elevator.c 24 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049
  1. /*
  2. * Block device elevator/IO-scheduler.
  3. *
  4. * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. *
  6. * 30042000 Jens Axboe <axboe@kernel.dk> :
  7. *
  8. * Split the elevator a bit so that it is possible to choose a different
  9. * one or even write a new "plug in". There are three pieces:
  10. * - elevator_fn, inserts a new request in the queue list
  11. * - elevator_merge_fn, decides whether a new buffer can be merged with
  12. * an existing request
  13. * - elevator_dequeue_fn, called when a request is taken off the active list
  14. *
  15. * 20082000 Dave Jones <davej@suse.de> :
  16. * Removed tests for max-bomb-segments, which was breaking elvtune
  17. * when run without -bN
  18. *
  19. * Jens:
  20. * - Rework again to work with bio instead of buffer_heads
  21. * - loose bi_dev comparisons, partition handling is right now
  22. * - completely modularize elevator setup and teardown
  23. *
  24. */
  25. #include <linux/kernel.h>
  26. #include <linux/fs.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/elevator.h>
  29. #include <linux/bio.h>
  30. #include <linux/module.h>
  31. #include <linux/slab.h>
  32. #include <linux/init.h>
  33. #include <linux/compiler.h>
  34. #include <linux/blktrace_api.h>
  35. #include <linux/hash.h>
  36. #include <linux/uaccess.h>
  37. #include <linux/pm_runtime.h>
  38. #include <trace/events/block.h>
  39. #include "blk.h"
  40. #include "blk-cgroup.h"
  41. static DEFINE_SPINLOCK(elv_list_lock);
  42. static LIST_HEAD(elv_list);
  43. /*
  44. * Merge hash stuff.
  45. */
  46. #define rq_hash_key(rq) (blk_rq_pos(rq) + blk_rq_sectors(rq))
  47. /*
  48. * Query io scheduler to see if the current process issuing bio may be
  49. * merged with rq.
  50. */
  51. static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
  52. {
  53. struct request_queue *q = rq->q;
  54. struct elevator_queue *e = q->elevator;
  55. if (e->type->ops.elevator_allow_merge_fn)
  56. return e->type->ops.elevator_allow_merge_fn(q, rq, bio);
  57. return 1;
  58. }
  59. /*
  60. * can we safely merge with this request?
  61. */
  62. bool elv_rq_merge_ok(struct request *rq, struct bio *bio)
  63. {
  64. if (!blk_rq_merge_ok(rq, bio))
  65. return 0;
  66. if (!elv_iosched_allow_merge(rq, bio))
  67. return 0;
  68. return 1;
  69. }
  70. EXPORT_SYMBOL(elv_rq_merge_ok);
  71. static struct elevator_type *elevator_find(const char *name)
  72. {
  73. struct elevator_type *e;
  74. list_for_each_entry(e, &elv_list, list) {
  75. if (!strcmp(e->elevator_name, name))
  76. return e;
  77. }
  78. return NULL;
  79. }
  80. static void elevator_put(struct elevator_type *e)
  81. {
  82. module_put(e->elevator_owner);
  83. }
  84. static struct elevator_type *elevator_get(const char *name, bool try_loading)
  85. {
  86. struct elevator_type *e;
  87. spin_lock(&elv_list_lock);
  88. e = elevator_find(name);
  89. if (!e && try_loading) {
  90. spin_unlock(&elv_list_lock);
  91. request_module("%s-iosched", name);
  92. spin_lock(&elv_list_lock);
  93. e = elevator_find(name);
  94. }
  95. if (e && !try_module_get(e->elevator_owner))
  96. e = NULL;
  97. spin_unlock(&elv_list_lock);
  98. return e;
  99. }
  100. static char chosen_elevator[ELV_NAME_MAX];
  101. static int __init elevator_setup(char *str)
  102. {
  103. /*
  104. * Be backwards-compatible with previous kernels, so users
  105. * won't get the wrong elevator.
  106. */
  107. strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
  108. return 1;
  109. }
  110. __setup("elevator=", elevator_setup);
  111. /* called during boot to load the elevator chosen by the elevator param */
  112. void __init load_default_elevator_module(void)
  113. {
  114. struct elevator_type *e;
  115. if (!chosen_elevator[0])
  116. return;
  117. spin_lock(&elv_list_lock);
  118. e = elevator_find(chosen_elevator);
  119. spin_unlock(&elv_list_lock);
  120. if (!e)
  121. request_module("%s-iosched", chosen_elevator);
  122. }
  123. static struct kobj_type elv_ktype;
  124. struct elevator_queue *elevator_alloc(struct request_queue *q,
  125. struct elevator_type *e)
  126. {
  127. struct elevator_queue *eq;
  128. eq = kzalloc_node(sizeof(*eq), GFP_KERNEL, q->node);
  129. if (unlikely(!eq))
  130. goto err;
  131. eq->type = e;
  132. kobject_init(&eq->kobj, &elv_ktype);
  133. mutex_init(&eq->sysfs_lock);
  134. hash_init(eq->hash);
  135. return eq;
  136. err:
  137. kfree(eq);
  138. elevator_put(e);
  139. return NULL;
  140. }
  141. EXPORT_SYMBOL(elevator_alloc);
  142. static void elevator_release(struct kobject *kobj)
  143. {
  144. struct elevator_queue *e;
  145. e = container_of(kobj, struct elevator_queue, kobj);
  146. elevator_put(e->type);
  147. kfree(e);
  148. }
  149. int elevator_init(struct request_queue *q, char *name)
  150. {
  151. struct elevator_type *e = NULL;
  152. int err;
  153. if (unlikely(q->elevator))
  154. return 0;
  155. INIT_LIST_HEAD(&q->queue_head);
  156. q->last_merge = NULL;
  157. q->end_sector = 0;
  158. q->boundary_rq = NULL;
  159. if (name) {
  160. e = elevator_get(name, true);
  161. if (!e)
  162. return -EINVAL;
  163. }
  164. /*
  165. * Use the default elevator specified by config boot param or
  166. * config option. Don't try to load modules as we could be running
  167. * off async and request_module() isn't allowed from async.
  168. */
  169. if (!e && *chosen_elevator) {
  170. e = elevator_get(chosen_elevator, false);
  171. if (!e)
  172. printk(KERN_ERR "I/O scheduler %s not found\n",
  173. chosen_elevator);
  174. }
  175. if (!e) {
  176. e = elevator_get(CONFIG_DEFAULT_IOSCHED, false);
  177. if (!e) {
  178. printk(KERN_ERR
  179. "Default I/O scheduler not found. " \
  180. "Using noop.\n");
  181. e = elevator_get("noop", false);
  182. }
  183. }
  184. err = e->ops.elevator_init_fn(q, e);
  185. return 0;
  186. }
  187. EXPORT_SYMBOL(elevator_init);
  188. void elevator_exit(struct elevator_queue *e)
  189. {
  190. mutex_lock(&e->sysfs_lock);
  191. if (e->type->ops.elevator_exit_fn)
  192. e->type->ops.elevator_exit_fn(e);
  193. mutex_unlock(&e->sysfs_lock);
  194. kobject_put(&e->kobj);
  195. }
  196. EXPORT_SYMBOL(elevator_exit);
  197. static inline void __elv_rqhash_del(struct request *rq)
  198. {
  199. hash_del(&rq->hash);
  200. }
  201. static void elv_rqhash_del(struct request_queue *q, struct request *rq)
  202. {
  203. if (ELV_ON_HASH(rq))
  204. __elv_rqhash_del(rq);
  205. }
  206. static void elv_rqhash_add(struct request_queue *q, struct request *rq)
  207. {
  208. struct elevator_queue *e = q->elevator;
  209. BUG_ON(ELV_ON_HASH(rq));
  210. hash_add(e->hash, &rq->hash, rq_hash_key(rq));
  211. }
  212. static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
  213. {
  214. __elv_rqhash_del(rq);
  215. elv_rqhash_add(q, rq);
  216. }
  217. static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
  218. {
  219. struct elevator_queue *e = q->elevator;
  220. struct hlist_node *next;
  221. struct request *rq;
  222. hash_for_each_possible_safe(e->hash, rq, next, hash, offset) {
  223. BUG_ON(!ELV_ON_HASH(rq));
  224. if (unlikely(!rq_mergeable(rq))) {
  225. __elv_rqhash_del(rq);
  226. continue;
  227. }
  228. if (rq_hash_key(rq) == offset)
  229. return rq;
  230. }
  231. return NULL;
  232. }
  233. /*
  234. * RB-tree support functions for inserting/lookup/removal of requests
  235. * in a sorted RB tree.
  236. */
  237. void elv_rb_add(struct rb_root *root, struct request *rq)
  238. {
  239. struct rb_node **p = &root->rb_node;
  240. struct rb_node *parent = NULL;
  241. struct request *__rq;
  242. while (*p) {
  243. parent = *p;
  244. __rq = rb_entry(parent, struct request, rb_node);
  245. if (blk_rq_pos(rq) < blk_rq_pos(__rq))
  246. p = &(*p)->rb_left;
  247. else if (blk_rq_pos(rq) >= blk_rq_pos(__rq))
  248. p = &(*p)->rb_right;
  249. }
  250. rb_link_node(&rq->rb_node, parent, p);
  251. rb_insert_color(&rq->rb_node, root);
  252. }
  253. EXPORT_SYMBOL(elv_rb_add);
  254. void elv_rb_del(struct rb_root *root, struct request *rq)
  255. {
  256. BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
  257. rb_erase(&rq->rb_node, root);
  258. RB_CLEAR_NODE(&rq->rb_node);
  259. }
  260. EXPORT_SYMBOL(elv_rb_del);
  261. struct request *elv_rb_find(struct rb_root *root, sector_t sector)
  262. {
  263. struct rb_node *n = root->rb_node;
  264. struct request *rq;
  265. while (n) {
  266. rq = rb_entry(n, struct request, rb_node);
  267. if (sector < blk_rq_pos(rq))
  268. n = n->rb_left;
  269. else if (sector > blk_rq_pos(rq))
  270. n = n->rb_right;
  271. else
  272. return rq;
  273. }
  274. return NULL;
  275. }
  276. EXPORT_SYMBOL(elv_rb_find);
  277. /*
  278. * Insert rq into dispatch queue of q. Queue lock must be held on
  279. * entry. rq is sort instead into the dispatch queue. To be used by
  280. * specific elevators.
  281. */
  282. void elv_dispatch_sort(struct request_queue *q, struct request *rq)
  283. {
  284. sector_t boundary;
  285. struct list_head *entry;
  286. int stop_flags;
  287. if (q->last_merge == rq)
  288. q->last_merge = NULL;
  289. elv_rqhash_del(q, rq);
  290. q->nr_sorted--;
  291. boundary = q->end_sector;
  292. stop_flags = REQ_SOFTBARRIER | REQ_STARTED;
  293. list_for_each_prev(entry, &q->queue_head) {
  294. struct request *pos = list_entry_rq(entry);
  295. if ((rq->cmd_flags & REQ_DISCARD) !=
  296. (pos->cmd_flags & REQ_DISCARD))
  297. break;
  298. if (rq_data_dir(rq) != rq_data_dir(pos))
  299. break;
  300. if (pos->cmd_flags & stop_flags)
  301. break;
  302. if (blk_rq_pos(rq) >= boundary) {
  303. if (blk_rq_pos(pos) < boundary)
  304. continue;
  305. } else {
  306. if (blk_rq_pos(pos) >= boundary)
  307. break;
  308. }
  309. if (blk_rq_pos(rq) >= blk_rq_pos(pos))
  310. break;
  311. }
  312. list_add(&rq->queuelist, entry);
  313. }
  314. EXPORT_SYMBOL(elv_dispatch_sort);
  315. /*
  316. * Insert rq into dispatch queue of q. Queue lock must be held on
  317. * entry. rq is added to the back of the dispatch queue. To be used by
  318. * specific elevators.
  319. */
  320. void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
  321. {
  322. if (q->last_merge == rq)
  323. q->last_merge = NULL;
  324. elv_rqhash_del(q, rq);
  325. q->nr_sorted--;
  326. q->end_sector = rq_end_sector(rq);
  327. q->boundary_rq = rq;
  328. list_add_tail(&rq->queuelist, &q->queue_head);
  329. }
  330. EXPORT_SYMBOL(elv_dispatch_add_tail);
  331. int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
  332. {
  333. struct elevator_queue *e = q->elevator;
  334. struct request *__rq;
  335. int ret;
  336. /*
  337. * Levels of merges:
  338. * nomerges: No merges at all attempted
  339. * noxmerges: Only simple one-hit cache try
  340. * merges: All merge tries attempted
  341. */
  342. if (blk_queue_nomerges(q))
  343. return ELEVATOR_NO_MERGE;
  344. /*
  345. * First try one-hit cache.
  346. */
  347. if (q->last_merge && elv_rq_merge_ok(q->last_merge, bio)) {
  348. ret = blk_try_merge(q->last_merge, bio);
  349. if (ret != ELEVATOR_NO_MERGE) {
  350. *req = q->last_merge;
  351. return ret;
  352. }
  353. }
  354. if (blk_queue_noxmerges(q))
  355. return ELEVATOR_NO_MERGE;
  356. /*
  357. * See if our hash lookup can find a potential backmerge.
  358. */
  359. __rq = elv_rqhash_find(q, bio->bi_sector);
  360. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  361. *req = __rq;
  362. return ELEVATOR_BACK_MERGE;
  363. }
  364. if (e->type->ops.elevator_merge_fn)
  365. return e->type->ops.elevator_merge_fn(q, req, bio);
  366. return ELEVATOR_NO_MERGE;
  367. }
  368. /*
  369. * Attempt to do an insertion back merge. Only check for the case where
  370. * we can append 'rq' to an existing request, so we can throw 'rq' away
  371. * afterwards.
  372. *
  373. * Returns true if we merged, false otherwise
  374. */
  375. static bool elv_attempt_insert_merge(struct request_queue *q,
  376. struct request *rq)
  377. {
  378. struct request *__rq;
  379. bool ret;
  380. if (blk_queue_nomerges(q))
  381. return false;
  382. /*
  383. * First try one-hit cache.
  384. */
  385. if (q->last_merge && blk_attempt_req_merge(q, q->last_merge, rq))
  386. return true;
  387. if (blk_queue_noxmerges(q))
  388. return false;
  389. ret = false;
  390. /*
  391. * See if our hash lookup can find a potential backmerge.
  392. */
  393. while (1) {
  394. __rq = elv_rqhash_find(q, blk_rq_pos(rq));
  395. if (!__rq || !blk_attempt_req_merge(q, __rq, rq))
  396. break;
  397. /* The merged request could be merged with others, try again */
  398. ret = true;
  399. rq = __rq;
  400. }
  401. return ret;
  402. }
  403. void elv_merged_request(struct request_queue *q, struct request *rq, int type)
  404. {
  405. struct elevator_queue *e = q->elevator;
  406. if (e->type->ops.elevator_merged_fn)
  407. e->type->ops.elevator_merged_fn(q, rq, type);
  408. if (type == ELEVATOR_BACK_MERGE)
  409. elv_rqhash_reposition(q, rq);
  410. q->last_merge = rq;
  411. }
  412. void elv_merge_requests(struct request_queue *q, struct request *rq,
  413. struct request *next)
  414. {
  415. struct elevator_queue *e = q->elevator;
  416. const int next_sorted = next->cmd_flags & REQ_SORTED;
  417. if (next_sorted && e->type->ops.elevator_merge_req_fn)
  418. e->type->ops.elevator_merge_req_fn(q, rq, next);
  419. elv_rqhash_reposition(q, rq);
  420. if (next_sorted) {
  421. elv_rqhash_del(q, next);
  422. q->nr_sorted--;
  423. }
  424. q->last_merge = rq;
  425. }
  426. void elv_bio_merged(struct request_queue *q, struct request *rq,
  427. struct bio *bio)
  428. {
  429. struct elevator_queue *e = q->elevator;
  430. if (e->type->ops.elevator_bio_merged_fn)
  431. e->type->ops.elevator_bio_merged_fn(q, rq, bio);
  432. }
  433. #ifdef CONFIG_PM_RUNTIME
  434. static void blk_pm_requeue_request(struct request *rq)
  435. {
  436. if (rq->q->dev && !(rq->cmd_flags & REQ_PM))
  437. rq->q->nr_pending--;
  438. }
  439. static void blk_pm_add_request(struct request_queue *q, struct request *rq)
  440. {
  441. if (q->dev && !(rq->cmd_flags & REQ_PM) && q->nr_pending++ == 0 &&
  442. (q->rpm_status == RPM_SUSPENDED || q->rpm_status == RPM_SUSPENDING))
  443. pm_request_resume(q->dev);
  444. }
  445. #else
  446. static inline void blk_pm_requeue_request(struct request *rq) {}
  447. static inline void blk_pm_add_request(struct request_queue *q,
  448. struct request *rq)
  449. {
  450. }
  451. #endif
  452. void elv_requeue_request(struct request_queue *q, struct request *rq)
  453. {
  454. /*
  455. * it already went through dequeue, we need to decrement the
  456. * in_flight count again
  457. */
  458. if (blk_account_rq(rq)) {
  459. q->in_flight[rq_is_sync(rq)]--;
  460. if (rq->cmd_flags & REQ_SORTED)
  461. elv_deactivate_rq(q, rq);
  462. }
  463. rq->cmd_flags &= ~REQ_STARTED;
  464. blk_pm_requeue_request(rq);
  465. __elv_add_request(q, rq, ELEVATOR_INSERT_REQUEUE);
  466. }
  467. void elv_drain_elevator(struct request_queue *q)
  468. {
  469. static int printed;
  470. lockdep_assert_held(q->queue_lock);
  471. while (q->elevator->type->ops.elevator_dispatch_fn(q, 1))
  472. ;
  473. if (q->nr_sorted && printed++ < 10) {
  474. printk(KERN_ERR "%s: forced dispatching is broken "
  475. "(nr_sorted=%u), please report this\n",
  476. q->elevator->type->elevator_name, q->nr_sorted);
  477. }
  478. }
  479. void __elv_add_request(struct request_queue *q, struct request *rq, int where)
  480. {
  481. trace_block_rq_insert(q, rq);
  482. blk_pm_add_request(q, rq);
  483. rq->q = q;
  484. if (rq->cmd_flags & REQ_SOFTBARRIER) {
  485. /* barriers are scheduling boundary, update end_sector */
  486. if (rq->cmd_type == REQ_TYPE_FS) {
  487. q->end_sector = rq_end_sector(rq);
  488. q->boundary_rq = rq;
  489. }
  490. } else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
  491. (where == ELEVATOR_INSERT_SORT ||
  492. where == ELEVATOR_INSERT_SORT_MERGE))
  493. where = ELEVATOR_INSERT_BACK;
  494. switch (where) {
  495. case ELEVATOR_INSERT_REQUEUE:
  496. case ELEVATOR_INSERT_FRONT:
  497. rq->cmd_flags |= REQ_SOFTBARRIER;
  498. list_add(&rq->queuelist, &q->queue_head);
  499. break;
  500. case ELEVATOR_INSERT_BACK:
  501. rq->cmd_flags |= REQ_SOFTBARRIER;
  502. elv_drain_elevator(q);
  503. list_add_tail(&rq->queuelist, &q->queue_head);
  504. /*
  505. * We kick the queue here for the following reasons.
  506. * - The elevator might have returned NULL previously
  507. * to delay requests and returned them now. As the
  508. * queue wasn't empty before this request, ll_rw_blk
  509. * won't run the queue on return, resulting in hang.
  510. * - Usually, back inserted requests won't be merged
  511. * with anything. There's no point in delaying queue
  512. * processing.
  513. */
  514. __blk_run_queue(q);
  515. break;
  516. case ELEVATOR_INSERT_SORT_MERGE:
  517. /*
  518. * If we succeed in merging this request with one in the
  519. * queue already, we are done - rq has now been freed,
  520. * so no need to do anything further.
  521. */
  522. if (elv_attempt_insert_merge(q, rq))
  523. break;
  524. case ELEVATOR_INSERT_SORT:
  525. BUG_ON(rq->cmd_type != REQ_TYPE_FS);
  526. rq->cmd_flags |= REQ_SORTED;
  527. q->nr_sorted++;
  528. if (rq_mergeable(rq)) {
  529. elv_rqhash_add(q, rq);
  530. if (!q->last_merge)
  531. q->last_merge = rq;
  532. }
  533. /*
  534. * Some ioscheds (cfq) run q->request_fn directly, so
  535. * rq cannot be accessed after calling
  536. * elevator_add_req_fn.
  537. */
  538. q->elevator->type->ops.elevator_add_req_fn(q, rq);
  539. break;
  540. case ELEVATOR_INSERT_FLUSH:
  541. rq->cmd_flags |= REQ_SOFTBARRIER;
  542. blk_insert_flush(rq);
  543. break;
  544. default:
  545. printk(KERN_ERR "%s: bad insertion point %d\n",
  546. __func__, where);
  547. BUG();
  548. }
  549. }
  550. EXPORT_SYMBOL(__elv_add_request);
  551. void elv_add_request(struct request_queue *q, struct request *rq, int where)
  552. {
  553. unsigned long flags;
  554. spin_lock_irqsave(q->queue_lock, flags);
  555. __elv_add_request(q, rq, where);
  556. spin_unlock_irqrestore(q->queue_lock, flags);
  557. }
  558. EXPORT_SYMBOL(elv_add_request);
  559. struct request *elv_latter_request(struct request_queue *q, struct request *rq)
  560. {
  561. struct elevator_queue *e = q->elevator;
  562. if (e->type->ops.elevator_latter_req_fn)
  563. return e->type->ops.elevator_latter_req_fn(q, rq);
  564. return NULL;
  565. }
  566. struct request *elv_former_request(struct request_queue *q, struct request *rq)
  567. {
  568. struct elevator_queue *e = q->elevator;
  569. if (e->type->ops.elevator_former_req_fn)
  570. return e->type->ops.elevator_former_req_fn(q, rq);
  571. return NULL;
  572. }
  573. int elv_set_request(struct request_queue *q, struct request *rq,
  574. struct bio *bio, gfp_t gfp_mask)
  575. {
  576. struct elevator_queue *e = q->elevator;
  577. if (e->type->ops.elevator_set_req_fn)
  578. return e->type->ops.elevator_set_req_fn(q, rq, bio, gfp_mask);
  579. return 0;
  580. }
  581. void elv_put_request(struct request_queue *q, struct request *rq)
  582. {
  583. struct elevator_queue *e = q->elevator;
  584. if (e->type->ops.elevator_put_req_fn)
  585. e->type->ops.elevator_put_req_fn(rq);
  586. }
  587. int elv_may_queue(struct request_queue *q, int rw)
  588. {
  589. struct elevator_queue *e = q->elevator;
  590. if (e->type->ops.elevator_may_queue_fn)
  591. return e->type->ops.elevator_may_queue_fn(q, rw);
  592. return ELV_MQUEUE_MAY;
  593. }
  594. void elv_abort_queue(struct request_queue *q)
  595. {
  596. struct request *rq;
  597. blk_abort_flushes(q);
  598. while (!list_empty(&q->queue_head)) {
  599. rq = list_entry_rq(q->queue_head.next);
  600. rq->cmd_flags |= REQ_QUIET;
  601. trace_block_rq_abort(q, rq);
  602. /*
  603. * Mark this request as started so we don't trigger
  604. * any debug logic in the end I/O path.
  605. */
  606. blk_start_request(rq);
  607. __blk_end_request_all(rq, -EIO);
  608. }
  609. }
  610. EXPORT_SYMBOL(elv_abort_queue);
  611. void elv_completed_request(struct request_queue *q, struct request *rq)
  612. {
  613. struct elevator_queue *e = q->elevator;
  614. /*
  615. * request is released from the driver, io must be done
  616. */
  617. if (blk_account_rq(rq)) {
  618. q->in_flight[rq_is_sync(rq)]--;
  619. if ((rq->cmd_flags & REQ_SORTED) &&
  620. e->type->ops.elevator_completed_req_fn)
  621. e->type->ops.elevator_completed_req_fn(q, rq);
  622. }
  623. }
  624. #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
  625. static ssize_t
  626. elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  627. {
  628. struct elv_fs_entry *entry = to_elv(attr);
  629. struct elevator_queue *e;
  630. ssize_t error;
  631. if (!entry->show)
  632. return -EIO;
  633. e = container_of(kobj, struct elevator_queue, kobj);
  634. mutex_lock(&e->sysfs_lock);
  635. error = e->type ? entry->show(e, page) : -ENOENT;
  636. mutex_unlock(&e->sysfs_lock);
  637. return error;
  638. }
  639. static ssize_t
  640. elv_attr_store(struct kobject *kobj, struct attribute *attr,
  641. const char *page, size_t length)
  642. {
  643. struct elv_fs_entry *entry = to_elv(attr);
  644. struct elevator_queue *e;
  645. ssize_t error;
  646. if (!entry->store)
  647. return -EIO;
  648. e = container_of(kobj, struct elevator_queue, kobj);
  649. mutex_lock(&e->sysfs_lock);
  650. error = e->type ? entry->store(e, page, length) : -ENOENT;
  651. mutex_unlock(&e->sysfs_lock);
  652. return error;
  653. }
  654. static const struct sysfs_ops elv_sysfs_ops = {
  655. .show = elv_attr_show,
  656. .store = elv_attr_store,
  657. };
  658. static struct kobj_type elv_ktype = {
  659. .sysfs_ops = &elv_sysfs_ops,
  660. .release = elevator_release,
  661. };
  662. int elv_register_queue(struct request_queue *q)
  663. {
  664. struct elevator_queue *e = q->elevator;
  665. int error;
  666. error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
  667. if (!error) {
  668. struct elv_fs_entry *attr = e->type->elevator_attrs;
  669. if (attr) {
  670. while (attr->attr.name) {
  671. if (sysfs_create_file(&e->kobj, &attr->attr))
  672. break;
  673. attr++;
  674. }
  675. }
  676. kobject_uevent(&e->kobj, KOBJ_ADD);
  677. e->registered = 1;
  678. }
  679. return error;
  680. }
  681. EXPORT_SYMBOL(elv_register_queue);
  682. void elv_unregister_queue(struct request_queue *q)
  683. {
  684. if (q) {
  685. struct elevator_queue *e = q->elevator;
  686. kobject_uevent(&e->kobj, KOBJ_REMOVE);
  687. kobject_del(&e->kobj);
  688. e->registered = 0;
  689. }
  690. }
  691. EXPORT_SYMBOL(elv_unregister_queue);
  692. int elv_register(struct elevator_type *e)
  693. {
  694. char *def = "";
  695. /* create icq_cache if requested */
  696. if (e->icq_size) {
  697. if (WARN_ON(e->icq_size < sizeof(struct io_cq)) ||
  698. WARN_ON(e->icq_align < __alignof__(struct io_cq)))
  699. return -EINVAL;
  700. snprintf(e->icq_cache_name, sizeof(e->icq_cache_name),
  701. "%s_io_cq", e->elevator_name);
  702. e->icq_cache = kmem_cache_create(e->icq_cache_name, e->icq_size,
  703. e->icq_align, 0, NULL);
  704. if (!e->icq_cache)
  705. return -ENOMEM;
  706. }
  707. /* register, don't allow duplicate names */
  708. spin_lock(&elv_list_lock);
  709. if (elevator_find(e->elevator_name)) {
  710. spin_unlock(&elv_list_lock);
  711. if (e->icq_cache)
  712. kmem_cache_destroy(e->icq_cache);
  713. return -EBUSY;
  714. }
  715. list_add_tail(&e->list, &elv_list);
  716. spin_unlock(&elv_list_lock);
  717. /* print pretty message */
  718. if (!strcmp(e->elevator_name, chosen_elevator) ||
  719. (!*chosen_elevator &&
  720. !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
  721. def = " (default)";
  722. printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
  723. def);
  724. return 0;
  725. }
  726. EXPORT_SYMBOL_GPL(elv_register);
  727. void elv_unregister(struct elevator_type *e)
  728. {
  729. /* unregister */
  730. spin_lock(&elv_list_lock);
  731. list_del_init(&e->list);
  732. spin_unlock(&elv_list_lock);
  733. /*
  734. * Destroy icq_cache if it exists. icq's are RCU managed. Make
  735. * sure all RCU operations are complete before proceeding.
  736. */
  737. if (e->icq_cache) {
  738. rcu_barrier();
  739. kmem_cache_destroy(e->icq_cache);
  740. e->icq_cache = NULL;
  741. }
  742. }
  743. EXPORT_SYMBOL_GPL(elv_unregister);
  744. /*
  745. * switch to new_e io scheduler. be careful not to introduce deadlocks -
  746. * we don't free the old io scheduler, before we have allocated what we
  747. * need for the new one. this way we have a chance of going back to the old
  748. * one, if the new one fails init for some reason.
  749. */
  750. static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
  751. {
  752. struct elevator_queue *old = q->elevator;
  753. bool registered = old->registered;
  754. int err;
  755. /*
  756. * Turn on BYPASS and drain all requests w/ elevator private data.
  757. * Block layer doesn't call into a quiesced elevator - all requests
  758. * are directly put on the dispatch list without elevator data
  759. * using INSERT_BACK. All requests have SOFTBARRIER set and no
  760. * merge happens either.
  761. */
  762. blk_queue_bypass_start(q);
  763. /* unregister and clear all auxiliary data of the old elevator */
  764. if (registered)
  765. elv_unregister_queue(q);
  766. spin_lock_irq(q->queue_lock);
  767. ioc_clear_queue(q);
  768. spin_unlock_irq(q->queue_lock);
  769. /* allocate, init and register new elevator */
  770. err = new_e->ops.elevator_init_fn(q, new_e);
  771. if (err)
  772. goto fail_init;
  773. if (registered) {
  774. err = elv_register_queue(q);
  775. if (err)
  776. goto fail_register;
  777. }
  778. /* done, kill the old one and finish */
  779. elevator_exit(old);
  780. blk_queue_bypass_end(q);
  781. blk_add_trace_msg(q, "elv switch: %s", new_e->elevator_name);
  782. return 0;
  783. fail_register:
  784. elevator_exit(q->elevator);
  785. fail_init:
  786. /* switch failed, restore and re-register old elevator */
  787. q->elevator = old;
  788. elv_register_queue(q);
  789. blk_queue_bypass_end(q);
  790. return err;
  791. }
  792. /*
  793. * Switch this queue to the given IO scheduler.
  794. */
  795. int elevator_change(struct request_queue *q, const char *name)
  796. {
  797. char elevator_name[ELV_NAME_MAX];
  798. struct elevator_type *e;
  799. if (!q->elevator)
  800. return -ENXIO;
  801. strlcpy(elevator_name, name, sizeof(elevator_name));
  802. e = elevator_get(strstrip(elevator_name), true);
  803. if (!e) {
  804. printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
  805. return -EINVAL;
  806. }
  807. if (!strcmp(elevator_name, q->elevator->type->elevator_name)) {
  808. elevator_put(e);
  809. return 0;
  810. }
  811. return elevator_switch(q, e);
  812. }
  813. EXPORT_SYMBOL(elevator_change);
  814. ssize_t elv_iosched_store(struct request_queue *q, const char *name,
  815. size_t count)
  816. {
  817. int ret;
  818. if (!q->elevator)
  819. return count;
  820. ret = elevator_change(q, name);
  821. if (!ret)
  822. return count;
  823. printk(KERN_ERR "elevator: switch to %s failed\n", name);
  824. return ret;
  825. }
  826. ssize_t elv_iosched_show(struct request_queue *q, char *name)
  827. {
  828. struct elevator_queue *e = q->elevator;
  829. struct elevator_type *elv;
  830. struct elevator_type *__e;
  831. int len = 0;
  832. if (!q->elevator || !blk_queue_stackable(q))
  833. return sprintf(name, "none\n");
  834. elv = e->type;
  835. spin_lock(&elv_list_lock);
  836. list_for_each_entry(__e, &elv_list, list) {
  837. if (!strcmp(elv->elevator_name, __e->elevator_name))
  838. len += sprintf(name+len, "[%s] ", elv->elevator_name);
  839. else
  840. len += sprintf(name+len, "%s ", __e->elevator_name);
  841. }
  842. spin_unlock(&elv_list_lock);
  843. len += sprintf(len+name, "\n");
  844. return len;
  845. }
  846. struct request *elv_rb_former_request(struct request_queue *q,
  847. struct request *rq)
  848. {
  849. struct rb_node *rbprev = rb_prev(&rq->rb_node);
  850. if (rbprev)
  851. return rb_entry_rq(rbprev);
  852. return NULL;
  853. }
  854. EXPORT_SYMBOL(elv_rb_former_request);
  855. struct request *elv_rb_latter_request(struct request_queue *q,
  856. struct request *rq)
  857. {
  858. struct rb_node *rbnext = rb_next(&rq->rb_node);
  859. if (rbnext)
  860. return rb_entry_rq(rbnext);
  861. return NULL;
  862. }
  863. EXPORT_SYMBOL(elv_rb_latter_request);