tsc.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/kernel.h>
  3. #include <linux/sched.h>
  4. #include <linux/init.h>
  5. #include <linux/module.h>
  6. #include <linux/timer.h>
  7. #include <linux/acpi_pmtmr.h>
  8. #include <linux/cpufreq.h>
  9. #include <linux/delay.h>
  10. #include <linux/clocksource.h>
  11. #include <linux/percpu.h>
  12. #include <linux/timex.h>
  13. #include <asm/hpet.h>
  14. #include <asm/timer.h>
  15. #include <asm/vgtod.h>
  16. #include <asm/time.h>
  17. #include <asm/delay.h>
  18. #include <asm/hypervisor.h>
  19. #include <asm/nmi.h>
  20. #include <asm/x86_init.h>
  21. unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
  22. EXPORT_SYMBOL(cpu_khz);
  23. unsigned int __read_mostly tsc_khz;
  24. EXPORT_SYMBOL(tsc_khz);
  25. /*
  26. * TSC can be unstable due to cpufreq or due to unsynced TSCs
  27. */
  28. static int __read_mostly tsc_unstable;
  29. /* native_sched_clock() is called before tsc_init(), so
  30. we must start with the TSC soft disabled to prevent
  31. erroneous rdtsc usage on !cpu_has_tsc processors */
  32. static int __read_mostly tsc_disabled = -1;
  33. int tsc_clocksource_reliable;
  34. /*
  35. * Scheduler clock - returns current time in nanosec units.
  36. */
  37. u64 native_sched_clock(void)
  38. {
  39. u64 this_offset;
  40. /*
  41. * Fall back to jiffies if there's no TSC available:
  42. * ( But note that we still use it if the TSC is marked
  43. * unstable. We do this because unlike Time Of Day,
  44. * the scheduler clock tolerates small errors and it's
  45. * very important for it to be as fast as the platform
  46. * can achieve it. )
  47. */
  48. if (unlikely(tsc_disabled)) {
  49. /* No locking but a rare wrong value is not a big deal: */
  50. return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
  51. }
  52. /* read the Time Stamp Counter: */
  53. rdtscll(this_offset);
  54. /* return the value in ns */
  55. return __cycles_2_ns(this_offset);
  56. }
  57. /* We need to define a real function for sched_clock, to override the
  58. weak default version */
  59. #ifdef CONFIG_PARAVIRT
  60. unsigned long long sched_clock(void)
  61. {
  62. return paravirt_sched_clock();
  63. }
  64. #else
  65. unsigned long long
  66. sched_clock(void) __attribute__((alias("native_sched_clock")));
  67. #endif
  68. unsigned long long native_read_tsc(void)
  69. {
  70. return __native_read_tsc();
  71. }
  72. EXPORT_SYMBOL(native_read_tsc);
  73. int check_tsc_unstable(void)
  74. {
  75. return tsc_unstable;
  76. }
  77. EXPORT_SYMBOL_GPL(check_tsc_unstable);
  78. int check_tsc_disabled(void)
  79. {
  80. return tsc_disabled;
  81. }
  82. EXPORT_SYMBOL_GPL(check_tsc_disabled);
  83. #ifdef CONFIG_X86_TSC
  84. int __init notsc_setup(char *str)
  85. {
  86. pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
  87. tsc_disabled = 1;
  88. return 1;
  89. }
  90. #else
  91. /*
  92. * disable flag for tsc. Takes effect by clearing the TSC cpu flag
  93. * in cpu/common.c
  94. */
  95. int __init notsc_setup(char *str)
  96. {
  97. setup_clear_cpu_cap(X86_FEATURE_TSC);
  98. return 1;
  99. }
  100. #endif
  101. __setup("notsc", notsc_setup);
  102. static int no_sched_irq_time;
  103. static int __init tsc_setup(char *str)
  104. {
  105. if (!strcmp(str, "reliable"))
  106. tsc_clocksource_reliable = 1;
  107. if (!strncmp(str, "noirqtime", 9))
  108. no_sched_irq_time = 1;
  109. return 1;
  110. }
  111. __setup("tsc=", tsc_setup);
  112. #define MAX_RETRIES 5
  113. #define SMI_TRESHOLD 50000
  114. /*
  115. * Read TSC and the reference counters. Take care of SMI disturbance
  116. */
  117. static u64 tsc_read_refs(u64 *p, int hpet)
  118. {
  119. u64 t1, t2;
  120. int i;
  121. for (i = 0; i < MAX_RETRIES; i++) {
  122. t1 = get_cycles();
  123. if (hpet)
  124. *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
  125. else
  126. *p = acpi_pm_read_early();
  127. t2 = get_cycles();
  128. if ((t2 - t1) < SMI_TRESHOLD)
  129. return t2;
  130. }
  131. return ULLONG_MAX;
  132. }
  133. /*
  134. * Calculate the TSC frequency from HPET reference
  135. */
  136. static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
  137. {
  138. u64 tmp;
  139. if (hpet2 < hpet1)
  140. hpet2 += 0x100000000ULL;
  141. hpet2 -= hpet1;
  142. tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
  143. do_div(tmp, 1000000);
  144. do_div(deltatsc, tmp);
  145. return (unsigned long) deltatsc;
  146. }
  147. /*
  148. * Calculate the TSC frequency from PMTimer reference
  149. */
  150. static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
  151. {
  152. u64 tmp;
  153. if (!pm1 && !pm2)
  154. return ULONG_MAX;
  155. if (pm2 < pm1)
  156. pm2 += (u64)ACPI_PM_OVRRUN;
  157. pm2 -= pm1;
  158. tmp = pm2 * 1000000000LL;
  159. do_div(tmp, PMTMR_TICKS_PER_SEC);
  160. do_div(deltatsc, tmp);
  161. return (unsigned long) deltatsc;
  162. }
  163. #define CAL_MS 10
  164. #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
  165. #define CAL_PIT_LOOPS 1000
  166. #define CAL2_MS 50
  167. #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
  168. #define CAL2_PIT_LOOPS 5000
  169. /*
  170. * Try to calibrate the TSC against the Programmable
  171. * Interrupt Timer and return the frequency of the TSC
  172. * in kHz.
  173. *
  174. * Return ULONG_MAX on failure to calibrate.
  175. */
  176. static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
  177. {
  178. u64 tsc, t1, t2, delta;
  179. unsigned long tscmin, tscmax;
  180. int pitcnt;
  181. /* Set the Gate high, disable speaker */
  182. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  183. /*
  184. * Setup CTC channel 2* for mode 0, (interrupt on terminal
  185. * count mode), binary count. Set the latch register to 50ms
  186. * (LSB then MSB) to begin countdown.
  187. */
  188. outb(0xb0, 0x43);
  189. outb(latch & 0xff, 0x42);
  190. outb(latch >> 8, 0x42);
  191. tsc = t1 = t2 = get_cycles();
  192. pitcnt = 0;
  193. tscmax = 0;
  194. tscmin = ULONG_MAX;
  195. while ((inb(0x61) & 0x20) == 0) {
  196. t2 = get_cycles();
  197. delta = t2 - tsc;
  198. tsc = t2;
  199. if ((unsigned long) delta < tscmin)
  200. tscmin = (unsigned int) delta;
  201. if ((unsigned long) delta > tscmax)
  202. tscmax = (unsigned int) delta;
  203. pitcnt++;
  204. }
  205. /*
  206. * Sanity checks:
  207. *
  208. * If we were not able to read the PIT more than loopmin
  209. * times, then we have been hit by a massive SMI
  210. *
  211. * If the maximum is 10 times larger than the minimum,
  212. * then we got hit by an SMI as well.
  213. */
  214. if (pitcnt < loopmin || tscmax > 10 * tscmin)
  215. return ULONG_MAX;
  216. /* Calculate the PIT value */
  217. delta = t2 - t1;
  218. do_div(delta, ms);
  219. return delta;
  220. }
  221. /*
  222. * This reads the current MSB of the PIT counter, and
  223. * checks if we are running on sufficiently fast and
  224. * non-virtualized hardware.
  225. *
  226. * Our expectations are:
  227. *
  228. * - the PIT is running at roughly 1.19MHz
  229. *
  230. * - each IO is going to take about 1us on real hardware,
  231. * but we allow it to be much faster (by a factor of 10) or
  232. * _slightly_ slower (ie we allow up to a 2us read+counter
  233. * update - anything else implies a unacceptably slow CPU
  234. * or PIT for the fast calibration to work.
  235. *
  236. * - with 256 PIT ticks to read the value, we have 214us to
  237. * see the same MSB (and overhead like doing a single TSC
  238. * read per MSB value etc).
  239. *
  240. * - We're doing 2 reads per loop (LSB, MSB), and we expect
  241. * them each to take about a microsecond on real hardware.
  242. * So we expect a count value of around 100. But we'll be
  243. * generous, and accept anything over 50.
  244. *
  245. * - if the PIT is stuck, and we see *many* more reads, we
  246. * return early (and the next caller of pit_expect_msb()
  247. * then consider it a failure when they don't see the
  248. * next expected value).
  249. *
  250. * These expectations mean that we know that we have seen the
  251. * transition from one expected value to another with a fairly
  252. * high accuracy, and we didn't miss any events. We can thus
  253. * use the TSC value at the transitions to calculate a pretty
  254. * good value for the TSC frequencty.
  255. */
  256. static inline int pit_verify_msb(unsigned char val)
  257. {
  258. /* Ignore LSB */
  259. inb(0x42);
  260. return inb(0x42) == val;
  261. }
  262. static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
  263. {
  264. int count;
  265. u64 tsc = 0, prev_tsc = 0;
  266. for (count = 0; count < 50000; count++) {
  267. if (!pit_verify_msb(val))
  268. break;
  269. prev_tsc = tsc;
  270. tsc = get_cycles();
  271. }
  272. *deltap = get_cycles() - prev_tsc;
  273. *tscp = tsc;
  274. /*
  275. * We require _some_ success, but the quality control
  276. * will be based on the error terms on the TSC values.
  277. */
  278. return count > 5;
  279. }
  280. /*
  281. * How many MSB values do we want to see? We aim for
  282. * a maximum error rate of 500ppm (in practice the
  283. * real error is much smaller), but refuse to spend
  284. * more than 50ms on it.
  285. */
  286. #define MAX_QUICK_PIT_MS 50
  287. #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
  288. static unsigned long quick_pit_calibrate(void)
  289. {
  290. int i;
  291. u64 tsc, delta;
  292. unsigned long d1, d2;
  293. /* Set the Gate high, disable speaker */
  294. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  295. /*
  296. * Counter 2, mode 0 (one-shot), binary count
  297. *
  298. * NOTE! Mode 2 decrements by two (and then the
  299. * output is flipped each time, giving the same
  300. * final output frequency as a decrement-by-one),
  301. * so mode 0 is much better when looking at the
  302. * individual counts.
  303. */
  304. outb(0xb0, 0x43);
  305. /* Start at 0xffff */
  306. outb(0xff, 0x42);
  307. outb(0xff, 0x42);
  308. /*
  309. * The PIT starts counting at the next edge, so we
  310. * need to delay for a microsecond. The easiest way
  311. * to do that is to just read back the 16-bit counter
  312. * once from the PIT.
  313. */
  314. pit_verify_msb(0);
  315. if (pit_expect_msb(0xff, &tsc, &d1)) {
  316. for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
  317. if (!pit_expect_msb(0xff-i, &delta, &d2))
  318. break;
  319. /*
  320. * Iterate until the error is less than 500 ppm
  321. */
  322. delta -= tsc;
  323. if (d1+d2 >= delta >> 11)
  324. continue;
  325. /*
  326. * Check the PIT one more time to verify that
  327. * all TSC reads were stable wrt the PIT.
  328. *
  329. * This also guarantees serialization of the
  330. * last cycle read ('d2') in pit_expect_msb.
  331. */
  332. if (!pit_verify_msb(0xfe - i))
  333. break;
  334. goto success;
  335. }
  336. }
  337. pr_err("Fast TSC calibration failed\n");
  338. return 0;
  339. success:
  340. /*
  341. * Ok, if we get here, then we've seen the
  342. * MSB of the PIT decrement 'i' times, and the
  343. * error has shrunk to less than 500 ppm.
  344. *
  345. * As a result, we can depend on there not being
  346. * any odd delays anywhere, and the TSC reads are
  347. * reliable (within the error).
  348. *
  349. * kHz = ticks / time-in-seconds / 1000;
  350. * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
  351. * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
  352. */
  353. delta *= PIT_TICK_RATE;
  354. do_div(delta, i*256*1000);
  355. pr_info("Fast TSC calibration using PIT\n");
  356. return delta;
  357. }
  358. /**
  359. * native_calibrate_tsc - calibrate the tsc on boot
  360. */
  361. unsigned long native_calibrate_tsc(void)
  362. {
  363. u64 tsc1, tsc2, delta, ref1, ref2;
  364. unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
  365. unsigned long flags, latch, ms, fast_calibrate;
  366. int hpet = is_hpet_enabled(), i, loopmin;
  367. local_irq_save(flags);
  368. fast_calibrate = quick_pit_calibrate();
  369. local_irq_restore(flags);
  370. if (fast_calibrate)
  371. return fast_calibrate;
  372. /*
  373. * Run 5 calibration loops to get the lowest frequency value
  374. * (the best estimate). We use two different calibration modes
  375. * here:
  376. *
  377. * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
  378. * load a timeout of 50ms. We read the time right after we
  379. * started the timer and wait until the PIT count down reaches
  380. * zero. In each wait loop iteration we read the TSC and check
  381. * the delta to the previous read. We keep track of the min
  382. * and max values of that delta. The delta is mostly defined
  383. * by the IO time of the PIT access, so we can detect when a
  384. * SMI/SMM disturbance happened between the two reads. If the
  385. * maximum time is significantly larger than the minimum time,
  386. * then we discard the result and have another try.
  387. *
  388. * 2) Reference counter. If available we use the HPET or the
  389. * PMTIMER as a reference to check the sanity of that value.
  390. * We use separate TSC readouts and check inside of the
  391. * reference read for a SMI/SMM disturbance. We dicard
  392. * disturbed values here as well. We do that around the PIT
  393. * calibration delay loop as we have to wait for a certain
  394. * amount of time anyway.
  395. */
  396. /* Preset PIT loop values */
  397. latch = CAL_LATCH;
  398. ms = CAL_MS;
  399. loopmin = CAL_PIT_LOOPS;
  400. for (i = 0; i < 3; i++) {
  401. unsigned long tsc_pit_khz;
  402. /*
  403. * Read the start value and the reference count of
  404. * hpet/pmtimer when available. Then do the PIT
  405. * calibration, which will take at least 50ms, and
  406. * read the end value.
  407. */
  408. local_irq_save(flags);
  409. tsc1 = tsc_read_refs(&ref1, hpet);
  410. tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
  411. tsc2 = tsc_read_refs(&ref2, hpet);
  412. local_irq_restore(flags);
  413. /* Pick the lowest PIT TSC calibration so far */
  414. tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
  415. /* hpet or pmtimer available ? */
  416. if (ref1 == ref2)
  417. continue;
  418. /* Check, whether the sampling was disturbed by an SMI */
  419. if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
  420. continue;
  421. tsc2 = (tsc2 - tsc1) * 1000000LL;
  422. if (hpet)
  423. tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
  424. else
  425. tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
  426. tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
  427. /* Check the reference deviation */
  428. delta = ((u64) tsc_pit_min) * 100;
  429. do_div(delta, tsc_ref_min);
  430. /*
  431. * If both calibration results are inside a 10% window
  432. * then we can be sure, that the calibration
  433. * succeeded. We break out of the loop right away. We
  434. * use the reference value, as it is more precise.
  435. */
  436. if (delta >= 90 && delta <= 110) {
  437. pr_info("PIT calibration matches %s. %d loops\n",
  438. hpet ? "HPET" : "PMTIMER", i + 1);
  439. return tsc_ref_min;
  440. }
  441. /*
  442. * Check whether PIT failed more than once. This
  443. * happens in virtualized environments. We need to
  444. * give the virtual PC a slightly longer timeframe for
  445. * the HPET/PMTIMER to make the result precise.
  446. */
  447. if (i == 1 && tsc_pit_min == ULONG_MAX) {
  448. latch = CAL2_LATCH;
  449. ms = CAL2_MS;
  450. loopmin = CAL2_PIT_LOOPS;
  451. }
  452. }
  453. /*
  454. * Now check the results.
  455. */
  456. if (tsc_pit_min == ULONG_MAX) {
  457. /* PIT gave no useful value */
  458. pr_warn("Unable to calibrate against PIT\n");
  459. /* We don't have an alternative source, disable TSC */
  460. if (!hpet && !ref1 && !ref2) {
  461. pr_notice("No reference (HPET/PMTIMER) available\n");
  462. return 0;
  463. }
  464. /* The alternative source failed as well, disable TSC */
  465. if (tsc_ref_min == ULONG_MAX) {
  466. pr_warn("HPET/PMTIMER calibration failed\n");
  467. return 0;
  468. }
  469. /* Use the alternative source */
  470. pr_info("using %s reference calibration\n",
  471. hpet ? "HPET" : "PMTIMER");
  472. return tsc_ref_min;
  473. }
  474. /* We don't have an alternative source, use the PIT calibration value */
  475. if (!hpet && !ref1 && !ref2) {
  476. pr_info("Using PIT calibration value\n");
  477. return tsc_pit_min;
  478. }
  479. /* The alternative source failed, use the PIT calibration value */
  480. if (tsc_ref_min == ULONG_MAX) {
  481. pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
  482. return tsc_pit_min;
  483. }
  484. /*
  485. * The calibration values differ too much. In doubt, we use
  486. * the PIT value as we know that there are PMTIMERs around
  487. * running at double speed. At least we let the user know:
  488. */
  489. pr_warn("PIT calibration deviates from %s: %lu %lu\n",
  490. hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
  491. pr_info("Using PIT calibration value\n");
  492. return tsc_pit_min;
  493. }
  494. int recalibrate_cpu_khz(void)
  495. {
  496. #ifndef CONFIG_SMP
  497. unsigned long cpu_khz_old = cpu_khz;
  498. if (cpu_has_tsc) {
  499. tsc_khz = x86_platform.calibrate_tsc();
  500. cpu_khz = tsc_khz;
  501. cpu_data(0).loops_per_jiffy =
  502. cpufreq_scale(cpu_data(0).loops_per_jiffy,
  503. cpu_khz_old, cpu_khz);
  504. return 0;
  505. } else
  506. return -ENODEV;
  507. #else
  508. return -ENODEV;
  509. #endif
  510. }
  511. EXPORT_SYMBOL(recalibrate_cpu_khz);
  512. /* Accelerators for sched_clock()
  513. * convert from cycles(64bits) => nanoseconds (64bits)
  514. * basic equation:
  515. * ns = cycles / (freq / ns_per_sec)
  516. * ns = cycles * (ns_per_sec / freq)
  517. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  518. * ns = cycles * (10^6 / cpu_khz)
  519. *
  520. * Then we use scaling math (suggested by george@mvista.com) to get:
  521. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  522. * ns = cycles * cyc2ns_scale / SC
  523. *
  524. * And since SC is a constant power of two, we can convert the div
  525. * into a shift.
  526. *
  527. * We can use khz divisor instead of mhz to keep a better precision, since
  528. * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
  529. * (mathieu.desnoyers@polymtl.ca)
  530. *
  531. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  532. */
  533. DEFINE_PER_CPU(unsigned long, cyc2ns);
  534. DEFINE_PER_CPU(unsigned long long, cyc2ns_offset);
  535. static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
  536. {
  537. unsigned long long tsc_now, ns_now, *offset;
  538. unsigned long flags, *scale;
  539. local_irq_save(flags);
  540. sched_clock_idle_sleep_event();
  541. scale = &per_cpu(cyc2ns, cpu);
  542. offset = &per_cpu(cyc2ns_offset, cpu);
  543. rdtscll(tsc_now);
  544. ns_now = __cycles_2_ns(tsc_now);
  545. if (cpu_khz) {
  546. *scale = ((NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR) +
  547. cpu_khz / 2) / cpu_khz;
  548. *offset = ns_now - mult_frac(tsc_now, *scale,
  549. (1UL << CYC2NS_SCALE_FACTOR));
  550. }
  551. sched_clock_idle_wakeup_event(0);
  552. local_irq_restore(flags);
  553. }
  554. static unsigned long long cyc2ns_suspend;
  555. void tsc_save_sched_clock_state(void)
  556. {
  557. if (!sched_clock_stable)
  558. return;
  559. cyc2ns_suspend = sched_clock();
  560. }
  561. /*
  562. * Even on processors with invariant TSC, TSC gets reset in some the
  563. * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
  564. * arbitrary value (still sync'd across cpu's) during resume from such sleep
  565. * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
  566. * that sched_clock() continues from the point where it was left off during
  567. * suspend.
  568. */
  569. void tsc_restore_sched_clock_state(void)
  570. {
  571. unsigned long long offset;
  572. unsigned long flags;
  573. int cpu;
  574. if (!sched_clock_stable)
  575. return;
  576. local_irq_save(flags);
  577. __this_cpu_write(cyc2ns_offset, 0);
  578. offset = cyc2ns_suspend - sched_clock();
  579. for_each_possible_cpu(cpu)
  580. per_cpu(cyc2ns_offset, cpu) = offset;
  581. local_irq_restore(flags);
  582. }
  583. #ifdef CONFIG_CPU_FREQ
  584. /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
  585. * changes.
  586. *
  587. * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
  588. * not that important because current Opteron setups do not support
  589. * scaling on SMP anyroads.
  590. *
  591. * Should fix up last_tsc too. Currently gettimeofday in the
  592. * first tick after the change will be slightly wrong.
  593. */
  594. static unsigned int ref_freq;
  595. static unsigned long loops_per_jiffy_ref;
  596. static unsigned long tsc_khz_ref;
  597. static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  598. void *data)
  599. {
  600. struct cpufreq_freqs *freq = data;
  601. unsigned long *lpj;
  602. if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
  603. return 0;
  604. lpj = &boot_cpu_data.loops_per_jiffy;
  605. #ifdef CONFIG_SMP
  606. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  607. lpj = &cpu_data(freq->cpu).loops_per_jiffy;
  608. #endif
  609. if (!ref_freq) {
  610. ref_freq = freq->old;
  611. loops_per_jiffy_ref = *lpj;
  612. tsc_khz_ref = tsc_khz;
  613. }
  614. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  615. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
  616. (val == CPUFREQ_RESUMECHANGE)) {
  617. *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
  618. tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  619. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  620. mark_tsc_unstable("cpufreq changes");
  621. }
  622. set_cyc2ns_scale(tsc_khz, freq->cpu);
  623. return 0;
  624. }
  625. static struct notifier_block time_cpufreq_notifier_block = {
  626. .notifier_call = time_cpufreq_notifier
  627. };
  628. static int __init cpufreq_tsc(void)
  629. {
  630. if (!cpu_has_tsc)
  631. return 0;
  632. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  633. return 0;
  634. cpufreq_register_notifier(&time_cpufreq_notifier_block,
  635. CPUFREQ_TRANSITION_NOTIFIER);
  636. return 0;
  637. }
  638. core_initcall(cpufreq_tsc);
  639. #endif /* CONFIG_CPU_FREQ */
  640. /* clocksource code */
  641. static struct clocksource clocksource_tsc;
  642. /*
  643. * We compare the TSC to the cycle_last value in the clocksource
  644. * structure to avoid a nasty time-warp. This can be observed in a
  645. * very small window right after one CPU updated cycle_last under
  646. * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
  647. * is smaller than the cycle_last reference value due to a TSC which
  648. * is slighty behind. This delta is nowhere else observable, but in
  649. * that case it results in a forward time jump in the range of hours
  650. * due to the unsigned delta calculation of the time keeping core
  651. * code, which is necessary to support wrapping clocksources like pm
  652. * timer.
  653. */
  654. static cycle_t read_tsc(struct clocksource *cs)
  655. {
  656. cycle_t ret = (cycle_t)get_cycles();
  657. return ret >= clocksource_tsc.cycle_last ?
  658. ret : clocksource_tsc.cycle_last;
  659. }
  660. static void resume_tsc(struct clocksource *cs)
  661. {
  662. if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
  663. clocksource_tsc.cycle_last = 0;
  664. }
  665. static struct clocksource clocksource_tsc = {
  666. .name = "tsc",
  667. .rating = 300,
  668. .read = read_tsc,
  669. .resume = resume_tsc,
  670. .mask = CLOCKSOURCE_MASK(64),
  671. .flags = CLOCK_SOURCE_IS_CONTINUOUS |
  672. CLOCK_SOURCE_MUST_VERIFY,
  673. #ifdef CONFIG_X86_64
  674. .archdata = { .vclock_mode = VCLOCK_TSC },
  675. #endif
  676. };
  677. void mark_tsc_unstable(char *reason)
  678. {
  679. if (!tsc_unstable) {
  680. tsc_unstable = 1;
  681. sched_clock_stable = 0;
  682. disable_sched_clock_irqtime();
  683. pr_info("Marking TSC unstable due to %s\n", reason);
  684. /* Change only the rating, when not registered */
  685. if (clocksource_tsc.mult)
  686. clocksource_mark_unstable(&clocksource_tsc);
  687. else {
  688. clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
  689. clocksource_tsc.rating = 0;
  690. }
  691. }
  692. }
  693. EXPORT_SYMBOL_GPL(mark_tsc_unstable);
  694. static void __init check_system_tsc_reliable(void)
  695. {
  696. #ifdef CONFIG_MGEODE_LX
  697. /* RTSC counts during suspend */
  698. #define RTSC_SUSP 0x100
  699. unsigned long res_low, res_high;
  700. rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
  701. /* Geode_LX - the OLPC CPU has a very reliable TSC */
  702. if (res_low & RTSC_SUSP)
  703. tsc_clocksource_reliable = 1;
  704. #endif
  705. if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
  706. tsc_clocksource_reliable = 1;
  707. }
  708. /*
  709. * Make an educated guess if the TSC is trustworthy and synchronized
  710. * over all CPUs.
  711. */
  712. int unsynchronized_tsc(void)
  713. {
  714. if (!cpu_has_tsc || tsc_unstable)
  715. return 1;
  716. #ifdef CONFIG_SMP
  717. if (apic_is_clustered_box())
  718. return 1;
  719. #endif
  720. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  721. return 0;
  722. if (tsc_clocksource_reliable)
  723. return 0;
  724. /*
  725. * Intel systems are normally all synchronized.
  726. * Exceptions must mark TSC as unstable:
  727. */
  728. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
  729. /* assume multi socket systems are not synchronized: */
  730. if (num_possible_cpus() > 1)
  731. return 1;
  732. }
  733. return 0;
  734. }
  735. static void tsc_refine_calibration_work(struct work_struct *work);
  736. static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
  737. /**
  738. * tsc_refine_calibration_work - Further refine tsc freq calibration
  739. * @work - ignored.
  740. *
  741. * This functions uses delayed work over a period of a
  742. * second to further refine the TSC freq value. Since this is
  743. * timer based, instead of loop based, we don't block the boot
  744. * process while this longer calibration is done.
  745. *
  746. * If there are any calibration anomalies (too many SMIs, etc),
  747. * or the refined calibration is off by 1% of the fast early
  748. * calibration, we throw out the new calibration and use the
  749. * early calibration.
  750. */
  751. static void tsc_refine_calibration_work(struct work_struct *work)
  752. {
  753. static u64 tsc_start = -1, ref_start;
  754. static int hpet;
  755. u64 tsc_stop, ref_stop, delta;
  756. unsigned long freq;
  757. /* Don't bother refining TSC on unstable systems */
  758. if (check_tsc_unstable())
  759. goto out;
  760. /*
  761. * Since the work is started early in boot, we may be
  762. * delayed the first time we expire. So set the workqueue
  763. * again once we know timers are working.
  764. */
  765. if (tsc_start == -1) {
  766. /*
  767. * Only set hpet once, to avoid mixing hardware
  768. * if the hpet becomes enabled later.
  769. */
  770. hpet = is_hpet_enabled();
  771. schedule_delayed_work(&tsc_irqwork, HZ);
  772. tsc_start = tsc_read_refs(&ref_start, hpet);
  773. return;
  774. }
  775. tsc_stop = tsc_read_refs(&ref_stop, hpet);
  776. /* hpet or pmtimer available ? */
  777. if (ref_start == ref_stop)
  778. goto out;
  779. /* Check, whether the sampling was disturbed by an SMI */
  780. if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
  781. goto out;
  782. delta = tsc_stop - tsc_start;
  783. delta *= 1000000LL;
  784. if (hpet)
  785. freq = calc_hpet_ref(delta, ref_start, ref_stop);
  786. else
  787. freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
  788. /* Make sure we're within 1% */
  789. if (abs(tsc_khz - freq) > tsc_khz/100)
  790. goto out;
  791. tsc_khz = freq;
  792. pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
  793. (unsigned long)tsc_khz / 1000,
  794. (unsigned long)tsc_khz % 1000);
  795. out:
  796. clocksource_register_khz(&clocksource_tsc, tsc_khz);
  797. }
  798. static int __init init_tsc_clocksource(void)
  799. {
  800. if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
  801. return 0;
  802. if (tsc_clocksource_reliable)
  803. clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
  804. /* lower the rating if we already know its unstable: */
  805. if (check_tsc_unstable()) {
  806. clocksource_tsc.rating = 0;
  807. clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
  808. }
  809. if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
  810. clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
  811. /*
  812. * Trust the results of the earlier calibration on systems
  813. * exporting a reliable TSC.
  814. */
  815. if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
  816. clocksource_register_khz(&clocksource_tsc, tsc_khz);
  817. return 0;
  818. }
  819. schedule_delayed_work(&tsc_irqwork, 0);
  820. return 0;
  821. }
  822. /*
  823. * We use device_initcall here, to ensure we run after the hpet
  824. * is fully initialized, which may occur at fs_initcall time.
  825. */
  826. device_initcall(init_tsc_clocksource);
  827. void __init tsc_init(void)
  828. {
  829. u64 lpj;
  830. int cpu;
  831. x86_init.timers.tsc_pre_init();
  832. if (!cpu_has_tsc)
  833. return;
  834. tsc_khz = x86_platform.calibrate_tsc();
  835. cpu_khz = tsc_khz;
  836. if (!tsc_khz) {
  837. mark_tsc_unstable("could not calculate TSC khz");
  838. return;
  839. }
  840. pr_info("Detected %lu.%03lu MHz processor\n",
  841. (unsigned long)cpu_khz / 1000,
  842. (unsigned long)cpu_khz % 1000);
  843. /*
  844. * Secondary CPUs do not run through tsc_init(), so set up
  845. * all the scale factors for all CPUs, assuming the same
  846. * speed as the bootup CPU. (cpufreq notifiers will fix this
  847. * up if their speed diverges)
  848. */
  849. for_each_possible_cpu(cpu)
  850. set_cyc2ns_scale(cpu_khz, cpu);
  851. if (tsc_disabled > 0)
  852. return;
  853. /* now allow native_sched_clock() to use rdtsc */
  854. tsc_disabled = 0;
  855. if (!no_sched_irq_time)
  856. enable_sched_clock_irqtime();
  857. lpj = ((u64)tsc_khz * 1000);
  858. do_div(lpj, HZ);
  859. lpj_fine = lpj;
  860. use_tsc_delay();
  861. if (unsynchronized_tsc())
  862. mark_tsc_unstable("TSCs unsynchronized");
  863. check_system_tsc_reliable();
  864. }
  865. #ifdef CONFIG_SMP
  866. /*
  867. * If we have a constant TSC and are using the TSC for the delay loop,
  868. * we can skip clock calibration if another cpu in the same socket has already
  869. * been calibrated. This assumes that CONSTANT_TSC applies to all
  870. * cpus in the socket - this should be a safe assumption.
  871. */
  872. unsigned long calibrate_delay_is_known(void)
  873. {
  874. int i, cpu = smp_processor_id();
  875. if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
  876. return 0;
  877. for_each_online_cpu(i)
  878. if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
  879. return cpu_data(i).loops_per_jiffy;
  880. return 0;
  881. }
  882. #endif