powertv_setup.c 9.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319
  1. /*
  2. * Carsten Langgaard, carstenl@mips.com
  3. * Copyright (C) 2000 MIPS Technologies, Inc. All rights reserved.
  4. * Portions copyright (C) 2009 Cisco Systems, Inc.
  5. *
  6. * This program is free software; you can distribute it and/or modify it
  7. * under the terms of the GNU General Public License (Version 2) as
  8. * published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  13. * for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along
  16. * with this program; if not, write to the Free Software Foundation, Inc.,
  17. * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
  18. */
  19. #include <linux/init.h>
  20. #include <linux/sched.h>
  21. #include <linux/ioport.h>
  22. #include <linux/pci.h>
  23. #include <linux/screen_info.h>
  24. #include <linux/notifier.h>
  25. #include <linux/etherdevice.h>
  26. #include <linux/if_ether.h>
  27. #include <linux/ctype.h>
  28. #include <linux/cpu.h>
  29. #include <linux/time.h>
  30. #include <asm/bootinfo.h>
  31. #include <asm/irq.h>
  32. #include <asm/mips-boards/generic.h>
  33. #include <asm/dma.h>
  34. #include <asm/asm.h>
  35. #include <asm/traps.h>
  36. #include <asm/asm-offsets.h>
  37. #include "reset.h"
  38. #define VAL(n) STR(n)
  39. /*
  40. * Macros for loading addresses and storing registers:
  41. * LONG_L_ Stringified version of LONG_L for use in asm() statement
  42. * LONG_S_ Stringified version of LONG_S for use in asm() statement
  43. * PTR_LA_ Stringified version of PTR_LA for use in asm() statement
  44. * REG_SIZE Number of 8-bit bytes in a full width register
  45. */
  46. #define LONG_L_ VAL(LONG_L) " "
  47. #define LONG_S_ VAL(LONG_S) " "
  48. #define PTR_LA_ VAL(PTR_LA) " "
  49. #ifdef CONFIG_64BIT
  50. #warning TODO: 64-bit code needs to be verified
  51. #define REG_SIZE "8" /* In bytes */
  52. #endif
  53. #ifdef CONFIG_32BIT
  54. #define REG_SIZE "4" /* In bytes */
  55. #endif
  56. static void register_panic_notifier(void);
  57. static int panic_handler(struct notifier_block *notifier_block,
  58. unsigned long event, void *cause_string);
  59. const char *get_system_type(void)
  60. {
  61. return "PowerTV";
  62. }
  63. void __init plat_mem_setup(void)
  64. {
  65. panic_on_oops = 1;
  66. register_panic_notifier();
  67. #if 0
  68. mips_pcibios_init();
  69. #endif
  70. mips_reboot_setup();
  71. }
  72. /*
  73. * Install a panic notifier for platform-specific diagnostics
  74. */
  75. static void register_panic_notifier()
  76. {
  77. static struct notifier_block panic_notifier = {
  78. .notifier_call = panic_handler,
  79. .next = NULL,
  80. .priority = INT_MAX
  81. };
  82. atomic_notifier_chain_register(&panic_notifier_list, &panic_notifier);
  83. }
  84. static int panic_handler(struct notifier_block *notifier_block,
  85. unsigned long event, void *cause_string)
  86. {
  87. struct pt_regs my_regs;
  88. /* Save all of the registers */
  89. {
  90. unsigned long at, v0, v1; /* Must be on the stack */
  91. /* Start by saving $at and v0 on the stack. We use $at
  92. * ourselves, but it looks like the compiler may use v0 or v1
  93. * to load the address of the pt_regs structure. We'll come
  94. * back later to store the registers in the pt_regs
  95. * structure. */
  96. __asm__ __volatile__ (
  97. ".set noat\n"
  98. LONG_S_ "$at, %[at]\n"
  99. LONG_S_ "$2, %[v0]\n"
  100. LONG_S_ "$3, %[v1]\n"
  101. :
  102. [at] "=m" (at),
  103. [v0] "=m" (v0),
  104. [v1] "=m" (v1)
  105. :
  106. : "at"
  107. );
  108. __asm__ __volatile__ (
  109. ".set noat\n"
  110. "move $at, %[pt_regs]\n"
  111. /* Argument registers */
  112. LONG_S_ "$4, " VAL(PT_R4) "($at)\n"
  113. LONG_S_ "$5, " VAL(PT_R5) "($at)\n"
  114. LONG_S_ "$6, " VAL(PT_R6) "($at)\n"
  115. LONG_S_ "$7, " VAL(PT_R7) "($at)\n"
  116. /* Temporary regs */
  117. LONG_S_ "$8, " VAL(PT_R8) "($at)\n"
  118. LONG_S_ "$9, " VAL(PT_R9) "($at)\n"
  119. LONG_S_ "$10, " VAL(PT_R10) "($at)\n"
  120. LONG_S_ "$11, " VAL(PT_R11) "($at)\n"
  121. LONG_S_ "$12, " VAL(PT_R12) "($at)\n"
  122. LONG_S_ "$13, " VAL(PT_R13) "($at)\n"
  123. LONG_S_ "$14, " VAL(PT_R14) "($at)\n"
  124. LONG_S_ "$15, " VAL(PT_R15) "($at)\n"
  125. /* "Saved" registers */
  126. LONG_S_ "$16, " VAL(PT_R16) "($at)\n"
  127. LONG_S_ "$17, " VAL(PT_R17) "($at)\n"
  128. LONG_S_ "$18, " VAL(PT_R18) "($at)\n"
  129. LONG_S_ "$19, " VAL(PT_R19) "($at)\n"
  130. LONG_S_ "$20, " VAL(PT_R20) "($at)\n"
  131. LONG_S_ "$21, " VAL(PT_R21) "($at)\n"
  132. LONG_S_ "$22, " VAL(PT_R22) "($at)\n"
  133. LONG_S_ "$23, " VAL(PT_R23) "($at)\n"
  134. /* Add'l temp regs */
  135. LONG_S_ "$24, " VAL(PT_R24) "($at)\n"
  136. LONG_S_ "$25, " VAL(PT_R25) "($at)\n"
  137. /* Kernel temp regs */
  138. LONG_S_ "$26, " VAL(PT_R26) "($at)\n"
  139. LONG_S_ "$27, " VAL(PT_R27) "($at)\n"
  140. /* Global pointer, stack pointer, frame pointer and
  141. * return address */
  142. LONG_S_ "$gp, " VAL(PT_R28) "($at)\n"
  143. LONG_S_ "$sp, " VAL(PT_R29) "($at)\n"
  144. LONG_S_ "$fp, " VAL(PT_R30) "($at)\n"
  145. LONG_S_ "$ra, " VAL(PT_R31) "($at)\n"
  146. /* Now we can get the $at and v0 registers back and
  147. * store them */
  148. LONG_L_ "$8, %[at]\n"
  149. LONG_S_ "$8, " VAL(PT_R1) "($at)\n"
  150. LONG_L_ "$8, %[v0]\n"
  151. LONG_S_ "$8, " VAL(PT_R2) "($at)\n"
  152. LONG_L_ "$8, %[v1]\n"
  153. LONG_S_ "$8, " VAL(PT_R3) "($at)\n"
  154. :
  155. :
  156. [at] "m" (at),
  157. [v0] "m" (v0),
  158. [v1] "m" (v1),
  159. [pt_regs] "r" (&my_regs)
  160. : "at", "t0"
  161. );
  162. /* Set the current EPC value to be the current location in this
  163. * function */
  164. __asm__ __volatile__ (
  165. ".set noat\n"
  166. "1:\n"
  167. PTR_LA_ "$at, 1b\n"
  168. LONG_S_ "$at, %[cp0_epc]\n"
  169. :
  170. [cp0_epc] "=m" (my_regs.cp0_epc)
  171. :
  172. : "at"
  173. );
  174. my_regs.cp0_cause = read_c0_cause();
  175. my_regs.cp0_status = read_c0_status();
  176. }
  177. pr_crit("I'm feeling a bit sleepy. hmmmmm... perhaps a nap would... "
  178. "zzzz... \n");
  179. return NOTIFY_DONE;
  180. }
  181. /* Information about the RF MAC address, if one was supplied on the
  182. * command line. */
  183. static bool have_rfmac;
  184. static u8 rfmac[ETH_ALEN];
  185. static int rfmac_param(char *p)
  186. {
  187. u8 *q;
  188. bool is_high_nibble;
  189. int c;
  190. /* Skip a leading "0x", if present */
  191. if (*p == '0' && *(p+1) == 'x')
  192. p += 2;
  193. q = rfmac;
  194. is_high_nibble = true;
  195. for (c = (unsigned char) *p++;
  196. isxdigit(c) && q - rfmac < ETH_ALEN;
  197. c = (unsigned char) *p++) {
  198. int nibble;
  199. nibble = (isdigit(c) ? (c - '0') :
  200. (isupper(c) ? c - 'A' + 10 : c - 'a' + 10));
  201. if (is_high_nibble)
  202. *q = nibble << 4;
  203. else
  204. *q++ |= nibble;
  205. is_high_nibble = !is_high_nibble;
  206. }
  207. /* If we parsed all the way to the end of the parameter value and
  208. * parsed all ETH_ALEN bytes, we have a usable RF MAC address */
  209. have_rfmac = (c == '\0' && q - rfmac == ETH_ALEN);
  210. return 0;
  211. }
  212. early_param("rfmac", rfmac_param);
  213. /*
  214. * Generate an Ethernet MAC address that has a good chance of being unique.
  215. * @addr: Pointer to six-byte array containing the Ethernet address
  216. * Generates an Ethernet MAC address that is highly likely to be unique for
  217. * this particular system on a network with other systems of the same type.
  218. *
  219. * The problem we are solving is that, when eth_random_addr() is used to
  220. * generate MAC addresses at startup, there isn't much entropy for the random
  221. * number generator to use and the addresses it produces are fairly likely to
  222. * be the same as those of other identical systems on the same local network.
  223. * This is true even for relatively small numbers of systems (for the reason
  224. * why, see the Wikipedia entry for "Birthday problem" at:
  225. * http://en.wikipedia.org/wiki/Birthday_problem
  226. *
  227. * The good news is that we already have a MAC address known to be unique, the
  228. * RF MAC address. The bad news is that this address is already in use on the
  229. * RF interface. Worse, the obvious trick, taking the RF MAC address and
  230. * turning on the locally managed bit, has already been used for other devices.
  231. * Still, this does give us something to work with.
  232. *
  233. * The approach we take is:
  234. * 1. If we can't get the RF MAC Address, just call eth_random_addr.
  235. * 2. Use the 24-bit NIC-specific bits of the RF MAC address as the last 24
  236. * bits of the new address. This is very likely to be unique, except for
  237. * the current box.
  238. * 3. To avoid using addresses already on the current box, we set the top
  239. * six bits of the address with a value different from any currently
  240. * registered Scientific Atlanta organizationally unique identifyer
  241. * (OUI). This avoids duplication with any addresses on the system that
  242. * were generated from valid Scientific Atlanta-registered address by
  243. * simply flipping the locally managed bit.
  244. * 4. We aren't generating a multicast address, so we leave the multicast
  245. * bit off. Since we aren't using a registered address, we have to set
  246. * the locally managed bit.
  247. * 5. We then randomly generate the remaining 16-bits. This does two
  248. * things:
  249. * a. It allows us to call this function for more than one device
  250. * in this system
  251. * b. It ensures that things will probably still work even if
  252. * some device on the device network has a locally managed
  253. * address that matches the top six bits from step 2.
  254. */
  255. void platform_random_ether_addr(u8 addr[ETH_ALEN])
  256. {
  257. const int num_random_bytes = 2;
  258. const unsigned char non_sciatl_oui_bits = 0xc0u;
  259. const unsigned char mac_addr_locally_managed = (1 << 1);
  260. if (!have_rfmac) {
  261. pr_warning("rfmac not available on command line; "
  262. "generating random MAC address\n");
  263. eth_random_addr(addr);
  264. }
  265. else {
  266. int i;
  267. /* Set the first byte to something that won't match a Scientific
  268. * Atlanta OUI, is locally managed, and isn't a multicast
  269. * address */
  270. addr[0] = non_sciatl_oui_bits | mac_addr_locally_managed;
  271. /* Get some bytes of random address information */
  272. get_random_bytes(&addr[1], num_random_bytes);
  273. /* Copy over the NIC-specific bits of the RF MAC address */
  274. for (i = 1 + num_random_bytes; i < ETH_ALEN; i++)
  275. addr[i] = rfmac[i];
  276. }
  277. }