arm_arch_timer.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684
  1. /*
  2. * linux/drivers/clocksource/arm_arch_timer.c
  3. *
  4. * Copyright (C) 2011 ARM Ltd.
  5. * All Rights Reserved
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/kernel.h>
  13. #include <linux/device.h>
  14. #include <linux/smp.h>
  15. #include <linux/cpu.h>
  16. #include <linux/clockchips.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/of_irq.h>
  19. #include <linux/of_address.h>
  20. #include <linux/io.h>
  21. #include <linux/slab.h>
  22. #include <asm/arch_timer.h>
  23. #include <asm/virt.h>
  24. #include <clocksource/arm_arch_timer.h>
  25. #define CNTTIDR 0x08
  26. #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
  27. #define CNTVCT_LO 0x08
  28. #define CNTVCT_HI 0x0c
  29. #define CNTFRQ 0x10
  30. #define CNTP_TVAL 0x28
  31. #define CNTP_CTL 0x2c
  32. #define CNTV_TVAL 0x38
  33. #define CNTV_CTL 0x3c
  34. #define ARCH_CP15_TIMER BIT(0)
  35. #define ARCH_MEM_TIMER BIT(1)
  36. static unsigned arch_timers_present __initdata;
  37. static void __iomem *arch_counter_base;
  38. struct arch_timer {
  39. void __iomem *base;
  40. struct clock_event_device evt;
  41. };
  42. #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
  43. static u32 arch_timer_rate;
  44. enum ppi_nr {
  45. PHYS_SECURE_PPI,
  46. PHYS_NONSECURE_PPI,
  47. VIRT_PPI,
  48. HYP_PPI,
  49. MAX_TIMER_PPI
  50. };
  51. static int arch_timer_ppi[MAX_TIMER_PPI];
  52. static struct clock_event_device __percpu *arch_timer_evt;
  53. static bool arch_timer_use_virtual = true;
  54. static bool arch_timer_mem_use_virtual;
  55. /*
  56. * Architected system timer support.
  57. */
  58. static __always_inline
  59. void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
  60. struct clock_event_device *clk)
  61. {
  62. if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
  63. struct arch_timer *timer = to_arch_timer(clk);
  64. switch (reg) {
  65. case ARCH_TIMER_REG_CTRL:
  66. writel_relaxed(val, timer->base + CNTP_CTL);
  67. break;
  68. case ARCH_TIMER_REG_TVAL:
  69. writel_relaxed(val, timer->base + CNTP_TVAL);
  70. break;
  71. }
  72. } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
  73. struct arch_timer *timer = to_arch_timer(clk);
  74. switch (reg) {
  75. case ARCH_TIMER_REG_CTRL:
  76. writel_relaxed(val, timer->base + CNTV_CTL);
  77. break;
  78. case ARCH_TIMER_REG_TVAL:
  79. writel_relaxed(val, timer->base + CNTV_TVAL);
  80. break;
  81. }
  82. } else {
  83. arch_timer_reg_write_cp15(access, reg, val);
  84. }
  85. }
  86. static __always_inline
  87. u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
  88. struct clock_event_device *clk)
  89. {
  90. u32 val;
  91. if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
  92. struct arch_timer *timer = to_arch_timer(clk);
  93. switch (reg) {
  94. case ARCH_TIMER_REG_CTRL:
  95. val = readl_relaxed(timer->base + CNTP_CTL);
  96. break;
  97. case ARCH_TIMER_REG_TVAL:
  98. val = readl_relaxed(timer->base + CNTP_TVAL);
  99. break;
  100. }
  101. } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
  102. struct arch_timer *timer = to_arch_timer(clk);
  103. switch (reg) {
  104. case ARCH_TIMER_REG_CTRL:
  105. val = readl_relaxed(timer->base + CNTV_CTL);
  106. break;
  107. case ARCH_TIMER_REG_TVAL:
  108. val = readl_relaxed(timer->base + CNTV_TVAL);
  109. break;
  110. }
  111. } else {
  112. val = arch_timer_reg_read_cp15(access, reg);
  113. }
  114. return val;
  115. }
  116. static __always_inline irqreturn_t timer_handler(const int access,
  117. struct clock_event_device *evt)
  118. {
  119. unsigned long ctrl;
  120. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
  121. if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
  122. ctrl |= ARCH_TIMER_CTRL_IT_MASK;
  123. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
  124. evt->event_handler(evt);
  125. return IRQ_HANDLED;
  126. }
  127. return IRQ_NONE;
  128. }
  129. static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
  130. {
  131. struct clock_event_device *evt = dev_id;
  132. return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
  133. }
  134. static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
  135. {
  136. struct clock_event_device *evt = dev_id;
  137. return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
  138. }
  139. static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
  140. {
  141. struct clock_event_device *evt = dev_id;
  142. return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
  143. }
  144. static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
  145. {
  146. struct clock_event_device *evt = dev_id;
  147. return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
  148. }
  149. static __always_inline void timer_set_mode(const int access, int mode,
  150. struct clock_event_device *clk)
  151. {
  152. unsigned long ctrl;
  153. switch (mode) {
  154. case CLOCK_EVT_MODE_UNUSED:
  155. case CLOCK_EVT_MODE_SHUTDOWN:
  156. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
  157. ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
  158. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
  159. break;
  160. default:
  161. break;
  162. }
  163. }
  164. static void arch_timer_set_mode_virt(enum clock_event_mode mode,
  165. struct clock_event_device *clk)
  166. {
  167. timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode, clk);
  168. }
  169. static void arch_timer_set_mode_phys(enum clock_event_mode mode,
  170. struct clock_event_device *clk)
  171. {
  172. timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode, clk);
  173. }
  174. static void arch_timer_set_mode_virt_mem(enum clock_event_mode mode,
  175. struct clock_event_device *clk)
  176. {
  177. timer_set_mode(ARCH_TIMER_MEM_VIRT_ACCESS, mode, clk);
  178. }
  179. static void arch_timer_set_mode_phys_mem(enum clock_event_mode mode,
  180. struct clock_event_device *clk)
  181. {
  182. timer_set_mode(ARCH_TIMER_MEM_PHYS_ACCESS, mode, clk);
  183. }
  184. static __always_inline void set_next_event(const int access, unsigned long evt,
  185. struct clock_event_device *clk)
  186. {
  187. unsigned long ctrl;
  188. ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
  189. ctrl |= ARCH_TIMER_CTRL_ENABLE;
  190. ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
  191. arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
  192. arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
  193. }
  194. static int arch_timer_set_next_event_virt(unsigned long evt,
  195. struct clock_event_device *clk)
  196. {
  197. set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
  198. return 0;
  199. }
  200. static int arch_timer_set_next_event_phys(unsigned long evt,
  201. struct clock_event_device *clk)
  202. {
  203. set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
  204. return 0;
  205. }
  206. static int arch_timer_set_next_event_virt_mem(unsigned long evt,
  207. struct clock_event_device *clk)
  208. {
  209. set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
  210. return 0;
  211. }
  212. static int arch_timer_set_next_event_phys_mem(unsigned long evt,
  213. struct clock_event_device *clk)
  214. {
  215. set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
  216. return 0;
  217. }
  218. static void __arch_timer_setup(unsigned type,
  219. struct clock_event_device *clk)
  220. {
  221. clk->features = CLOCK_EVT_FEAT_ONESHOT;
  222. if (type == ARCH_CP15_TIMER) {
  223. clk->features |= CLOCK_EVT_FEAT_C3STOP;
  224. clk->name = "arch_sys_timer";
  225. clk->rating = 450;
  226. clk->cpumask = cpumask_of(smp_processor_id());
  227. if (arch_timer_use_virtual) {
  228. clk->irq = arch_timer_ppi[VIRT_PPI];
  229. clk->set_mode = arch_timer_set_mode_virt;
  230. clk->set_next_event = arch_timer_set_next_event_virt;
  231. } else {
  232. clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
  233. clk->set_mode = arch_timer_set_mode_phys;
  234. clk->set_next_event = arch_timer_set_next_event_phys;
  235. }
  236. } else {
  237. clk->name = "arch_mem_timer";
  238. clk->rating = 400;
  239. clk->cpumask = cpu_all_mask;
  240. if (arch_timer_mem_use_virtual) {
  241. clk->set_mode = arch_timer_set_mode_virt_mem;
  242. clk->set_next_event =
  243. arch_timer_set_next_event_virt_mem;
  244. } else {
  245. clk->set_mode = arch_timer_set_mode_phys_mem;
  246. clk->set_next_event =
  247. arch_timer_set_next_event_phys_mem;
  248. }
  249. }
  250. clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk);
  251. clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
  252. }
  253. static int arch_timer_setup(struct clock_event_device *clk)
  254. {
  255. __arch_timer_setup(ARCH_CP15_TIMER, clk);
  256. if (arch_timer_use_virtual)
  257. enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
  258. else {
  259. enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
  260. if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  261. enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
  262. }
  263. arch_counter_set_user_access();
  264. return 0;
  265. }
  266. static void
  267. arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
  268. {
  269. /* Who has more than one independent system counter? */
  270. if (arch_timer_rate)
  271. return;
  272. /* Try to determine the frequency from the device tree or CNTFRQ */
  273. if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
  274. if (cntbase)
  275. arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
  276. else
  277. arch_timer_rate = arch_timer_get_cntfrq();
  278. }
  279. /* Check the timer frequency. */
  280. if (arch_timer_rate == 0)
  281. pr_warn("Architected timer frequency not available\n");
  282. }
  283. static void arch_timer_banner(unsigned type)
  284. {
  285. pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
  286. type & ARCH_CP15_TIMER ? "cp15" : "",
  287. type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "",
  288. type & ARCH_MEM_TIMER ? "mmio" : "",
  289. (unsigned long)arch_timer_rate / 1000000,
  290. (unsigned long)(arch_timer_rate / 10000) % 100,
  291. type & ARCH_CP15_TIMER ?
  292. arch_timer_use_virtual ? "virt" : "phys" :
  293. "",
  294. type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "",
  295. type & ARCH_MEM_TIMER ?
  296. arch_timer_mem_use_virtual ? "virt" : "phys" :
  297. "");
  298. }
  299. u32 arch_timer_get_rate(void)
  300. {
  301. return arch_timer_rate;
  302. }
  303. static u64 arch_counter_get_cntvct_mem(void)
  304. {
  305. u32 vct_lo, vct_hi, tmp_hi;
  306. do {
  307. vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
  308. vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
  309. tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
  310. } while (vct_hi != tmp_hi);
  311. return ((u64) vct_hi << 32) | vct_lo;
  312. }
  313. /*
  314. * Default to cp15 based access because arm64 uses this function for
  315. * sched_clock() before DT is probed and the cp15 method is guaranteed
  316. * to exist on arm64. arm doesn't use this before DT is probed so even
  317. * if we don't have the cp15 accessors we won't have a problem.
  318. */
  319. u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
  320. static cycle_t arch_counter_read(struct clocksource *cs)
  321. {
  322. return arch_timer_read_counter();
  323. }
  324. static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
  325. {
  326. return arch_timer_read_counter();
  327. }
  328. static struct clocksource clocksource_counter = {
  329. .name = "arch_sys_counter",
  330. .rating = 400,
  331. .read = arch_counter_read,
  332. .mask = CLOCKSOURCE_MASK(56),
  333. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  334. };
  335. static struct cyclecounter cyclecounter = {
  336. .read = arch_counter_read_cc,
  337. .mask = CLOCKSOURCE_MASK(56),
  338. };
  339. static struct timecounter timecounter;
  340. struct timecounter *arch_timer_get_timecounter(void)
  341. {
  342. return &timecounter;
  343. }
  344. static void __init arch_counter_register(unsigned type)
  345. {
  346. u64 start_count;
  347. /* Register the CP15 based counter if we have one */
  348. if (type & ARCH_CP15_TIMER)
  349. arch_timer_read_counter = arch_counter_get_cntvct;
  350. else
  351. arch_timer_read_counter = arch_counter_get_cntvct_mem;
  352. start_count = arch_timer_read_counter();
  353. clocksource_register_hz(&clocksource_counter, arch_timer_rate);
  354. cyclecounter.mult = clocksource_counter.mult;
  355. cyclecounter.shift = clocksource_counter.shift;
  356. timecounter_init(&timecounter, &cyclecounter, start_count);
  357. }
  358. static void arch_timer_stop(struct clock_event_device *clk)
  359. {
  360. pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
  361. clk->irq, smp_processor_id());
  362. if (arch_timer_use_virtual)
  363. disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
  364. else {
  365. disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
  366. if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  367. disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
  368. }
  369. clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
  370. }
  371. static int arch_timer_cpu_notify(struct notifier_block *self,
  372. unsigned long action, void *hcpu)
  373. {
  374. /*
  375. * Grab cpu pointer in each case to avoid spurious
  376. * preemptible warnings
  377. */
  378. switch (action & ~CPU_TASKS_FROZEN) {
  379. case CPU_STARTING:
  380. arch_timer_setup(this_cpu_ptr(arch_timer_evt));
  381. break;
  382. case CPU_DYING:
  383. arch_timer_stop(this_cpu_ptr(arch_timer_evt));
  384. break;
  385. }
  386. return NOTIFY_OK;
  387. }
  388. static struct notifier_block arch_timer_cpu_nb = {
  389. .notifier_call = arch_timer_cpu_notify,
  390. };
  391. static int __init arch_timer_register(void)
  392. {
  393. int err;
  394. int ppi;
  395. arch_timer_evt = alloc_percpu(struct clock_event_device);
  396. if (!arch_timer_evt) {
  397. err = -ENOMEM;
  398. goto out;
  399. }
  400. if (arch_timer_use_virtual) {
  401. ppi = arch_timer_ppi[VIRT_PPI];
  402. err = request_percpu_irq(ppi, arch_timer_handler_virt,
  403. "arch_timer", arch_timer_evt);
  404. } else {
  405. ppi = arch_timer_ppi[PHYS_SECURE_PPI];
  406. err = request_percpu_irq(ppi, arch_timer_handler_phys,
  407. "arch_timer", arch_timer_evt);
  408. if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
  409. ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
  410. err = request_percpu_irq(ppi, arch_timer_handler_phys,
  411. "arch_timer", arch_timer_evt);
  412. if (err)
  413. free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
  414. arch_timer_evt);
  415. }
  416. }
  417. if (err) {
  418. pr_err("arch_timer: can't register interrupt %d (%d)\n",
  419. ppi, err);
  420. goto out_free;
  421. }
  422. err = register_cpu_notifier(&arch_timer_cpu_nb);
  423. if (err)
  424. goto out_free_irq;
  425. /* Immediately configure the timer on the boot CPU */
  426. arch_timer_setup(this_cpu_ptr(arch_timer_evt));
  427. return 0;
  428. out_free_irq:
  429. if (arch_timer_use_virtual)
  430. free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
  431. else {
  432. free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
  433. arch_timer_evt);
  434. if (arch_timer_ppi[PHYS_NONSECURE_PPI])
  435. free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
  436. arch_timer_evt);
  437. }
  438. out_free:
  439. free_percpu(arch_timer_evt);
  440. out:
  441. return err;
  442. }
  443. static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
  444. {
  445. int ret;
  446. irq_handler_t func;
  447. struct arch_timer *t;
  448. t = kzalloc(sizeof(*t), GFP_KERNEL);
  449. if (!t)
  450. return -ENOMEM;
  451. t->base = base;
  452. t->evt.irq = irq;
  453. __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
  454. if (arch_timer_mem_use_virtual)
  455. func = arch_timer_handler_virt_mem;
  456. else
  457. func = arch_timer_handler_phys_mem;
  458. ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
  459. if (ret) {
  460. pr_err("arch_timer: Failed to request mem timer irq\n");
  461. kfree(t);
  462. }
  463. return ret;
  464. }
  465. static const struct of_device_id arch_timer_of_match[] __initconst = {
  466. { .compatible = "arm,armv7-timer", },
  467. { .compatible = "arm,armv8-timer", },
  468. {},
  469. };
  470. static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
  471. { .compatible = "arm,armv7-timer-mem", },
  472. {},
  473. };
  474. static void __init arch_timer_common_init(void)
  475. {
  476. unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
  477. /* Wait until both nodes are probed if we have two timers */
  478. if ((arch_timers_present & mask) != mask) {
  479. if (of_find_matching_node(NULL, arch_timer_mem_of_match) &&
  480. !(arch_timers_present & ARCH_MEM_TIMER))
  481. return;
  482. if (of_find_matching_node(NULL, arch_timer_of_match) &&
  483. !(arch_timers_present & ARCH_CP15_TIMER))
  484. return;
  485. }
  486. arch_timer_banner(arch_timers_present);
  487. arch_counter_register(arch_timers_present);
  488. arch_timer_arch_init();
  489. }
  490. static void __init arch_timer_init(struct device_node *np)
  491. {
  492. int i;
  493. if (arch_timers_present & ARCH_CP15_TIMER) {
  494. pr_warn("arch_timer: multiple nodes in dt, skipping\n");
  495. return;
  496. }
  497. arch_timers_present |= ARCH_CP15_TIMER;
  498. for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
  499. arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
  500. arch_timer_detect_rate(NULL, np);
  501. /*
  502. * If HYP mode is available, we know that the physical timer
  503. * has been configured to be accessible from PL1. Use it, so
  504. * that a guest can use the virtual timer instead.
  505. *
  506. * If no interrupt provided for virtual timer, we'll have to
  507. * stick to the physical timer. It'd better be accessible...
  508. */
  509. if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
  510. arch_timer_use_virtual = false;
  511. if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
  512. !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
  513. pr_warn("arch_timer: No interrupt available, giving up\n");
  514. return;
  515. }
  516. }
  517. arch_timer_register();
  518. arch_timer_common_init();
  519. }
  520. CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init);
  521. CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init);
  522. static void __init arch_timer_mem_init(struct device_node *np)
  523. {
  524. struct device_node *frame, *best_frame = NULL;
  525. void __iomem *cntctlbase, *base;
  526. unsigned int irq;
  527. u32 cnttidr;
  528. arch_timers_present |= ARCH_MEM_TIMER;
  529. cntctlbase = of_iomap(np, 0);
  530. if (!cntctlbase) {
  531. pr_err("arch_timer: Can't find CNTCTLBase\n");
  532. return;
  533. }
  534. cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
  535. iounmap(cntctlbase);
  536. /*
  537. * Try to find a virtual capable frame. Otherwise fall back to a
  538. * physical capable frame.
  539. */
  540. for_each_available_child_of_node(np, frame) {
  541. int n;
  542. if (of_property_read_u32(frame, "frame-number", &n)) {
  543. pr_err("arch_timer: Missing frame-number\n");
  544. of_node_put(best_frame);
  545. of_node_put(frame);
  546. return;
  547. }
  548. if (cnttidr & CNTTIDR_VIRT(n)) {
  549. of_node_put(best_frame);
  550. best_frame = frame;
  551. arch_timer_mem_use_virtual = true;
  552. break;
  553. }
  554. of_node_put(best_frame);
  555. best_frame = of_node_get(frame);
  556. }
  557. base = arch_counter_base = of_iomap(best_frame, 0);
  558. if (!base) {
  559. pr_err("arch_timer: Can't map frame's registers\n");
  560. of_node_put(best_frame);
  561. return;
  562. }
  563. if (arch_timer_mem_use_virtual)
  564. irq = irq_of_parse_and_map(best_frame, 1);
  565. else
  566. irq = irq_of_parse_and_map(best_frame, 0);
  567. of_node_put(best_frame);
  568. if (!irq) {
  569. pr_err("arch_timer: Frame missing %s irq",
  570. arch_timer_mem_use_virtual ? "virt" : "phys");
  571. return;
  572. }
  573. arch_timer_detect_rate(base, np);
  574. arch_timer_mem_register(base, irq);
  575. arch_timer_common_init();
  576. }
  577. CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
  578. arch_timer_mem_init);