core-fsl-emb.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717
  1. /*
  2. * Performance event support - Freescale Embedded Performance Monitor
  3. *
  4. * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
  5. * Copyright 2010 Freescale Semiconductor, Inc.
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/sched.h>
  14. #include <linux/perf_event.h>
  15. #include <linux/percpu.h>
  16. #include <linux/hardirq.h>
  17. #include <asm/reg_fsl_emb.h>
  18. #include <asm/pmc.h>
  19. #include <asm/machdep.h>
  20. #include <asm/firmware.h>
  21. #include <asm/ptrace.h>
  22. struct cpu_hw_events {
  23. int n_events;
  24. int disabled;
  25. u8 pmcs_enabled;
  26. struct perf_event *event[MAX_HWEVENTS];
  27. };
  28. static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
  29. static struct fsl_emb_pmu *ppmu;
  30. /* Number of perf_events counting hardware events */
  31. static atomic_t num_events;
  32. /* Used to avoid races in calling reserve/release_pmc_hardware */
  33. static DEFINE_MUTEX(pmc_reserve_mutex);
  34. /*
  35. * If interrupts were soft-disabled when a PMU interrupt occurs, treat
  36. * it as an NMI.
  37. */
  38. static inline int perf_intr_is_nmi(struct pt_regs *regs)
  39. {
  40. #ifdef __powerpc64__
  41. return !regs->softe;
  42. #else
  43. return 0;
  44. #endif
  45. }
  46. static void perf_event_interrupt(struct pt_regs *regs);
  47. /*
  48. * Read one performance monitor counter (PMC).
  49. */
  50. static unsigned long read_pmc(int idx)
  51. {
  52. unsigned long val;
  53. switch (idx) {
  54. case 0:
  55. val = mfpmr(PMRN_PMC0);
  56. break;
  57. case 1:
  58. val = mfpmr(PMRN_PMC1);
  59. break;
  60. case 2:
  61. val = mfpmr(PMRN_PMC2);
  62. break;
  63. case 3:
  64. val = mfpmr(PMRN_PMC3);
  65. break;
  66. case 4:
  67. val = mfpmr(PMRN_PMC4);
  68. break;
  69. case 5:
  70. val = mfpmr(PMRN_PMC5);
  71. break;
  72. default:
  73. printk(KERN_ERR "oops trying to read PMC%d\n", idx);
  74. val = 0;
  75. }
  76. return val;
  77. }
  78. /*
  79. * Write one PMC.
  80. */
  81. static void write_pmc(int idx, unsigned long val)
  82. {
  83. switch (idx) {
  84. case 0:
  85. mtpmr(PMRN_PMC0, val);
  86. break;
  87. case 1:
  88. mtpmr(PMRN_PMC1, val);
  89. break;
  90. case 2:
  91. mtpmr(PMRN_PMC2, val);
  92. break;
  93. case 3:
  94. mtpmr(PMRN_PMC3, val);
  95. break;
  96. case 4:
  97. mtpmr(PMRN_PMC4, val);
  98. break;
  99. case 5:
  100. mtpmr(PMRN_PMC5, val);
  101. break;
  102. default:
  103. printk(KERN_ERR "oops trying to write PMC%d\n", idx);
  104. }
  105. isync();
  106. }
  107. /*
  108. * Write one local control A register
  109. */
  110. static void write_pmlca(int idx, unsigned long val)
  111. {
  112. switch (idx) {
  113. case 0:
  114. mtpmr(PMRN_PMLCA0, val);
  115. break;
  116. case 1:
  117. mtpmr(PMRN_PMLCA1, val);
  118. break;
  119. case 2:
  120. mtpmr(PMRN_PMLCA2, val);
  121. break;
  122. case 3:
  123. mtpmr(PMRN_PMLCA3, val);
  124. break;
  125. case 4:
  126. mtpmr(PMRN_PMLCA4, val);
  127. break;
  128. case 5:
  129. mtpmr(PMRN_PMLCA5, val);
  130. break;
  131. default:
  132. printk(KERN_ERR "oops trying to write PMLCA%d\n", idx);
  133. }
  134. isync();
  135. }
  136. /*
  137. * Write one local control B register
  138. */
  139. static void write_pmlcb(int idx, unsigned long val)
  140. {
  141. switch (idx) {
  142. case 0:
  143. mtpmr(PMRN_PMLCB0, val);
  144. break;
  145. case 1:
  146. mtpmr(PMRN_PMLCB1, val);
  147. break;
  148. case 2:
  149. mtpmr(PMRN_PMLCB2, val);
  150. break;
  151. case 3:
  152. mtpmr(PMRN_PMLCB3, val);
  153. break;
  154. case 4:
  155. mtpmr(PMRN_PMLCB4, val);
  156. break;
  157. case 5:
  158. mtpmr(PMRN_PMLCB5, val);
  159. break;
  160. default:
  161. printk(KERN_ERR "oops trying to write PMLCB%d\n", idx);
  162. }
  163. isync();
  164. }
  165. static void fsl_emb_pmu_read(struct perf_event *event)
  166. {
  167. s64 val, delta, prev;
  168. if (event->hw.state & PERF_HES_STOPPED)
  169. return;
  170. /*
  171. * Performance monitor interrupts come even when interrupts
  172. * are soft-disabled, as long as interrupts are hard-enabled.
  173. * Therefore we treat them like NMIs.
  174. */
  175. do {
  176. prev = local64_read(&event->hw.prev_count);
  177. barrier();
  178. val = read_pmc(event->hw.idx);
  179. } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
  180. /* The counters are only 32 bits wide */
  181. delta = (val - prev) & 0xfffffffful;
  182. local64_add(delta, &event->count);
  183. local64_sub(delta, &event->hw.period_left);
  184. }
  185. /*
  186. * Disable all events to prevent PMU interrupts and to allow
  187. * events to be added or removed.
  188. */
  189. static void fsl_emb_pmu_disable(struct pmu *pmu)
  190. {
  191. struct cpu_hw_events *cpuhw;
  192. unsigned long flags;
  193. local_irq_save(flags);
  194. cpuhw = &__get_cpu_var(cpu_hw_events);
  195. if (!cpuhw->disabled) {
  196. cpuhw->disabled = 1;
  197. /*
  198. * Check if we ever enabled the PMU on this cpu.
  199. */
  200. if (!cpuhw->pmcs_enabled) {
  201. ppc_enable_pmcs();
  202. cpuhw->pmcs_enabled = 1;
  203. }
  204. if (atomic_read(&num_events)) {
  205. /*
  206. * Set the 'freeze all counters' bit, and disable
  207. * interrupts. The barrier is to make sure the
  208. * mtpmr has been executed and the PMU has frozen
  209. * the events before we return.
  210. */
  211. mtpmr(PMRN_PMGC0, PMGC0_FAC);
  212. isync();
  213. }
  214. }
  215. local_irq_restore(flags);
  216. }
  217. /*
  218. * Re-enable all events if disable == 0.
  219. * If we were previously disabled and events were added, then
  220. * put the new config on the PMU.
  221. */
  222. static void fsl_emb_pmu_enable(struct pmu *pmu)
  223. {
  224. struct cpu_hw_events *cpuhw;
  225. unsigned long flags;
  226. local_irq_save(flags);
  227. cpuhw = &__get_cpu_var(cpu_hw_events);
  228. if (!cpuhw->disabled)
  229. goto out;
  230. cpuhw->disabled = 0;
  231. ppc_set_pmu_inuse(cpuhw->n_events != 0);
  232. if (cpuhw->n_events > 0) {
  233. mtpmr(PMRN_PMGC0, PMGC0_PMIE | PMGC0_FCECE);
  234. isync();
  235. }
  236. out:
  237. local_irq_restore(flags);
  238. }
  239. static int collect_events(struct perf_event *group, int max_count,
  240. struct perf_event *ctrs[])
  241. {
  242. int n = 0;
  243. struct perf_event *event;
  244. if (!is_software_event(group)) {
  245. if (n >= max_count)
  246. return -1;
  247. ctrs[n] = group;
  248. n++;
  249. }
  250. list_for_each_entry(event, &group->sibling_list, group_entry) {
  251. if (!is_software_event(event) &&
  252. event->state != PERF_EVENT_STATE_OFF) {
  253. if (n >= max_count)
  254. return -1;
  255. ctrs[n] = event;
  256. n++;
  257. }
  258. }
  259. return n;
  260. }
  261. /* context locked on entry */
  262. static int fsl_emb_pmu_add(struct perf_event *event, int flags)
  263. {
  264. struct cpu_hw_events *cpuhw;
  265. int ret = -EAGAIN;
  266. int num_counters = ppmu->n_counter;
  267. u64 val;
  268. int i;
  269. perf_pmu_disable(event->pmu);
  270. cpuhw = &get_cpu_var(cpu_hw_events);
  271. if (event->hw.config & FSL_EMB_EVENT_RESTRICTED)
  272. num_counters = ppmu->n_restricted;
  273. /*
  274. * Allocate counters from top-down, so that restricted-capable
  275. * counters are kept free as long as possible.
  276. */
  277. for (i = num_counters - 1; i >= 0; i--) {
  278. if (cpuhw->event[i])
  279. continue;
  280. break;
  281. }
  282. if (i < 0)
  283. goto out;
  284. event->hw.idx = i;
  285. cpuhw->event[i] = event;
  286. ++cpuhw->n_events;
  287. val = 0;
  288. if (event->hw.sample_period) {
  289. s64 left = local64_read(&event->hw.period_left);
  290. if (left < 0x80000000L)
  291. val = 0x80000000L - left;
  292. }
  293. local64_set(&event->hw.prev_count, val);
  294. if (!(flags & PERF_EF_START)) {
  295. event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
  296. val = 0;
  297. }
  298. write_pmc(i, val);
  299. perf_event_update_userpage(event);
  300. write_pmlcb(i, event->hw.config >> 32);
  301. write_pmlca(i, event->hw.config_base);
  302. ret = 0;
  303. out:
  304. put_cpu_var(cpu_hw_events);
  305. perf_pmu_enable(event->pmu);
  306. return ret;
  307. }
  308. /* context locked on entry */
  309. static void fsl_emb_pmu_del(struct perf_event *event, int flags)
  310. {
  311. struct cpu_hw_events *cpuhw;
  312. int i = event->hw.idx;
  313. perf_pmu_disable(event->pmu);
  314. if (i < 0)
  315. goto out;
  316. fsl_emb_pmu_read(event);
  317. cpuhw = &get_cpu_var(cpu_hw_events);
  318. WARN_ON(event != cpuhw->event[event->hw.idx]);
  319. write_pmlca(i, 0);
  320. write_pmlcb(i, 0);
  321. write_pmc(i, 0);
  322. cpuhw->event[i] = NULL;
  323. event->hw.idx = -1;
  324. /*
  325. * TODO: if at least one restricted event exists, and we
  326. * just freed up a non-restricted-capable counter, and
  327. * there is a restricted-capable counter occupied by
  328. * a non-restricted event, migrate that event to the
  329. * vacated counter.
  330. */
  331. cpuhw->n_events--;
  332. out:
  333. perf_pmu_enable(event->pmu);
  334. put_cpu_var(cpu_hw_events);
  335. }
  336. static void fsl_emb_pmu_start(struct perf_event *event, int ef_flags)
  337. {
  338. unsigned long flags;
  339. s64 left;
  340. if (event->hw.idx < 0 || !event->hw.sample_period)
  341. return;
  342. if (!(event->hw.state & PERF_HES_STOPPED))
  343. return;
  344. if (ef_flags & PERF_EF_RELOAD)
  345. WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
  346. local_irq_save(flags);
  347. perf_pmu_disable(event->pmu);
  348. event->hw.state = 0;
  349. left = local64_read(&event->hw.period_left);
  350. write_pmc(event->hw.idx, left);
  351. perf_event_update_userpage(event);
  352. perf_pmu_enable(event->pmu);
  353. local_irq_restore(flags);
  354. }
  355. static void fsl_emb_pmu_stop(struct perf_event *event, int ef_flags)
  356. {
  357. unsigned long flags;
  358. if (event->hw.idx < 0 || !event->hw.sample_period)
  359. return;
  360. if (event->hw.state & PERF_HES_STOPPED)
  361. return;
  362. local_irq_save(flags);
  363. perf_pmu_disable(event->pmu);
  364. fsl_emb_pmu_read(event);
  365. event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
  366. write_pmc(event->hw.idx, 0);
  367. perf_event_update_userpage(event);
  368. perf_pmu_enable(event->pmu);
  369. local_irq_restore(flags);
  370. }
  371. /*
  372. * Release the PMU if this is the last perf_event.
  373. */
  374. static void hw_perf_event_destroy(struct perf_event *event)
  375. {
  376. if (!atomic_add_unless(&num_events, -1, 1)) {
  377. mutex_lock(&pmc_reserve_mutex);
  378. if (atomic_dec_return(&num_events) == 0)
  379. release_pmc_hardware();
  380. mutex_unlock(&pmc_reserve_mutex);
  381. }
  382. }
  383. /*
  384. * Translate a generic cache event_id config to a raw event_id code.
  385. */
  386. static int hw_perf_cache_event(u64 config, u64 *eventp)
  387. {
  388. unsigned long type, op, result;
  389. int ev;
  390. if (!ppmu->cache_events)
  391. return -EINVAL;
  392. /* unpack config */
  393. type = config & 0xff;
  394. op = (config >> 8) & 0xff;
  395. result = (config >> 16) & 0xff;
  396. if (type >= PERF_COUNT_HW_CACHE_MAX ||
  397. op >= PERF_COUNT_HW_CACHE_OP_MAX ||
  398. result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  399. return -EINVAL;
  400. ev = (*ppmu->cache_events)[type][op][result];
  401. if (ev == 0)
  402. return -EOPNOTSUPP;
  403. if (ev == -1)
  404. return -EINVAL;
  405. *eventp = ev;
  406. return 0;
  407. }
  408. static int fsl_emb_pmu_event_init(struct perf_event *event)
  409. {
  410. u64 ev;
  411. struct perf_event *events[MAX_HWEVENTS];
  412. int n;
  413. int err;
  414. int num_restricted;
  415. int i;
  416. if (ppmu->n_counter > MAX_HWEVENTS) {
  417. WARN(1, "No. of perf counters (%d) is higher than max array size(%d)\n",
  418. ppmu->n_counter, MAX_HWEVENTS);
  419. ppmu->n_counter = MAX_HWEVENTS;
  420. }
  421. switch (event->attr.type) {
  422. case PERF_TYPE_HARDWARE:
  423. ev = event->attr.config;
  424. if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
  425. return -EOPNOTSUPP;
  426. ev = ppmu->generic_events[ev];
  427. break;
  428. case PERF_TYPE_HW_CACHE:
  429. err = hw_perf_cache_event(event->attr.config, &ev);
  430. if (err)
  431. return err;
  432. break;
  433. case PERF_TYPE_RAW:
  434. ev = event->attr.config;
  435. break;
  436. default:
  437. return -ENOENT;
  438. }
  439. event->hw.config = ppmu->xlate_event(ev);
  440. if (!(event->hw.config & FSL_EMB_EVENT_VALID))
  441. return -EINVAL;
  442. /*
  443. * If this is in a group, check if it can go on with all the
  444. * other hardware events in the group. We assume the event
  445. * hasn't been linked into its leader's sibling list at this point.
  446. */
  447. n = 0;
  448. if (event->group_leader != event) {
  449. n = collect_events(event->group_leader,
  450. ppmu->n_counter - 1, events);
  451. if (n < 0)
  452. return -EINVAL;
  453. }
  454. if (event->hw.config & FSL_EMB_EVENT_RESTRICTED) {
  455. num_restricted = 0;
  456. for (i = 0; i < n; i++) {
  457. if (events[i]->hw.config & FSL_EMB_EVENT_RESTRICTED)
  458. num_restricted++;
  459. }
  460. if (num_restricted >= ppmu->n_restricted)
  461. return -EINVAL;
  462. }
  463. event->hw.idx = -1;
  464. event->hw.config_base = PMLCA_CE | PMLCA_FCM1 |
  465. (u32)((ev << 16) & PMLCA_EVENT_MASK);
  466. if (event->attr.exclude_user)
  467. event->hw.config_base |= PMLCA_FCU;
  468. if (event->attr.exclude_kernel)
  469. event->hw.config_base |= PMLCA_FCS;
  470. if (event->attr.exclude_idle)
  471. return -ENOTSUPP;
  472. event->hw.last_period = event->hw.sample_period;
  473. local64_set(&event->hw.period_left, event->hw.last_period);
  474. /*
  475. * See if we need to reserve the PMU.
  476. * If no events are currently in use, then we have to take a
  477. * mutex to ensure that we don't race with another task doing
  478. * reserve_pmc_hardware or release_pmc_hardware.
  479. */
  480. err = 0;
  481. if (!atomic_inc_not_zero(&num_events)) {
  482. mutex_lock(&pmc_reserve_mutex);
  483. if (atomic_read(&num_events) == 0 &&
  484. reserve_pmc_hardware(perf_event_interrupt))
  485. err = -EBUSY;
  486. else
  487. atomic_inc(&num_events);
  488. mutex_unlock(&pmc_reserve_mutex);
  489. mtpmr(PMRN_PMGC0, PMGC0_FAC);
  490. isync();
  491. }
  492. event->destroy = hw_perf_event_destroy;
  493. return err;
  494. }
  495. static struct pmu fsl_emb_pmu = {
  496. .pmu_enable = fsl_emb_pmu_enable,
  497. .pmu_disable = fsl_emb_pmu_disable,
  498. .event_init = fsl_emb_pmu_event_init,
  499. .add = fsl_emb_pmu_add,
  500. .del = fsl_emb_pmu_del,
  501. .start = fsl_emb_pmu_start,
  502. .stop = fsl_emb_pmu_stop,
  503. .read = fsl_emb_pmu_read,
  504. };
  505. /*
  506. * A counter has overflowed; update its count and record
  507. * things if requested. Note that interrupts are hard-disabled
  508. * here so there is no possibility of being interrupted.
  509. */
  510. static void record_and_restart(struct perf_event *event, unsigned long val,
  511. struct pt_regs *regs)
  512. {
  513. u64 period = event->hw.sample_period;
  514. s64 prev, delta, left;
  515. int record = 0;
  516. if (event->hw.state & PERF_HES_STOPPED) {
  517. write_pmc(event->hw.idx, 0);
  518. return;
  519. }
  520. /* we don't have to worry about interrupts here */
  521. prev = local64_read(&event->hw.prev_count);
  522. delta = (val - prev) & 0xfffffffful;
  523. local64_add(delta, &event->count);
  524. /*
  525. * See if the total period for this event has expired,
  526. * and update for the next period.
  527. */
  528. val = 0;
  529. left = local64_read(&event->hw.period_left) - delta;
  530. if (period) {
  531. if (left <= 0) {
  532. left += period;
  533. if (left <= 0)
  534. left = period;
  535. record = 1;
  536. event->hw.last_period = event->hw.sample_period;
  537. }
  538. if (left < 0x80000000LL)
  539. val = 0x80000000LL - left;
  540. }
  541. write_pmc(event->hw.idx, val);
  542. local64_set(&event->hw.prev_count, val);
  543. local64_set(&event->hw.period_left, left);
  544. perf_event_update_userpage(event);
  545. /*
  546. * Finally record data if requested.
  547. */
  548. if (record) {
  549. struct perf_sample_data data;
  550. perf_sample_data_init(&data, 0, event->hw.last_period);
  551. if (perf_event_overflow(event, &data, regs))
  552. fsl_emb_pmu_stop(event, 0);
  553. }
  554. }
  555. static void perf_event_interrupt(struct pt_regs *regs)
  556. {
  557. int i;
  558. struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
  559. struct perf_event *event;
  560. unsigned long val;
  561. int found = 0;
  562. int nmi;
  563. nmi = perf_intr_is_nmi(regs);
  564. if (nmi)
  565. nmi_enter();
  566. else
  567. irq_enter();
  568. for (i = 0; i < ppmu->n_counter; ++i) {
  569. event = cpuhw->event[i];
  570. val = read_pmc(i);
  571. if ((int)val < 0) {
  572. if (event) {
  573. /* event has overflowed */
  574. found = 1;
  575. record_and_restart(event, val, regs);
  576. } else {
  577. /*
  578. * Disabled counter is negative,
  579. * reset it just in case.
  580. */
  581. write_pmc(i, 0);
  582. }
  583. }
  584. }
  585. /* PMM will keep counters frozen until we return from the interrupt. */
  586. mtmsr(mfmsr() | MSR_PMM);
  587. mtpmr(PMRN_PMGC0, PMGC0_PMIE | PMGC0_FCECE);
  588. isync();
  589. if (nmi)
  590. nmi_exit();
  591. else
  592. irq_exit();
  593. }
  594. void hw_perf_event_setup(int cpu)
  595. {
  596. struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
  597. memset(cpuhw, 0, sizeof(*cpuhw));
  598. }
  599. int register_fsl_emb_pmu(struct fsl_emb_pmu *pmu)
  600. {
  601. if (ppmu)
  602. return -EBUSY; /* something's already registered */
  603. ppmu = pmu;
  604. pr_info("%s performance monitor hardware support registered\n",
  605. pmu->name);
  606. perf_pmu_register(&fsl_emb_pmu, "cpu", PERF_TYPE_RAW);
  607. return 0;
  608. }