h>
  14. #include <linux/of.h>
  15. #include <linux/opp.h>
  16. #include <linux/platform_device.h>
  17. #include <linux/regulator/consumer.h>
  18. #define PU_SOC_VOLTAGE_NORMAL 1250000
  19. #define PU_SOC_VOLTAGE_HIGH 1275000
  20. #define FREQ_1P2_GHZ 1200000000
  21. static struct regulator *arm_reg;
  22. static struct regulator *pu_reg;
  23. static struct regulator *soc_reg;
  24. static struct clk *arm_clk;
  25. static struct clk *pll1_sys_clk;
  26. static struct clk *pll1_sw_clk;
  27. static struct clk *step_clk;
  28. static struct clk *pll2_pfd2_396m_clk;
  29. static struct device *cpu_dev;
  30. static struct cpufreq_frequency_table *freq_table;
  31. static unsigned int transition_latency;
  32. static int imx6q_verify_speed(struct cpufreq_policy *policy)
  33. {
  34. return cpufreq_frequency_table_verify(policy, freq_table);
  35. }
  36. static unsigned int imx6q_get_speed(unsigned int cpu)
  37. {
  38. return clk_get_rate(arm_clk) / 1000;
  39. }
  40. static int imx6q_set_target(struct cpufreq_policy *policy,
  41. unsigned int target_freq, unsigned int relation)
  42. {
  43. struct cpufreq_freqs freqs;
  44. struct opp *opp;
  45. unsigned long freq_hz, volt, volt_old;
  46. unsigned int index;
  47. int ret;
  48. ret = cpufreq_frequency_table_target(policy, freq_table, target_freq,
  49. relation, &index);
  50. if (ret) {
  51. dev_err(cpu_dev, "failed to match target frequency %d: %d\n",
  52. target_freq, ret);
  53. return ret;
  54. }
  55. freqs.new = freq_table[index].frequency;
  56. freq_hz = freqs.new * 1000;
  57. freqs.old = clk_get_rate(arm_clk) / 1000;
  58. if (freqs.old == freqs.new)
  59. return 0;
  60. rcu_read_lock();
  61. opp = opp_find_freq_ceil(cpu_dev, &freq_hz);
  62. if (IS_ERR(opp)) {
  63. rcu_read_unlock();
  64. dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
  65. return PTR_ERR(opp);
  66. }
  67. volt = opp_get_voltage(opp);
  68. rcu_read_unlock();
  69. volt_old = regulator_get_voltage(arm_reg);
  70. dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
  71. freqs.old / 1000, volt_old / 1000,
  72. freqs.new / 1000, volt / 1000);
  73. cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
  74. /* scaling up? scale voltage before frequency */
  75. if (freqs.new > freqs.old) {
  76. ret = regulator_set_voltage_tol(arm_reg, volt, 0);
  77. if (ret) {
  78. dev_err(cpu_dev,
  79. "failed to scale vddarm up: %d\n", ret);
  80. freqs.new = freqs.old;
  81. goto post_notify;
  82. }
  83. /*
  84. * Need to increase vddpu and vddsoc for safety
  85. * if we are about to run at 1.2 GHz.
  86. */
  87. if (freqs.new == FREQ_1P2_GHZ / 1000) {
  88. regulator_set_voltage_tol(pu_reg,
  89. PU_SOC_VOLTAGE_HIGH, 0);
  90. regulator_set_voltage_tol(soc_reg,
  91. PU_SOC_VOLTAGE_HIGH, 0);
  92. }
  93. }
  94. /*
  95. * The setpoints are selected per PLL/PDF frequencies, so we need to
  96. * reprogram PLL for frequency scaling. The procedure of reprogramming
  97. * PLL1 is as below.
  98. *
  99. * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
  100. * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
  101. * - Disable pll2_pfd2_396m_clk
  102. */
  103. clk_set_parent(step_clk, pll2_pfd2_396m_clk);
  104. clk_set_parent(pll1_sw_clk, step_clk);
  105. if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
  106. clk_set_rate(pll1_sys_clk, freqs.new * 1000);
  107. clk_set_parent(pll1_sw_clk, pll1_sys_clk);
  108. }
  109. /* Ensure the arm clock divider is what we expect */
  110. ret = clk_set_rate(arm_clk, freqs.new * 1000);
  111. if (ret) {
  112. dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
  113. regulator_set_voltage_tol(arm_reg, volt_old, 0);
  114. freqs.new = freqs.old;
  115. goto post_notify;
  116. }
  117. /* scaling down? scale voltage after frequency */
  118. if (freqs.new < freqs.old) {
  119. ret = regulator_set_voltage_tol(arm_reg, volt, 0);
  120. if (ret) {
  121. dev_warn(cpu_dev,
  122. "failed to scale vddarm down: %d\n", ret);
  123. ret = 0;
  124. }
  125. if (freqs.old == FREQ_1P2_GHZ / 1000) {
  126. regulator_set_voltage_tol(pu_reg,
  127. PU_SOC_VOLTAGE_NORMAL, 0);
  128. regulator_set_voltage_tol(soc_reg,
  129. PU_SOC_VOLTAGE_NORMAL, 0);
  130. }
  131. }
  132. post_notify:
  133. cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
  134. return ret;
  135. }
  136. static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
  137. {
  138. int ret;
  139. ret = cpufreq_frequency_table_cpuinfo(policy, freq_table);
  140. if (ret) {
  141. dev_err(cpu_dev, "invalid frequency table: %d\n", ret);
  142. return ret;
  143. }
  144. policy->cpuinfo.transition_latency = transition_latency;
  145. policy->cur = clk_get_rate(arm_clk) / 1000;
  146. cpumask_setall(policy->cpus);
  147. cpufreq_frequency_table_get_attr(freq_table, policy->cpu);
  148. return 0;
  149. }
  150. static int imx6q_cpufreq_exit(struct cpufreq_policy *policy)
  151. {
  152. cpufreq_frequency_table_put_attr(policy->cpu);
  153. return 0;
  154. }
  155. static struct freq_attr *imx6q_cpufreq_attr[] = {
  156. &cpufreq_freq_attr_scaling_available_freqs,
  157. NULL,
  158. };
  159. static struct cpufreq_driver imx6q_cpufreq_driver = {
  160. .verify = imx6q_verify_speed,
  161. .target = imx6q_set_target,
  162. .get = imx6q_get_speed,
  163. .init = imx6q_cpufreq_init,
  164. .exit = imx6q_cpufreq_exit,
  165. .name = "imx6q-cpufreq",
  166. .attr = imx6q_cpufreq_attr,
  167. };
  168. static int imx6q_cpufreq_probe(struct platform_device *pdev)
  169. {
  170. struct device_node *np;
  171. struct opp *opp;
  172. unsigned long min_volt, max_volt;
  173. int num, ret;
  174. cpu_dev = get_cpu_device(0);
  175. if (!cpu_dev) {
  176. pr_err("failed to get cpu0 device\n");
  177. return -ENODEV;
  178. }
  179. np = of_node_get(cpu_dev->of_node);
  180. if (!np) {
  181. dev_err(cpu_dev, "failed to find cpu0 node\n");
  182. return -ENOENT;
  183. }
  184. arm_clk = devm_clk_get(cpu_dev, "arm");
  185. pll1_sys_clk = devm_clk_get(cpu_dev, "pll1_sys");
  186. pll1_sw_clk = devm_clk_get(cpu_dev, "pll1_sw");
  187. step_clk = devm_clk_get(cpu_dev, "step");
  188. pll2_pfd2_396m_clk = devm_clk_get(cpu_dev, "pll2_pfd2_396m");
  189. if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
  190. IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
  191. dev_err(cpu_dev, "failed to get clocks\n");
  192. ret = -ENOENT;
  193. goto put_node;
  194. }
  195. arm_reg = devm_regulator_get(cpu_dev, "arm");
  196. pu_reg = devm_regulator_get(cpu_dev, "pu");
  197. soc_reg = devm_regulator_get(cpu_dev, "soc");
  198. if (IS_ERR(arm_reg) || IS_ERR(pu_reg) || IS_ERR(soc_reg)) {
  199. dev_err(cpu_dev, "failed to get regulators\n");
  200. ret = -ENOENT;
  201. goto put_node;
  202. }
  203. /* We expect an OPP table supplied by platform */
  204. num = opp_get_opp_count(cpu_dev);
  205. if (num < 0) {
  206. ret = num;
  207. dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
  208. goto put_node;
  209. }
  210. ret = opp_init_cpufreq_table(cpu_dev, &freq_table);
  211. if (ret) {
  212. dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
  213. goto put_node;
  214. }
  215. if (of_property_read_u32(np, "clock-latency", &transition_latency))
  216. transition_latency = CPUFREQ_ETERNAL;
  217. /*
  218. * OPP is maintained in order of increasing frequency, and
  219. * freq_table initialised from OPP is therefore sorted in the
  220. * same order.
  221. */
  222. rcu_read_lock();
  223. opp = opp_find_freq_exact(cpu_dev,
  224. freq_table[0].frequency * 1000, true);
  225. min_volt = opp_get_voltage(opp);
  226. opp = opp_find_freq_exact(cpu_dev,
  227. freq_table[--num].frequency * 1000, true);
  228. max_volt = opp_get_voltage(opp);
  229. rcu_read_unlock();
  230. ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
  231. if (ret > 0)
  232. transition_latency += ret * 1000;
  233. /* Count vddpu and vddsoc latency in for 1.2 GHz support */
  234. if (freq_table[num].frequency == FREQ_1P2_GHZ / 1000) {
  235. ret = regulator_set_voltage_time(pu_reg, PU_SOC_VOLTAGE_NORMAL,
  236. PU_SOC_VOLTAGE_HIGH);
  237. if (ret > 0)
  238. transition_latency += ret * 1000;
  239. ret = regulator_set_voltage_time(soc_reg, PU_SOC_VOLTAGE_NORMAL,
  240. PU_SOC_VOLTAGE_HIGH);
  241. if (ret > 0)
  242. transition_latency += ret * 1000;
  243. }
  244. ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
  245. if (ret) {
  246. dev_err(cpu_dev, "failed register driver: %d\n", ret);
  247. goto free_freq_table;
  248. }
  249. of_node_put(np);
  250. return 0;
  251. free_freq_table:
  252. opp_free_cpufreq_table(cpu_dev, &freq_table);
  253. put_node:
  254. of_node_put(np);
  255. return ret;
  256. }
  257. static int imx6q_cpufreq_remove(struct platform_device *pdev)
  258. {
  259. cpufreq_unregister_driver(&imx6q_cpufreq_driver);
  260. opp_free_cpufreq_table(cpu_dev, &freq_table);
  261. return 0;
  262. }
  263. static struct platform_driver imx6q_cpufreq_platdrv = {
  264. .driver = {
  265. .name = "imx6q-cpufreq",
  266. .owner = THIS_MODULE,
  267. },
  268. .probe = imx6q_cpufreq_probe,
  269. .remove = imx6q_cpufreq_remove,
  270. };
  271. module_platform_driver(imx6q_cpufreq_platdrv);
  272. MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
  273. MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
  274. MODULE_LICENSE("GPL");