sata_mv.c 121 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457
  1. /*
  2. * sata_mv.c - Marvell SATA support
  3. *
  4. * Copyright 2008-2009: Marvell Corporation, all rights reserved.
  5. * Copyright 2005: EMC Corporation, all rights reserved.
  6. * Copyright 2005 Red Hat, Inc. All rights reserved.
  7. *
  8. * Originally written by Brett Russ.
  9. * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
  10. *
  11. * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
  12. *
  13. * This program is free software; you can redistribute it and/or modify
  14. * it under the terms of the GNU General Public License as published by
  15. * the Free Software Foundation; version 2 of the License.
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  25. *
  26. */
  27. /*
  28. * sata_mv TODO list:
  29. *
  30. * --> Develop a low-power-consumption strategy, and implement it.
  31. *
  32. * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
  33. *
  34. * --> [Experiment, Marvell value added] Is it possible to use target
  35. * mode to cross-connect two Linux boxes with Marvell cards? If so,
  36. * creating LibATA target mode support would be very interesting.
  37. *
  38. * Target mode, for those without docs, is the ability to directly
  39. * connect two SATA ports.
  40. */
  41. /*
  42. * 80x1-B2 errata PCI#11:
  43. *
  44. * Users of the 6041/6081 Rev.B2 chips (current is C0)
  45. * should be careful to insert those cards only onto PCI-X bus #0,
  46. * and only in device slots 0..7, not higher. The chips may not
  47. * work correctly otherwise (note: this is a pretty rare condition).
  48. */
  49. #include <linux/kernel.h>
  50. #include <linux/module.h>
  51. #include <linux/pci.h>
  52. #include <linux/init.h>
  53. #include <linux/blkdev.h>
  54. #include <linux/delay.h>
  55. #include <linux/interrupt.h>
  56. #include <linux/dmapool.h>
  57. #include <linux/dma-mapping.h>
  58. #include <linux/device.h>
  59. #include <linux/clk.h>
  60. #include <linux/platform_device.h>
  61. #include <linux/ata_platform.h>
  62. #include <linux/mbus.h>
  63. #include <linux/bitops.h>
  64. #include <linux/gfp.h>
  65. #include <linux/of.h>
  66. #include <linux/of_irq.h>
  67. #include <scsi/scsi_host.h>
  68. #include <scsi/scsi_cmnd.h>
  69. #include <scsi/scsi_device.h>
  70. #include <linux/libata.h>
  71. #define DRV_NAME "sata_mv"
  72. #define DRV_VERSION "1.28"
  73. /*
  74. * module options
  75. */
  76. #ifdef CONFIG_PCI
  77. static int msi;
  78. module_param(msi, int, S_IRUGO);
  79. MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
  80. #endif
  81. static int irq_coalescing_io_count;
  82. module_param(irq_coalescing_io_count, int, S_IRUGO);
  83. MODULE_PARM_DESC(irq_coalescing_io_count,
  84. "IRQ coalescing I/O count threshold (0..255)");
  85. static int irq_coalescing_usecs;
  86. module_param(irq_coalescing_usecs, int, S_IRUGO);
  87. MODULE_PARM_DESC(irq_coalescing_usecs,
  88. "IRQ coalescing time threshold in usecs");
  89. enum {
  90. /* BAR's are enumerated in terms of pci_resource_start() terms */
  91. MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
  92. MV_IO_BAR = 2, /* offset 0x18: IO space */
  93. MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
  94. MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
  95. MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
  96. /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
  97. COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */
  98. MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
  99. MAX_COAL_IO_COUNT = 255, /* completed I/O count */
  100. MV_PCI_REG_BASE = 0,
  101. /*
  102. * Per-chip ("all ports") interrupt coalescing feature.
  103. * This is only for GEN_II / GEN_IIE hardware.
  104. *
  105. * Coalescing defers the interrupt until either the IO_THRESHOLD
  106. * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
  107. */
  108. COAL_REG_BASE = 0x18000,
  109. IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08),
  110. ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */
  111. IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc),
  112. IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
  113. /*
  114. * Registers for the (unused here) transaction coalescing feature:
  115. */
  116. TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88),
  117. TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c),
  118. SATAHC0_REG_BASE = 0x20000,
  119. FLASH_CTL = 0x1046c,
  120. GPIO_PORT_CTL = 0x104f0,
  121. RESET_CFG = 0x180d8,
  122. MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
  123. MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
  124. MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
  125. MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
  126. MV_MAX_Q_DEPTH = 32,
  127. MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
  128. /* CRQB needs alignment on a 1KB boundary. Size == 1KB
  129. * CRPB needs alignment on a 256B boundary. Size == 256B
  130. * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
  131. */
  132. MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
  133. MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
  134. MV_MAX_SG_CT = 256,
  135. MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
  136. /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
  137. MV_PORT_HC_SHIFT = 2,
  138. MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
  139. /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
  140. MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
  141. /* Host Flags */
  142. MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
  143. MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
  144. MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
  145. MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
  146. ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
  147. MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN,
  148. CRQB_FLAG_READ = (1 << 0),
  149. CRQB_TAG_SHIFT = 1,
  150. CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
  151. CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
  152. CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
  153. CRQB_CMD_ADDR_SHIFT = 8,
  154. CRQB_CMD_CS = (0x2 << 11),
  155. CRQB_CMD_LAST = (1 << 15),
  156. CRPB_FLAG_STATUS_SHIFT = 8,
  157. CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
  158. CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
  159. EPRD_FLAG_END_OF_TBL = (1 << 31),
  160. /* PCI interface registers */
  161. MV_PCI_COMMAND = 0xc00,
  162. MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */
  163. MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
  164. PCI_MAIN_CMD_STS = 0xd30,
  165. STOP_PCI_MASTER = (1 << 2),
  166. PCI_MASTER_EMPTY = (1 << 3),
  167. GLOB_SFT_RST = (1 << 4),
  168. MV_PCI_MODE = 0xd00,
  169. MV_PCI_MODE_MASK = 0x30,
  170. MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
  171. MV_PCI_DISC_TIMER = 0xd04,
  172. MV_PCI_MSI_TRIGGER = 0xc38,
  173. MV_PCI_SERR_MASK = 0xc28,
  174. MV_PCI_XBAR_TMOUT = 0x1d04,
  175. MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
  176. MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
  177. MV_PCI_ERR_ATTRIBUTE = 0x1d48,
  178. MV_PCI_ERR_COMMAND = 0x1d50,
  179. PCI_IRQ_CAUSE = 0x1d58,
  180. PCI_IRQ_MASK = 0x1d5c,
  181. PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
  182. PCIE_IRQ_CAUSE = 0x1900,
  183. PCIE_IRQ_MASK = 0x1910,
  184. PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
  185. /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
  186. PCI_HC_MAIN_IRQ_CAUSE = 0x1d60,
  187. PCI_HC_MAIN_IRQ_MASK = 0x1d64,
  188. SOC_HC_MAIN_IRQ_CAUSE = 0x20020,
  189. SOC_HC_MAIN_IRQ_MASK = 0x20024,
  190. ERR_IRQ = (1 << 0), /* shift by (2 * port #) */
  191. DONE_IRQ = (1 << 1), /* shift by (2 * port #) */
  192. HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
  193. HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
  194. DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
  195. DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */
  196. PCI_ERR = (1 << 18),
  197. TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */
  198. TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */
  199. PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */
  200. PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */
  201. ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */
  202. GPIO_INT = (1 << 22),
  203. SELF_INT = (1 << 23),
  204. TWSI_INT = (1 << 24),
  205. HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
  206. HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
  207. HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
  208. /* SATAHC registers */
  209. HC_CFG = 0x00,
  210. HC_IRQ_CAUSE = 0x14,
  211. DMA_IRQ = (1 << 0), /* shift by port # */
  212. HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
  213. DEV_IRQ = (1 << 8), /* shift by port # */
  214. /*
  215. * Per-HC (Host-Controller) interrupt coalescing feature.
  216. * This is present on all chip generations.
  217. *
  218. * Coalescing defers the interrupt until either the IO_THRESHOLD
  219. * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
  220. */
  221. HC_IRQ_COAL_IO_THRESHOLD = 0x000c,
  222. HC_IRQ_COAL_TIME_THRESHOLD = 0x0010,
  223. SOC_LED_CTRL = 0x2c,
  224. SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */
  225. SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */
  226. /* with dev activity LED */
  227. /* Shadow block registers */
  228. SHD_BLK = 0x100,
  229. SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */
  230. /* SATA registers */
  231. SATA_STATUS = 0x300, /* ctrl, err regs follow status */
  232. SATA_ACTIVE = 0x350,
  233. FIS_IRQ_CAUSE = 0x364,
  234. FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */
  235. LTMODE = 0x30c, /* requires read-after-write */
  236. LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
  237. PHY_MODE2 = 0x330,
  238. PHY_MODE3 = 0x310,
  239. PHY_MODE4 = 0x314, /* requires read-after-write */
  240. PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
  241. PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
  242. PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
  243. PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
  244. SATA_IFCTL = 0x344,
  245. SATA_TESTCTL = 0x348,
  246. SATA_IFSTAT = 0x34c,
  247. VENDOR_UNIQUE_FIS = 0x35c,
  248. FISCFG = 0x360,
  249. FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
  250. FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
  251. PHY_MODE9_GEN2 = 0x398,
  252. PHY_MODE9_GEN1 = 0x39c,
  253. PHYCFG_OFS = 0x3a0, /* only in 65n devices */
  254. MV5_PHY_MODE = 0x74,
  255. MV5_LTMODE = 0x30,
  256. MV5_PHY_CTL = 0x0C,
  257. SATA_IFCFG = 0x050,
  258. MV_M2_PREAMP_MASK = 0x7e0,
  259. /* Port registers */
  260. EDMA_CFG = 0,
  261. EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
  262. EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
  263. EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
  264. EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
  265. EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
  266. EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
  267. EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
  268. EDMA_ERR_IRQ_CAUSE = 0x8,
  269. EDMA_ERR_IRQ_MASK = 0xc,
  270. EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
  271. EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
  272. EDMA_ERR_DEV = (1 << 2), /* device error */
  273. EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
  274. EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
  275. EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
  276. EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
  277. EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
  278. EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
  279. EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
  280. EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
  281. EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
  282. EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
  283. EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
  284. EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
  285. EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
  286. EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
  287. EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
  288. EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
  289. EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
  290. EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
  291. EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
  292. EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
  293. EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
  294. EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
  295. EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
  296. EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
  297. EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
  298. EDMA_ERR_OVERRUN_5 = (1 << 5),
  299. EDMA_ERR_UNDERRUN_5 = (1 << 6),
  300. EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
  301. EDMA_ERR_LNK_CTRL_RX_1 |
  302. EDMA_ERR_LNK_CTRL_RX_3 |
  303. EDMA_ERR_LNK_CTRL_TX,
  304. EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
  305. EDMA_ERR_PRD_PAR |
  306. EDMA_ERR_DEV_DCON |
  307. EDMA_ERR_DEV_CON |
  308. EDMA_ERR_SERR |
  309. EDMA_ERR_SELF_DIS |
  310. EDMA_ERR_CRQB_PAR |
  311. EDMA_ERR_CRPB_PAR |
  312. EDMA_ERR_INTRL_PAR |
  313. EDMA_ERR_IORDY |
  314. EDMA_ERR_LNK_CTRL_RX_2 |
  315. EDMA_ERR_LNK_DATA_RX |
  316. EDMA_ERR_LNK_DATA_TX |
  317. EDMA_ERR_TRANS_PROTO,
  318. EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
  319. EDMA_ERR_PRD_PAR |
  320. EDMA_ERR_DEV_DCON |
  321. EDMA_ERR_DEV_CON |
  322. EDMA_ERR_OVERRUN_5 |
  323. EDMA_ERR_UNDERRUN_5 |
  324. EDMA_ERR_SELF_DIS_5 |
  325. EDMA_ERR_CRQB_PAR |
  326. EDMA_ERR_CRPB_PAR |
  327. EDMA_ERR_INTRL_PAR |
  328. EDMA_ERR_IORDY,
  329. EDMA_REQ_Q_BASE_HI = 0x10,
  330. EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */
  331. EDMA_REQ_Q_OUT_PTR = 0x18,
  332. EDMA_REQ_Q_PTR_SHIFT = 5,
  333. EDMA_RSP_Q_BASE_HI = 0x1c,
  334. EDMA_RSP_Q_IN_PTR = 0x20,
  335. EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */
  336. EDMA_RSP_Q_PTR_SHIFT = 3,
  337. EDMA_CMD = 0x28, /* EDMA command register */
  338. EDMA_EN = (1 << 0), /* enable EDMA */
  339. EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
  340. EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
  341. EDMA_STATUS = 0x30, /* EDMA engine status */
  342. EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
  343. EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
  344. EDMA_IORDY_TMOUT = 0x34,
  345. EDMA_ARB_CFG = 0x38,
  346. EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */
  347. EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */
  348. BMDMA_CMD = 0x224, /* bmdma command register */
  349. BMDMA_STATUS = 0x228, /* bmdma status register */
  350. BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */
  351. BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */
  352. /* Host private flags (hp_flags) */
  353. MV_HP_FLAG_MSI = (1 << 0),
  354. MV_HP_ERRATA_50XXB0 = (1 << 1),
  355. MV_HP_ERRATA_50XXB2 = (1 << 2),
  356. MV_HP_ERRATA_60X1B2 = (1 << 3),
  357. MV_HP_ERRATA_60X1C0 = (1 << 4),
  358. MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
  359. MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
  360. MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
  361. MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
  362. MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
  363. MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
  364. MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */
  365. /* Port private flags (pp_flags) */
  366. MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
  367. MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
  368. MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
  369. MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
  370. MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */
  371. };
  372. #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
  373. #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
  374. #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
  375. #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
  376. #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
  377. #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
  378. #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
  379. enum {
  380. /* DMA boundary 0xffff is required by the s/g splitting
  381. * we need on /length/ in mv_fill-sg().
  382. */
  383. MV_DMA_BOUNDARY = 0xffffU,
  384. /* mask of register bits containing lower 32 bits
  385. * of EDMA request queue DMA address
  386. */
  387. EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
  388. /* ditto, for response queue */
  389. EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
  390. };
  391. enum chip_type {
  392. chip_504x,
  393. chip_508x,
  394. chip_5080,
  395. chip_604x,
  396. chip_608x,
  397. chip_6042,
  398. chip_7042,
  399. chip_soc,
  400. };
  401. /* Command ReQuest Block: 32B */
  402. struct mv_crqb {
  403. __le32 sg_addr;
  404. __le32 sg_addr_hi;
  405. __le16 ctrl_flags;
  406. __le16 ata_cmd[11];
  407. };
  408. struct mv_crqb_iie {
  409. __le32 addr;
  410. __le32 addr_hi;
  411. __le32 flags;
  412. __le32 len;
  413. __le32 ata_cmd[4];
  414. };
  415. /* Command ResPonse Block: 8B */
  416. struct mv_crpb {
  417. __le16 id;
  418. __le16 flags;
  419. __le32 tmstmp;
  420. };
  421. /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
  422. struct mv_sg {
  423. __le32 addr;
  424. __le32 flags_size;
  425. __le32 addr_hi;
  426. __le32 reserved;
  427. };
  428. /*
  429. * We keep a local cache of a few frequently accessed port
  430. * registers here, to avoid having to read them (very slow)
  431. * when switching between EDMA and non-EDMA modes.
  432. */
  433. struct mv_cached_regs {
  434. u32 fiscfg;
  435. u32 ltmode;
  436. u32 haltcond;
  437. u32 unknown_rsvd;
  438. };
  439. struct mv_port_priv {
  440. struct mv_crqb *crqb;
  441. dma_addr_t crqb_dma;
  442. struct mv_crpb *crpb;
  443. dma_addr_t crpb_dma;
  444. struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
  445. dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
  446. unsigned int req_idx;
  447. unsigned int resp_idx;
  448. u32 pp_flags;
  449. struct mv_cached_regs cached;
  450. unsigned int delayed_eh_pmp_map;
  451. };
  452. struct mv_port_signal {
  453. u32 amps;
  454. u32 pre;
  455. };
  456. struct mv_host_priv {
  457. u32 hp_flags;
  458. unsigned int board_idx;
  459. u32 main_irq_mask;
  460. struct mv_port_signal signal[8];
  461. const struct mv_hw_ops *ops;
  462. int n_ports;
  463. void __iomem *base;
  464. void __iomem *main_irq_cause_addr;
  465. void __iomem *main_irq_mask_addr;
  466. u32 irq_cause_offset;
  467. u32 irq_mask_offset;
  468. u32 unmask_all_irqs;
  469. /*
  470. * Needed on some devices that require their clocks to be enabled.
  471. * These are optional: if the platform device does not have any
  472. * clocks, they won't be used. Also, if the underlying hardware
  473. * does not support the common clock framework (CONFIG_HAVE_CLK=n),
  474. * all the clock operations become no-ops (see clk.h).
  475. */
  476. struct clk *clk;
  477. struct clk **port_clks;
  478. /*
  479. * These consistent DMA memory pools give us guaranteed
  480. * alignment for hardware-accessed data structures,
  481. * and less memory waste in accomplishing the alignment.
  482. */
  483. struct dma_pool *crqb_pool;
  484. struct dma_pool *crpb_pool;
  485. struct dma_pool *sg_tbl_pool;
  486. };
  487. struct mv_hw_ops {
  488. void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
  489. unsigned int port);
  490. void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
  491. void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
  492. void __iomem *mmio);
  493. int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
  494. unsigned int n_hc);
  495. void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
  496. void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
  497. };
  498. static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
  499. static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
  500. static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
  501. static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
  502. static int mv_port_start(struct ata_port *ap);
  503. static void mv_port_stop(struct ata_port *ap);
  504. static int mv_qc_defer(struct ata_queued_cmd *qc);
  505. static void mv_qc_prep(struct ata_queued_cmd *qc);
  506. static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
  507. static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
  508. static int mv_hardreset(struct ata_link *link, unsigned int *class,
  509. unsigned long deadline);
  510. static void mv_eh_freeze(struct ata_port *ap);
  511. static void mv_eh_thaw(struct ata_port *ap);
  512. static void mv6_dev_config(struct ata_device *dev);
  513. static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  514. unsigned int port);
  515. static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
  516. static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
  517. void __iomem *mmio);
  518. static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  519. unsigned int n_hc);
  520. static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
  521. static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
  522. static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  523. unsigned int port);
  524. static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
  525. static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
  526. void __iomem *mmio);
  527. static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  528. unsigned int n_hc);
  529. static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
  530. static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
  531. void __iomem *mmio);
  532. static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
  533. void __iomem *mmio);
  534. static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
  535. void __iomem *mmio, unsigned int n_hc);
  536. static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
  537. void __iomem *mmio);
  538. static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
  539. static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
  540. void __iomem *mmio, unsigned int port);
  541. static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
  542. static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
  543. unsigned int port_no);
  544. static int mv_stop_edma(struct ata_port *ap);
  545. static int mv_stop_edma_engine(void __iomem *port_mmio);
  546. static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
  547. static void mv_pmp_select(struct ata_port *ap, int pmp);
  548. static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
  549. unsigned long deadline);
  550. static int mv_softreset(struct ata_link *link, unsigned int *class,
  551. unsigned long deadline);
  552. static void mv_pmp_error_handler(struct ata_port *ap);
  553. static void mv_process_crpb_entries(struct ata_port *ap,
  554. struct mv_port_priv *pp);
  555. static void mv_sff_irq_clear(struct ata_port *ap);
  556. static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
  557. static void mv_bmdma_setup(struct ata_queued_cmd *qc);
  558. static void mv_bmdma_start(struct ata_queued_cmd *qc);
  559. static void mv_bmdma_stop(struct ata_queued_cmd *qc);
  560. static u8 mv_bmdma_status(struct ata_port *ap);
  561. static u8 mv_sff_check_status(struct ata_port *ap);
  562. /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
  563. * because we have to allow room for worst case splitting of
  564. * PRDs for 64K boundaries in mv_fill_sg().
  565. */
  566. #ifdef CONFIG_PCI
  567. static struct scsi_host_template mv5_sht = {
  568. ATA_BASE_SHT(DRV_NAME),
  569. .sg_tablesize = MV_MAX_SG_CT / 2,
  570. .dma_boundary = MV_DMA_BOUNDARY,
  571. };
  572. #endif
  573. static struct scsi_host_template mv6_sht = {
  574. ATA_NCQ_SHT(DRV_NAME),
  575. .can_queue = MV_MAX_Q_DEPTH - 1,
  576. .sg_tablesize = MV_MAX_SG_CT / 2,
  577. .dma_boundary = MV_DMA_BOUNDARY,
  578. };
  579. static struct ata_port_operations mv5_ops = {
  580. .inherits = &ata_sff_port_ops,
  581. .lost_interrupt = ATA_OP_NULL,
  582. .qc_defer = mv_qc_defer,
  583. .qc_prep = mv_qc_prep,
  584. .qc_issue = mv_qc_issue,
  585. .freeze = mv_eh_freeze,
  586. .thaw = mv_eh_thaw,
  587. .hardreset = mv_hardreset,
  588. .scr_read = mv5_scr_read,
  589. .scr_write = mv5_scr_write,
  590. .port_start = mv_port_start,
  591. .port_stop = mv_port_stop,
  592. };
  593. static struct ata_port_operations mv6_ops = {
  594. .inherits = &ata_bmdma_port_ops,
  595. .lost_interrupt = ATA_OP_NULL,
  596. .qc_defer = mv_qc_defer,
  597. .qc_prep = mv_qc_prep,
  598. .qc_issue = mv_qc_issue,
  599. .dev_config = mv6_dev_config,
  600. .freeze = mv_eh_freeze,
  601. .thaw = mv_eh_thaw,
  602. .hardreset = mv_hardreset,
  603. .softreset = mv_softreset,
  604. .pmp_hardreset = mv_pmp_hardreset,
  605. .pmp_softreset = mv_softreset,
  606. .error_handler = mv_pmp_error_handler,
  607. .scr_read = mv_scr_read,
  608. .scr_write = mv_scr_write,
  609. .sff_check_status = mv_sff_check_status,
  610. .sff_irq_clear = mv_sff_irq_clear,
  611. .check_atapi_dma = mv_check_atapi_dma,
  612. .bmdma_setup = mv_bmdma_setup,
  613. .bmdma_start = mv_bmdma_start,
  614. .bmdma_stop = mv_bmdma_stop,
  615. .bmdma_status = mv_bmdma_status,
  616. .port_start = mv_port_start,
  617. .port_stop = mv_port_stop,
  618. };
  619. static struct ata_port_operations mv_iie_ops = {
  620. .inherits = &mv6_ops,
  621. .dev_config = ATA_OP_NULL,
  622. .qc_prep = mv_qc_prep_iie,
  623. };
  624. static const struct ata_port_info mv_port_info[] = {
  625. { /* chip_504x */
  626. .flags = MV_GEN_I_FLAGS,
  627. .pio_mask = ATA_PIO4,
  628. .udma_mask = ATA_UDMA6,
  629. .port_ops = &mv5_ops,
  630. },
  631. { /* chip_508x */
  632. .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
  633. .pio_mask = ATA_PIO4,
  634. .udma_mask = ATA_UDMA6,
  635. .port_ops = &mv5_ops,
  636. },
  637. { /* chip_5080 */
  638. .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
  639. .pio_mask = ATA_PIO4,
  640. .udma_mask = ATA_UDMA6,
  641. .port_ops = &mv5_ops,
  642. },
  643. { /* chip_604x */
  644. .flags = MV_GEN_II_FLAGS,
  645. .pio_mask = ATA_PIO4,
  646. .udma_mask = ATA_UDMA6,
  647. .port_ops = &mv6_ops,
  648. },
  649. { /* chip_608x */
  650. .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
  651. .pio_mask = ATA_PIO4,
  652. .udma_mask = ATA_UDMA6,
  653. .port_ops = &mv6_ops,
  654. },
  655. { /* chip_6042 */
  656. .flags = MV_GEN_IIE_FLAGS,
  657. .pio_mask = ATA_PIO4,
  658. .udma_mask = ATA_UDMA6,
  659. .port_ops = &mv_iie_ops,
  660. },
  661. { /* chip_7042 */
  662. .flags = MV_GEN_IIE_FLAGS,
  663. .pio_mask = ATA_PIO4,
  664. .udma_mask = ATA_UDMA6,
  665. .port_ops = &mv_iie_ops,
  666. },
  667. { /* chip_soc */
  668. .flags = MV_GEN_IIE_FLAGS,
  669. .pio_mask = ATA_PIO4,
  670. .udma_mask = ATA_UDMA6,
  671. .port_ops = &mv_iie_ops,
  672. },
  673. };
  674. static const struct pci_device_id mv_pci_tbl[] = {
  675. { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
  676. { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
  677. { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
  678. { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
  679. /* RocketRAID 1720/174x have different identifiers */
  680. { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
  681. { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
  682. { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
  683. { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
  684. { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
  685. { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
  686. { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
  687. { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
  688. { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
  689. /* Adaptec 1430SA */
  690. { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
  691. /* Marvell 7042 support */
  692. { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
  693. /* Highpoint RocketRAID PCIe series */
  694. { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
  695. { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
  696. { } /* terminate list */
  697. };
  698. static const struct mv_hw_ops mv5xxx_ops = {
  699. .phy_errata = mv5_phy_errata,
  700. .enable_leds = mv5_enable_leds,
  701. .read_preamp = mv5_read_preamp,
  702. .reset_hc = mv5_reset_hc,
  703. .reset_flash = mv5_reset_flash,
  704. .reset_bus = mv5_reset_bus,
  705. };
  706. static const struct mv_hw_ops mv6xxx_ops = {
  707. .phy_errata = mv6_phy_errata,
  708. .enable_leds = mv6_enable_leds,
  709. .read_preamp = mv6_read_preamp,
  710. .reset_hc = mv6_reset_hc,
  711. .reset_flash = mv6_reset_flash,
  712. .reset_bus = mv_reset_pci_bus,
  713. };
  714. static const struct mv_hw_ops mv_soc_ops = {
  715. .phy_errata = mv6_phy_errata,
  716. .enable_leds = mv_soc_enable_leds,
  717. .read_preamp = mv_soc_read_preamp,
  718. .reset_hc = mv_soc_reset_hc,
  719. .reset_flash = mv_soc_reset_flash,
  720. .reset_bus = mv_soc_reset_bus,
  721. };
  722. static const struct mv_hw_ops mv_soc_65n_ops = {
  723. .phy_errata = mv_soc_65n_phy_errata,
  724. .enable_leds = mv_soc_enable_leds,
  725. .reset_hc = mv_soc_reset_hc,
  726. .reset_flash = mv_soc_reset_flash,
  727. .reset_bus = mv_soc_reset_bus,
  728. };
  729. /*
  730. * Functions
  731. */
  732. static inline void writelfl(unsigned long data, void __iomem *addr)
  733. {
  734. writel(data, addr);
  735. (void) readl(addr); /* flush to avoid PCI posted write */
  736. }
  737. static inline unsigned int mv_hc_from_port(unsigned int port)
  738. {
  739. return port >> MV_PORT_HC_SHIFT;
  740. }
  741. static inline unsigned int mv_hardport_from_port(unsigned int port)
  742. {
  743. return port & MV_PORT_MASK;
  744. }
  745. /*
  746. * Consolidate some rather tricky bit shift calculations.
  747. * This is hot-path stuff, so not a function.
  748. * Simple code, with two return values, so macro rather than inline.
  749. *
  750. * port is the sole input, in range 0..7.
  751. * shift is one output, for use with main_irq_cause / main_irq_mask registers.
  752. * hardport is the other output, in range 0..3.
  753. *
  754. * Note that port and hardport may be the same variable in some cases.
  755. */
  756. #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
  757. { \
  758. shift = mv_hc_from_port(port) * HC_SHIFT; \
  759. hardport = mv_hardport_from_port(port); \
  760. shift += hardport * 2; \
  761. }
  762. static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
  763. {
  764. return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
  765. }
  766. static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
  767. unsigned int port)
  768. {
  769. return mv_hc_base(base, mv_hc_from_port(port));
  770. }
  771. static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
  772. {
  773. return mv_hc_base_from_port(base, port) +
  774. MV_SATAHC_ARBTR_REG_SZ +
  775. (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
  776. }
  777. static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
  778. {
  779. void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
  780. unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
  781. return hc_mmio + ofs;
  782. }
  783. static inline void __iomem *mv_host_base(struct ata_host *host)
  784. {
  785. struct mv_host_priv *hpriv = host->private_data;
  786. return hpriv->base;
  787. }
  788. static inline void __iomem *mv_ap_base(struct ata_port *ap)
  789. {
  790. return mv_port_base(mv_host_base(ap->host), ap->port_no);
  791. }
  792. static inline int mv_get_hc_count(unsigned long port_flags)
  793. {
  794. return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
  795. }
  796. /**
  797. * mv_save_cached_regs - (re-)initialize cached port registers
  798. * @ap: the port whose registers we are caching
  799. *
  800. * Initialize the local cache of port registers,
  801. * so that reading them over and over again can
  802. * be avoided on the hotter paths of this driver.
  803. * This saves a few microseconds each time we switch
  804. * to/from EDMA mode to perform (eg.) a drive cache flush.
  805. */
  806. static void mv_save_cached_regs(struct ata_port *ap)
  807. {
  808. void __iomem *port_mmio = mv_ap_base(ap);
  809. struct mv_port_priv *pp = ap->private_data;
  810. pp->cached.fiscfg = readl(port_mmio + FISCFG);
  811. pp->cached.ltmode = readl(port_mmio + LTMODE);
  812. pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
  813. pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
  814. }
  815. /**
  816. * mv_write_cached_reg - write to a cached port register
  817. * @addr: hardware address of the register
  818. * @old: pointer to cached value of the register
  819. * @new: new value for the register
  820. *
  821. * Write a new value to a cached register,
  822. * but only if the value is different from before.
  823. */
  824. static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
  825. {
  826. if (new != *old) {
  827. unsigned long laddr;
  828. *old = new;
  829. /*
  830. * Workaround for 88SX60x1-B2 FEr SATA#13:
  831. * Read-after-write is needed to prevent generating 64-bit
  832. * write cycles on the PCI bus for SATA interface registers
  833. * at offsets ending in 0x4 or 0xc.
  834. *
  835. * Looks like a lot of fuss, but it avoids an unnecessary
  836. * +1 usec read-after-write delay for unaffected registers.
  837. */
  838. laddr = (long)addr & 0xffff;
  839. if (laddr >= 0x300 && laddr <= 0x33c) {
  840. laddr &= 0x000f;
  841. if (laddr == 0x4 || laddr == 0xc) {
  842. writelfl(new, addr); /* read after write */
  843. return;
  844. }
  845. }
  846. writel(new, addr); /* unaffected by the errata */
  847. }
  848. }
  849. static void mv_set_edma_ptrs(void __iomem *port_mmio,
  850. struct mv_host_priv *hpriv,
  851. struct mv_port_priv *pp)
  852. {
  853. u32 index;
  854. /*
  855. * initialize request queue
  856. */
  857. pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
  858. index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
  859. WARN_ON(pp->crqb_dma & 0x3ff);
  860. writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
  861. writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
  862. port_mmio + EDMA_REQ_Q_IN_PTR);
  863. writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
  864. /*
  865. * initialize response queue
  866. */
  867. pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
  868. index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
  869. WARN_ON(pp->crpb_dma & 0xff);
  870. writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
  871. writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
  872. writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
  873. port_mmio + EDMA_RSP_Q_OUT_PTR);
  874. }
  875. static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
  876. {
  877. /*
  878. * When writing to the main_irq_mask in hardware,
  879. * we must ensure exclusivity between the interrupt coalescing bits
  880. * and the corresponding individual port DONE_IRQ bits.
  881. *
  882. * Note that this register is really an "IRQ enable" register,
  883. * not an "IRQ mask" register as Marvell's naming might suggest.
  884. */
  885. if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
  886. mask &= ~DONE_IRQ_0_3;
  887. if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
  888. mask &= ~DONE_IRQ_4_7;
  889. writelfl(mask, hpriv->main_irq_mask_addr);
  890. }
  891. static void mv_set_main_irq_mask(struct ata_host *host,
  892. u32 disable_bits, u32 enable_bits)
  893. {
  894. struct mv_host_priv *hpriv = host->private_data;
  895. u32 old_mask, new_mask;
  896. old_mask = hpriv->main_irq_mask;
  897. new_mask = (old_mask & ~disable_bits) | enable_bits;
  898. if (new_mask != old_mask) {
  899. hpriv->main_irq_mask = new_mask;
  900. mv_write_main_irq_mask(new_mask, hpriv);
  901. }
  902. }
  903. static void mv_enable_port_irqs(struct ata_port *ap,
  904. unsigned int port_bits)
  905. {
  906. unsigned int shift, hardport, port = ap->port_no;
  907. u32 disable_bits, enable_bits;
  908. MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
  909. disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
  910. enable_bits = port_bits << shift;
  911. mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
  912. }
  913. static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
  914. void __iomem *port_mmio,
  915. unsigned int port_irqs)
  916. {
  917. struct mv_host_priv *hpriv = ap->host->private_data;
  918. int hardport = mv_hardport_from_port(ap->port_no);
  919. void __iomem *hc_mmio = mv_hc_base_from_port(
  920. mv_host_base(ap->host), ap->port_no);
  921. u32 hc_irq_cause;
  922. /* clear EDMA event indicators, if any */
  923. writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
  924. /* clear pending irq events */
  925. hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
  926. writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
  927. /* clear FIS IRQ Cause */
  928. if (IS_GEN_IIE(hpriv))
  929. writelfl(0, port_mmio + FIS_IRQ_CAUSE);
  930. mv_enable_port_irqs(ap, port_irqs);
  931. }
  932. static void mv_set_irq_coalescing(struct ata_host *host,
  933. unsigned int count, unsigned int usecs)
  934. {
  935. struct mv_host_priv *hpriv = host->private_data;
  936. void __iomem *mmio = hpriv->base, *hc_mmio;
  937. u32 coal_enable = 0;
  938. unsigned long flags;
  939. unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
  940. const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
  941. ALL_PORTS_COAL_DONE;
  942. /* Disable IRQ coalescing if either threshold is zero */
  943. if (!usecs || !count) {
  944. clks = count = 0;
  945. } else {
  946. /* Respect maximum limits of the hardware */
  947. clks = usecs * COAL_CLOCKS_PER_USEC;
  948. if (clks > MAX_COAL_TIME_THRESHOLD)
  949. clks = MAX_COAL_TIME_THRESHOLD;
  950. if (count > MAX_COAL_IO_COUNT)
  951. count = MAX_COAL_IO_COUNT;
  952. }
  953. spin_lock_irqsave(&host->lock, flags);
  954. mv_set_main_irq_mask(host, coal_disable, 0);
  955. if (is_dual_hc && !IS_GEN_I(hpriv)) {
  956. /*
  957. * GEN_II/GEN_IIE with dual host controllers:
  958. * one set of global thresholds for the entire chip.
  959. */
  960. writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD);
  961. writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
  962. /* clear leftover coal IRQ bit */
  963. writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
  964. if (count)
  965. coal_enable = ALL_PORTS_COAL_DONE;
  966. clks = count = 0; /* force clearing of regular regs below */
  967. }
  968. /*
  969. * All chips: independent thresholds for each HC on the chip.
  970. */
  971. hc_mmio = mv_hc_base_from_port(mmio, 0);
  972. writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
  973. writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
  974. writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
  975. if (count)
  976. coal_enable |= PORTS_0_3_COAL_DONE;
  977. if (is_dual_hc) {
  978. hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
  979. writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
  980. writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
  981. writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
  982. if (count)
  983. coal_enable |= PORTS_4_7_COAL_DONE;
  984. }
  985. mv_set_main_irq_mask(host, 0, coal_enable);
  986. spin_unlock_irqrestore(&host->lock, flags);
  987. }
  988. /**
  989. * mv_start_edma - Enable eDMA engine
  990. * @base: port base address
  991. * @pp: port private data
  992. *
  993. * Verify the local cache of the eDMA state is accurate with a
  994. * WARN_ON.
  995. *
  996. * LOCKING:
  997. * Inherited from caller.
  998. */
  999. static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
  1000. struct mv_port_priv *pp, u8 protocol)
  1001. {
  1002. int want_ncq = (protocol == ATA_PROT_NCQ);
  1003. if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
  1004. int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
  1005. if (want_ncq != using_ncq)
  1006. mv_stop_edma(ap);
  1007. }
  1008. if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
  1009. struct mv_host_priv *hpriv = ap->host->private_data;
  1010. mv_edma_cfg(ap, want_ncq, 1);
  1011. mv_set_edma_ptrs(port_mmio, hpriv, pp);
  1012. mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
  1013. writelfl(EDMA_EN, port_mmio + EDMA_CMD);
  1014. pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
  1015. }
  1016. }
  1017. static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
  1018. {
  1019. void __iomem *port_mmio = mv_ap_base(ap);
  1020. const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
  1021. const int per_loop = 5, timeout = (15 * 1000 / per_loop);
  1022. int i;
  1023. /*
  1024. * Wait for the EDMA engine to finish transactions in progress.
  1025. * No idea what a good "timeout" value might be, but measurements
  1026. * indicate that it often requires hundreds of microseconds
  1027. * with two drives in-use. So we use the 15msec value above
  1028. * as a rough guess at what even more drives might require.
  1029. */
  1030. for (i = 0; i < timeout; ++i) {
  1031. u32 edma_stat = readl(port_mmio + EDMA_STATUS);
  1032. if ((edma_stat & empty_idle) == empty_idle)
  1033. break;
  1034. udelay(per_loop);
  1035. }
  1036. /* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
  1037. }
  1038. /**
  1039. * mv_stop_edma_engine - Disable eDMA engine
  1040. * @port_mmio: io base address
  1041. *
  1042. * LOCKING:
  1043. * Inherited from caller.
  1044. */
  1045. static int mv_stop_edma_engine(void __iomem *port_mmio)
  1046. {
  1047. int i;
  1048. /* Disable eDMA. The disable bit auto clears. */
  1049. writelfl(EDMA_DS, port_mmio + EDMA_CMD);
  1050. /* Wait for the chip to confirm eDMA is off. */
  1051. for (i = 10000; i > 0; i--) {
  1052. u32 reg = readl(port_mmio + EDMA_CMD);
  1053. if (!(reg & EDMA_EN))
  1054. return 0;
  1055. udelay(10);
  1056. }
  1057. return -EIO;
  1058. }
  1059. static int mv_stop_edma(struct ata_port *ap)
  1060. {
  1061. void __iomem *port_mmio = mv_ap_base(ap);
  1062. struct mv_port_priv *pp = ap->private_data;
  1063. int err = 0;
  1064. if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
  1065. return 0;
  1066. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  1067. mv_wait_for_edma_empty_idle(ap);
  1068. if (mv_stop_edma_engine(port_mmio)) {
  1069. ata_port_err(ap, "Unable to stop eDMA\n");
  1070. err = -EIO;
  1071. }
  1072. mv_edma_cfg(ap, 0, 0);
  1073. return err;
  1074. }
  1075. #ifdef ATA_DEBUG
  1076. static void mv_dump_mem(void __iomem *start, unsigned bytes)
  1077. {
  1078. int b, w;
  1079. for (b = 0; b < bytes; ) {
  1080. DPRINTK("%p: ", start + b);
  1081. for (w = 0; b < bytes && w < 4; w++) {
  1082. printk("%08x ", readl(start + b));
  1083. b += sizeof(u32);
  1084. }
  1085. printk("\n");
  1086. }
  1087. }
  1088. #endif
  1089. #if defined(ATA_DEBUG) || defined(CONFIG_PCI)
  1090. static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
  1091. {
  1092. #ifdef ATA_DEBUG
  1093. int b, w;
  1094. u32 dw;
  1095. for (b = 0; b < bytes; ) {
  1096. DPRINTK("%02x: ", b);
  1097. for (w = 0; b < bytes && w < 4; w++) {
  1098. (void) pci_read_config_dword(pdev, b, &dw);
  1099. printk("%08x ", dw);
  1100. b += sizeof(u32);
  1101. }
  1102. printk("\n");
  1103. }
  1104. #endif
  1105. }
  1106. #endif
  1107. static void mv_dump_all_regs(void __iomem *mmio_base, int port,
  1108. struct pci_dev *pdev)
  1109. {
  1110. #ifdef ATA_DEBUG
  1111. void __iomem *hc_base = mv_hc_base(mmio_base,
  1112. port >> MV_PORT_HC_SHIFT);
  1113. void __iomem *port_base;
  1114. int start_port, num_ports, p, start_hc, num_hcs, hc;
  1115. if (0 > port) {
  1116. start_hc = start_port = 0;
  1117. num_ports = 8; /* shld be benign for 4 port devs */
  1118. num_hcs = 2;
  1119. } else {
  1120. start_hc = port >> MV_PORT_HC_SHIFT;
  1121. start_port = port;
  1122. num_ports = num_hcs = 1;
  1123. }
  1124. DPRINTK("All registers for port(s) %u-%u:\n", start_port,
  1125. num_ports > 1 ? num_ports - 1 : start_port);
  1126. if (NULL != pdev) {
  1127. DPRINTK("PCI config space regs:\n");
  1128. mv_dump_pci_cfg(pdev, 0x68);
  1129. }
  1130. DPRINTK("PCI regs:\n");
  1131. mv_dump_mem(mmio_base+0xc00, 0x3c);
  1132. mv_dump_mem(mmio_base+0xd00, 0x34);
  1133. mv_dump_mem(mmio_base+0xf00, 0x4);
  1134. mv_dump_mem(mmio_base+0x1d00, 0x6c);
  1135. for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
  1136. hc_base = mv_hc_base(mmio_base, hc);
  1137. DPRINTK("HC regs (HC %i):\n", hc);
  1138. mv_dump_mem(hc_base, 0x1c);
  1139. }
  1140. for (p = start_port; p < start_port + num_ports; p++) {
  1141. port_base = mv_port_base(mmio_base, p);
  1142. DPRINTK("EDMA regs (port %i):\n", p);
  1143. mv_dump_mem(port_base, 0x54);
  1144. DPRINTK("SATA regs (port %i):\n", p);
  1145. mv_dump_mem(port_base+0x300, 0x60);
  1146. }
  1147. #endif
  1148. }
  1149. static unsigned int mv_scr_offset(unsigned int sc_reg_in)
  1150. {
  1151. unsigned int ofs;
  1152. switch (sc_reg_in) {
  1153. case SCR_STATUS:
  1154. case SCR_CONTROL:
  1155. case SCR_ERROR:
  1156. ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
  1157. break;
  1158. case SCR_ACTIVE:
  1159. ofs = SATA_ACTIVE; /* active is not with the others */
  1160. break;
  1161. default:
  1162. ofs = 0xffffffffU;
  1163. break;
  1164. }
  1165. return ofs;
  1166. }
  1167. static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
  1168. {
  1169. unsigned int ofs = mv_scr_offset(sc_reg_in);
  1170. if (ofs != 0xffffffffU) {
  1171. *val = readl(mv_ap_base(link->ap) + ofs);
  1172. return 0;
  1173. } else
  1174. return -EINVAL;
  1175. }
  1176. static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
  1177. {
  1178. unsigned int ofs = mv_scr_offset(sc_reg_in);
  1179. if (ofs != 0xffffffffU) {
  1180. void __iomem *addr = mv_ap_base(link->ap) + ofs;
  1181. if (sc_reg_in == SCR_CONTROL) {
  1182. /*
  1183. * Workaround for 88SX60x1 FEr SATA#26:
  1184. *
  1185. * COMRESETs have to take care not to accidentally
  1186. * put the drive to sleep when writing SCR_CONTROL.
  1187. * Setting bits 12..15 prevents this problem.
  1188. *
  1189. * So if we see an outbound COMMRESET, set those bits.
  1190. * Ditto for the followup write that clears the reset.
  1191. *
  1192. * The proprietary driver does this for
  1193. * all chip versions, and so do we.
  1194. */
  1195. if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
  1196. val |= 0xf000;
  1197. }
  1198. writelfl(val, addr);
  1199. return 0;
  1200. } else
  1201. return -EINVAL;
  1202. }
  1203. static void mv6_dev_config(struct ata_device *adev)
  1204. {
  1205. /*
  1206. * Deal with Gen-II ("mv6") hardware quirks/restrictions:
  1207. *
  1208. * Gen-II does not support NCQ over a port multiplier
  1209. * (no FIS-based switching).
  1210. */
  1211. if (adev->flags & ATA_DFLAG_NCQ) {
  1212. if (sata_pmp_attached(adev->link->ap)) {
  1213. adev->flags &= ~ATA_DFLAG_NCQ;
  1214. ata_dev_info(adev,
  1215. "NCQ disabled for command-based switching\n");
  1216. }
  1217. }
  1218. }
  1219. static int mv_qc_defer(struct ata_queued_cmd *qc)
  1220. {
  1221. struct ata_link *link = qc->dev->link;
  1222. struct ata_port *ap = link->ap;
  1223. struct mv_port_priv *pp = ap->private_data;
  1224. /*
  1225. * Don't allow new commands if we're in a delayed EH state
  1226. * for NCQ and/or FIS-based switching.
  1227. */
  1228. if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
  1229. return ATA_DEFER_PORT;
  1230. /* PIO commands need exclusive link: no other commands [DMA or PIO]
  1231. * can run concurrently.
  1232. * set excl_link when we want to send a PIO command in DMA mode
  1233. * or a non-NCQ command in NCQ mode.
  1234. * When we receive a command from that link, and there are no
  1235. * outstanding commands, mark a flag to clear excl_link and let
  1236. * the command go through.
  1237. */
  1238. if (unlikely(ap->excl_link)) {
  1239. if (link == ap->excl_link) {
  1240. if (ap->nr_active_links)
  1241. return ATA_DEFER_PORT;
  1242. qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
  1243. return 0;
  1244. } else
  1245. return ATA_DEFER_PORT;
  1246. }
  1247. /*
  1248. * If the port is completely idle, then allow the new qc.
  1249. */
  1250. if (ap->nr_active_links == 0)
  1251. return 0;
  1252. /*
  1253. * The port is operating in host queuing mode (EDMA) with NCQ
  1254. * enabled, allow multiple NCQ commands. EDMA also allows
  1255. * queueing multiple DMA commands but libata core currently
  1256. * doesn't allow it.
  1257. */
  1258. if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
  1259. (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
  1260. if (ata_is_ncq(qc->tf.protocol))
  1261. return 0;
  1262. else {
  1263. ap->excl_link = link;
  1264. return ATA_DEFER_PORT;
  1265. }
  1266. }
  1267. return ATA_DEFER_PORT;
  1268. }
  1269. static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
  1270. {
  1271. struct mv_port_priv *pp = ap->private_data;
  1272. void __iomem *port_mmio;
  1273. u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg;
  1274. u32 ltmode, *old_ltmode = &pp->cached.ltmode;
  1275. u32 haltcond, *old_haltcond = &pp->cached.haltcond;
  1276. ltmode = *old_ltmode & ~LTMODE_BIT8;
  1277. haltcond = *old_haltcond | EDMA_ERR_DEV;
  1278. if (want_fbs) {
  1279. fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
  1280. ltmode = *old_ltmode | LTMODE_BIT8;
  1281. if (want_ncq)
  1282. haltcond &= ~EDMA_ERR_DEV;
  1283. else
  1284. fiscfg |= FISCFG_WAIT_DEV_ERR;
  1285. } else {
  1286. fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
  1287. }
  1288. port_mmio = mv_ap_base(ap);
  1289. mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
  1290. mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
  1291. mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
  1292. }
  1293. static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
  1294. {
  1295. struct mv_host_priv *hpriv = ap->host->private_data;
  1296. u32 old, new;
  1297. /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
  1298. old = readl(hpriv->base + GPIO_PORT_CTL);
  1299. if (want_ncq)
  1300. new = old | (1 << 22);
  1301. else
  1302. new = old & ~(1 << 22);
  1303. if (new != old)
  1304. writel(new, hpriv->base + GPIO_PORT_CTL);
  1305. }
  1306. /**
  1307. * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
  1308. * @ap: Port being initialized
  1309. *
  1310. * There are two DMA modes on these chips: basic DMA, and EDMA.
  1311. *
  1312. * Bit-0 of the "EDMA RESERVED" register enables/disables use
  1313. * of basic DMA on the GEN_IIE versions of the chips.
  1314. *
  1315. * This bit survives EDMA resets, and must be set for basic DMA
  1316. * to function, and should be cleared when EDMA is active.
  1317. */
  1318. static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
  1319. {
  1320. struct mv_port_priv *pp = ap->private_data;
  1321. u32 new, *old = &pp->cached.unknown_rsvd;
  1322. if (enable_bmdma)
  1323. new = *old | 1;
  1324. else
  1325. new = *old & ~1;
  1326. mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
  1327. }
  1328. /*
  1329. * SOC chips have an issue whereby the HDD LEDs don't always blink
  1330. * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
  1331. * of the SOC takes care of it, generating a steady blink rate when
  1332. * any drive on the chip is active.
  1333. *
  1334. * Unfortunately, the blink mode is a global hardware setting for the SOC,
  1335. * so we must use it whenever at least one port on the SOC has NCQ enabled.
  1336. *
  1337. * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
  1338. * LED operation works then, and provides better (more accurate) feedback.
  1339. *
  1340. * Note that this code assumes that an SOC never has more than one HC onboard.
  1341. */
  1342. static void mv_soc_led_blink_enable(struct ata_port *ap)
  1343. {
  1344. struct ata_host *host = ap->host;
  1345. struct mv_host_priv *hpriv = host->private_data;
  1346. void __iomem *hc_mmio;
  1347. u32 led_ctrl;
  1348. if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
  1349. return;
  1350. hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
  1351. hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
  1352. led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
  1353. writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
  1354. }
  1355. static void mv_soc_led_blink_disable(struct ata_port *ap)
  1356. {
  1357. struct ata_host *host = ap->host;
  1358. struct mv_host_priv *hpriv = host->private_data;
  1359. void __iomem *hc_mmio;
  1360. u32 led_ctrl;
  1361. unsigned int port;
  1362. if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
  1363. return;
  1364. /* disable led-blink only if no ports are using NCQ */
  1365. for (port = 0; port < hpriv->n_ports; port++) {
  1366. struct ata_port *this_ap = host->ports[port];
  1367. struct mv_port_priv *pp = this_ap->private_data;
  1368. if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
  1369. return;
  1370. }
  1371. hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
  1372. hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
  1373. led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
  1374. writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
  1375. }
  1376. static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
  1377. {
  1378. u32 cfg;
  1379. struct mv_port_priv *pp = ap->private_data;
  1380. struct mv_host_priv *hpriv = ap->host->private_data;
  1381. void __iomem *port_mmio = mv_ap_base(ap);
  1382. /* set up non-NCQ EDMA configuration */
  1383. cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
  1384. pp->pp_flags &=
  1385. ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
  1386. if (IS_GEN_I(hpriv))
  1387. cfg |= (1 << 8); /* enab config burst size mask */
  1388. else if (IS_GEN_II(hpriv)) {
  1389. cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
  1390. mv_60x1_errata_sata25(ap, want_ncq);
  1391. } else if (IS_GEN_IIE(hpriv)) {
  1392. int want_fbs = sata_pmp_attached(ap);
  1393. /*
  1394. * Possible future enhancement:
  1395. *
  1396. * The chip can use FBS with non-NCQ, if we allow it,
  1397. * But first we need to have the error handling in place
  1398. * for this mode (datasheet section 7.3.15.4.2.3).
  1399. * So disallow non-NCQ FBS for now.
  1400. */
  1401. want_fbs &= want_ncq;
  1402. mv_config_fbs(ap, want_ncq, want_fbs);
  1403. if (want_fbs) {
  1404. pp->pp_flags |= MV_PP_FLAG_FBS_EN;
  1405. cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
  1406. }
  1407. cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
  1408. if (want_edma) {
  1409. cfg |= (1 << 22); /* enab 4-entry host queue cache */
  1410. if (!IS_SOC(hpriv))
  1411. cfg |= (1 << 18); /* enab early completion */
  1412. }
  1413. if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
  1414. cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
  1415. mv_bmdma_enable_iie(ap, !want_edma);
  1416. if (IS_SOC(hpriv)) {
  1417. if (want_ncq)
  1418. mv_soc_led_blink_enable(ap);
  1419. else
  1420. mv_soc_led_blink_disable(ap);
  1421. }
  1422. }
  1423. if (want_ncq) {
  1424. cfg |= EDMA_CFG_NCQ;
  1425. pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
  1426. }
  1427. writelfl(cfg, port_mmio + EDMA_CFG);
  1428. }
  1429. static void mv_port_free_dma_mem(struct ata_port *ap)
  1430. {
  1431. struct mv_host_priv *hpriv = ap->host->private_data;
  1432. struct mv_port_priv *pp = ap->private_data;
  1433. int tag;
  1434. if (pp->crqb) {
  1435. dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
  1436. pp->crqb = NULL;
  1437. }
  1438. if (pp->crpb) {
  1439. dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
  1440. pp->crpb = NULL;
  1441. }
  1442. /*
  1443. * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
  1444. * For later hardware, we have one unique sg_tbl per NCQ tag.
  1445. */
  1446. for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
  1447. if (pp->sg_tbl[tag]) {
  1448. if (tag == 0 || !IS_GEN_I(hpriv))
  1449. dma_pool_free(hpriv->sg_tbl_pool,
  1450. pp->sg_tbl[tag],
  1451. pp->sg_tbl_dma[tag]);
  1452. pp->sg_tbl[tag] = NULL;
  1453. }
  1454. }
  1455. }
  1456. /**
  1457. * mv_port_start - Port specific init/start routine.
  1458. * @ap: ATA channel to manipulate
  1459. *
  1460. * Allocate and point to DMA memory, init port private memory,
  1461. * zero indices.
  1462. *
  1463. * LOCKING:
  1464. * Inherited from caller.
  1465. */
  1466. static int mv_port_start(struct ata_port *ap)
  1467. {
  1468. struct device *dev = ap->host->dev;
  1469. struct mv_host_priv *hpriv = ap->host->private_data;
  1470. struct mv_port_priv *pp;
  1471. unsigned long flags;
  1472. int tag;
  1473. pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
  1474. if (!pp)
  1475. return -ENOMEM;
  1476. ap->private_data = pp;
  1477. pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
  1478. if (!pp->crqb)
  1479. return -ENOMEM;
  1480. memset(pp->crqb, 0, MV_CRQB_Q_SZ);
  1481. pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
  1482. if (!pp->crpb)
  1483. goto out_port_free_dma_mem;
  1484. memset(pp->crpb, 0, MV_CRPB_Q_SZ);
  1485. /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
  1486. if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
  1487. ap->flags |= ATA_FLAG_AN;
  1488. /*
  1489. * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
  1490. * For later hardware, we need one unique sg_tbl per NCQ tag.
  1491. */
  1492. for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
  1493. if (tag == 0 || !IS_GEN_I(hpriv)) {
  1494. pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
  1495. GFP_KERNEL, &pp->sg_tbl_dma[tag]);
  1496. if (!pp->sg_tbl[tag])
  1497. goto out_port_free_dma_mem;
  1498. } else {
  1499. pp->sg_tbl[tag] = pp->sg_tbl[0];
  1500. pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
  1501. }
  1502. }
  1503. spin_lock_irqsave(ap->lock, flags);
  1504. mv_save_cached_regs(ap);
  1505. mv_edma_cfg(ap, 0, 0);
  1506. spin_unlock_irqrestore(ap->lock, flags);
  1507. return 0;
  1508. out_port_free_dma_mem:
  1509. mv_port_free_dma_mem(ap);
  1510. return -ENOMEM;
  1511. }
  1512. /**
  1513. * mv_port_stop - Port specific cleanup/stop routine.
  1514. * @ap: ATA channel to manipulate
  1515. *
  1516. * Stop DMA, cleanup port memory.
  1517. *
  1518. * LOCKING:
  1519. * This routine uses the host lock to protect the DMA stop.
  1520. */
  1521. static void mv_port_stop(struct ata_port *ap)
  1522. {
  1523. unsigned long flags;
  1524. spin_lock_irqsave(ap->lock, flags);
  1525. mv_stop_edma(ap);
  1526. mv_enable_port_irqs(ap, 0);
  1527. spin_unlock_irqrestore(ap->lock, flags);
  1528. mv_port_free_dma_mem(ap);
  1529. }
  1530. /**
  1531. * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
  1532. * @qc: queued command whose SG list to source from
  1533. *
  1534. * Populate the SG list and mark the last entry.
  1535. *
  1536. * LOCKING:
  1537. * Inherited from caller.
  1538. */
  1539. static void mv_fill_sg(struct ata_queued_cmd *qc)
  1540. {
  1541. struct mv_port_priv *pp = qc->ap->private_data;
  1542. struct scatterlist *sg;
  1543. struct mv_sg *mv_sg, *last_sg = NULL;
  1544. unsigned int si;
  1545. mv_sg = pp->sg_tbl[qc->tag];
  1546. for_each_sg(qc->sg, sg, qc->n_elem, si) {
  1547. dma_addr_t addr = sg_dma_address(sg);
  1548. u32 sg_len = sg_dma_len(sg);
  1549. while (sg_len) {
  1550. u32 offset = addr & 0xffff;
  1551. u32 len = sg_len;
  1552. if (offset + len > 0x10000)
  1553. len = 0x10000 - offset;
  1554. mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
  1555. mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
  1556. mv_sg->flags_size = cpu_to_le32(len & 0xffff);
  1557. mv_sg->reserved = 0;
  1558. sg_len -= len;
  1559. addr += len;
  1560. last_sg = mv_sg;
  1561. mv_sg++;
  1562. }
  1563. }
  1564. if (likely(last_sg))
  1565. last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
  1566. mb(); /* ensure data structure is visible to the chipset */
  1567. }
  1568. static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
  1569. {
  1570. u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
  1571. (last ? CRQB_CMD_LAST : 0);
  1572. *cmdw = cpu_to_le16(tmp);
  1573. }
  1574. /**
  1575. * mv_sff_irq_clear - Clear hardware interrupt after DMA.
  1576. * @ap: Port associated with this ATA transaction.
  1577. *
  1578. * We need this only for ATAPI bmdma transactions,
  1579. * as otherwise we experience spurious interrupts
  1580. * after libata-sff handles the bmdma interrupts.
  1581. */
  1582. static void mv_sff_irq_clear(struct ata_port *ap)
  1583. {
  1584. mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
  1585. }
  1586. /**
  1587. * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
  1588. * @qc: queued command to check for chipset/DMA compatibility.
  1589. *
  1590. * The bmdma engines cannot handle speculative data sizes
  1591. * (bytecount under/over flow). So only allow DMA for
  1592. * data transfer commands with known data sizes.
  1593. *
  1594. * LOCKING:
  1595. * Inherited from caller.
  1596. */
  1597. static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
  1598. {
  1599. struct scsi_cmnd *scmd = qc->scsicmd;
  1600. if (scmd) {
  1601. switch (scmd->cmnd[0]) {
  1602. case READ_6:
  1603. case READ_10:
  1604. case READ_12:
  1605. case WRITE_6:
  1606. case WRITE_10:
  1607. case WRITE_12:
  1608. case GPCMD_READ_CD:
  1609. case GPCMD_SEND_DVD_STRUCTURE:
  1610. case GPCMD_SEND_CUE_SHEET:
  1611. return 0; /* DMA is safe */
  1612. }
  1613. }
  1614. return -EOPNOTSUPP; /* use PIO instead */
  1615. }
  1616. /**
  1617. * mv_bmdma_setup - Set up BMDMA transaction
  1618. * @qc: queued command to prepare DMA for.
  1619. *
  1620. * LOCKING:
  1621. * Inherited from caller.
  1622. */
  1623. static void mv_bmdma_setup(struct ata_queued_cmd *qc)
  1624. {
  1625. struct ata_port *ap = qc->ap;
  1626. void __iomem *port_mmio = mv_ap_base(ap);
  1627. struct mv_port_priv *pp = ap->private_data;
  1628. mv_fill_sg(qc);
  1629. /* clear all DMA cmd bits */
  1630. writel(0, port_mmio + BMDMA_CMD);
  1631. /* load PRD table addr. */
  1632. writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
  1633. port_mmio + BMDMA_PRD_HIGH);
  1634. writelfl(pp->sg_tbl_dma[qc->tag],
  1635. port_mmio + BMDMA_PRD_LOW);
  1636. /* issue r/w command */
  1637. ap->ops->sff_exec_command(ap, &qc->tf);
  1638. }
  1639. /**
  1640. * mv_bmdma_start - Start a BMDMA transaction
  1641. * @qc: queued command to start DMA on.
  1642. *
  1643. * LOCKING:
  1644. * Inherited from caller.
  1645. */
  1646. static void mv_bmdma_start(struct ata_queued_cmd *qc)
  1647. {
  1648. struct ata_port *ap = qc->ap;
  1649. void __iomem *port_mmio = mv_ap_base(ap);
  1650. unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
  1651. u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
  1652. /* start host DMA transaction */
  1653. writelfl(cmd, port_mmio + BMDMA_CMD);
  1654. }
  1655. /**
  1656. * mv_bmdma_stop - Stop BMDMA transfer
  1657. * @qc: queued command to stop DMA on.
  1658. *
  1659. * Clears the ATA_DMA_START flag in the bmdma control register
  1660. *
  1661. * LOCKING:
  1662. * Inherited from caller.
  1663. */
  1664. static void mv_bmdma_stop_ap(struct ata_port *ap)
  1665. {
  1666. void __iomem *port_mmio = mv_ap_base(ap);
  1667. u32 cmd;
  1668. /* clear start/stop bit */
  1669. cmd = readl(port_mmio + BMDMA_CMD);
  1670. if (cmd & ATA_DMA_START) {
  1671. cmd &= ~ATA_DMA_START;
  1672. writelfl(cmd, port_mmio + BMDMA_CMD);
  1673. /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
  1674. ata_sff_dma_pause(ap);
  1675. }
  1676. }
  1677. static void mv_bmdma_stop(struct ata_queued_cmd *qc)
  1678. {
  1679. mv_bmdma_stop_ap(qc->ap);
  1680. }
  1681. /**
  1682. * mv_bmdma_status - Read BMDMA status
  1683. * @ap: port for which to retrieve DMA status.
  1684. *
  1685. * Read and return equivalent of the sff BMDMA status register.
  1686. *
  1687. * LOCKING:
  1688. * Inherited from caller.
  1689. */
  1690. static u8 mv_bmdma_status(struct ata_port *ap)
  1691. {
  1692. void __iomem *port_mmio = mv_ap_base(ap);
  1693. u32 reg, status;
  1694. /*
  1695. * Other bits are valid only if ATA_DMA_ACTIVE==0,
  1696. * and the ATA_DMA_INTR bit doesn't exist.
  1697. */
  1698. reg = readl(port_mmio + BMDMA_STATUS);
  1699. if (reg & ATA_DMA_ACTIVE)
  1700. status = ATA_DMA_ACTIVE;
  1701. else if (reg & ATA_DMA_ERR)
  1702. status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
  1703. else {
  1704. /*
  1705. * Just because DMA_ACTIVE is 0 (DMA completed),
  1706. * this does _not_ mean the device is "done".
  1707. * So we should not yet be signalling ATA_DMA_INTR
  1708. * in some cases. Eg. DSM/TRIM, and perhaps others.
  1709. */
  1710. mv_bmdma_stop_ap(ap);
  1711. if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
  1712. status = 0;
  1713. else
  1714. status = ATA_DMA_INTR;
  1715. }
  1716. return status;
  1717. }
  1718. static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
  1719. {
  1720. struct ata_taskfile *tf = &qc->tf;
  1721. /*
  1722. * Workaround for 88SX60x1 FEr SATA#24.
  1723. *
  1724. * Chip may corrupt WRITEs if multi_count >= 4kB.
  1725. * Note that READs are unaffected.
  1726. *
  1727. * It's not clear if this errata really means "4K bytes",
  1728. * or if it always happens for multi_count > 7
  1729. * regardless of device sector_size.
  1730. *
  1731. * So, for safety, any write with multi_count > 7
  1732. * gets converted here into a regular PIO write instead:
  1733. */
  1734. if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
  1735. if (qc->dev->multi_count > 7) {
  1736. switch (tf->command) {
  1737. case ATA_CMD_WRITE_MULTI:
  1738. tf->command = ATA_CMD_PIO_WRITE;
  1739. break;
  1740. case ATA_CMD_WRITE_MULTI_FUA_EXT:
  1741. tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
  1742. /* fall through */
  1743. case ATA_CMD_WRITE_MULTI_EXT:
  1744. tf->command = ATA_CMD_PIO_WRITE_EXT;
  1745. break;
  1746. }
  1747. }
  1748. }
  1749. }
  1750. /**
  1751. * mv_qc_prep - Host specific command preparation.
  1752. * @qc: queued command to prepare
  1753. *
  1754. * This routine simply redirects to the general purpose routine
  1755. * if command is not DMA. Else, it handles prep of the CRQB
  1756. * (command request block), does some sanity checking, and calls
  1757. * the SG load routine.
  1758. *
  1759. * LOCKING:
  1760. * Inherited from caller.
  1761. */
  1762. static void mv_qc_prep(struct ata_queued_cmd *qc)
  1763. {
  1764. struct ata_port *ap = qc->ap;
  1765. struct mv_port_priv *pp = ap->private_data;
  1766. __le16 *cw;
  1767. struct ata_taskfile *tf = &qc->tf;
  1768. u16 flags = 0;
  1769. unsigned in_index;
  1770. switch (tf->protocol) {
  1771. case ATA_PROT_DMA:
  1772. if (tf->command == ATA_CMD_DSM)
  1773. return;
  1774. /* fall-thru */
  1775. case ATA_PROT_NCQ:
  1776. break; /* continue below */
  1777. case ATA_PROT_PIO:
  1778. mv_rw_multi_errata_sata24(qc);
  1779. return;
  1780. default:
  1781. return;
  1782. }
  1783. /* Fill in command request block
  1784. */
  1785. if (!(tf->flags & ATA_TFLAG_WRITE))
  1786. flags |= CRQB_FLAG_READ;
  1787. WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
  1788. flags |= qc->tag << CRQB_TAG_SHIFT;
  1789. flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
  1790. /* get current queue index from software */
  1791. in_index = pp->req_idx;
  1792. pp->crqb[in_index].sg_addr =
  1793. cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
  1794. pp->crqb[in_index].sg_addr_hi =
  1795. cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
  1796. pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
  1797. cw = &pp->crqb[in_index].ata_cmd[0];
  1798. /* Sadly, the CRQB cannot accommodate all registers--there are
  1799. * only 11 bytes...so we must pick and choose required
  1800. * registers based on the command. So, we drop feature and
  1801. * hob_feature for [RW] DMA commands, but they are needed for
  1802. * NCQ. NCQ will drop hob_nsect, which is not needed there
  1803. * (nsect is used only for the tag; feat/hob_feat hold true nsect).
  1804. */
  1805. switch (tf->command) {
  1806. case ATA_CMD_READ:
  1807. case ATA_CMD_READ_EXT:
  1808. case ATA_CMD_WRITE:
  1809. case ATA_CMD_WRITE_EXT:
  1810. case ATA_CMD_WRITE_FUA_EXT:
  1811. mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
  1812. break;
  1813. case ATA_CMD_FPDMA_READ:
  1814. case ATA_CMD_FPDMA_WRITE:
  1815. mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
  1816. mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
  1817. break;
  1818. default:
  1819. /* The only other commands EDMA supports in non-queued and
  1820. * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
  1821. * of which are defined/used by Linux. If we get here, this
  1822. * driver needs work.
  1823. *
  1824. * FIXME: modify libata to give qc_prep a return value and
  1825. * return error here.
  1826. */
  1827. BUG_ON(tf->command);
  1828. break;
  1829. }
  1830. mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
  1831. mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
  1832. mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
  1833. mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
  1834. mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
  1835. mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
  1836. mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
  1837. mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
  1838. mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
  1839. if (!(qc->flags & ATA_QCFLAG_DMAMAP))
  1840. return;
  1841. mv_fill_sg(qc);
  1842. }
  1843. /**
  1844. * mv_qc_prep_iie - Host specific command preparation.
  1845. * @qc: queued command to prepare
  1846. *
  1847. * This routine simply redirects to the general purpose routine
  1848. * if command is not DMA. Else, it handles prep of the CRQB
  1849. * (command request block), does some sanity checking, and calls
  1850. * the SG load routine.
  1851. *
  1852. * LOCKING:
  1853. * Inherited from caller.
  1854. */
  1855. static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
  1856. {
  1857. struct ata_port *ap = qc->ap;
  1858. struct mv_port_priv *pp = ap->private_data;
  1859. struct mv_crqb_iie *crqb;
  1860. struct ata_taskfile *tf = &qc->tf;
  1861. unsigned in_index;
  1862. u32 flags = 0;
  1863. if ((tf->protocol != ATA_PROT_DMA) &&
  1864. (tf->protocol != ATA_PROT_NCQ))
  1865. return;
  1866. if (tf->command == ATA_CMD_DSM)
  1867. return; /* use bmdma for this */
  1868. /* Fill in Gen IIE command request block */
  1869. if (!(tf->flags & ATA_TFLAG_WRITE))
  1870. flags |= CRQB_FLAG_READ;
  1871. WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
  1872. flags |= qc->tag << CRQB_TAG_SHIFT;
  1873. flags |= qc->tag << CRQB_HOSTQ_SHIFT;
  1874. flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
  1875. /* get current queue index from software */
  1876. in_index = pp->req_idx;
  1877. crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
  1878. crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
  1879. crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
  1880. crqb->flags = cpu_to_le32(flags);
  1881. crqb->ata_cmd[0] = cpu_to_le32(
  1882. (tf->command << 16) |
  1883. (tf->feature << 24)
  1884. );
  1885. crqb->ata_cmd[1] = cpu_to_le32(
  1886. (tf->lbal << 0) |
  1887. (tf->lbam << 8) |
  1888. (tf->lbah << 16) |
  1889. (tf->device << 24)
  1890. );
  1891. crqb->ata_cmd[2] = cpu_to_le32(
  1892. (tf->hob_lbal << 0) |
  1893. (tf->hob_lbam << 8) |
  1894. (tf->hob_lbah << 16) |
  1895. (tf->hob_feature << 24)
  1896. );
  1897. crqb->ata_cmd[3] = cpu_to_le32(
  1898. (tf->nsect << 0) |
  1899. (tf->hob_nsect << 8)
  1900. );
  1901. if (!(qc->flags & ATA_QCFLAG_DMAMAP))
  1902. return;
  1903. mv_fill_sg(qc);
  1904. }
  1905. /**
  1906. * mv_sff_check_status - fetch device status, if valid
  1907. * @ap: ATA port to fetch status from
  1908. *
  1909. * When using command issue via mv_qc_issue_fis(),
  1910. * the initial ATA_BUSY state does not show up in the
  1911. * ATA status (shadow) register. This can confuse libata!
  1912. *
  1913. * So we have a hook here to fake ATA_BUSY for that situation,
  1914. * until the first time a BUSY, DRQ, or ERR bit is seen.
  1915. *
  1916. * The rest of the time, it simply returns the ATA status register.
  1917. */
  1918. static u8 mv_sff_check_status(struct ata_port *ap)
  1919. {
  1920. u8 stat = ioread8(ap->ioaddr.status_addr);
  1921. struct mv_port_priv *pp = ap->private_data;
  1922. if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
  1923. if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
  1924. pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
  1925. else
  1926. stat = ATA_BUSY;
  1927. }
  1928. return stat;
  1929. }
  1930. /**
  1931. * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
  1932. * @fis: fis to be sent
  1933. * @nwords: number of 32-bit words in the fis
  1934. */
  1935. static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
  1936. {
  1937. void __iomem *port_mmio = mv_ap_base(ap);
  1938. u32 ifctl, old_ifctl, ifstat;
  1939. int i, timeout = 200, final_word = nwords - 1;
  1940. /* Initiate FIS transmission mode */
  1941. old_ifctl = readl(port_mmio + SATA_IFCTL);
  1942. ifctl = 0x100 | (old_ifctl & 0xf);
  1943. writelfl(ifctl, port_mmio + SATA_IFCTL);
  1944. /* Send all words of the FIS except for the final word */
  1945. for (i = 0; i < final_word; ++i)
  1946. writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
  1947. /* Flag end-of-transmission, and then send the final word */
  1948. writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
  1949. writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
  1950. /*
  1951. * Wait for FIS transmission to complete.
  1952. * This typically takes just a single iteration.
  1953. */
  1954. do {
  1955. ifstat = readl(port_mmio + SATA_IFSTAT);
  1956. } while (!(ifstat & 0x1000) && --timeout);
  1957. /* Restore original port configuration */
  1958. writelfl(old_ifctl, port_mmio + SATA_IFCTL);
  1959. /* See if it worked */
  1960. if ((ifstat & 0x3000) != 0x1000) {
  1961. ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
  1962. __func__, ifstat);
  1963. return AC_ERR_OTHER;
  1964. }
  1965. return 0;
  1966. }
  1967. /**
  1968. * mv_qc_issue_fis - Issue a command directly as a FIS
  1969. * @qc: queued command to start
  1970. *
  1971. * Note that the ATA shadow registers are not updated
  1972. * after command issue, so the device will appear "READY"
  1973. * if polled, even while it is BUSY processing the command.
  1974. *
  1975. * So we use a status hook to fake ATA_BUSY until the drive changes state.
  1976. *
  1977. * Note: we don't get updated shadow regs on *completion*
  1978. * of non-data commands. So avoid sending them via this function,
  1979. * as they will appear to have completed immediately.
  1980. *
  1981. * GEN_IIE has special registers that we could get the result tf from,
  1982. * but earlier chipsets do not. For now, we ignore those registers.
  1983. */
  1984. static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
  1985. {
  1986. struct ata_port *ap = qc->ap;
  1987. struct mv_port_priv *pp = ap->private_data;
  1988. struct ata_link *link = qc->dev->link;
  1989. u32 fis[5];
  1990. int err = 0;
  1991. ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
  1992. err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
  1993. if (err)
  1994. return err;
  1995. switch (qc->tf.protocol) {
  1996. case ATAPI_PROT_PIO:
  1997. pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
  1998. /* fall through */
  1999. case ATAPI_PROT_NODATA:
  2000. ap->hsm_task_state = HSM_ST_FIRST;
  2001. break;
  2002. case ATA_PROT_PIO:
  2003. pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
  2004. if (qc->tf.flags & ATA_TFLAG_WRITE)
  2005. ap->hsm_task_state = HSM_ST_FIRST;
  2006. else
  2007. ap->hsm_task_state = HSM_ST;
  2008. break;
  2009. default:
  2010. ap->hsm_task_state = HSM_ST_LAST;
  2011. break;
  2012. }
  2013. if (qc->tf.flags & ATA_TFLAG_POLLING)
  2014. ata_sff_queue_pio_task(link, 0);
  2015. return 0;
  2016. }
  2017. /**
  2018. * mv_qc_issue - Initiate a command to the host
  2019. * @qc: queued command to start
  2020. *
  2021. * This routine simply redirects to the general purpose routine
  2022. * if command is not DMA. Else, it sanity checks our local
  2023. * caches of the request producer/consumer indices then enables
  2024. * DMA and bumps the request producer index.
  2025. *
  2026. * LOCKING:
  2027. * Inherited from caller.
  2028. */
  2029. static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
  2030. {
  2031. static int limit_warnings = 10;
  2032. struct ata_port *ap = qc->ap;
  2033. void __iomem *port_mmio = mv_ap_base(ap);
  2034. struct mv_port_priv *pp = ap->private_data;
  2035. u32 in_index;
  2036. unsigned int port_irqs;
  2037. pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
  2038. switch (qc->tf.protocol) {
  2039. case ATA_PROT_DMA:
  2040. if (qc->tf.command == ATA_CMD_DSM) {
  2041. if (!ap->ops->bmdma_setup) /* no bmdma on GEN_I */
  2042. return AC_ERR_OTHER;
  2043. break; /* use bmdma for this */
  2044. }
  2045. /* fall thru */
  2046. case ATA_PROT_NCQ:
  2047. mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
  2048. pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
  2049. in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
  2050. /* Write the request in pointer to kick the EDMA to life */
  2051. writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
  2052. port_mmio + EDMA_REQ_Q_IN_PTR);
  2053. return 0;
  2054. case ATA_PROT_PIO:
  2055. /*
  2056. * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
  2057. *
  2058. * Someday, we might implement special polling workarounds
  2059. * for these, but it all seems rather unnecessary since we
  2060. * normally use only DMA for commands which transfer more
  2061. * than a single block of data.
  2062. *
  2063. * Much of the time, this could just work regardless.
  2064. * So for now, just log the incident, and allow the attempt.
  2065. */
  2066. if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
  2067. --limit_warnings;
  2068. ata_link_warn(qc->dev->link, DRV_NAME
  2069. ": attempting PIO w/multiple DRQ: "
  2070. "this may fail due to h/w errata\n");
  2071. }
  2072. /* drop through */
  2073. case ATA_PROT_NODATA:
  2074. case ATAPI_PROT_PIO:
  2075. case ATAPI_PROT_NODATA:
  2076. if (ap->flags & ATA_FLAG_PIO_POLLING)
  2077. qc->tf.flags |= ATA_TFLAG_POLLING;
  2078. break;
  2079. }
  2080. if (qc->tf.flags & ATA_TFLAG_POLLING)
  2081. port_irqs = ERR_IRQ; /* mask device interrupt when polling */
  2082. else
  2083. port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
  2084. /*
  2085. * We're about to send a non-EDMA capable command to the
  2086. * port. Turn off EDMA so there won't be problems accessing
  2087. * shadow block, etc registers.
  2088. */
  2089. mv_stop_edma(ap);
  2090. mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
  2091. mv_pmp_select(ap, qc->dev->link->pmp);
  2092. if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
  2093. struct mv_host_priv *hpriv = ap->host->private_data;
  2094. /*
  2095. * Workaround for 88SX60x1 FEr SATA#25 (part 2).
  2096. *
  2097. * After any NCQ error, the READ_LOG_EXT command
  2098. * from libata-eh *must* use mv_qc_issue_fis().
  2099. * Otherwise it might fail, due to chip errata.
  2100. *
  2101. * Rather than special-case it, we'll just *always*
  2102. * use this method here for READ_LOG_EXT, making for
  2103. * easier testing.
  2104. */
  2105. if (IS_GEN_II(hpriv))
  2106. return mv_qc_issue_fis(qc);
  2107. }
  2108. return ata_bmdma_qc_issue(qc);
  2109. }
  2110. static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
  2111. {
  2112. struct mv_port_priv *pp = ap->private_data;
  2113. struct ata_queued_cmd *qc;
  2114. if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
  2115. return NULL;
  2116. qc = ata_qc_from_tag(ap, ap->link.active_tag);
  2117. if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
  2118. return qc;
  2119. return NULL;
  2120. }
  2121. static void mv_pmp_error_handler(struct ata_port *ap)
  2122. {
  2123. unsigned int pmp, pmp_map;
  2124. struct mv_port_priv *pp = ap->private_data;
  2125. if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
  2126. /*
  2127. * Perform NCQ error analysis on failed PMPs
  2128. * before we freeze the port entirely.
  2129. *
  2130. * The failed PMPs are marked earlier by mv_pmp_eh_prep().
  2131. */
  2132. pmp_map = pp->delayed_eh_pmp_map;
  2133. pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
  2134. for (pmp = 0; pmp_map != 0; pmp++) {
  2135. unsigned int this_pmp = (1 << pmp);
  2136. if (pmp_map & this_pmp) {
  2137. struct ata_link *link = &ap->pmp_link[pmp];
  2138. pmp_map &= ~this_pmp;
  2139. ata_eh_analyze_ncq_error(link);
  2140. }
  2141. }
  2142. ata_port_freeze(ap);
  2143. }
  2144. sata_pmp_error_handler(ap);
  2145. }
  2146. static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
  2147. {
  2148. void __iomem *port_mmio = mv_ap_base(ap);
  2149. return readl(port_mmio + SATA_TESTCTL) >> 16;
  2150. }
  2151. static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
  2152. {
  2153. struct ata_eh_info *ehi;
  2154. unsigned int pmp;
  2155. /*
  2156. * Initialize EH info for PMPs which saw device errors
  2157. */
  2158. ehi = &ap->link.eh_info;
  2159. for (pmp = 0; pmp_map != 0; pmp++) {
  2160. unsigned int this_pmp = (1 << pmp);
  2161. if (pmp_map & this_pmp) {
  2162. struct ata_link *link = &ap->pmp_link[pmp];
  2163. pmp_map &= ~this_pmp;
  2164. ehi = &link->eh_info;
  2165. ata_ehi_clear_desc(ehi);
  2166. ata_ehi_push_desc(ehi, "dev err");
  2167. ehi->err_mask |= AC_ERR_DEV;
  2168. ehi->action |= ATA_EH_RESET;
  2169. ata_link_abort(link);
  2170. }
  2171. }
  2172. }
  2173. static int mv_req_q_empty(struct ata_port *ap)
  2174. {
  2175. void __iomem *port_mmio = mv_ap_base(ap);
  2176. u32 in_ptr, out_ptr;
  2177. in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
  2178. >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
  2179. out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
  2180. >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
  2181. return (in_ptr == out_ptr); /* 1 == queue_is_empty */
  2182. }
  2183. static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
  2184. {
  2185. struct mv_port_priv *pp = ap->private_data;
  2186. int failed_links;
  2187. unsigned int old_map, new_map;
  2188. /*
  2189. * Device error during FBS+NCQ operation:
  2190. *
  2191. * Set a port flag to prevent further I/O being enqueued.
  2192. * Leave the EDMA running to drain outstanding commands from this port.
  2193. * Perform the post-mortem/EH only when all responses are complete.
  2194. * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
  2195. */
  2196. if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
  2197. pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
  2198. pp->delayed_eh_pmp_map = 0;
  2199. }
  2200. old_map = pp->delayed_eh_pmp_map;
  2201. new_map = old_map | mv_get_err_pmp_map(ap);
  2202. if (old_map != new_map) {
  2203. pp->delayed_eh_pmp_map = new_map;
  2204. mv_pmp_eh_prep(ap, new_map & ~old_map);
  2205. }
  2206. failed_links = hweight16(new_map);
  2207. ata_port_info(ap,
  2208. "%s: pmp_map=%04x qc_map=%04x failed_links=%d nr_active_links=%d\n",
  2209. __func__, pp->delayed_eh_pmp_map,
  2210. ap->qc_active, failed_links,
  2211. ap->nr_active_links);
  2212. if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
  2213. mv_process_crpb_entries(ap, pp);
  2214. mv_stop_edma(ap);
  2215. mv_eh_freeze(ap);
  2216. ata_port_info(ap, "%s: done\n", __func__);
  2217. return 1; /* handled */
  2218. }
  2219. ata_port_info(ap, "%s: waiting\n", __func__);
  2220. return 1; /* handled */
  2221. }
  2222. static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
  2223. {
  2224. /*
  2225. * Possible future enhancement:
  2226. *
  2227. * FBS+non-NCQ operation is not yet implemented.
  2228. * See related notes in mv_edma_cfg().
  2229. *
  2230. * Device error during FBS+non-NCQ operation:
  2231. *
  2232. * We need to snapshot the shadow registers for each failed command.
  2233. * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
  2234. */
  2235. return 0; /* not handled */
  2236. }
  2237. static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
  2238. {
  2239. struct mv_port_priv *pp = ap->private_data;
  2240. if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
  2241. return 0; /* EDMA was not active: not handled */
  2242. if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
  2243. return 0; /* FBS was not active: not handled */
  2244. if (!(edma_err_cause & EDMA_ERR_DEV))
  2245. return 0; /* non DEV error: not handled */
  2246. edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
  2247. if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
  2248. return 0; /* other problems: not handled */
  2249. if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
  2250. /*
  2251. * EDMA should NOT have self-disabled for this case.
  2252. * If it did, then something is wrong elsewhere,
  2253. * and we cannot handle it here.
  2254. */
  2255. if (edma_err_cause & EDMA_ERR_SELF_DIS) {
  2256. ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
  2257. __func__, edma_err_cause, pp->pp_flags);
  2258. return 0; /* not handled */
  2259. }
  2260. return mv_handle_fbs_ncq_dev_err(ap);
  2261. } else {
  2262. /*
  2263. * EDMA should have self-disabled for this case.
  2264. * If it did not, then something is wrong elsewhere,
  2265. * and we cannot handle it here.
  2266. */
  2267. if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
  2268. ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
  2269. __func__, edma_err_cause, pp->pp_flags);
  2270. return 0; /* not handled */
  2271. }
  2272. return mv_handle_fbs_non_ncq_dev_err(ap);
  2273. }
  2274. return 0; /* not handled */
  2275. }
  2276. static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
  2277. {
  2278. struct ata_eh_info *ehi = &ap->link.eh_info;
  2279. char *when = "idle";
  2280. ata_ehi_clear_desc(ehi);
  2281. if (edma_was_enabled) {
  2282. when = "EDMA enabled";
  2283. } else {
  2284. struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
  2285. if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
  2286. when = "polling";
  2287. }
  2288. ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
  2289. ehi->err_mask |= AC_ERR_OTHER;
  2290. ehi->action |= ATA_EH_RESET;
  2291. ata_port_freeze(ap);
  2292. }
  2293. /**
  2294. * mv_err_intr - Handle error interrupts on the port
  2295. * @ap: ATA channel to manipulate
  2296. *
  2297. * Most cases require a full reset of the chip's state machine,
  2298. * which also performs a COMRESET.
  2299. * Also, if the port disabled DMA, update our cached copy to match.
  2300. *
  2301. * LOCKING:
  2302. * Inherited from caller.
  2303. */
  2304. static void mv_err_intr(struct ata_port *ap)
  2305. {
  2306. void __iomem *port_mmio = mv_ap_base(ap);
  2307. u32 edma_err_cause, eh_freeze_mask, serr = 0;
  2308. u32 fis_cause = 0;
  2309. struct mv_port_priv *pp = ap->private_data;
  2310. struct mv_host_priv *hpriv = ap->host->private_data;
  2311. unsigned int action = 0, err_mask = 0;
  2312. struct ata_eh_info *ehi = &ap->link.eh_info;
  2313. struct ata_queued_cmd *qc;
  2314. int abort = 0;
  2315. /*
  2316. * Read and clear the SError and err_cause bits.
  2317. * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
  2318. * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
  2319. */
  2320. sata_scr_read(&ap->link, SCR_ERROR, &serr);
  2321. sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
  2322. edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
  2323. if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
  2324. fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
  2325. writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
  2326. }
  2327. writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
  2328. if (edma_err_cause & EDMA_ERR_DEV) {
  2329. /*
  2330. * Device errors during FIS-based switching operation
  2331. * require special handling.
  2332. */
  2333. if (mv_handle_dev_err(ap, edma_err_cause))
  2334. return;
  2335. }
  2336. qc = mv_get_active_qc(ap);
  2337. ata_ehi_clear_desc(ehi);
  2338. ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
  2339. edma_err_cause, pp->pp_flags);
  2340. if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
  2341. ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
  2342. if (fis_cause & FIS_IRQ_CAUSE_AN) {
  2343. u32 ec = edma_err_cause &
  2344. ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
  2345. sata_async_notification(ap);
  2346. if (!ec)
  2347. return; /* Just an AN; no need for the nukes */
  2348. ata_ehi_push_desc(ehi, "SDB notify");
  2349. }
  2350. }
  2351. /*
  2352. * All generations share these EDMA error cause bits:
  2353. */
  2354. if (edma_err_cause & EDMA_ERR_DEV) {
  2355. err_mask |= AC_ERR_DEV;
  2356. action |= ATA_EH_RESET;
  2357. ata_ehi_push_desc(ehi, "dev error");
  2358. }
  2359. if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
  2360. EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
  2361. EDMA_ERR_INTRL_PAR)) {
  2362. err_mask |= AC_ERR_ATA_BUS;
  2363. action |= ATA_EH_RESET;
  2364. ata_ehi_push_desc(ehi, "parity error");
  2365. }
  2366. if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
  2367. ata_ehi_hotplugged(ehi);
  2368. ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
  2369. "dev disconnect" : "dev connect");
  2370. action |= ATA_EH_RESET;
  2371. }
  2372. /*
  2373. * Gen-I has a different SELF_DIS bit,
  2374. * different FREEZE bits, and no SERR bit:
  2375. */
  2376. if (IS_GEN_I(hpriv)) {
  2377. eh_freeze_mask = EDMA_EH_FREEZE_5;
  2378. if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
  2379. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  2380. ata_ehi_push_desc(ehi, "EDMA self-disable");
  2381. }
  2382. } else {
  2383. eh_freeze_mask = EDMA_EH_FREEZE;
  2384. if (edma_err_cause & EDMA_ERR_SELF_DIS) {
  2385. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  2386. ata_ehi_push_desc(ehi, "EDMA self-disable");
  2387. }
  2388. if (edma_err_cause & EDMA_ERR_SERR) {
  2389. ata_ehi_push_desc(ehi, "SError=%08x", serr);
  2390. err_mask |= AC_ERR_ATA_BUS;
  2391. action |= ATA_EH_RESET;
  2392. }
  2393. }
  2394. if (!err_mask) {
  2395. err_mask = AC_ERR_OTHER;
  2396. action |= ATA_EH_RESET;
  2397. }
  2398. ehi->serror |= serr;
  2399. ehi->action |= action;
  2400. if (qc)
  2401. qc->err_mask |= err_mask;
  2402. else
  2403. ehi->err_mask |= err_mask;
  2404. if (err_mask == AC_ERR_DEV) {
  2405. /*
  2406. * Cannot do ata_port_freeze() here,
  2407. * because it would kill PIO access,
  2408. * which is needed for further diagnosis.
  2409. */
  2410. mv_eh_freeze(ap);
  2411. abort = 1;
  2412. } else if (edma_err_cause & eh_freeze_mask) {
  2413. /*
  2414. * Note to self: ata_port_freeze() calls ata_port_abort()
  2415. */
  2416. ata_port_freeze(ap);
  2417. } else {
  2418. abort = 1;
  2419. }
  2420. if (abort) {
  2421. if (qc)
  2422. ata_link_abort(qc->dev->link);
  2423. else
  2424. ata_port_abort(ap);
  2425. }
  2426. }
  2427. static bool mv_process_crpb_response(struct ata_port *ap,
  2428. struct mv_crpb *response, unsigned int tag, int ncq_enabled)
  2429. {
  2430. u8 ata_status;
  2431. u16 edma_status = le16_to_cpu(response->flags);
  2432. /*
  2433. * edma_status from a response queue entry:
  2434. * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
  2435. * MSB is saved ATA status from command completion.
  2436. */
  2437. if (!ncq_enabled) {
  2438. u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
  2439. if (err_cause) {
  2440. /*
  2441. * Error will be seen/handled by
  2442. * mv_err_intr(). So do nothing at all here.
  2443. */
  2444. return false;
  2445. }
  2446. }
  2447. ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
  2448. if (!ac_err_mask(ata_status))
  2449. return true;
  2450. /* else: leave it for mv_err_intr() */
  2451. return false;
  2452. }
  2453. static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
  2454. {
  2455. void __iomem *port_mmio = mv_ap_base(ap);
  2456. struct mv_host_priv *hpriv = ap->host->private_data;
  2457. u32 in_index;
  2458. bool work_done = false;
  2459. u32 done_mask = 0;
  2460. int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
  2461. /* Get the hardware queue position index */
  2462. in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
  2463. >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
  2464. /* Process new responses from since the last time we looked */
  2465. while (in_index != pp->resp_idx) {
  2466. unsigned int tag;
  2467. struct mv_crpb *response = &pp->crpb[pp->resp_idx];
  2468. pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
  2469. if (IS_GEN_I(hpriv)) {
  2470. /* 50xx: no NCQ, only one command active at a time */
  2471. tag = ap->link.active_tag;
  2472. } else {
  2473. /* Gen II/IIE: get command tag from CRPB entry */
  2474. tag = le16_to_cpu(response->id) & 0x1f;
  2475. }
  2476. if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
  2477. done_mask |= 1 << tag;
  2478. work_done = true;
  2479. }
  2480. if (work_done) {
  2481. ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask);
  2482. /* Update the software queue position index in hardware */
  2483. writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
  2484. (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
  2485. port_mmio + EDMA_RSP_Q_OUT_PTR);
  2486. }
  2487. }
  2488. static void mv_port_intr(struct ata_port *ap, u32 port_cause)
  2489. {
  2490. struct mv_port_priv *pp;
  2491. int edma_was_enabled;
  2492. /*
  2493. * Grab a snapshot of the EDMA_EN flag setting,
  2494. * so that we have a consistent view for this port,
  2495. * even if something we call of our routines changes it.
  2496. */
  2497. pp = ap->private_data;
  2498. edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
  2499. /*
  2500. * Process completed CRPB response(s) before other events.
  2501. */
  2502. if (edma_was_enabled && (port_cause & DONE_IRQ)) {
  2503. mv_process_crpb_entries(ap, pp);
  2504. if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
  2505. mv_handle_fbs_ncq_dev_err(ap);
  2506. }
  2507. /*
  2508. * Handle chip-reported errors, or continue on to handle PIO.
  2509. */
  2510. if (unlikely(port_cause & ERR_IRQ)) {
  2511. mv_err_intr(ap);
  2512. } else if (!edma_was_enabled) {
  2513. struct ata_queued_cmd *qc = mv_get_active_qc(ap);
  2514. if (qc)
  2515. ata_bmdma_port_intr(ap, qc);
  2516. else
  2517. mv_unexpected_intr(ap, edma_was_enabled);
  2518. }
  2519. }
  2520. /**
  2521. * mv_host_intr - Handle all interrupts on the given host controller
  2522. * @host: host specific structure
  2523. * @main_irq_cause: Main interrupt cause register for the chip.
  2524. *
  2525. * LOCKING:
  2526. * Inherited from caller.
  2527. */
  2528. static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
  2529. {
  2530. struct mv_host_priv *hpriv = host->private_data;
  2531. void __iomem *mmio = hpriv->base, *hc_mmio;
  2532. unsigned int handled = 0, port;
  2533. /* If asserted, clear the "all ports" IRQ coalescing bit */
  2534. if (main_irq_cause & ALL_PORTS_COAL_DONE)
  2535. writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
  2536. for (port = 0; port < hpriv->n_ports; port++) {
  2537. struct ata_port *ap = host->ports[port];
  2538. unsigned int p, shift, hardport, port_cause;
  2539. MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
  2540. /*
  2541. * Each hc within the host has its own hc_irq_cause register,
  2542. * where the interrupting ports bits get ack'd.
  2543. */
  2544. if (hardport == 0) { /* first port on this hc ? */
  2545. u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
  2546. u32 port_mask, ack_irqs;
  2547. /*
  2548. * Skip this entire hc if nothing pending for any ports
  2549. */
  2550. if (!hc_cause) {
  2551. port += MV_PORTS_PER_HC - 1;
  2552. continue;
  2553. }
  2554. /*
  2555. * We don't need/want to read the hc_irq_cause register,
  2556. * because doing so hurts performance, and
  2557. * main_irq_cause already gives us everything we need.
  2558. *
  2559. * But we do have to *write* to the hc_irq_cause to ack
  2560. * the ports that we are handling this time through.
  2561. *
  2562. * This requires that we create a bitmap for those
  2563. * ports which interrupted us, and use that bitmap
  2564. * to ack (only) those ports via hc_irq_cause.
  2565. */
  2566. ack_irqs = 0;
  2567. if (hc_cause & PORTS_0_3_COAL_DONE)
  2568. ack_irqs = HC_COAL_IRQ;
  2569. for (p = 0; p < MV_PORTS_PER_HC; ++p) {
  2570. if ((port + p) >= hpriv->n_ports)
  2571. break;
  2572. port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
  2573. if (hc_cause & port_mask)
  2574. ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
  2575. }
  2576. hc_mmio = mv_hc_base_from_port(mmio, port);
  2577. writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
  2578. handled = 1;
  2579. }
  2580. /*
  2581. * Handle interrupts signalled for this port:
  2582. */
  2583. port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
  2584. if (port_cause)
  2585. mv_port_intr(ap, port_cause);
  2586. }
  2587. return handled;
  2588. }
  2589. static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
  2590. {
  2591. struct mv_host_priv *hpriv = host->private_data;
  2592. struct ata_port *ap;
  2593. struct ata_queued_cmd *qc;
  2594. struct ata_eh_info *ehi;
  2595. unsigned int i, err_mask, printed = 0;
  2596. u32 err_cause;
  2597. err_cause = readl(mmio + hpriv->irq_cause_offset);
  2598. dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
  2599. DPRINTK("All regs @ PCI error\n");
  2600. mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
  2601. writelfl(0, mmio + hpriv->irq_cause_offset);
  2602. for (i = 0; i < host->n_ports; i++) {
  2603. ap = host->ports[i];
  2604. if (!ata_link_offline(&ap->link)) {
  2605. ehi = &ap->link.eh_info;
  2606. ata_ehi_clear_desc(ehi);
  2607. if (!printed++)
  2608. ata_ehi_push_desc(ehi,
  2609. "PCI err cause 0x%08x", err_cause);
  2610. err_mask = AC_ERR_HOST_BUS;
  2611. ehi->action = ATA_EH_RESET;
  2612. qc = ata_qc_from_tag(ap, ap->link.active_tag);
  2613. if (qc)
  2614. qc->err_mask |= err_mask;
  2615. else
  2616. ehi->err_mask |= err_mask;
  2617. ata_port_freeze(ap);
  2618. }
  2619. }
  2620. return 1; /* handled */
  2621. }
  2622. /**
  2623. * mv_interrupt - Main interrupt event handler
  2624. * @irq: unused
  2625. * @dev_instance: private data; in this case the host structure
  2626. *
  2627. * Read the read only register to determine if any host
  2628. * controllers have pending interrupts. If so, call lower level
  2629. * routine to handle. Also check for PCI errors which are only
  2630. * reported here.
  2631. *
  2632. * LOCKING:
  2633. * This routine holds the host lock while processing pending
  2634. * interrupts.
  2635. */
  2636. static irqreturn_t mv_interrupt(int irq, void *dev_instance)
  2637. {
  2638. struct ata_host *host = dev_instance;
  2639. struct mv_host_priv *hpriv = host->private_data;
  2640. unsigned int handled = 0;
  2641. int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
  2642. u32 main_irq_cause, pending_irqs;
  2643. spin_lock(&host->lock);
  2644. /* for MSI: block new interrupts while in here */
  2645. if (using_msi)
  2646. mv_write_main_irq_mask(0, hpriv);
  2647. main_irq_cause = readl(hpriv->main_irq_cause_addr);
  2648. pending_irqs = main_irq_cause & hpriv->main_irq_mask;
  2649. /*
  2650. * Deal with cases where we either have nothing pending, or have read
  2651. * a bogus register value which can indicate HW removal or PCI fault.
  2652. */
  2653. if (pending_irqs && main_irq_cause != 0xffffffffU) {
  2654. if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
  2655. handled = mv_pci_error(host, hpriv->base);
  2656. else
  2657. handled = mv_host_intr(host, pending_irqs);
  2658. }
  2659. /* for MSI: unmask; interrupt cause bits will retrigger now */
  2660. if (using_msi)
  2661. mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
  2662. spin_unlock(&host->lock);
  2663. return IRQ_RETVAL(handled);
  2664. }
  2665. static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
  2666. {
  2667. unsigned int ofs;
  2668. switch (sc_reg_in) {
  2669. case SCR_STATUS:
  2670. case SCR_ERROR:
  2671. case SCR_CONTROL:
  2672. ofs = sc_reg_in * sizeof(u32);
  2673. break;
  2674. default:
  2675. ofs = 0xffffffffU;
  2676. break;
  2677. }
  2678. return ofs;
  2679. }
  2680. static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
  2681. {
  2682. struct mv_host_priv *hpriv = link->ap->host->private_data;
  2683. void __iomem *mmio = hpriv->base;
  2684. void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
  2685. unsigned int ofs = mv5_scr_offset(sc_reg_in);
  2686. if (ofs != 0xffffffffU) {
  2687. *val = readl(addr + ofs);
  2688. return 0;
  2689. } else
  2690. return -EINVAL;
  2691. }
  2692. static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
  2693. {
  2694. struct mv_host_priv *hpriv = link->ap->host->private_data;
  2695. void __iomem *mmio = hpriv->base;
  2696. void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
  2697. unsigned int ofs = mv5_scr_offset(sc_reg_in);
  2698. if (ofs != 0xffffffffU) {
  2699. writelfl(val, addr + ofs);
  2700. return 0;
  2701. } else
  2702. return -EINVAL;
  2703. }
  2704. static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
  2705. {
  2706. struct pci_dev *pdev = to_pci_dev(host->dev);
  2707. int early_5080;
  2708. early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
  2709. if (!early_5080) {
  2710. u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2711. tmp |= (1 << 0);
  2712. writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2713. }
  2714. mv_reset_pci_bus(host, mmio);
  2715. }
  2716. static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
  2717. {
  2718. writel(0x0fcfffff, mmio + FLASH_CTL);
  2719. }
  2720. static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
  2721. void __iomem *mmio)
  2722. {
  2723. void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
  2724. u32 tmp;
  2725. tmp = readl(phy_mmio + MV5_PHY_MODE);
  2726. hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
  2727. hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
  2728. }
  2729. static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
  2730. {
  2731. u32 tmp;
  2732. writel(0, mmio + GPIO_PORT_CTL);
  2733. /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
  2734. tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2735. tmp |= ~(1 << 0);
  2736. writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
  2737. }
  2738. static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  2739. unsigned int port)
  2740. {
  2741. void __iomem *phy_mmio = mv5_phy_base(mmio, port);
  2742. const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
  2743. u32 tmp;
  2744. int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
  2745. if (fix_apm_sq) {
  2746. tmp = readl(phy_mmio + MV5_LTMODE);
  2747. tmp |= (1 << 19);
  2748. writel(tmp, phy_mmio + MV5_LTMODE);
  2749. tmp = readl(phy_mmio + MV5_PHY_CTL);
  2750. tmp &= ~0x3;
  2751. tmp |= 0x1;
  2752. writel(tmp, phy_mmio + MV5_PHY_CTL);
  2753. }
  2754. tmp = readl(phy_mmio + MV5_PHY_MODE);
  2755. tmp &= ~mask;
  2756. tmp |= hpriv->signal[port].pre;
  2757. tmp |= hpriv->signal[port].amps;
  2758. writel(tmp, phy_mmio + MV5_PHY_MODE);
  2759. }
  2760. #undef ZERO
  2761. #define ZERO(reg) writel(0, port_mmio + (reg))
  2762. static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
  2763. unsigned int port)
  2764. {
  2765. void __iomem *port_mmio = mv_port_base(mmio, port);
  2766. mv_reset_channel(hpriv, mmio, port);
  2767. ZERO(0x028); /* command */
  2768. writel(0x11f, port_mmio + EDMA_CFG);
  2769. ZERO(0x004); /* timer */
  2770. ZERO(0x008); /* irq err cause */
  2771. ZERO(0x00c); /* irq err mask */
  2772. ZERO(0x010); /* rq bah */
  2773. ZERO(0x014); /* rq inp */
  2774. ZERO(0x018); /* rq outp */
  2775. ZERO(0x01c); /* respq bah */
  2776. ZERO(0x024); /* respq outp */
  2777. ZERO(0x020); /* respq inp */
  2778. ZERO(0x02c); /* test control */
  2779. writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
  2780. }
  2781. #undef ZERO
  2782. #define ZERO(reg) writel(0, hc_mmio + (reg))
  2783. static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  2784. unsigned int hc)
  2785. {
  2786. void __iomem *hc_mmio = mv_hc_base(mmio, hc);
  2787. u32 tmp;
  2788. ZERO(0x00c);
  2789. ZERO(0x010);
  2790. ZERO(0x014);
  2791. ZERO(0x018);
  2792. tmp = readl(hc_mmio + 0x20);
  2793. tmp &= 0x1c1c1c1c;
  2794. tmp |= 0x03030303;
  2795. writel(tmp, hc_mmio + 0x20);
  2796. }
  2797. #undef ZERO
  2798. static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  2799. unsigned int n_hc)
  2800. {
  2801. unsigned int hc, port;
  2802. for (hc = 0; hc < n_hc; hc++) {
  2803. for (port = 0; port < MV_PORTS_PER_HC; port++)
  2804. mv5_reset_hc_port(hpriv, mmio,
  2805. (hc * MV_PORTS_PER_HC) + port);
  2806. mv5_reset_one_hc(hpriv, mmio, hc);
  2807. }
  2808. return 0;
  2809. }
  2810. #undef ZERO
  2811. #define ZERO(reg) writel(0, mmio + (reg))
  2812. static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
  2813. {
  2814. struct mv_host_priv *hpriv = host->private_data;
  2815. u32 tmp;
  2816. tmp = readl(mmio + MV_PCI_MODE);
  2817. tmp &= 0xff00ffff;
  2818. writel(tmp, mmio + MV_PCI_MODE);
  2819. ZERO(MV_PCI_DISC_TIMER);
  2820. ZERO(MV_PCI_MSI_TRIGGER);
  2821. writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
  2822. ZERO(MV_PCI_SERR_MASK);
  2823. ZERO(hpriv->irq_cause_offset);
  2824. ZERO(hpriv->irq_mask_offset);
  2825. ZERO(MV_PCI_ERR_LOW_ADDRESS);
  2826. ZERO(MV_PCI_ERR_HIGH_ADDRESS);
  2827. ZERO(MV_PCI_ERR_ATTRIBUTE);
  2828. ZERO(MV_PCI_ERR_COMMAND);
  2829. }
  2830. #undef ZERO
  2831. static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
  2832. {
  2833. u32 tmp;
  2834. mv5_reset_flash(hpriv, mmio);
  2835. tmp = readl(mmio + GPIO_PORT_CTL);
  2836. tmp &= 0x3;
  2837. tmp |= (1 << 5) | (1 << 6);
  2838. writel(tmp, mmio + GPIO_PORT_CTL);
  2839. }
  2840. /**
  2841. * mv6_reset_hc - Perform the 6xxx global soft reset
  2842. * @mmio: base address of the HBA
  2843. *
  2844. * This routine only applies to 6xxx parts.
  2845. *
  2846. * LOCKING:
  2847. * Inherited from caller.
  2848. */
  2849. static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
  2850. unsigned int n_hc)
  2851. {
  2852. void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
  2853. int i, rc = 0;
  2854. u32 t;
  2855. /* Following procedure defined in PCI "main command and status
  2856. * register" table.
  2857. */
  2858. t = readl(reg);
  2859. writel(t | STOP_PCI_MASTER, reg);
  2860. for (i = 0; i < 1000; i++) {
  2861. udelay(1);
  2862. t = readl(reg);
  2863. if (PCI_MASTER_EMPTY & t)
  2864. break;
  2865. }
  2866. if (!(PCI_MASTER_EMPTY & t)) {
  2867. printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
  2868. rc = 1;
  2869. goto done;
  2870. }
  2871. /* set reset */
  2872. i = 5;
  2873. do {
  2874. writel(t | GLOB_SFT_RST, reg);
  2875. t = readl(reg);
  2876. udelay(1);
  2877. } while (!(GLOB_SFT_RST & t) && (i-- > 0));
  2878. if (!(GLOB_SFT_RST & t)) {
  2879. printk(KERN_ERR DRV_NAME ": can't set global reset\n");
  2880. rc = 1;
  2881. goto done;
  2882. }
  2883. /* clear reset and *reenable the PCI master* (not mentioned in spec) */
  2884. i = 5;
  2885. do {
  2886. writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
  2887. t = readl(reg);
  2888. udelay(1);
  2889. } while ((GLOB_SFT_RST & t) && (i-- > 0));
  2890. if (GLOB_SFT_RST & t) {
  2891. printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
  2892. rc = 1;
  2893. }
  2894. done:
  2895. return rc;
  2896. }
  2897. static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
  2898. void __iomem *mmio)
  2899. {
  2900. void __iomem *port_mmio;
  2901. u32 tmp;
  2902. tmp = readl(mmio + RESET_CFG);
  2903. if ((tmp & (1 << 0)) == 0) {
  2904. hpriv->signal[idx].amps = 0x7 << 8;
  2905. hpriv->signal[idx].pre = 0x1 << 5;
  2906. return;
  2907. }
  2908. port_mmio = mv_port_base(mmio, idx);
  2909. tmp = readl(port_mmio + PHY_MODE2);
  2910. hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
  2911. hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
  2912. }
  2913. static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
  2914. {
  2915. writel(0x00000060, mmio + GPIO_PORT_CTL);
  2916. }
  2917. static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
  2918. unsigned int port)
  2919. {
  2920. void __iomem *port_mmio = mv_port_base(mmio, port);
  2921. u32 hp_flags = hpriv->hp_flags;
  2922. int fix_phy_mode2 =
  2923. hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
  2924. int fix_phy_mode4 =
  2925. hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
  2926. u32 m2, m3;
  2927. if (fix_phy_mode2) {
  2928. m2 = readl(port_mmio + PHY_MODE2);
  2929. m2 &= ~(1 << 16);
  2930. m2 |= (1 << 31);
  2931. writel(m2, port_mmio + PHY_MODE2);
  2932. udelay(200);
  2933. m2 = readl(port_mmio + PHY_MODE2);
  2934. m2 &= ~((1 << 16) | (1 << 31));
  2935. writel(m2, port_mmio + PHY_MODE2);
  2936. udelay(200);
  2937. }
  2938. /*
  2939. * Gen-II/IIe PHY_MODE3 errata RM#2:
  2940. * Achieves better receiver noise performance than the h/w default:
  2941. */
  2942. m3 = readl(port_mmio + PHY_MODE3);
  2943. m3 = (m3 & 0x1f) | (0x5555601 << 5);
  2944. /* Guideline 88F5182 (GL# SATA-S11) */
  2945. if (IS_SOC(hpriv))
  2946. m3 &= ~0x1c;
  2947. if (fix_phy_mode4) {
  2948. u32 m4 = readl(port_mmio + PHY_MODE4);
  2949. /*
  2950. * Enforce reserved-bit restrictions on GenIIe devices only.
  2951. * For earlier chipsets, force only the internal config field
  2952. * (workaround for errata FEr SATA#10 part 1).
  2953. */
  2954. if (IS_GEN_IIE(hpriv))
  2955. m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
  2956. else
  2957. m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
  2958. writel(m4, port_mmio + PHY_MODE4);
  2959. }
  2960. /*
  2961. * Workaround for 60x1-B2 errata SATA#13:
  2962. * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
  2963. * so we must always rewrite PHY_MODE3 after PHY_MODE4.
  2964. * Or ensure we use writelfl() when writing PHY_MODE4.
  2965. */
  2966. writel(m3, port_mmio + PHY_MODE3);
  2967. /* Revert values of pre-emphasis and signal amps to the saved ones */
  2968. m2 = readl(port_mmio + PHY_MODE2);
  2969. m2 &= ~MV_M2_PREAMP_MASK;
  2970. m2 |= hpriv->signal[port].amps;
  2971. m2 |= hpriv->signal[port].pre;
  2972. m2 &= ~(1 << 16);
  2973. /* according to mvSata 3.6.1, some IIE values are fixed */
  2974. if (IS_GEN_IIE(hpriv)) {
  2975. m2 &= ~0xC30FF01F;
  2976. m2 |= 0x0000900F;
  2977. }
  2978. writel(m2, port_mmio + PHY_MODE2);
  2979. }
  2980. /* TODO: use the generic LED interface to configure the SATA Presence */
  2981. /* & Acitivy LEDs on the board */
  2982. static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
  2983. void __iomem *mmio)
  2984. {
  2985. return;
  2986. }
  2987. static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
  2988. void __iomem *mmio)
  2989. {
  2990. void __iomem *port_mmio;
  2991. u32 tmp;
  2992. port_mmio = mv_port_base(mmio, idx);
  2993. tmp = readl(port_mmio + PHY_MODE2);
  2994. hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
  2995. hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
  2996. }
  2997. #undef ZERO
  2998. #define ZERO(reg) writel(0, port_mmio + (reg))
  2999. static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
  3000. void __iomem *mmio, unsigned int port)
  3001. {
  3002. void __iomem *port_mmio = mv_port_base(mmio, port);
  3003. mv_reset_channel(hpriv, mmio, port);
  3004. ZERO(0x028); /* command */
  3005. writel(0x101f, port_mmio + EDMA_CFG);
  3006. ZERO(0x004); /* timer */
  3007. ZERO(0x008); /* irq err cause */
  3008. ZERO(0x00c); /* irq err mask */
  3009. ZERO(0x010); /* rq bah */
  3010. ZERO(0x014); /* rq inp */
  3011. ZERO(0x018); /* rq outp */
  3012. ZERO(0x01c); /* respq bah */
  3013. ZERO(0x024); /* respq outp */
  3014. ZERO(0x020); /* respq inp */
  3015. ZERO(0x02c); /* test control */
  3016. writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
  3017. }
  3018. #undef ZERO
  3019. #define ZERO(reg) writel(0, hc_mmio + (reg))
  3020. static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
  3021. void __iomem *mmio)
  3022. {
  3023. void __iomem *hc_mmio = mv_hc_base(mmio, 0);
  3024. ZERO(0x00c);
  3025. ZERO(0x010);
  3026. ZERO(0x014);
  3027. }
  3028. #undef ZERO
  3029. static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
  3030. void __iomem *mmio, unsigned int n_hc)
  3031. {
  3032. unsigned int port;
  3033. for (port = 0; port < hpriv->n_ports; port++)
  3034. mv_soc_reset_hc_port(hpriv, mmio, port);
  3035. mv_soc_reset_one_hc(hpriv, mmio);
  3036. return 0;
  3037. }
  3038. static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
  3039. void __iomem *mmio)
  3040. {
  3041. return;
  3042. }
  3043. static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
  3044. {
  3045. return;
  3046. }
  3047. static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
  3048. void __iomem *mmio, unsigned int port)
  3049. {
  3050. void __iomem *port_mmio = mv_port_base(mmio, port);
  3051. u32 reg;
  3052. reg = readl(port_mmio + PHY_MODE3);
  3053. reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */
  3054. reg |= (0x1 << 27);
  3055. reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */
  3056. reg |= (0x1 << 29);
  3057. writel(reg, port_mmio + PHY_MODE3);
  3058. reg = readl(port_mmio + PHY_MODE4);
  3059. reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
  3060. reg |= (0x1 << 16);
  3061. writel(reg, port_mmio + PHY_MODE4);
  3062. reg = readl(port_mmio + PHY_MODE9_GEN2);
  3063. reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
  3064. reg |= 0x8;
  3065. reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
  3066. writel(reg, port_mmio + PHY_MODE9_GEN2);
  3067. reg = readl(port_mmio + PHY_MODE9_GEN1);
  3068. reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
  3069. reg |= 0x8;
  3070. reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
  3071. writel(reg, port_mmio + PHY_MODE9_GEN1);
  3072. }
  3073. /**
  3074. * soc_is_65 - check if the soc is 65 nano device
  3075. *
  3076. * Detect the type of the SoC, this is done by reading the PHYCFG_OFS
  3077. * register, this register should contain non-zero value and it exists only
  3078. * in the 65 nano devices, when reading it from older devices we get 0.
  3079. */
  3080. static bool soc_is_65n(struct mv_host_priv *hpriv)
  3081. {
  3082. void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
  3083. if (readl(port0_mmio + PHYCFG_OFS))
  3084. return true;
  3085. return false;
  3086. }
  3087. static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
  3088. {
  3089. u32 ifcfg = readl(port_mmio + SATA_IFCFG);
  3090. ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
  3091. if (want_gen2i)
  3092. ifcfg |= (1 << 7); /* enable gen2i speed */
  3093. writelfl(ifcfg, port_mmio + SATA_IFCFG);
  3094. }
  3095. static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
  3096. unsigned int port_no)
  3097. {
  3098. void __iomem *port_mmio = mv_port_base(mmio, port_no);
  3099. /*
  3100. * The datasheet warns against setting EDMA_RESET when EDMA is active
  3101. * (but doesn't say what the problem might be). So we first try
  3102. * to disable the EDMA engine before doing the EDMA_RESET operation.
  3103. */
  3104. mv_stop_edma_engine(port_mmio);
  3105. writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
  3106. if (!IS_GEN_I(hpriv)) {
  3107. /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
  3108. mv_setup_ifcfg(port_mmio, 1);
  3109. }
  3110. /*
  3111. * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
  3112. * link, and physical layers. It resets all SATA interface registers
  3113. * (except for SATA_IFCFG), and issues a COMRESET to the dev.
  3114. */
  3115. writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
  3116. udelay(25); /* allow reset propagation */
  3117. writelfl(0, port_mmio + EDMA_CMD);
  3118. hpriv->ops->phy_errata(hpriv, mmio, port_no);
  3119. if (IS_GEN_I(hpriv))
  3120. mdelay(1);
  3121. }
  3122. static void mv_pmp_select(struct ata_port *ap, int pmp)
  3123. {
  3124. if (sata_pmp_supported(ap)) {
  3125. void __iomem *port_mmio = mv_ap_base(ap);
  3126. u32 reg = readl(port_mmio + SATA_IFCTL);
  3127. int old = reg & 0xf;
  3128. if (old != pmp) {
  3129. reg = (reg & ~0xf) | pmp;
  3130. writelfl(reg, port_mmio + SATA_IFCTL);
  3131. }
  3132. }
  3133. }
  3134. static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
  3135. unsigned long deadline)
  3136. {
  3137. mv_pmp_select(link->ap, sata_srst_pmp(link));
  3138. return sata_std_hardreset(link, class, deadline);
  3139. }
  3140. static int mv_softreset(struct ata_link *link, unsigned int *class,
  3141. unsigned long deadline)
  3142. {
  3143. mv_pmp_select(link->ap, sata_srst_pmp(link));
  3144. return ata_sff_softreset(link, class, deadline);
  3145. }
  3146. static int mv_hardreset(struct ata_link *link, unsigned int *class,
  3147. unsigned long deadline)
  3148. {
  3149. struct ata_port *ap = link->ap;
  3150. struct mv_host_priv *hpriv = ap->host->private_data;
  3151. struct mv_port_priv *pp = ap->private_data;
  3152. void __iomem *mmio = hpriv->base;
  3153. int rc, attempts = 0, extra = 0;
  3154. u32 sstatus;
  3155. bool online;
  3156. mv_reset_channel(hpriv, mmio, ap->port_no);
  3157. pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
  3158. pp->pp_flags &=
  3159. ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
  3160. /* Workaround for errata FEr SATA#10 (part 2) */
  3161. do {
  3162. const unsigned long *timing =
  3163. sata_ehc_deb_timing(&link->eh_context);
  3164. rc = sata_link_hardreset(link, timing, deadline + extra,
  3165. &online, NULL);
  3166. rc = online ? -EAGAIN : rc;
  3167. if (rc)
  3168. return rc;
  3169. sata_scr_read(link, SCR_STATUS, &sstatus);
  3170. if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
  3171. /* Force 1.5gb/s link speed and try again */
  3172. mv_setup_ifcfg(mv_ap_base(ap), 0);
  3173. if (time_after(jiffies + HZ, deadline))
  3174. extra = HZ; /* only extend it once, max */
  3175. }
  3176. } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
  3177. mv_save_cached_regs(ap);
  3178. mv_edma_cfg(ap, 0, 0);
  3179. return rc;
  3180. }
  3181. static void mv_eh_freeze(struct ata_port *ap)
  3182. {
  3183. mv_stop_edma(ap);
  3184. mv_enable_port_irqs(ap, 0);
  3185. }
  3186. static void mv_eh_thaw(struct ata_port *ap)
  3187. {
  3188. struct mv_host_priv *hpriv = ap->host->private_data;
  3189. unsigned int port = ap->port_no;
  3190. unsigned int hardport = mv_hardport_from_port(port);
  3191. void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
  3192. void __iomem *port_mmio = mv_ap_base(ap);
  3193. u32 hc_irq_cause;
  3194. /* clear EDMA errors on this port */
  3195. writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
  3196. /* clear pending irq events */
  3197. hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
  3198. writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
  3199. mv_enable_port_irqs(ap, ERR_IRQ);
  3200. }
  3201. /**
  3202. * mv_port_init - Perform some early initialization on a single port.
  3203. * @port: libata data structure storing shadow register addresses
  3204. * @port_mmio: base address of the port
  3205. *
  3206. * Initialize shadow register mmio addresses, clear outstanding
  3207. * interrupts on the port, and unmask interrupts for the future
  3208. * start of the port.
  3209. *
  3210. * LOCKING:
  3211. * Inherited from caller.
  3212. */
  3213. static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
  3214. {
  3215. void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
  3216. /* PIO related setup
  3217. */
  3218. port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
  3219. port->error_addr =
  3220. port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
  3221. port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
  3222. port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
  3223. port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
  3224. port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
  3225. port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
  3226. port->status_addr =
  3227. port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
  3228. /* special case: control/altstatus doesn't have ATA_REG_ address */
  3229. port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
  3230. /* Clear any currently outstanding port interrupt conditions */
  3231. serr = port_mmio + mv_scr_offset(SCR_ERROR);
  3232. writelfl(readl(serr), serr);
  3233. writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
  3234. /* unmask all non-transient EDMA error interrupts */
  3235. writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
  3236. VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
  3237. readl(port_mmio + EDMA_CFG),
  3238. readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
  3239. readl(port_mmio + EDMA_ERR_IRQ_MASK));
  3240. }
  3241. static unsigned int mv_in_pcix_mode(struct ata_host *host)
  3242. {
  3243. struct mv_host_priv *hpriv = host->private_data;
  3244. void __iomem *mmio = hpriv->base;
  3245. u32 reg;
  3246. if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
  3247. return 0; /* not PCI-X capable */
  3248. reg = readl(mmio + MV_PCI_MODE);
  3249. if ((reg & MV_PCI_MODE_MASK) == 0)
  3250. return 0; /* conventional PCI mode */
  3251. return 1; /* chip is in PCI-X mode */
  3252. }
  3253. static int mv_pci_cut_through_okay(struct ata_host *host)
  3254. {
  3255. struct mv_host_priv *hpriv = host->private_data;
  3256. void __iomem *mmio = hpriv->base;
  3257. u32 reg;
  3258. if (!mv_in_pcix_mode(host)) {
  3259. reg = readl(mmio + MV_PCI_COMMAND);
  3260. if (reg & MV_PCI_COMMAND_MRDTRIG)
  3261. return 0; /* not okay */
  3262. }
  3263. return 1; /* okay */
  3264. }
  3265. static void mv_60x1b2_errata_pci7(struct ata_host *host)
  3266. {
  3267. struct mv_host_priv *hpriv = host->private_data;
  3268. void __iomem *mmio = hpriv->base;
  3269. /* workaround for 60x1-B2 errata PCI#7 */
  3270. if (mv_in_pcix_mode(host)) {
  3271. u32 reg = readl(mmio + MV_PCI_COMMAND);
  3272. writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
  3273. }
  3274. }
  3275. static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
  3276. {
  3277. struct pci_dev *pdev = to_pci_dev(host->dev);
  3278. struct mv_host_priv *hpriv = host->private_data;
  3279. u32 hp_flags = hpriv->hp_flags;
  3280. switch (board_idx) {
  3281. case chip_5080:
  3282. hpriv->ops = &mv5xxx_ops;
  3283. hp_flags |= MV_HP_GEN_I;
  3284. switch (pdev->revision) {
  3285. case 0x1:
  3286. hp_flags |= MV_HP_ERRATA_50XXB0;
  3287. break;
  3288. case 0x3:
  3289. hp_flags |= MV_HP_ERRATA_50XXB2;
  3290. break;
  3291. default:
  3292. dev_warn(&pdev->dev,
  3293. "Applying 50XXB2 workarounds to unknown rev\n");
  3294. hp_flags |= MV_HP_ERRATA_50XXB2;
  3295. break;
  3296. }
  3297. break;
  3298. case chip_504x:
  3299. case chip_508x:
  3300. hpriv->ops = &mv5xxx_ops;
  3301. hp_flags |= MV_HP_GEN_I;
  3302. switch (pdev->revision) {
  3303. case 0x0:
  3304. hp_flags |= MV_HP_ERRATA_50XXB0;
  3305. break;
  3306. case 0x3:
  3307. hp_flags |= MV_HP_ERRATA_50XXB2;
  3308. break;
  3309. default:
  3310. dev_warn(&pdev->dev,
  3311. "Applying B2 workarounds to unknown rev\n");
  3312. hp_flags |= MV_HP_ERRATA_50XXB2;
  3313. break;
  3314. }
  3315. break;
  3316. case chip_604x:
  3317. case chip_608x:
  3318. hpriv->ops = &mv6xxx_ops;
  3319. hp_flags |= MV_HP_GEN_II;
  3320. switch (pdev->revision) {
  3321. case 0x7:
  3322. mv_60x1b2_errata_pci7(host);
  3323. hp_flags |= MV_HP_ERRATA_60X1B2;
  3324. break;
  3325. case 0x9:
  3326. hp_flags |= MV_HP_ERRATA_60X1C0;
  3327. break;
  3328. default:
  3329. dev_warn(&pdev->dev,
  3330. "Applying B2 workarounds to unknown rev\n");
  3331. hp_flags |= MV_HP_ERRATA_60X1B2;
  3332. break;
  3333. }
  3334. break;
  3335. case chip_7042:
  3336. hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
  3337. if (pdev->vendor == PCI_VENDOR_ID_TTI &&
  3338. (pdev->device == 0x2300 || pdev->device == 0x2310))
  3339. {
  3340. /*
  3341. * Highpoint RocketRAID PCIe 23xx series cards:
  3342. *
  3343. * Unconfigured drives are treated as "Legacy"
  3344. * by the BIOS, and it overwrites sector 8 with
  3345. * a "Lgcy" metadata block prior to Linux boot.
  3346. *
  3347. * Configured drives (RAID or JBOD) leave sector 8
  3348. * alone, but instead overwrite a high numbered
  3349. * sector for the RAID metadata. This sector can
  3350. * be determined exactly, by truncating the physical
  3351. * drive capacity to a nice even GB value.
  3352. *
  3353. * RAID metadata is at: (dev->n_sectors & ~0xfffff)
  3354. *
  3355. * Warn the user, lest they think we're just buggy.
  3356. */
  3357. printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
  3358. " BIOS CORRUPTS DATA on all attached drives,"
  3359. " regardless of if/how they are configured."
  3360. " BEWARE!\n");
  3361. printk(KERN_WARNING DRV_NAME ": For data safety, do not"
  3362. " use sectors 8-9 on \"Legacy\" drives,"
  3363. " and avoid the final two gigabytes on"
  3364. " all RocketRAID BIOS initialized drives.\n");
  3365. }
  3366. /* drop through */
  3367. case chip_6042:
  3368. hpriv->ops = &mv6xxx_ops;
  3369. hp_flags |= MV_HP_GEN_IIE;
  3370. if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
  3371. hp_flags |= MV_HP_CUT_THROUGH;
  3372. switch (pdev->revision) {
  3373. case 0x2: /* Rev.B0: the first/only public release */
  3374. hp_flags |= MV_HP_ERRATA_60X1C0;
  3375. break;
  3376. default:
  3377. dev_warn(&pdev->dev,
  3378. "Applying 60X1C0 workarounds to unknown rev\n");
  3379. hp_flags |= MV_HP_ERRATA_60X1C0;
  3380. break;
  3381. }
  3382. break;
  3383. case chip_soc:
  3384. if (soc_is_65n(hpriv))
  3385. hpriv->ops = &mv_soc_65n_ops;
  3386. else
  3387. hpriv->ops = &mv_soc_ops;
  3388. hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
  3389. MV_HP_ERRATA_60X1C0;
  3390. break;
  3391. default:
  3392. dev_err(host->dev, "BUG: invalid board index %u\n", board_idx);
  3393. return 1;
  3394. }
  3395. hpriv->hp_flags = hp_flags;
  3396. if (hp_flags & MV_HP_PCIE) {
  3397. hpriv->irq_cause_offset = PCIE_IRQ_CAUSE;
  3398. hpriv->irq_mask_offset = PCIE_IRQ_MASK;
  3399. hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
  3400. } else {
  3401. hpriv->irq_cause_offset = PCI_IRQ_CAUSE;
  3402. hpriv->irq_mask_offset = PCI_IRQ_MASK;
  3403. hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
  3404. }
  3405. return 0;
  3406. }
  3407. /**
  3408. * mv_init_host - Perform some early initialization of the host.
  3409. * @host: ATA host to initialize
  3410. *
  3411. * If possible, do an early global reset of the host. Then do
  3412. * our port init and clear/unmask all/relevant host interrupts.
  3413. *
  3414. * LOCKING:
  3415. * Inherited from caller.
  3416. */
  3417. static int mv_init_host(struct ata_host *host)
  3418. {
  3419. int rc = 0, n_hc, port, hc;
  3420. struct mv_host_priv *hpriv = host->private_data;
  3421. void __iomem *mmio = hpriv->base;
  3422. rc = mv_chip_id(host, hpriv->board_idx);
  3423. if (rc)
  3424. goto done;
  3425. if (IS_SOC(hpriv)) {
  3426. hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
  3427. hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK;
  3428. } else {
  3429. hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
  3430. hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK;
  3431. }
  3432. /* initialize shadow irq mask with register's value */
  3433. hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
  3434. /* global interrupt mask: 0 == mask everything */
  3435. mv_set_main_irq_mask(host, ~0, 0);
  3436. n_hc = mv_get_hc_count(host->ports[0]->flags);
  3437. for (port = 0; port < host->n_ports; port++)
  3438. if (hpriv->ops->read_preamp)
  3439. hpriv->ops->read_preamp(hpriv, port, mmio);
  3440. rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
  3441. if (rc)
  3442. goto done;
  3443. hpriv->ops->reset_flash(hpriv, mmio);
  3444. hpriv->ops->reset_bus(host, mmio);
  3445. hpriv->ops->enable_leds(hpriv, mmio);
  3446. for (port = 0; port < host->n_ports; port++) {
  3447. struct ata_port *ap = host->ports[port];
  3448. void __iomem *port_mmio = mv_port_base(mmio, port);
  3449. mv_port_init(&ap->ioaddr, port_mmio);
  3450. }
  3451. for (hc = 0; hc < n_hc; hc++) {
  3452. void __iomem *hc_mmio = mv_hc_base(mmio, hc);
  3453. VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
  3454. "(before clear)=0x%08x\n", hc,
  3455. readl(hc_mmio + HC_CFG),
  3456. readl(hc_mmio + HC_IRQ_CAUSE));
  3457. /* Clear any currently outstanding hc interrupt conditions */
  3458. writelfl(0, hc_mmio + HC_IRQ_CAUSE);
  3459. }
  3460. if (!IS_SOC(hpriv)) {
  3461. /* Clear any currently outstanding host interrupt conditions */
  3462. writelfl(0, mmio + hpriv->irq_cause_offset);
  3463. /* and unmask interrupt generation for host regs */
  3464. writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
  3465. }
  3466. /*
  3467. * enable only global host interrupts for now.
  3468. * The per-port interrupts get done later as ports are set up.
  3469. */
  3470. mv_set_main_irq_mask(host, 0, PCI_ERR);
  3471. mv_set_irq_coalescing(host, irq_coalescing_io_count,
  3472. irq_coalescing_usecs);
  3473. done:
  3474. return rc;
  3475. }
  3476. static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
  3477. {
  3478. hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
  3479. MV_CRQB_Q_SZ, 0);
  3480. if (!hpriv->crqb_pool)
  3481. return -ENOMEM;
  3482. hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
  3483. MV_CRPB_Q_SZ, 0);
  3484. if (!hpriv->crpb_pool)
  3485. return -ENOMEM;
  3486. hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
  3487. MV_SG_TBL_SZ, 0);
  3488. if (!hpriv->sg_tbl_pool)
  3489. return -ENOMEM;
  3490. return 0;
  3491. }
  3492. static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
  3493. const struct mbus_dram_target_info *dram)
  3494. {
  3495. int i;
  3496. for (i = 0; i < 4; i++) {
  3497. writel(0, hpriv->base + WINDOW_CTRL(i));
  3498. writel(0, hpriv->base + WINDOW_BASE(i));
  3499. }
  3500. for (i = 0; i < dram->num_cs; i++) {
  3501. const struct mbus_dram_window *cs = dram->cs + i;
  3502. writel(((cs->size - 1) & 0xffff0000) |
  3503. (cs->mbus_attr << 8) |
  3504. (dram->mbus_dram_target_id << 4) | 1,
  3505. hpriv->base + WINDOW_CTRL(i));
  3506. writel(cs->base, hpriv->base + WINDOW_BASE(i));
  3507. }
  3508. }
  3509. /**
  3510. * mv_platform_probe - handle a positive probe of an soc Marvell
  3511. * host
  3512. * @pdev: platform device found
  3513. *
  3514. * LOCKING:
  3515. * Inherited from caller.
  3516. */
  3517. static int mv_platform_probe(struct platform_device *pdev)
  3518. {
  3519. const struct mv_sata_platform_data *mv_platform_data;
  3520. const struct mbus_dram_target_info *dram;
  3521. const struct ata_port_info *ppi[] =
  3522. { &mv_port_info[chip_soc], NULL };
  3523. struct ata_host *host;
  3524. struct mv_host_priv *hpriv;
  3525. struct resource *res;
  3526. int n_ports = 0, irq = 0;
  3527. int rc;
  3528. int port;
  3529. ata_print_version_once(&pdev->dev, DRV_VERSION);
  3530. /*
  3531. * Simple resource validation ..
  3532. */
  3533. if (unlikely(pdev->num_resources != 2)) {
  3534. dev_err(&pdev->dev, "invalid number of resources\n");
  3535. return -EINVAL;
  3536. }
  3537. /*
  3538. * Get the register base first
  3539. */
  3540. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  3541. if (res == NULL)
  3542. return -EINVAL;
  3543. /* allocate host */
  3544. if (pdev->dev.of_node) {
  3545. of_property_read_u32(pdev->dev.of_node, "nr-ports", &n_ports);
  3546. irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
  3547. } else {
  3548. mv_platform_data = dev_get_platdata(&pdev->dev);
  3549. n_ports = mv_platform_data->n_ports;
  3550. irq = platform_get_irq(pdev, 0);
  3551. }
  3552. host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
  3553. hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
  3554. if (!host || !hpriv)
  3555. return -ENOMEM;
  3556. hpriv->port_clks = devm_kzalloc(&pdev->dev,
  3557. sizeof(struct clk *) * n_ports,
  3558. GFP_KERNEL);
  3559. if (!hpriv->port_clks)
  3560. return -ENOMEM;
  3561. host->private_data = hpriv;
  3562. hpriv->n_ports = n_ports;
  3563. hpriv->board_idx = chip_soc;
  3564. host->iomap = NULL;
  3565. hpriv->base = devm_ioremap(&pdev->dev, res->start,
  3566. resource_size(res));
  3567. hpriv->base -= SATAHC0_REG_BASE;
  3568. hpriv->clk = clk_get(&pdev->dev, NULL);
  3569. if (IS_ERR(hpriv->clk))
  3570. dev_notice(&pdev->dev, "cannot get optional clkdev\n");
  3571. else
  3572. clk_prepare_enable(hpriv->clk);
  3573. for (port = 0; port < n_ports; port++) {
  3574. char port_number[16];
  3575. sprintf(port_number, "%d", port);
  3576. hpriv->port_clks[port] = clk_get(&pdev->dev, port_number);
  3577. if (!IS_ERR(hpriv->port_clks[port]))
  3578. clk_prepare_enable(hpriv->port_clks[port]);
  3579. }
  3580. /*
  3581. * (Re-)program MBUS remapping windows if we are asked to.
  3582. */
  3583. dram = mv_mbus_dram_info();
  3584. if (dram)
  3585. mv_conf_mbus_windows(hpriv, dram);
  3586. rc = mv_create_dma_pools(hpriv, &pdev->dev);
  3587. if (rc)
  3588. goto err;
  3589. /* initialize adapter */
  3590. rc = mv_init_host(host);
  3591. if (rc)
  3592. goto err;
  3593. dev_info(&pdev->dev, "slots %u ports %d\n",
  3594. (unsigned)MV_MAX_Q_DEPTH, host->n_ports);
  3595. rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht);
  3596. if (!rc)
  3597. return 0;
  3598. err:
  3599. if (!IS_ERR(hpriv->clk)) {
  3600. clk_disable_unprepare(hpriv->clk);
  3601. clk_put(hpriv->clk);
  3602. }
  3603. for (port = 0; port < n_ports; port++) {
  3604. if (!IS_ERR(hpriv->port_clks[port])) {
  3605. clk_disable_unprepare(hpriv->port_clks[port]);
  3606. clk_put(hpriv->port_clks[port]);
  3607. }
  3608. }
  3609. return rc;
  3610. }
  3611. /*
  3612. *
  3613. * mv_platform_remove - unplug a platform interface
  3614. * @pdev: platform device
  3615. *
  3616. * A platform bus SATA device has been unplugged. Perform the needed
  3617. * cleanup. Also called on module unload for any active devices.
  3618. */
  3619. static int mv_platform_remove(struct platform_device *pdev)
  3620. {
  3621. struct ata_host *host = platform_get_drvdata(pdev);
  3622. struct mv_host_priv *hpriv = host->private_data;
  3623. int port;
  3624. ata_host_detach(host);
  3625. if (!IS_ERR(hpriv->clk)) {
  3626. clk_disable_unprepare(hpriv->clk);
  3627. clk_put(hpriv->clk);
  3628. }
  3629. for (port = 0; port < host->n_ports; port++) {
  3630. if (!IS_ERR(hpriv->port_clks[port])) {
  3631. clk_disable_unprepare(hpriv->port_clks[port]);
  3632. clk_put(hpriv->port_clks[port]);
  3633. }
  3634. }
  3635. return 0;
  3636. }
  3637. #ifdef CONFIG_PM
  3638. static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
  3639. {
  3640. struct ata_host *host = platform_get_drvdata(pdev);
  3641. if (host)
  3642. return ata_host_suspend(host, state);
  3643. else
  3644. return 0;
  3645. }
  3646. static int mv_platform_resume(struct platform_device *pdev)
  3647. {
  3648. struct ata_host *host = platform_get_drvdata(pdev);
  3649. const struct mbus_dram_target_info *dram;
  3650. int ret;
  3651. if (host) {
  3652. struct mv_host_priv *hpriv = host->private_data;
  3653. /*
  3654. * (Re-)program MBUS remapping windows if we are asked to.
  3655. */
  3656. dram = mv_mbus_dram_info();
  3657. if (dram)
  3658. mv_conf_mbus_windows(hpriv, dram);
  3659. /* initialize adapter */
  3660. ret = mv_init_host(host);
  3661. if (ret) {
  3662. printk(KERN_ERR DRV_NAME ": Error during HW init\n");
  3663. return ret;
  3664. }
  3665. ata_host_resume(host);
  3666. }
  3667. return 0;
  3668. }
  3669. #else
  3670. #define mv_platform_suspend NULL
  3671. #define mv_platform_resume NULL
  3672. #endif
  3673. #ifdef CONFIG_OF
  3674. static struct of_device_id mv_sata_dt_ids[] = {
  3675. { .compatible = "marvell,orion-sata", },
  3676. {},
  3677. };
  3678. MODULE_DEVICE_TABLE(of, mv_sata_dt_ids);
  3679. #endif
  3680. static struct platform_driver mv_platform_driver = {
  3681. .probe = mv_platform_probe,
  3682. .remove = mv_platform_remove,
  3683. .suspend = mv_platform_suspend,
  3684. .resume = mv_platform_resume,
  3685. .driver = {
  3686. .name = DRV_NAME,
  3687. .owner = THIS_MODULE,
  3688. .of_match_table = of_match_ptr(mv_sata_dt_ids),
  3689. },
  3690. };
  3691. #ifdef CONFIG_PCI
  3692. static int mv_pci_init_one(struct pci_dev *pdev,
  3693. const struct pci_device_id *ent);
  3694. #ifdef CONFIG_PM
  3695. static int mv_pci_device_resume(struct pci_dev *pdev);
  3696. #endif
  3697. static struct pci_driver mv_pci_driver = {
  3698. .name = DRV_NAME,
  3699. .id_table = mv_pci_tbl,
  3700. .probe = mv_pci_init_one,
  3701. .remove = ata_pci_remove_one,
  3702. #ifdef CONFIG_PM
  3703. .suspend = ata_pci_device_suspend,
  3704. .resume = mv_pci_device_resume,
  3705. #endif
  3706. };
  3707. /* move to PCI layer or libata core? */
  3708. static int pci_go_64(struct pci_dev *pdev)
  3709. {
  3710. int rc;
  3711. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  3712. rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  3713. if (rc) {
  3714. rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3715. if (rc) {
  3716. dev_err(&pdev->dev,
  3717. "64-bit DMA enable failed\n");
  3718. return rc;
  3719. }
  3720. }
  3721. } else {
  3722. rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  3723. if (rc) {
  3724. dev_err(&pdev->dev, "32-bit DMA enable failed\n");
  3725. return rc;
  3726. }
  3727. rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3728. if (rc) {
  3729. dev_err(&pdev->dev,
  3730. "32-bit consistent DMA enable failed\n");
  3731. return rc;
  3732. }
  3733. }
  3734. return rc;
  3735. }
  3736. /**
  3737. * mv_print_info - Dump key info to kernel log for perusal.
  3738. * @host: ATA host to print info about
  3739. *
  3740. * FIXME: complete this.
  3741. *
  3742. * LOCKING:
  3743. * Inherited from caller.
  3744. */
  3745. static void mv_print_info(struct ata_host *host)
  3746. {
  3747. struct pci_dev *pdev = to_pci_dev(host->dev);
  3748. struct mv_host_priv *hpriv = host->private_data;
  3749. u8 scc;
  3750. const char *scc_s, *gen;
  3751. /* Use this to determine the HW stepping of the chip so we know
  3752. * what errata to workaround
  3753. */
  3754. pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
  3755. if (scc == 0)
  3756. scc_s = "SCSI";
  3757. else if (scc == 0x01)
  3758. scc_s = "RAID";
  3759. else
  3760. scc_s = "?";
  3761. if (IS_GEN_I(hpriv))
  3762. gen = "I";
  3763. else if (IS_GEN_II(hpriv))
  3764. gen = "II";
  3765. else if (IS_GEN_IIE(hpriv))
  3766. gen = "IIE";
  3767. else
  3768. gen = "?";
  3769. dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
  3770. gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
  3771. scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
  3772. }
  3773. /**
  3774. * mv_pci_init_one - handle a positive probe of a PCI Marvell host
  3775. * @pdev: PCI device found
  3776. * @ent: PCI device ID entry for the matched host
  3777. *
  3778. * LOCKING:
  3779. * Inherited from caller.
  3780. */
  3781. static int mv_pci_init_one(struct pci_dev *pdev,
  3782. const struct pci_device_id *ent)
  3783. {
  3784. unsigned int board_idx = (unsigned int)ent->driver_data;
  3785. const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
  3786. struct ata_host *host;
  3787. struct mv_host_priv *hpriv;
  3788. int n_ports, port, rc;
  3789. ata_print_version_once(&pdev->dev, DRV_VERSION);
  3790. /* allocate host */
  3791. n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
  3792. host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
  3793. hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
  3794. if (!host || !hpriv)
  3795. return -ENOMEM;
  3796. host->private_data = hpriv;
  3797. hpriv->n_ports = n_ports;
  3798. hpriv->board_idx = board_idx;
  3799. /* acquire resources */
  3800. rc = pcim_enable_device(pdev);
  3801. if (rc)
  3802. return rc;
  3803. rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
  3804. if (rc == -EBUSY)
  3805. pcim_pin_device(pdev);
  3806. if (rc)
  3807. return rc;
  3808. host->iomap = pcim_iomap_table(pdev);
  3809. hpriv->base = host->iomap[MV_PRIMARY_BAR];
  3810. rc = pci_go_64(pdev);
  3811. if (rc)
  3812. return rc;
  3813. rc = mv_create_dma_pools(hpriv, &pdev->dev);
  3814. if (rc)
  3815. return rc;
  3816. for (port = 0; port < host->n_ports; port++) {
  3817. struct ata_port *ap = host->ports[port];
  3818. void __iomem *port_mmio = mv_port_base(hpriv->base, port);
  3819. unsigned int offset = port_mmio - hpriv->base;
  3820. ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
  3821. ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
  3822. }
  3823. /* initialize adapter */
  3824. rc = mv_init_host(host);
  3825. if (rc)
  3826. return rc;
  3827. /* Enable message-switched interrupts, if requested */
  3828. if (msi && pci_enable_msi(pdev) == 0)
  3829. hpriv->hp_flags |= MV_HP_FLAG_MSI;
  3830. mv_dump_pci_cfg(pdev, 0x68);
  3831. mv_print_info(host);
  3832. pci_set_master(pdev);
  3833. pci_try_set_mwi(pdev);
  3834. return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
  3835. IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
  3836. }
  3837. #ifdef CONFIG_PM
  3838. static int mv_pci_device_resume(struct pci_dev *pdev)
  3839. {
  3840. struct ata_host *host = pci_get_drvdata(pdev);
  3841. int rc;
  3842. rc = ata_pci_device_do_resume(pdev);
  3843. if (rc)
  3844. return rc;
  3845. /* initialize adapter */
  3846. rc = mv_init_host(host);
  3847. if (rc)
  3848. return rc;
  3849. ata_host_resume(host);
  3850. return 0;
  3851. }
  3852. #endif
  3853. #endif
  3854. static int __init mv_init(void)
  3855. {
  3856. int rc = -ENODEV;
  3857. #ifdef CONFIG_PCI
  3858. rc = pci_register_driver(&mv_pci_driver);
  3859. if (rc < 0)
  3860. return rc;
  3861. #endif
  3862. rc = platform_driver_register(&mv_platform_driver);
  3863. #ifdef CONFIG_PCI
  3864. if (rc < 0)
  3865. pci_unregister_driver(&mv_pci_driver);
  3866. #endif
  3867. return rc;
  3868. }
  3869. static void __exit mv_exit(void)
  3870. {
  3871. #ifdef CONFIG_PCI
  3872. pci_unregister_driver(&mv_pci_driver);
  3873. #endif
  3874. platform_driver_unregister(&mv_platform_driver);
  3875. }
  3876. MODULE_AUTHOR("Brett Russ");
  3877. MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
  3878. MODULE_LICENSE("GPL");
  3879. MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
  3880. MODULE_VERSION(DRV_VERSION);
  3881. MODULE_ALIAS("platform:" DRV_NAME);
  3882. module_init(mv_init);
  3883. module_exit(mv_exit);