book3s_hv_rm_mmu.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917
  1. /*
  2. * This program is free software; you can redistribute it and/or modify
  3. * it under the terms of the GNU General Public License, version 2, as
  4. * published by the Free Software Foundation.
  5. *
  6. * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  7. */
  8. #include <linux/types.h>
  9. #include <linux/string.h>
  10. #include <linux/kvm.h>
  11. #include <linux/kvm_host.h>
  12. #include <linux/hugetlb.h>
  13. #include <linux/module.h>
  14. #include <asm/tlbflush.h>
  15. #include <asm/kvm_ppc.h>
  16. #include <asm/kvm_book3s.h>
  17. #include <asm/mmu-hash64.h>
  18. #include <asm/hvcall.h>
  19. #include <asm/synch.h>
  20. #include <asm/ppc-opcode.h>
  21. /* Translate address of a vmalloc'd thing to a linear map address */
  22. static void *real_vmalloc_addr(void *x)
  23. {
  24. unsigned long addr = (unsigned long) x;
  25. pte_t *p;
  26. p = find_linux_pte_or_hugepte(swapper_pg_dir, addr, NULL);
  27. if (!p || !pte_present(*p))
  28. return NULL;
  29. /* assume we don't have huge pages in vmalloc space... */
  30. addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK);
  31. return __va(addr);
  32. }
  33. /* Return 1 if we need to do a global tlbie, 0 if we can use tlbiel */
  34. static int global_invalidates(struct kvm *kvm, unsigned long flags)
  35. {
  36. int global;
  37. /*
  38. * If there is only one vcore, and it's currently running,
  39. * we can use tlbiel as long as we mark all other physical
  40. * cores as potentially having stale TLB entries for this lpid.
  41. * If we're not using MMU notifiers, we never take pages away
  42. * from the guest, so we can use tlbiel if requested.
  43. * Otherwise, don't use tlbiel.
  44. */
  45. if (kvm->arch.online_vcores == 1 && local_paca->kvm_hstate.kvm_vcore)
  46. global = 0;
  47. else if (kvm->arch.using_mmu_notifiers)
  48. global = 1;
  49. else
  50. global = !(flags & H_LOCAL);
  51. if (!global) {
  52. /* any other core might now have stale TLB entries... */
  53. smp_wmb();
  54. cpumask_setall(&kvm->arch.need_tlb_flush);
  55. cpumask_clear_cpu(local_paca->kvm_hstate.kvm_vcore->pcpu,
  56. &kvm->arch.need_tlb_flush);
  57. }
  58. return global;
  59. }
  60. /*
  61. * Add this HPTE into the chain for the real page.
  62. * Must be called with the chain locked; it unlocks the chain.
  63. */
  64. void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
  65. unsigned long *rmap, long pte_index, int realmode)
  66. {
  67. struct revmap_entry *head, *tail;
  68. unsigned long i;
  69. if (*rmap & KVMPPC_RMAP_PRESENT) {
  70. i = *rmap & KVMPPC_RMAP_INDEX;
  71. head = &kvm->arch.revmap[i];
  72. if (realmode)
  73. head = real_vmalloc_addr(head);
  74. tail = &kvm->arch.revmap[head->back];
  75. if (realmode)
  76. tail = real_vmalloc_addr(tail);
  77. rev->forw = i;
  78. rev->back = head->back;
  79. tail->forw = pte_index;
  80. head->back = pte_index;
  81. } else {
  82. rev->forw = rev->back = pte_index;
  83. *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) |
  84. pte_index | KVMPPC_RMAP_PRESENT;
  85. }
  86. unlock_rmap(rmap);
  87. }
  88. EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain);
  89. /* Remove this HPTE from the chain for a real page */
  90. static void remove_revmap_chain(struct kvm *kvm, long pte_index,
  91. struct revmap_entry *rev,
  92. unsigned long hpte_v, unsigned long hpte_r)
  93. {
  94. struct revmap_entry *next, *prev;
  95. unsigned long gfn, ptel, head;
  96. struct kvm_memory_slot *memslot;
  97. unsigned long *rmap;
  98. unsigned long rcbits;
  99. rcbits = hpte_r & (HPTE_R_R | HPTE_R_C);
  100. ptel = rev->guest_rpte |= rcbits;
  101. gfn = hpte_rpn(ptel, hpte_page_size(hpte_v, ptel));
  102. memslot = __gfn_to_memslot(kvm_memslots(kvm), gfn);
  103. if (!memslot)
  104. return;
  105. rmap = real_vmalloc_addr(&memslot->arch.rmap[gfn - memslot->base_gfn]);
  106. lock_rmap(rmap);
  107. head = *rmap & KVMPPC_RMAP_INDEX;
  108. next = real_vmalloc_addr(&kvm->arch.revmap[rev->forw]);
  109. prev = real_vmalloc_addr(&kvm->arch.revmap[rev->back]);
  110. next->back = rev->back;
  111. prev->forw = rev->forw;
  112. if (head == pte_index) {
  113. head = rev->forw;
  114. if (head == pte_index)
  115. *rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
  116. else
  117. *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head;
  118. }
  119. *rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT;
  120. unlock_rmap(rmap);
  121. }
  122. static pte_t lookup_linux_pte(pgd_t *pgdir, unsigned long hva,
  123. int writing, unsigned long *pte_sizep)
  124. {
  125. pte_t *ptep;
  126. unsigned long ps = *pte_sizep;
  127. unsigned int hugepage_shift;
  128. ptep = find_linux_pte_or_hugepte(pgdir, hva, &hugepage_shift);
  129. if (!ptep)
  130. return __pte(0);
  131. if (hugepage_shift)
  132. *pte_sizep = 1ul << hugepage_shift;
  133. else
  134. *pte_sizep = PAGE_SIZE;
  135. if (ps > *pte_sizep)
  136. return __pte(0);
  137. return kvmppc_read_update_linux_pte(ptep, writing, hugepage_shift);
  138. }
  139. static inline void unlock_hpte(unsigned long *hpte, unsigned long hpte_v)
  140. {
  141. asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
  142. hpte[0] = hpte_v;
  143. }
  144. long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags,
  145. long pte_index, unsigned long pteh, unsigned long ptel,
  146. pgd_t *pgdir, bool realmode, unsigned long *pte_idx_ret)
  147. {
  148. unsigned long i, pa, gpa, gfn, psize;
  149. unsigned long slot_fn, hva;
  150. unsigned long *hpte;
  151. struct revmap_entry *rev;
  152. unsigned long g_ptel;
  153. struct kvm_memory_slot *memslot;
  154. unsigned long *physp, pte_size;
  155. unsigned long is_io;
  156. unsigned long *rmap;
  157. pte_t pte;
  158. unsigned int writing;
  159. unsigned long mmu_seq;
  160. unsigned long rcbits;
  161. psize = hpte_page_size(pteh, ptel);
  162. if (!psize)
  163. return H_PARAMETER;
  164. writing = hpte_is_writable(ptel);
  165. pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
  166. ptel &= ~HPTE_GR_RESERVED;
  167. g_ptel = ptel;
  168. /* used later to detect if we might have been invalidated */
  169. mmu_seq = kvm->mmu_notifier_seq;
  170. smp_rmb();
  171. /* Find the memslot (if any) for this address */
  172. gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
  173. gfn = gpa >> PAGE_SHIFT;
  174. memslot = __gfn_to_memslot(kvm_memslots(kvm), gfn);
  175. pa = 0;
  176. is_io = ~0ul;
  177. rmap = NULL;
  178. if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) {
  179. /* PPC970 can't do emulated MMIO */
  180. if (!cpu_has_feature(CPU_FTR_ARCH_206))
  181. return H_PARAMETER;
  182. /* Emulated MMIO - mark this with key=31 */
  183. pteh |= HPTE_V_ABSENT;
  184. ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO;
  185. goto do_insert;
  186. }
  187. /* Check if the requested page fits entirely in the memslot. */
  188. if (!slot_is_aligned(memslot, psize))
  189. return H_PARAMETER;
  190. slot_fn = gfn - memslot->base_gfn;
  191. rmap = &memslot->arch.rmap[slot_fn];
  192. if (!kvm->arch.using_mmu_notifiers) {
  193. physp = memslot->arch.slot_phys;
  194. if (!physp)
  195. return H_PARAMETER;
  196. physp += slot_fn;
  197. if (realmode)
  198. physp = real_vmalloc_addr(physp);
  199. pa = *physp;
  200. if (!pa)
  201. return H_TOO_HARD;
  202. is_io = pa & (HPTE_R_I | HPTE_R_W);
  203. pte_size = PAGE_SIZE << (pa & KVMPPC_PAGE_ORDER_MASK);
  204. pa &= PAGE_MASK;
  205. } else {
  206. /* Translate to host virtual address */
  207. hva = __gfn_to_hva_memslot(memslot, gfn);
  208. /* Look up the Linux PTE for the backing page */
  209. pte_size = psize;
  210. pte = lookup_linux_pte(pgdir, hva, writing, &pte_size);
  211. if (pte_present(pte)) {
  212. if (writing && !pte_write(pte))
  213. /* make the actual HPTE be read-only */
  214. ptel = hpte_make_readonly(ptel);
  215. is_io = hpte_cache_bits(pte_val(pte));
  216. pa = pte_pfn(pte) << PAGE_SHIFT;
  217. }
  218. }
  219. if (pte_size < psize)
  220. return H_PARAMETER;
  221. if (pa && pte_size > psize)
  222. pa |= gpa & (pte_size - 1);
  223. ptel &= ~(HPTE_R_PP0 - psize);
  224. ptel |= pa;
  225. if (pa)
  226. pteh |= HPTE_V_VALID;
  227. else
  228. pteh |= HPTE_V_ABSENT;
  229. /* Check WIMG */
  230. if (is_io != ~0ul && !hpte_cache_flags_ok(ptel, is_io)) {
  231. if (is_io)
  232. return H_PARAMETER;
  233. /*
  234. * Allow guest to map emulated device memory as
  235. * uncacheable, but actually make it cacheable.
  236. */
  237. ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G);
  238. ptel |= HPTE_R_M;
  239. }
  240. /* Find and lock the HPTEG slot to use */
  241. do_insert:
  242. if (pte_index >= kvm->arch.hpt_npte)
  243. return H_PARAMETER;
  244. if (likely((flags & H_EXACT) == 0)) {
  245. pte_index &= ~7UL;
  246. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  247. for (i = 0; i < 8; ++i) {
  248. if ((*hpte & HPTE_V_VALID) == 0 &&
  249. try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
  250. HPTE_V_ABSENT))
  251. break;
  252. hpte += 2;
  253. }
  254. if (i == 8) {
  255. /*
  256. * Since try_lock_hpte doesn't retry (not even stdcx.
  257. * failures), it could be that there is a free slot
  258. * but we transiently failed to lock it. Try again,
  259. * actually locking each slot and checking it.
  260. */
  261. hpte -= 16;
  262. for (i = 0; i < 8; ++i) {
  263. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  264. cpu_relax();
  265. if (!(*hpte & (HPTE_V_VALID | HPTE_V_ABSENT)))
  266. break;
  267. *hpte &= ~HPTE_V_HVLOCK;
  268. hpte += 2;
  269. }
  270. if (i == 8)
  271. return H_PTEG_FULL;
  272. }
  273. pte_index += i;
  274. } else {
  275. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  276. if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
  277. HPTE_V_ABSENT)) {
  278. /* Lock the slot and check again */
  279. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  280. cpu_relax();
  281. if (*hpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
  282. *hpte &= ~HPTE_V_HVLOCK;
  283. return H_PTEG_FULL;
  284. }
  285. }
  286. }
  287. /* Save away the guest's idea of the second HPTE dword */
  288. rev = &kvm->arch.revmap[pte_index];
  289. if (realmode)
  290. rev = real_vmalloc_addr(rev);
  291. if (rev) {
  292. rev->guest_rpte = g_ptel;
  293. note_hpte_modification(kvm, rev);
  294. }
  295. /* Link HPTE into reverse-map chain */
  296. if (pteh & HPTE_V_VALID) {
  297. if (realmode)
  298. rmap = real_vmalloc_addr(rmap);
  299. lock_rmap(rmap);
  300. /* Check for pending invalidations under the rmap chain lock */
  301. if (kvm->arch.using_mmu_notifiers &&
  302. mmu_notifier_retry(kvm, mmu_seq)) {
  303. /* inval in progress, write a non-present HPTE */
  304. pteh |= HPTE_V_ABSENT;
  305. pteh &= ~HPTE_V_VALID;
  306. unlock_rmap(rmap);
  307. } else {
  308. kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
  309. realmode);
  310. /* Only set R/C in real HPTE if already set in *rmap */
  311. rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
  312. ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C);
  313. }
  314. }
  315. hpte[1] = ptel;
  316. /* Write the first HPTE dword, unlocking the HPTE and making it valid */
  317. eieio();
  318. hpte[0] = pteh;
  319. asm volatile("ptesync" : : : "memory");
  320. *pte_idx_ret = pte_index;
  321. return H_SUCCESS;
  322. }
  323. EXPORT_SYMBOL_GPL(kvmppc_do_h_enter);
  324. long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
  325. long pte_index, unsigned long pteh, unsigned long ptel)
  326. {
  327. return kvmppc_do_h_enter(vcpu->kvm, flags, pte_index, pteh, ptel,
  328. vcpu->arch.pgdir, true, &vcpu->arch.gpr[4]);
  329. }
  330. #ifdef __BIG_ENDIAN__
  331. #define LOCK_TOKEN (*(u32 *)(&get_paca()->lock_token))
  332. #else
  333. #define LOCK_TOKEN (*(u32 *)(&get_paca()->paca_index))
  334. #endif
  335. static inline int try_lock_tlbie(unsigned int *lock)
  336. {
  337. unsigned int tmp, old;
  338. unsigned int token = LOCK_TOKEN;
  339. asm volatile("1:lwarx %1,0,%2\n"
  340. " cmpwi cr0,%1,0\n"
  341. " bne 2f\n"
  342. " stwcx. %3,0,%2\n"
  343. " bne- 1b\n"
  344. " isync\n"
  345. "2:"
  346. : "=&r" (tmp), "=&r" (old)
  347. : "r" (lock), "r" (token)
  348. : "cc", "memory");
  349. return old == 0;
  350. }
  351. /*
  352. * tlbie/tlbiel is a bit different on the PPC970 compared to later
  353. * processors such as POWER7; the large page bit is in the instruction
  354. * not RB, and the top 16 bits and the bottom 12 bits of the VA
  355. * in RB must be 0.
  356. */
  357. static void do_tlbies_970(struct kvm *kvm, unsigned long *rbvalues,
  358. long npages, int global, bool need_sync)
  359. {
  360. long i;
  361. if (global) {
  362. while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
  363. cpu_relax();
  364. if (need_sync)
  365. asm volatile("ptesync" : : : "memory");
  366. for (i = 0; i < npages; ++i) {
  367. unsigned long rb = rbvalues[i];
  368. if (rb & 1) /* large page */
  369. asm volatile("tlbie %0,1" : :
  370. "r" (rb & 0x0000fffffffff000ul));
  371. else
  372. asm volatile("tlbie %0,0" : :
  373. "r" (rb & 0x0000fffffffff000ul));
  374. }
  375. asm volatile("eieio; tlbsync; ptesync" : : : "memory");
  376. kvm->arch.tlbie_lock = 0;
  377. } else {
  378. if (need_sync)
  379. asm volatile("ptesync" : : : "memory");
  380. for (i = 0; i < npages; ++i) {
  381. unsigned long rb = rbvalues[i];
  382. if (rb & 1) /* large page */
  383. asm volatile("tlbiel %0,1" : :
  384. "r" (rb & 0x0000fffffffff000ul));
  385. else
  386. asm volatile("tlbiel %0,0" : :
  387. "r" (rb & 0x0000fffffffff000ul));
  388. }
  389. asm volatile("ptesync" : : : "memory");
  390. }
  391. }
  392. static void do_tlbies(struct kvm *kvm, unsigned long *rbvalues,
  393. long npages, int global, bool need_sync)
  394. {
  395. long i;
  396. if (cpu_has_feature(CPU_FTR_ARCH_201)) {
  397. /* PPC970 tlbie instruction is a bit different */
  398. do_tlbies_970(kvm, rbvalues, npages, global, need_sync);
  399. return;
  400. }
  401. if (global) {
  402. while (!try_lock_tlbie(&kvm->arch.tlbie_lock))
  403. cpu_relax();
  404. if (need_sync)
  405. asm volatile("ptesync" : : : "memory");
  406. for (i = 0; i < npages; ++i)
  407. asm volatile(PPC_TLBIE(%1,%0) : :
  408. "r" (rbvalues[i]), "r" (kvm->arch.lpid));
  409. asm volatile("eieio; tlbsync; ptesync" : : : "memory");
  410. kvm->arch.tlbie_lock = 0;
  411. } else {
  412. if (need_sync)
  413. asm volatile("ptesync" : : : "memory");
  414. for (i = 0; i < npages; ++i)
  415. asm volatile("tlbiel %0" : : "r" (rbvalues[i]));
  416. asm volatile("ptesync" : : : "memory");
  417. }
  418. }
  419. long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags,
  420. unsigned long pte_index, unsigned long avpn,
  421. unsigned long *hpret)
  422. {
  423. unsigned long *hpte;
  424. unsigned long v, r, rb;
  425. struct revmap_entry *rev;
  426. if (pte_index >= kvm->arch.hpt_npte)
  427. return H_PARAMETER;
  428. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  429. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  430. cpu_relax();
  431. if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
  432. ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn) ||
  433. ((flags & H_ANDCOND) && (hpte[0] & avpn) != 0)) {
  434. hpte[0] &= ~HPTE_V_HVLOCK;
  435. return H_NOT_FOUND;
  436. }
  437. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  438. v = hpte[0] & ~HPTE_V_HVLOCK;
  439. if (v & HPTE_V_VALID) {
  440. hpte[0] &= ~HPTE_V_VALID;
  441. rb = compute_tlbie_rb(v, hpte[1], pte_index);
  442. do_tlbies(kvm, &rb, 1, global_invalidates(kvm, flags), true);
  443. /* Read PTE low word after tlbie to get final R/C values */
  444. remove_revmap_chain(kvm, pte_index, rev, v, hpte[1]);
  445. }
  446. r = rev->guest_rpte & ~HPTE_GR_RESERVED;
  447. note_hpte_modification(kvm, rev);
  448. unlock_hpte(hpte, 0);
  449. hpret[0] = v;
  450. hpret[1] = r;
  451. return H_SUCCESS;
  452. }
  453. EXPORT_SYMBOL_GPL(kvmppc_do_h_remove);
  454. long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
  455. unsigned long pte_index, unsigned long avpn)
  456. {
  457. return kvmppc_do_h_remove(vcpu->kvm, flags, pte_index, avpn,
  458. &vcpu->arch.gpr[4]);
  459. }
  460. long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
  461. {
  462. struct kvm *kvm = vcpu->kvm;
  463. unsigned long *args = &vcpu->arch.gpr[4];
  464. unsigned long *hp, *hptes[4], tlbrb[4];
  465. long int i, j, k, n, found, indexes[4];
  466. unsigned long flags, req, pte_index, rcbits;
  467. int global;
  468. long int ret = H_SUCCESS;
  469. struct revmap_entry *rev, *revs[4];
  470. global = global_invalidates(kvm, 0);
  471. for (i = 0; i < 4 && ret == H_SUCCESS; ) {
  472. n = 0;
  473. for (; i < 4; ++i) {
  474. j = i * 2;
  475. pte_index = args[j];
  476. flags = pte_index >> 56;
  477. pte_index &= ((1ul << 56) - 1);
  478. req = flags >> 6;
  479. flags &= 3;
  480. if (req == 3) { /* no more requests */
  481. i = 4;
  482. break;
  483. }
  484. if (req != 1 || flags == 3 ||
  485. pte_index >= kvm->arch.hpt_npte) {
  486. /* parameter error */
  487. args[j] = ((0xa0 | flags) << 56) + pte_index;
  488. ret = H_PARAMETER;
  489. break;
  490. }
  491. hp = (unsigned long *)
  492. (kvm->arch.hpt_virt + (pte_index << 4));
  493. /* to avoid deadlock, don't spin except for first */
  494. if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) {
  495. if (n)
  496. break;
  497. while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
  498. cpu_relax();
  499. }
  500. found = 0;
  501. if (hp[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) {
  502. switch (flags & 3) {
  503. case 0: /* absolute */
  504. found = 1;
  505. break;
  506. case 1: /* andcond */
  507. if (!(hp[0] & args[j + 1]))
  508. found = 1;
  509. break;
  510. case 2: /* AVPN */
  511. if ((hp[0] & ~0x7fUL) == args[j + 1])
  512. found = 1;
  513. break;
  514. }
  515. }
  516. if (!found) {
  517. hp[0] &= ~HPTE_V_HVLOCK;
  518. args[j] = ((0x90 | flags) << 56) + pte_index;
  519. continue;
  520. }
  521. args[j] = ((0x80 | flags) << 56) + pte_index;
  522. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  523. note_hpte_modification(kvm, rev);
  524. if (!(hp[0] & HPTE_V_VALID)) {
  525. /* insert R and C bits from PTE */
  526. rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
  527. args[j] |= rcbits << (56 - 5);
  528. hp[0] = 0;
  529. continue;
  530. }
  531. hp[0] &= ~HPTE_V_VALID; /* leave it locked */
  532. tlbrb[n] = compute_tlbie_rb(hp[0], hp[1], pte_index);
  533. indexes[n] = j;
  534. hptes[n] = hp;
  535. revs[n] = rev;
  536. ++n;
  537. }
  538. if (!n)
  539. break;
  540. /* Now that we've collected a batch, do the tlbies */
  541. do_tlbies(kvm, tlbrb, n, global, true);
  542. /* Read PTE low words after tlbie to get final R/C values */
  543. for (k = 0; k < n; ++k) {
  544. j = indexes[k];
  545. pte_index = args[j] & ((1ul << 56) - 1);
  546. hp = hptes[k];
  547. rev = revs[k];
  548. remove_revmap_chain(kvm, pte_index, rev, hp[0], hp[1]);
  549. rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
  550. args[j] |= rcbits << (56 - 5);
  551. hp[0] = 0;
  552. }
  553. }
  554. return ret;
  555. }
  556. long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
  557. unsigned long pte_index, unsigned long avpn,
  558. unsigned long va)
  559. {
  560. struct kvm *kvm = vcpu->kvm;
  561. unsigned long *hpte;
  562. struct revmap_entry *rev;
  563. unsigned long v, r, rb, mask, bits;
  564. if (pte_index >= kvm->arch.hpt_npte)
  565. return H_PARAMETER;
  566. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  567. while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
  568. cpu_relax();
  569. if ((hpte[0] & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
  570. ((flags & H_AVPN) && (hpte[0] & ~0x7fUL) != avpn)) {
  571. hpte[0] &= ~HPTE_V_HVLOCK;
  572. return H_NOT_FOUND;
  573. }
  574. v = hpte[0];
  575. bits = (flags << 55) & HPTE_R_PP0;
  576. bits |= (flags << 48) & HPTE_R_KEY_HI;
  577. bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
  578. /* Update guest view of 2nd HPTE dword */
  579. mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
  580. HPTE_R_KEY_HI | HPTE_R_KEY_LO;
  581. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  582. if (rev) {
  583. r = (rev->guest_rpte & ~mask) | bits;
  584. rev->guest_rpte = r;
  585. note_hpte_modification(kvm, rev);
  586. }
  587. r = (hpte[1] & ~mask) | bits;
  588. /* Update HPTE */
  589. if (v & HPTE_V_VALID) {
  590. rb = compute_tlbie_rb(v, r, pte_index);
  591. hpte[0] = v & ~HPTE_V_VALID;
  592. do_tlbies(kvm, &rb, 1, global_invalidates(kvm, flags), true);
  593. /*
  594. * If the host has this page as readonly but the guest
  595. * wants to make it read/write, reduce the permissions.
  596. * Checking the host permissions involves finding the
  597. * memslot and then the Linux PTE for the page.
  598. */
  599. if (hpte_is_writable(r) && kvm->arch.using_mmu_notifiers) {
  600. unsigned long psize, gfn, hva;
  601. struct kvm_memory_slot *memslot;
  602. pgd_t *pgdir = vcpu->arch.pgdir;
  603. pte_t pte;
  604. psize = hpte_page_size(v, r);
  605. gfn = ((r & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
  606. memslot = __gfn_to_memslot(kvm_memslots(kvm), gfn);
  607. if (memslot) {
  608. hva = __gfn_to_hva_memslot(memslot, gfn);
  609. pte = lookup_linux_pte(pgdir, hva, 1, &psize);
  610. if (pte_present(pte) && !pte_write(pte))
  611. r = hpte_make_readonly(r);
  612. }
  613. }
  614. }
  615. hpte[1] = r;
  616. eieio();
  617. hpte[0] = v & ~HPTE_V_HVLOCK;
  618. asm volatile("ptesync" : : : "memory");
  619. return H_SUCCESS;
  620. }
  621. long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
  622. unsigned long pte_index)
  623. {
  624. struct kvm *kvm = vcpu->kvm;
  625. unsigned long *hpte, v, r;
  626. int i, n = 1;
  627. struct revmap_entry *rev = NULL;
  628. if (pte_index >= kvm->arch.hpt_npte)
  629. return H_PARAMETER;
  630. if (flags & H_READ_4) {
  631. pte_index &= ~3;
  632. n = 4;
  633. }
  634. rev = real_vmalloc_addr(&kvm->arch.revmap[pte_index]);
  635. for (i = 0; i < n; ++i, ++pte_index) {
  636. hpte = (unsigned long *)(kvm->arch.hpt_virt + (pte_index << 4));
  637. v = hpte[0] & ~HPTE_V_HVLOCK;
  638. r = hpte[1];
  639. if (v & HPTE_V_ABSENT) {
  640. v &= ~HPTE_V_ABSENT;
  641. v |= HPTE_V_VALID;
  642. }
  643. if (v & HPTE_V_VALID) {
  644. r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C));
  645. r &= ~HPTE_GR_RESERVED;
  646. }
  647. vcpu->arch.gpr[4 + i * 2] = v;
  648. vcpu->arch.gpr[5 + i * 2] = r;
  649. }
  650. return H_SUCCESS;
  651. }
  652. void kvmppc_invalidate_hpte(struct kvm *kvm, unsigned long *hptep,
  653. unsigned long pte_index)
  654. {
  655. unsigned long rb;
  656. hptep[0] &= ~HPTE_V_VALID;
  657. rb = compute_tlbie_rb(hptep[0], hptep[1], pte_index);
  658. do_tlbies(kvm, &rb, 1, 1, true);
  659. }
  660. EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);
  661. void kvmppc_clear_ref_hpte(struct kvm *kvm, unsigned long *hptep,
  662. unsigned long pte_index)
  663. {
  664. unsigned long rb;
  665. unsigned char rbyte;
  666. rb = compute_tlbie_rb(hptep[0], hptep[1], pte_index);
  667. rbyte = (hptep[1] & ~HPTE_R_R) >> 8;
  668. /* modify only the second-last byte, which contains the ref bit */
  669. *((char *)hptep + 14) = rbyte;
  670. do_tlbies(kvm, &rb, 1, 1, false);
  671. }
  672. EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte);
  673. static int slb_base_page_shift[4] = {
  674. 24, /* 16M */
  675. 16, /* 64k */
  676. 34, /* 16G */
  677. 20, /* 1M, unsupported */
  678. };
  679. long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
  680. unsigned long valid)
  681. {
  682. unsigned int i;
  683. unsigned int pshift;
  684. unsigned long somask;
  685. unsigned long vsid, hash;
  686. unsigned long avpn;
  687. unsigned long *hpte;
  688. unsigned long mask, val;
  689. unsigned long v, r;
  690. /* Get page shift, work out hash and AVPN etc. */
  691. mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
  692. val = 0;
  693. pshift = 12;
  694. if (slb_v & SLB_VSID_L) {
  695. mask |= HPTE_V_LARGE;
  696. val |= HPTE_V_LARGE;
  697. pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4];
  698. }
  699. if (slb_v & SLB_VSID_B_1T) {
  700. somask = (1UL << 40) - 1;
  701. vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T;
  702. vsid ^= vsid << 25;
  703. } else {
  704. somask = (1UL << 28) - 1;
  705. vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT;
  706. }
  707. hash = (vsid ^ ((eaddr & somask) >> pshift)) & kvm->arch.hpt_mask;
  708. avpn = slb_v & ~(somask >> 16); /* also includes B */
  709. avpn |= (eaddr & somask) >> 16;
  710. if (pshift >= 24)
  711. avpn &= ~((1UL << (pshift - 16)) - 1);
  712. else
  713. avpn &= ~0x7fUL;
  714. val |= avpn;
  715. for (;;) {
  716. hpte = (unsigned long *)(kvm->arch.hpt_virt + (hash << 7));
  717. for (i = 0; i < 16; i += 2) {
  718. /* Read the PTE racily */
  719. v = hpte[i] & ~HPTE_V_HVLOCK;
  720. /* Check valid/absent, hash, segment size and AVPN */
  721. if (!(v & valid) || (v & mask) != val)
  722. continue;
  723. /* Lock the PTE and read it under the lock */
  724. while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
  725. cpu_relax();
  726. v = hpte[i] & ~HPTE_V_HVLOCK;
  727. r = hpte[i+1];
  728. /*
  729. * Check the HPTE again, including large page size
  730. * Since we don't currently allow any MPSS (mixed
  731. * page-size segment) page sizes, it is sufficient
  732. * to check against the actual page size.
  733. */
  734. if ((v & valid) && (v & mask) == val &&
  735. hpte_page_size(v, r) == (1ul << pshift))
  736. /* Return with the HPTE still locked */
  737. return (hash << 3) + (i >> 1);
  738. /* Unlock and move on */
  739. hpte[i] = v;
  740. }
  741. if (val & HPTE_V_SECONDARY)
  742. break;
  743. val |= HPTE_V_SECONDARY;
  744. hash = hash ^ kvm->arch.hpt_mask;
  745. }
  746. return -1;
  747. }
  748. EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte);
  749. /*
  750. * Called in real mode to check whether an HPTE not found fault
  751. * is due to accessing a paged-out page or an emulated MMIO page,
  752. * or if a protection fault is due to accessing a page that the
  753. * guest wanted read/write access to but which we made read-only.
  754. * Returns a possibly modified status (DSISR) value if not
  755. * (i.e. pass the interrupt to the guest),
  756. * -1 to pass the fault up to host kernel mode code, -2 to do that
  757. * and also load the instruction word (for MMIO emulation),
  758. * or 0 if we should make the guest retry the access.
  759. */
  760. long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  761. unsigned long slb_v, unsigned int status, bool data)
  762. {
  763. struct kvm *kvm = vcpu->kvm;
  764. long int index;
  765. unsigned long v, r, gr;
  766. unsigned long *hpte;
  767. unsigned long valid;
  768. struct revmap_entry *rev;
  769. unsigned long pp, key;
  770. /* For protection fault, expect to find a valid HPTE */
  771. valid = HPTE_V_VALID;
  772. if (status & DSISR_NOHPTE)
  773. valid |= HPTE_V_ABSENT;
  774. index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
  775. if (index < 0) {
  776. if (status & DSISR_NOHPTE)
  777. return status; /* there really was no HPTE */
  778. return 0; /* for prot fault, HPTE disappeared */
  779. }
  780. hpte = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
  781. v = hpte[0] & ~HPTE_V_HVLOCK;
  782. r = hpte[1];
  783. rev = real_vmalloc_addr(&kvm->arch.revmap[index]);
  784. gr = rev->guest_rpte;
  785. unlock_hpte(hpte, v);
  786. /* For not found, if the HPTE is valid by now, retry the instruction */
  787. if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID))
  788. return 0;
  789. /* Check access permissions to the page */
  790. pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
  791. key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
  792. status &= ~DSISR_NOHPTE; /* DSISR_NOHPTE == SRR1_ISI_NOPT */
  793. if (!data) {
  794. if (gr & (HPTE_R_N | HPTE_R_G))
  795. return status | SRR1_ISI_N_OR_G;
  796. if (!hpte_read_permission(pp, slb_v & key))
  797. return status | SRR1_ISI_PROT;
  798. } else if (status & DSISR_ISSTORE) {
  799. /* check write permission */
  800. if (!hpte_write_permission(pp, slb_v & key))
  801. return status | DSISR_PROTFAULT;
  802. } else {
  803. if (!hpte_read_permission(pp, slb_v & key))
  804. return status | DSISR_PROTFAULT;
  805. }
  806. /* Check storage key, if applicable */
  807. if (data && (vcpu->arch.shregs.msr & MSR_DR)) {
  808. unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr);
  809. if (status & DSISR_ISSTORE)
  810. perm >>= 1;
  811. if (perm & 1)
  812. return status | DSISR_KEYFAULT;
  813. }
  814. /* Save HPTE info for virtual-mode handler */
  815. vcpu->arch.pgfault_addr = addr;
  816. vcpu->arch.pgfault_index = index;
  817. vcpu->arch.pgfault_hpte[0] = v;
  818. vcpu->arch.pgfault_hpte[1] = r;
  819. /* Check the storage key to see if it is possibly emulated MMIO */
  820. if (data && (vcpu->arch.shregs.msr & MSR_IR) &&
  821. (r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
  822. (HPTE_R_KEY_HI | HPTE_R_KEY_LO))
  823. return -2; /* MMIO emulation - load instr word */
  824. return -1; /* send fault up to host kernel mode */
  825. }