cpufreq_conservative.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400
  1. /*
  2. * drivers/cpufreq/cpufreq_conservative.c
  3. *
  4. * Copyright (C) 2001 Russell King
  5. * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
  6. * Jun Nakajima <jun.nakajima@intel.com>
  7. * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. #include <linux/slab.h>
  14. #include "cpufreq_governor.h"
  15. /* Conservative governor macros */
  16. #define DEF_FREQUENCY_UP_THRESHOLD (80)
  17. #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
  18. #define DEF_FREQUENCY_STEP (5)
  19. #define DEF_SAMPLING_DOWN_FACTOR (1)
  20. #define MAX_SAMPLING_DOWN_FACTOR (10)
  21. static DEFINE_PER_CPU(struct cs_cpu_dbs_info_s, cs_cpu_dbs_info);
  22. static inline unsigned int get_freq_target(struct cs_dbs_tuners *cs_tuners,
  23. struct cpufreq_policy *policy)
  24. {
  25. unsigned int freq_target = (cs_tuners->freq_step * policy->max) / 100;
  26. /* max freq cannot be less than 100. But who knows... */
  27. if (unlikely(freq_target == 0))
  28. freq_target = DEF_FREQUENCY_STEP;
  29. return freq_target;
  30. }
  31. /*
  32. * Every sampling_rate, we check, if current idle time is less than 20%
  33. * (default), then we try to increase frequency. Every sampling_rate *
  34. * sampling_down_factor, we check, if current idle time is more than 80%
  35. * (default), then we try to decrease frequency
  36. *
  37. * Any frequency increase takes it to the maximum frequency. Frequency reduction
  38. * happens at minimum steps of 5% (default) of maximum frequency
  39. */
  40. static void cs_check_cpu(int cpu, unsigned int load)
  41. {
  42. struct cs_cpu_dbs_info_s *dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
  43. struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
  44. struct dbs_data *dbs_data = policy->governor_data;
  45. struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
  46. /*
  47. * break out if we 'cannot' reduce the speed as the user might
  48. * want freq_step to be zero
  49. */
  50. if (cs_tuners->freq_step == 0)
  51. return;
  52. /* Check for frequency increase */
  53. if (load > cs_tuners->up_threshold) {
  54. dbs_info->down_skip = 0;
  55. /* if we are already at full speed then break out early */
  56. if (dbs_info->requested_freq == policy->max)
  57. return;
  58. dbs_info->requested_freq += get_freq_target(cs_tuners, policy);
  59. __cpufreq_driver_target(policy, dbs_info->requested_freq,
  60. CPUFREQ_RELATION_H);
  61. return;
  62. }
  63. /* if sampling_down_factor is active break out early */
  64. if (++dbs_info->down_skip < cs_tuners->sampling_down_factor)
  65. return;
  66. dbs_info->down_skip = 0;
  67. /* Check for frequency decrease */
  68. if (load < cs_tuners->down_threshold) {
  69. /*
  70. * if we cannot reduce the frequency anymore, break out early
  71. */
  72. if (policy->cur == policy->min)
  73. return;
  74. dbs_info->requested_freq -= get_freq_target(cs_tuners, policy);
  75. __cpufreq_driver_target(policy, dbs_info->requested_freq,
  76. CPUFREQ_RELATION_L);
  77. return;
  78. }
  79. }
  80. static void cs_dbs_timer(struct work_struct *work)
  81. {
  82. struct cs_cpu_dbs_info_s *dbs_info = container_of(work,
  83. struct cs_cpu_dbs_info_s, cdbs.work.work);
  84. unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
  85. struct cs_cpu_dbs_info_s *core_dbs_info = &per_cpu(cs_cpu_dbs_info,
  86. cpu);
  87. struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
  88. struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
  89. int delay = delay_for_sampling_rate(cs_tuners->sampling_rate);
  90. bool modify_all = true;
  91. mutex_lock(&core_dbs_info->cdbs.timer_mutex);
  92. if (!need_load_eval(&core_dbs_info->cdbs, cs_tuners->sampling_rate))
  93. modify_all = false;
  94. else
  95. dbs_check_cpu(dbs_data, cpu);
  96. gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
  97. mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
  98. }
  99. static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  100. void *data)
  101. {
  102. struct cpufreq_freqs *freq = data;
  103. struct cs_cpu_dbs_info_s *dbs_info =
  104. &per_cpu(cs_cpu_dbs_info, freq->cpu);
  105. struct cpufreq_policy *policy;
  106. if (!dbs_info->enable)
  107. return 0;
  108. policy = dbs_info->cdbs.cur_policy;
  109. /*
  110. * we only care if our internally tracked freq moves outside the 'valid'
  111. * ranges of frequency available to us otherwise we do not change it
  112. */
  113. if (dbs_info->requested_freq > policy->max
  114. || dbs_info->requested_freq < policy->min)
  115. dbs_info->requested_freq = freq->new;
  116. return 0;
  117. }
  118. /************************** sysfs interface ************************/
  119. static struct common_dbs_data cs_dbs_cdata;
  120. static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
  121. const char *buf, size_t count)
  122. {
  123. struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
  124. unsigned int input;
  125. int ret;
  126. ret = sscanf(buf, "%u", &input);
  127. if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
  128. return -EINVAL;
  129. cs_tuners->sampling_down_factor = input;
  130. return count;
  131. }
  132. static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
  133. size_t count)
  134. {
  135. struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
  136. unsigned int input;
  137. int ret;
  138. ret = sscanf(buf, "%u", &input);
  139. if (ret != 1)
  140. return -EINVAL;
  141. cs_tuners->sampling_rate = max(input, dbs_data->min_sampling_rate);
  142. return count;
  143. }
  144. static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
  145. size_t count)
  146. {
  147. struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
  148. unsigned int input;
  149. int ret;
  150. ret = sscanf(buf, "%u", &input);
  151. if (ret != 1 || input > 100 || input <= cs_tuners->down_threshold)
  152. return -EINVAL;
  153. cs_tuners->up_threshold = input;
  154. return count;
  155. }
  156. static ssize_t store_down_threshold(struct dbs_data *dbs_data, const char *buf,
  157. size_t count)
  158. {
  159. struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
  160. unsigned int input;
  161. int ret;
  162. ret = sscanf(buf, "%u", &input);
  163. /* cannot be lower than 11 otherwise freq will not fall */
  164. if (ret != 1 || input < 11 || input > 100 ||
  165. input >= cs_tuners->up_threshold)
  166. return -EINVAL;
  167. cs_tuners->down_threshold = input;
  168. return count;
  169. }
  170. static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
  171. const char *buf, size_t count)
  172. {
  173. struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
  174. unsigned int input, j;
  175. int ret;
  176. ret = sscanf(buf, "%u", &input);
  177. if (ret != 1)
  178. return -EINVAL;
  179. if (input > 1)
  180. input = 1;
  181. if (input == cs_tuners->ignore_nice_load) /* nothing to do */
  182. return count;
  183. cs_tuners->ignore_nice_load = input;
  184. /* we need to re-evaluate prev_cpu_idle */
  185. for_each_online_cpu(j) {
  186. struct cs_cpu_dbs_info_s *dbs_info;
  187. dbs_info = &per_cpu(cs_cpu_dbs_info, j);
  188. dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
  189. &dbs_info->cdbs.prev_cpu_wall, 0);
  190. if (cs_tuners->ignore_nice_load)
  191. dbs_info->cdbs.prev_cpu_nice =
  192. kcpustat_cpu(j).cpustat[CPUTIME_NICE];
  193. }
  194. return count;
  195. }
  196. static ssize_t store_freq_step(struct dbs_data *dbs_data, const char *buf,
  197. size_t count)
  198. {
  199. struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
  200. unsigned int input;
  201. int ret;
  202. ret = sscanf(buf, "%u", &input);
  203. if (ret != 1)
  204. return -EINVAL;
  205. if (input > 100)
  206. input = 100;
  207. /*
  208. * no need to test here if freq_step is zero as the user might actually
  209. * want this, they would be crazy though :)
  210. */
  211. cs_tuners->freq_step = input;
  212. return count;
  213. }
  214. show_store_one(cs, sampling_rate);
  215. show_store_one(cs, sampling_down_factor);
  216. show_store_one(cs, up_threshold);
  217. show_store_one(cs, down_threshold);
  218. show_store_one(cs, ignore_nice_load);
  219. show_store_one(cs, freq_step);
  220. declare_show_sampling_rate_min(cs);
  221. gov_sys_pol_attr_rw(sampling_rate);
  222. gov_sys_pol_attr_rw(sampling_down_factor);
  223. gov_sys_pol_attr_rw(up_threshold);
  224. gov_sys_pol_attr_rw(down_threshold);
  225. gov_sys_pol_attr_rw(ignore_nice_load);
  226. gov_sys_pol_attr_rw(freq_step);
  227. gov_sys_pol_attr_ro(sampling_rate_min);
  228. static struct attribute *dbs_attributes_gov_sys[] = {
  229. &sampling_rate_min_gov_sys.attr,
  230. &sampling_rate_gov_sys.attr,
  231. &sampling_down_factor_gov_sys.attr,
  232. &up_threshold_gov_sys.attr,
  233. &down_threshold_gov_sys.attr,
  234. &ignore_nice_load_gov_sys.attr,
  235. &freq_step_gov_sys.attr,
  236. NULL
  237. };
  238. static struct attribute_group cs_attr_group_gov_sys = {
  239. .attrs = dbs_attributes_gov_sys,
  240. .name = "conservative",
  241. };
  242. static struct attribute *dbs_attributes_gov_pol[] = {
  243. &sampling_rate_min_gov_pol.attr,
  244. &sampling_rate_gov_pol.attr,
  245. &sampling_down_factor_gov_pol.attr,
  246. &up_threshold_gov_pol.attr,
  247. &down_threshold_gov_pol.attr,
  248. &ignore_nice_load_gov_pol.attr,
  249. &freq_step_gov_pol.attr,
  250. NULL
  251. };
  252. static struct attribute_group cs_attr_group_gov_pol = {
  253. .attrs = dbs_attributes_gov_pol,
  254. .name = "conservative",
  255. };
  256. /************************** sysfs end ************************/
  257. static int cs_init(struct dbs_data *dbs_data)
  258. {
  259. struct cs_dbs_tuners *tuners;
  260. tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
  261. if (!tuners) {
  262. pr_err("%s: kzalloc failed\n", __func__);
  263. return -ENOMEM;
  264. }
  265. tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
  266. tuners->down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD;
  267. tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
  268. tuners->ignore_nice_load = 0;
  269. tuners->freq_step = DEF_FREQUENCY_STEP;
  270. dbs_data->tuners = tuners;
  271. dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
  272. jiffies_to_usecs(10);
  273. mutex_init(&dbs_data->mutex);
  274. return 0;
  275. }
  276. static void cs_exit(struct dbs_data *dbs_data)
  277. {
  278. kfree(dbs_data->tuners);
  279. }
  280. define_get_cpu_dbs_routines(cs_cpu_dbs_info);
  281. static struct notifier_block cs_cpufreq_notifier_block = {
  282. .notifier_call = dbs_cpufreq_notifier,
  283. };
  284. static struct cs_ops cs_ops = {
  285. .notifier_block = &cs_cpufreq_notifier_block,
  286. };
  287. static struct common_dbs_data cs_dbs_cdata = {
  288. .governor = GOV_CONSERVATIVE,
  289. .attr_group_gov_sys = &cs_attr_group_gov_sys,
  290. .attr_group_gov_pol = &cs_attr_group_gov_pol,
  291. .get_cpu_cdbs = get_cpu_cdbs,
  292. .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
  293. .gov_dbs_timer = cs_dbs_timer,
  294. .gov_check_cpu = cs_check_cpu,
  295. .gov_ops = &cs_ops,
  296. .init = cs_init,
  297. .exit = cs_exit,
  298. };
  299. static int cs_cpufreq_governor_dbs(struct cpufreq_policy *policy,
  300. unsigned int event)
  301. {
  302. return cpufreq_governor_dbs(policy, &cs_dbs_cdata, event);
  303. }
  304. #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
  305. static
  306. #endif
  307. struct cpufreq_governor cpufreq_gov_conservative = {
  308. .name = "conservative",
  309. .governor = cs_cpufreq_governor_dbs,
  310. .max_transition_latency = TRANSITION_LATENCY_LIMIT,
  311. .owner = THIS_MODULE,
  312. };
  313. static int __init cpufreq_gov_dbs_init(void)
  314. {
  315. return cpufreq_register_governor(&cpufreq_gov_conservative);
  316. }
  317. static void __exit cpufreq_gov_dbs_exit(void)
  318. {
  319. cpufreq_unregister_governor(&cpufreq_gov_conservative);
  320. }
  321. MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
  322. MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
  323. "Low Latency Frequency Transition capable processors "
  324. "optimised for use in a battery environment");
  325. MODULE_LICENSE("GPL");
  326. #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
  327. fs_initcall(cpufreq_gov_dbs_init);
  328. #else
  329. module_init(cpufreq_gov_dbs_init);
  330. #endif
  331. module_exit(cpufreq_gov_dbs_exit);