hugetlbpage.c 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243
  1. /*
  2. * IBM System z Huge TLB Page Support for Kernel.
  3. *
  4. * Copyright IBM Corp. 2007
  5. * Author(s): Gerald Schaefer <gerald.schaefer@de.ibm.com>
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/hugetlb.h>
  9. static inline pmd_t __pte_to_pmd(pte_t pte)
  10. {
  11. int none, young, prot;
  12. pmd_t pmd;
  13. /*
  14. * Convert encoding pte bits pmd bits
  15. * .IR...wrdytp ..R...I...y.
  16. * empty .10...000000 -> ..0...1...0.
  17. * prot-none, clean, old .11...000001 -> ..0...1...1.
  18. * prot-none, clean, young .11...000101 -> ..1...1...1.
  19. * prot-none, dirty, old .10...001001 -> ..0...1...1.
  20. * prot-none, dirty, young .10...001101 -> ..1...1...1.
  21. * read-only, clean, old .11...010001 -> ..1...1...0.
  22. * read-only, clean, young .01...010101 -> ..1...0...1.
  23. * read-only, dirty, old .11...011001 -> ..1...1...0.
  24. * read-only, dirty, young .01...011101 -> ..1...0...1.
  25. * read-write, clean, old .11...110001 -> ..0...1...0.
  26. * read-write, clean, young .01...110101 -> ..0...0...1.
  27. * read-write, dirty, old .10...111001 -> ..0...1...0.
  28. * read-write, dirty, young .00...111101 -> ..0...0...1.
  29. * Huge ptes are dirty by definition, a clean pte is made dirty
  30. * by the conversion.
  31. */
  32. if (pte_present(pte)) {
  33. pmd_val(pmd) = pte_val(pte) & PAGE_MASK;
  34. if (pte_val(pte) & _PAGE_INVALID)
  35. pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
  36. none = (pte_val(pte) & _PAGE_PRESENT) &&
  37. !(pte_val(pte) & _PAGE_READ) &&
  38. !(pte_val(pte) & _PAGE_WRITE);
  39. prot = (pte_val(pte) & _PAGE_PROTECT) &&
  40. !(pte_val(pte) & _PAGE_WRITE);
  41. young = pte_val(pte) & _PAGE_YOUNG;
  42. if (none || young)
  43. pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
  44. if (prot || (none && young))
  45. pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
  46. } else
  47. pmd_val(pmd) = _SEGMENT_ENTRY_INVALID;
  48. return pmd;
  49. }
  50. static inline pte_t __pmd_to_pte(pmd_t pmd)
  51. {
  52. pte_t pte;
  53. /*
  54. * Convert encoding pmd bits pte bits
  55. * ..R...I...y. .IR...wrdytp
  56. * empty ..0...1...0. -> .10...000000
  57. * prot-none, old ..0...1...1. -> .10...001001
  58. * prot-none, young ..1...1...1. -> .10...001101
  59. * read-only, old ..1...1...0. -> .11...011001
  60. * read-only, young ..1...0...1. -> .01...011101
  61. * read-write, old ..0...1...0. -> .10...111001
  62. * read-write, young ..0...0...1. -> .00...111101
  63. * Huge ptes are dirty by definition
  64. */
  65. if (pmd_present(pmd)) {
  66. pte_val(pte) = _PAGE_PRESENT | _PAGE_LARGE | _PAGE_DIRTY |
  67. (pmd_val(pmd) & PAGE_MASK);
  68. if (pmd_val(pmd) & _SEGMENT_ENTRY_INVALID)
  69. pte_val(pte) |= _PAGE_INVALID;
  70. if (pmd_prot_none(pmd)) {
  71. if (pmd_val(pmd) & _SEGMENT_ENTRY_PROTECT)
  72. pte_val(pte) |= _PAGE_YOUNG;
  73. } else {
  74. pte_val(pte) |= _PAGE_READ;
  75. if (pmd_val(pmd) & _SEGMENT_ENTRY_PROTECT)
  76. pte_val(pte) |= _PAGE_PROTECT;
  77. else
  78. pte_val(pte) |= _PAGE_WRITE;
  79. if (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG)
  80. pte_val(pte) |= _PAGE_YOUNG;
  81. }
  82. } else
  83. pte_val(pte) = _PAGE_INVALID;
  84. return pte;
  85. }
  86. void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
  87. pte_t *ptep, pte_t pte)
  88. {
  89. pmd_t pmd;
  90. pmd = __pte_to_pmd(pte);
  91. if (!MACHINE_HAS_HPAGE) {
  92. pmd_val(pmd) &= ~_SEGMENT_ENTRY_ORIGIN;
  93. pmd_val(pmd) |= pte_page(pte)[1].index;
  94. } else
  95. pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_CO;
  96. *(pmd_t *) ptep = pmd;
  97. }
  98. pte_t huge_ptep_get(pte_t *ptep)
  99. {
  100. unsigned long origin;
  101. pmd_t pmd;
  102. pmd = *(pmd_t *) ptep;
  103. if (!MACHINE_HAS_HPAGE && pmd_present(pmd)) {
  104. origin = pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN;
  105. pmd_val(pmd) &= ~_SEGMENT_ENTRY_ORIGIN;
  106. pmd_val(pmd) |= *(unsigned long *) origin;
  107. }
  108. return __pmd_to_pte(pmd);
  109. }
  110. pte_t huge_ptep_get_and_clear(struct mm_struct *mm,
  111. unsigned long addr, pte_t *ptep)
  112. {
  113. pmd_t *pmdp = (pmd_t *) ptep;
  114. pte_t pte = huge_ptep_get(ptep);
  115. if (MACHINE_HAS_IDTE)
  116. __pmd_idte(addr, pmdp);
  117. else
  118. __pmd_csp(pmdp);
  119. pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
  120. return pte;
  121. }
  122. int arch_prepare_hugepage(struct page *page)
  123. {
  124. unsigned long addr = page_to_phys(page);
  125. pte_t pte;
  126. pte_t *ptep;
  127. int i;
  128. if (MACHINE_HAS_HPAGE)
  129. return 0;
  130. ptep = (pte_t *) pte_alloc_one(&init_mm, addr);
  131. if (!ptep)
  132. return -ENOMEM;
  133. pte_val(pte) = addr;
  134. for (i = 0; i < PTRS_PER_PTE; i++) {
  135. set_pte_at(&init_mm, addr + i * PAGE_SIZE, ptep + i, pte);
  136. pte_val(pte) += PAGE_SIZE;
  137. }
  138. page[1].index = (unsigned long) ptep;
  139. return 0;
  140. }
  141. void arch_release_hugepage(struct page *page)
  142. {
  143. pte_t *ptep;
  144. if (MACHINE_HAS_HPAGE)
  145. return;
  146. ptep = (pte_t *) page[1].index;
  147. if (!ptep)
  148. return;
  149. clear_table((unsigned long *) ptep, _PAGE_INVALID,
  150. PTRS_PER_PTE * sizeof(pte_t));
  151. page_table_free(&init_mm, (unsigned long *) ptep);
  152. page[1].index = 0;
  153. }
  154. pte_t *huge_pte_alloc(struct mm_struct *mm,
  155. unsigned long addr, unsigned long sz)
  156. {
  157. pgd_t *pgdp;
  158. pud_t *pudp;
  159. pmd_t *pmdp = NULL;
  160. pgdp = pgd_offset(mm, addr);
  161. pudp = pud_alloc(mm, pgdp, addr);
  162. if (pudp)
  163. pmdp = pmd_alloc(mm, pudp, addr);
  164. return (pte_t *) pmdp;
  165. }
  166. pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
  167. {
  168. pgd_t *pgdp;
  169. pud_t *pudp;
  170. pmd_t *pmdp = NULL;
  171. pgdp = pgd_offset(mm, addr);
  172. if (pgd_present(*pgdp)) {
  173. pudp = pud_offset(pgdp, addr);
  174. if (pud_present(*pudp))
  175. pmdp = pmd_offset(pudp, addr);
  176. }
  177. return (pte_t *) pmdp;
  178. }
  179. int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
  180. {
  181. return 0;
  182. }
  183. struct page *follow_huge_addr(struct mm_struct *mm, unsigned long address,
  184. int write)
  185. {
  186. return ERR_PTR(-EINVAL);
  187. }
  188. int pmd_huge(pmd_t pmd)
  189. {
  190. if (!MACHINE_HAS_HPAGE)
  191. return 0;
  192. return !!(pmd_val(pmd) & _SEGMENT_ENTRY_LARGE);
  193. }
  194. int pud_huge(pud_t pud)
  195. {
  196. return 0;
  197. }
  198. int pmd_huge_support(void)
  199. {
  200. return 1;
  201. }
  202. struct page *follow_huge_pmd(struct mm_struct *mm, unsigned long address,
  203. pmd_t *pmdp, int write)
  204. {
  205. struct page *page;
  206. if (!MACHINE_HAS_HPAGE)
  207. return NULL;
  208. page = pmd_page(*pmdp);
  209. if (page)
  210. page += ((address & ~HPAGE_MASK) >> PAGE_SHIFT);
  211. return page;
  212. }