exynos_mct.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575
  1. /* linux/arch/arm/mach-exynos4/mct.c
  2. *
  3. * Copyright (c) 2011 Samsung Electronics Co., Ltd.
  4. * http://www.samsung.com
  5. *
  6. * EXYNOS4 MCT(Multi-Core Timer) support
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/sched.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/irq.h>
  15. #include <linux/err.h>
  16. #include <linux/clk.h>
  17. #include <linux/clockchips.h>
  18. #include <linux/cpu.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/delay.h>
  21. #include <linux/percpu.h>
  22. #include <linux/of.h>
  23. #include <linux/of_irq.h>
  24. #include <linux/of_address.h>
  25. #include <linux/clocksource.h>
  26. #include <asm/mach/time.h>
  27. #define EXYNOS4_MCTREG(x) (x)
  28. #define EXYNOS4_MCT_G_CNT_L EXYNOS4_MCTREG(0x100)
  29. #define EXYNOS4_MCT_G_CNT_U EXYNOS4_MCTREG(0x104)
  30. #define EXYNOS4_MCT_G_CNT_WSTAT EXYNOS4_MCTREG(0x110)
  31. #define EXYNOS4_MCT_G_COMP0_L EXYNOS4_MCTREG(0x200)
  32. #define EXYNOS4_MCT_G_COMP0_U EXYNOS4_MCTREG(0x204)
  33. #define EXYNOS4_MCT_G_COMP0_ADD_INCR EXYNOS4_MCTREG(0x208)
  34. #define EXYNOS4_MCT_G_TCON EXYNOS4_MCTREG(0x240)
  35. #define EXYNOS4_MCT_G_INT_CSTAT EXYNOS4_MCTREG(0x244)
  36. #define EXYNOS4_MCT_G_INT_ENB EXYNOS4_MCTREG(0x248)
  37. #define EXYNOS4_MCT_G_WSTAT EXYNOS4_MCTREG(0x24C)
  38. #define _EXYNOS4_MCT_L_BASE EXYNOS4_MCTREG(0x300)
  39. #define EXYNOS4_MCT_L_BASE(x) (_EXYNOS4_MCT_L_BASE + (0x100 * x))
  40. #define EXYNOS4_MCT_L_MASK (0xffffff00)
  41. #define MCT_L_TCNTB_OFFSET (0x00)
  42. #define MCT_L_ICNTB_OFFSET (0x08)
  43. #define MCT_L_TCON_OFFSET (0x20)
  44. #define MCT_L_INT_CSTAT_OFFSET (0x30)
  45. #define MCT_L_INT_ENB_OFFSET (0x34)
  46. #define MCT_L_WSTAT_OFFSET (0x40)
  47. #define MCT_G_TCON_START (1 << 8)
  48. #define MCT_G_TCON_COMP0_AUTO_INC (1 << 1)
  49. #define MCT_G_TCON_COMP0_ENABLE (1 << 0)
  50. #define MCT_L_TCON_INTERVAL_MODE (1 << 2)
  51. #define MCT_L_TCON_INT_START (1 << 1)
  52. #define MCT_L_TCON_TIMER_START (1 << 0)
  53. #define TICK_BASE_CNT 1
  54. enum {
  55. MCT_INT_SPI,
  56. MCT_INT_PPI
  57. };
  58. enum {
  59. MCT_G0_IRQ,
  60. MCT_G1_IRQ,
  61. MCT_G2_IRQ,
  62. MCT_G3_IRQ,
  63. MCT_L0_IRQ,
  64. MCT_L1_IRQ,
  65. MCT_L2_IRQ,
  66. MCT_L3_IRQ,
  67. MCT_NR_IRQS,
  68. };
  69. static void __iomem *reg_base;
  70. static unsigned long clk_rate;
  71. static unsigned int mct_int_type;
  72. static int mct_irqs[MCT_NR_IRQS];
  73. struct mct_clock_event_device {
  74. struct clock_event_device evt;
  75. unsigned long base;
  76. char name[10];
  77. };
  78. static void exynos4_mct_write(unsigned int value, unsigned long offset)
  79. {
  80. unsigned long stat_addr;
  81. u32 mask;
  82. u32 i;
  83. __raw_writel(value, reg_base + offset);
  84. if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
  85. stat_addr = (offset & ~EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
  86. switch (offset & EXYNOS4_MCT_L_MASK) {
  87. case MCT_L_TCON_OFFSET:
  88. mask = 1 << 3; /* L_TCON write status */
  89. break;
  90. case MCT_L_ICNTB_OFFSET:
  91. mask = 1 << 1; /* L_ICNTB write status */
  92. break;
  93. case MCT_L_TCNTB_OFFSET:
  94. mask = 1 << 0; /* L_TCNTB write status */
  95. break;
  96. default:
  97. return;
  98. }
  99. } else {
  100. switch (offset) {
  101. case EXYNOS4_MCT_G_TCON:
  102. stat_addr = EXYNOS4_MCT_G_WSTAT;
  103. mask = 1 << 16; /* G_TCON write status */
  104. break;
  105. case EXYNOS4_MCT_G_COMP0_L:
  106. stat_addr = EXYNOS4_MCT_G_WSTAT;
  107. mask = 1 << 0; /* G_COMP0_L write status */
  108. break;
  109. case EXYNOS4_MCT_G_COMP0_U:
  110. stat_addr = EXYNOS4_MCT_G_WSTAT;
  111. mask = 1 << 1; /* G_COMP0_U write status */
  112. break;
  113. case EXYNOS4_MCT_G_COMP0_ADD_INCR:
  114. stat_addr = EXYNOS4_MCT_G_WSTAT;
  115. mask = 1 << 2; /* G_COMP0_ADD_INCR w status */
  116. break;
  117. case EXYNOS4_MCT_G_CNT_L:
  118. stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
  119. mask = 1 << 0; /* G_CNT_L write status */
  120. break;
  121. case EXYNOS4_MCT_G_CNT_U:
  122. stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
  123. mask = 1 << 1; /* G_CNT_U write status */
  124. break;
  125. default:
  126. return;
  127. }
  128. }
  129. /* Wait maximum 1 ms until written values are applied */
  130. for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
  131. if (__raw_readl(reg_base + stat_addr) & mask) {
  132. __raw_writel(mask, reg_base + stat_addr);
  133. return;
  134. }
  135. panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
  136. }
  137. /* Clocksource handling */
  138. static void exynos4_mct_frc_start(u32 hi, u32 lo)
  139. {
  140. u32 reg;
  141. exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L);
  142. exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U);
  143. reg = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
  144. reg |= MCT_G_TCON_START;
  145. exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
  146. }
  147. static cycle_t exynos4_frc_read(struct clocksource *cs)
  148. {
  149. unsigned int lo, hi;
  150. u32 hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
  151. do {
  152. hi = hi2;
  153. lo = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_L);
  154. hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
  155. } while (hi != hi2);
  156. return ((cycle_t)hi << 32) | lo;
  157. }
  158. static void exynos4_frc_resume(struct clocksource *cs)
  159. {
  160. exynos4_mct_frc_start(0, 0);
  161. }
  162. struct clocksource mct_frc = {
  163. .name = "mct-frc",
  164. .rating = 400,
  165. .read = exynos4_frc_read,
  166. .mask = CLOCKSOURCE_MASK(64),
  167. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  168. .resume = exynos4_frc_resume,
  169. };
  170. static void __init exynos4_clocksource_init(void)
  171. {
  172. exynos4_mct_frc_start(0, 0);
  173. if (clocksource_register_hz(&mct_frc, clk_rate))
  174. panic("%s: can't register clocksource\n", mct_frc.name);
  175. }
  176. static void exynos4_mct_comp0_stop(void)
  177. {
  178. unsigned int tcon;
  179. tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
  180. tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
  181. exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
  182. exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
  183. }
  184. static void exynos4_mct_comp0_start(enum clock_event_mode mode,
  185. unsigned long cycles)
  186. {
  187. unsigned int tcon;
  188. cycle_t comp_cycle;
  189. tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
  190. if (mode == CLOCK_EVT_MODE_PERIODIC) {
  191. tcon |= MCT_G_TCON_COMP0_AUTO_INC;
  192. exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
  193. }
  194. comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
  195. exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
  196. exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
  197. exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
  198. tcon |= MCT_G_TCON_COMP0_ENABLE;
  199. exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
  200. }
  201. static int exynos4_comp_set_next_event(unsigned long cycles,
  202. struct clock_event_device *evt)
  203. {
  204. exynos4_mct_comp0_start(evt->mode, cycles);
  205. return 0;
  206. }
  207. static void exynos4_comp_set_mode(enum clock_event_mode mode,
  208. struct clock_event_device *evt)
  209. {
  210. unsigned long cycles_per_jiffy;
  211. exynos4_mct_comp0_stop();
  212. switch (mode) {
  213. case CLOCK_EVT_MODE_PERIODIC:
  214. cycles_per_jiffy =
  215. (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
  216. exynos4_mct_comp0_start(mode, cycles_per_jiffy);
  217. break;
  218. case CLOCK_EVT_MODE_ONESHOT:
  219. case CLOCK_EVT_MODE_UNUSED:
  220. case CLOCK_EVT_MODE_SHUTDOWN:
  221. case CLOCK_EVT_MODE_RESUME:
  222. break;
  223. }
  224. }
  225. static struct clock_event_device mct_comp_device = {
  226. .name = "mct-comp",
  227. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  228. .rating = 250,
  229. .set_next_event = exynos4_comp_set_next_event,
  230. .set_mode = exynos4_comp_set_mode,
  231. };
  232. static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
  233. {
  234. struct clock_event_device *evt = dev_id;
  235. exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
  236. evt->event_handler(evt);
  237. return IRQ_HANDLED;
  238. }
  239. static struct irqaction mct_comp_event_irq = {
  240. .name = "mct_comp_irq",
  241. .flags = IRQF_TIMER | IRQF_IRQPOLL,
  242. .handler = exynos4_mct_comp_isr,
  243. .dev_id = &mct_comp_device,
  244. };
  245. static void exynos4_clockevent_init(void)
  246. {
  247. mct_comp_device.cpumask = cpumask_of(0);
  248. clockevents_config_and_register(&mct_comp_device, clk_rate,
  249. 0xf, 0xffffffff);
  250. setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
  251. }
  252. static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
  253. /* Clock event handling */
  254. static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
  255. {
  256. unsigned long tmp;
  257. unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
  258. unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
  259. tmp = __raw_readl(reg_base + offset);
  260. if (tmp & mask) {
  261. tmp &= ~mask;
  262. exynos4_mct_write(tmp, offset);
  263. }
  264. }
  265. static void exynos4_mct_tick_start(unsigned long cycles,
  266. struct mct_clock_event_device *mevt)
  267. {
  268. unsigned long tmp;
  269. exynos4_mct_tick_stop(mevt);
  270. tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */
  271. /* update interrupt count buffer */
  272. exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
  273. /* enable MCT tick interrupt */
  274. exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
  275. tmp = __raw_readl(reg_base + mevt->base + MCT_L_TCON_OFFSET);
  276. tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
  277. MCT_L_TCON_INTERVAL_MODE;
  278. exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
  279. }
  280. static int exynos4_tick_set_next_event(unsigned long cycles,
  281. struct clock_event_device *evt)
  282. {
  283. struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
  284. exynos4_mct_tick_start(cycles, mevt);
  285. return 0;
  286. }
  287. static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
  288. struct clock_event_device *evt)
  289. {
  290. struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
  291. unsigned long cycles_per_jiffy;
  292. exynos4_mct_tick_stop(mevt);
  293. switch (mode) {
  294. case CLOCK_EVT_MODE_PERIODIC:
  295. cycles_per_jiffy =
  296. (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
  297. exynos4_mct_tick_start(cycles_per_jiffy, mevt);
  298. break;
  299. case CLOCK_EVT_MODE_ONESHOT:
  300. case CLOCK_EVT_MODE_UNUSED:
  301. case CLOCK_EVT_MODE_SHUTDOWN:
  302. case CLOCK_EVT_MODE_RESUME:
  303. break;
  304. }
  305. }
  306. static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
  307. {
  308. struct clock_event_device *evt = &mevt->evt;
  309. /*
  310. * This is for supporting oneshot mode.
  311. * Mct would generate interrupt periodically
  312. * without explicit stopping.
  313. */
  314. if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
  315. exynos4_mct_tick_stop(mevt);
  316. /* Clear the MCT tick interrupt */
  317. if (__raw_readl(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
  318. exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
  319. return 1;
  320. } else {
  321. return 0;
  322. }
  323. }
  324. static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
  325. {
  326. struct mct_clock_event_device *mevt = dev_id;
  327. struct clock_event_device *evt = &mevt->evt;
  328. exynos4_mct_tick_clear(mevt);
  329. evt->event_handler(evt);
  330. return IRQ_HANDLED;
  331. }
  332. static int exynos4_local_timer_setup(struct clock_event_device *evt)
  333. {
  334. struct mct_clock_event_device *mevt;
  335. unsigned int cpu = smp_processor_id();
  336. mevt = container_of(evt, struct mct_clock_event_device, evt);
  337. mevt->base = EXYNOS4_MCT_L_BASE(cpu);
  338. sprintf(mevt->name, "mct_tick%d", cpu);
  339. evt->name = mevt->name;
  340. evt->cpumask = cpumask_of(cpu);
  341. evt->set_next_event = exynos4_tick_set_next_event;
  342. evt->set_mode = exynos4_tick_set_mode;
  343. evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
  344. evt->rating = 450;
  345. clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
  346. 0xf, 0x7fffffff);
  347. exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
  348. if (mct_int_type == MCT_INT_SPI) {
  349. evt->irq = mct_irqs[MCT_L0_IRQ + cpu];
  350. if (request_irq(evt->irq, exynos4_mct_tick_isr,
  351. IRQF_TIMER | IRQF_NOBALANCING,
  352. evt->name, mevt)) {
  353. pr_err("exynos-mct: cannot register IRQ %d\n",
  354. evt->irq);
  355. return -EIO;
  356. }
  357. } else {
  358. enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
  359. }
  360. return 0;
  361. }
  362. static void exynos4_local_timer_stop(struct clock_event_device *evt)
  363. {
  364. evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
  365. if (mct_int_type == MCT_INT_SPI)
  366. free_irq(evt->irq, this_cpu_ptr(&percpu_mct_tick));
  367. else
  368. disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
  369. }
  370. static int exynos4_mct_cpu_notify(struct notifier_block *self,
  371. unsigned long action, void *hcpu)
  372. {
  373. struct mct_clock_event_device *mevt;
  374. unsigned int cpu;
  375. /*
  376. * Grab cpu pointer in each case to avoid spurious
  377. * preemptible warnings
  378. */
  379. switch (action & ~CPU_TASKS_FROZEN) {
  380. case CPU_STARTING:
  381. mevt = this_cpu_ptr(&percpu_mct_tick);
  382. exynos4_local_timer_setup(&mevt->evt);
  383. break;
  384. case CPU_ONLINE:
  385. cpu = (unsigned long)hcpu;
  386. if (mct_int_type == MCT_INT_SPI)
  387. irq_set_affinity(mct_irqs[MCT_L0_IRQ + cpu],
  388. cpumask_of(cpu));
  389. break;
  390. case CPU_DYING:
  391. mevt = this_cpu_ptr(&percpu_mct_tick);
  392. exynos4_local_timer_stop(&mevt->evt);
  393. break;
  394. }
  395. return NOTIFY_OK;
  396. }
  397. static struct notifier_block exynos4_mct_cpu_nb = {
  398. .notifier_call = exynos4_mct_cpu_notify,
  399. };
  400. static void __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
  401. {
  402. int err;
  403. struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
  404. struct clk *mct_clk, *tick_clk;
  405. tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
  406. clk_get(NULL, "fin_pll");
  407. if (IS_ERR(tick_clk))
  408. panic("%s: unable to determine tick clock rate\n", __func__);
  409. clk_rate = clk_get_rate(tick_clk);
  410. mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
  411. if (IS_ERR(mct_clk))
  412. panic("%s: unable to retrieve mct clock instance\n", __func__);
  413. clk_prepare_enable(mct_clk);
  414. reg_base = base;
  415. if (!reg_base)
  416. panic("%s: unable to ioremap mct address space\n", __func__);
  417. if (mct_int_type == MCT_INT_PPI) {
  418. err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
  419. exynos4_mct_tick_isr, "MCT",
  420. &percpu_mct_tick);
  421. WARN(err, "MCT: can't request IRQ %d (%d)\n",
  422. mct_irqs[MCT_L0_IRQ], err);
  423. } else {
  424. irq_set_affinity(mct_irqs[MCT_L0_IRQ], cpumask_of(0));
  425. }
  426. err = register_cpu_notifier(&exynos4_mct_cpu_nb);
  427. if (err)
  428. goto out_irq;
  429. /* Immediately configure the timer on the boot CPU */
  430. exynos4_local_timer_setup(&mevt->evt);
  431. return;
  432. out_irq:
  433. free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
  434. }
  435. void __init mct_init(void __iomem *base, int irq_g0, int irq_l0, int irq_l1)
  436. {
  437. mct_irqs[MCT_G0_IRQ] = irq_g0;
  438. mct_irqs[MCT_L0_IRQ] = irq_l0;
  439. mct_irqs[MCT_L1_IRQ] = irq_l1;
  440. mct_int_type = MCT_INT_SPI;
  441. exynos4_timer_resources(NULL, base);
  442. exynos4_clocksource_init();
  443. exynos4_clockevent_init();
  444. }
  445. static void __init mct_init_dt(struct device_node *np, unsigned int int_type)
  446. {
  447. u32 nr_irqs, i;
  448. mct_int_type = int_type;
  449. /* This driver uses only one global timer interrupt */
  450. mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
  451. /*
  452. * Find out the number of local irqs specified. The local
  453. * timer irqs are specified after the four global timer
  454. * irqs are specified.
  455. */
  456. #ifdef CONFIG_OF
  457. nr_irqs = of_irq_count(np);
  458. #else
  459. nr_irqs = 0;
  460. #endif
  461. for (i = MCT_L0_IRQ; i < nr_irqs; i++)
  462. mct_irqs[i] = irq_of_parse_and_map(np, i);
  463. exynos4_timer_resources(np, of_iomap(np, 0));
  464. exynos4_clocksource_init();
  465. exynos4_clockevent_init();
  466. }
  467. static void __init mct_init_spi(struct device_node *np)
  468. {
  469. return mct_init_dt(np, MCT_INT_SPI);
  470. }
  471. static void __init mct_init_ppi(struct device_node *np)
  472. {
  473. return mct_init_dt(np, MCT_INT_PPI);
  474. }
  475. CLOCKSOURCE_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
  476. CLOCKSOURCE_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);