tlbex.c 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Synthesize TLB refill handlers at runtime.
  7. *
  8. * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
  9. * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
  10. * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
  11. * Copyright (C) 2008, 2009 Cavium Networks, Inc.
  12. * Copyright (C) 2011 MIPS Technologies, Inc.
  13. *
  14. * ... and the days got worse and worse and now you see
  15. * I've gone completly out of my mind.
  16. *
  17. * They're coming to take me a away haha
  18. * they're coming to take me a away hoho hihi haha
  19. * to the funny farm where code is beautiful all the time ...
  20. *
  21. * (Condolences to Napoleon XIV)
  22. */
  23. #include <linux/bug.h>
  24. #include <linux/kernel.h>
  25. #include <linux/types.h>
  26. #include <linux/smp.h>
  27. #include <linux/string.h>
  28. #include <linux/init.h>
  29. #include <linux/cache.h>
  30. #include <asm/cacheflush.h>
  31. #include <asm/cpu-type.h>
  32. #include <asm/pgtable.h>
  33. #include <asm/war.h>
  34. #include <asm/uasm.h>
  35. #include <asm/setup.h>
  36. /*
  37. * TLB load/store/modify handlers.
  38. *
  39. * Only the fastpath gets synthesized at runtime, the slowpath for
  40. * do_page_fault remains normal asm.
  41. */
  42. extern void tlb_do_page_fault_0(void);
  43. extern void tlb_do_page_fault_1(void);
  44. struct work_registers {
  45. int r1;
  46. int r2;
  47. int r3;
  48. };
  49. struct tlb_reg_save {
  50. unsigned long a;
  51. unsigned long b;
  52. } ____cacheline_aligned_in_smp;
  53. static struct tlb_reg_save handler_reg_save[NR_CPUS];
  54. static inline int r45k_bvahwbug(void)
  55. {
  56. /* XXX: We should probe for the presence of this bug, but we don't. */
  57. return 0;
  58. }
  59. static inline int r4k_250MHZhwbug(void)
  60. {
  61. /* XXX: We should probe for the presence of this bug, but we don't. */
  62. return 0;
  63. }
  64. static inline int __maybe_unused bcm1250_m3_war(void)
  65. {
  66. return BCM1250_M3_WAR;
  67. }
  68. static inline int __maybe_unused r10000_llsc_war(void)
  69. {
  70. return R10000_LLSC_WAR;
  71. }
  72. static int use_bbit_insns(void)
  73. {
  74. switch (current_cpu_type()) {
  75. case CPU_CAVIUM_OCTEON:
  76. case CPU_CAVIUM_OCTEON_PLUS:
  77. case CPU_CAVIUM_OCTEON2:
  78. case CPU_CAVIUM_OCTEON3:
  79. return 1;
  80. default:
  81. return 0;
  82. }
  83. }
  84. static int use_lwx_insns(void)
  85. {
  86. switch (current_cpu_type()) {
  87. case CPU_CAVIUM_OCTEON2:
  88. case CPU_CAVIUM_OCTEON3:
  89. return 1;
  90. default:
  91. return 0;
  92. }
  93. }
  94. #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
  95. CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
  96. static bool scratchpad_available(void)
  97. {
  98. return true;
  99. }
  100. static int scratchpad_offset(int i)
  101. {
  102. /*
  103. * CVMSEG starts at address -32768 and extends for
  104. * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
  105. */
  106. i += 1; /* Kernel use starts at the top and works down. */
  107. return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
  108. }
  109. #else
  110. static bool scratchpad_available(void)
  111. {
  112. return false;
  113. }
  114. static int scratchpad_offset(int i)
  115. {
  116. BUG();
  117. /* Really unreachable, but evidently some GCC want this. */
  118. return 0;
  119. }
  120. #endif
  121. /*
  122. * Found by experiment: At least some revisions of the 4kc throw under
  123. * some circumstances a machine check exception, triggered by invalid
  124. * values in the index register. Delaying the tlbp instruction until
  125. * after the next branch, plus adding an additional nop in front of
  126. * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
  127. * why; it's not an issue caused by the core RTL.
  128. *
  129. */
  130. static int m4kc_tlbp_war(void)
  131. {
  132. return (current_cpu_data.processor_id & 0xffff00) ==
  133. (PRID_COMP_MIPS | PRID_IMP_4KC);
  134. }
  135. /* Handle labels (which must be positive integers). */
  136. enum label_id {
  137. label_second_part = 1,
  138. label_leave,
  139. label_vmalloc,
  140. label_vmalloc_done,
  141. label_tlbw_hazard_0,
  142. label_split = label_tlbw_hazard_0 + 8,
  143. label_tlbl_goaround1,
  144. label_tlbl_goaround2,
  145. label_nopage_tlbl,
  146. label_nopage_tlbs,
  147. label_nopage_tlbm,
  148. label_smp_pgtable_change,
  149. label_r3000_write_probe_fail,
  150. label_large_segbits_fault,
  151. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  152. label_tlb_huge_update,
  153. #endif
  154. };
  155. UASM_L_LA(_second_part)
  156. UASM_L_LA(_leave)
  157. UASM_L_LA(_vmalloc)
  158. UASM_L_LA(_vmalloc_done)
  159. /* _tlbw_hazard_x is handled differently. */
  160. UASM_L_LA(_split)
  161. UASM_L_LA(_tlbl_goaround1)
  162. UASM_L_LA(_tlbl_goaround2)
  163. UASM_L_LA(_nopage_tlbl)
  164. UASM_L_LA(_nopage_tlbs)
  165. UASM_L_LA(_nopage_tlbm)
  166. UASM_L_LA(_smp_pgtable_change)
  167. UASM_L_LA(_r3000_write_probe_fail)
  168. UASM_L_LA(_large_segbits_fault)
  169. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  170. UASM_L_LA(_tlb_huge_update)
  171. #endif
  172. static int hazard_instance;
  173. static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
  174. {
  175. switch (instance) {
  176. case 0 ... 7:
  177. uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
  178. return;
  179. default:
  180. BUG();
  181. }
  182. }
  183. static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
  184. {
  185. switch (instance) {
  186. case 0 ... 7:
  187. uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
  188. break;
  189. default:
  190. BUG();
  191. }
  192. }
  193. /*
  194. * pgtable bits are assigned dynamically depending on processor feature
  195. * and statically based on kernel configuration. This spits out the actual
  196. * values the kernel is using. Required to make sense from disassembled
  197. * TLB exception handlers.
  198. */
  199. static void output_pgtable_bits_defines(void)
  200. {
  201. #define pr_define(fmt, ...) \
  202. pr_debug("#define " fmt, ##__VA_ARGS__)
  203. pr_debug("#include <asm/asm.h>\n");
  204. pr_debug("#include <asm/regdef.h>\n");
  205. pr_debug("\n");
  206. pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
  207. pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
  208. pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
  209. pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
  210. pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
  211. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  212. pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
  213. pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
  214. #endif
  215. if (cpu_has_rixi) {
  216. #ifdef _PAGE_NO_EXEC_SHIFT
  217. pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
  218. #endif
  219. #ifdef _PAGE_NO_READ_SHIFT
  220. pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
  221. #endif
  222. }
  223. pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
  224. pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
  225. pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
  226. pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
  227. pr_debug("\n");
  228. }
  229. static inline void dump_handler(const char *symbol, const u32 *handler, int count)
  230. {
  231. int i;
  232. pr_debug("LEAF(%s)\n", symbol);
  233. pr_debug("\t.set push\n");
  234. pr_debug("\t.set noreorder\n");
  235. for (i = 0; i < count; i++)
  236. pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
  237. pr_debug("\t.set\tpop\n");
  238. pr_debug("\tEND(%s)\n", symbol);
  239. }
  240. /* The only general purpose registers allowed in TLB handlers. */
  241. #define K0 26
  242. #define K1 27
  243. /* Some CP0 registers */
  244. #define C0_INDEX 0, 0
  245. #define C0_ENTRYLO0 2, 0
  246. #define C0_TCBIND 2, 2
  247. #define C0_ENTRYLO1 3, 0
  248. #define C0_CONTEXT 4, 0
  249. #define C0_PAGEMASK 5, 0
  250. #define C0_BADVADDR 8, 0
  251. #define C0_ENTRYHI 10, 0
  252. #define C0_EPC 14, 0
  253. #define C0_XCONTEXT 20, 0
  254. #ifdef CONFIG_64BIT
  255. # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
  256. #else
  257. # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
  258. #endif
  259. /* The worst case length of the handler is around 18 instructions for
  260. * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
  261. * Maximum space available is 32 instructions for R3000 and 64
  262. * instructions for R4000.
  263. *
  264. * We deliberately chose a buffer size of 128, so we won't scribble
  265. * over anything important on overflow before we panic.
  266. */
  267. static u32 tlb_handler[128];
  268. /* simply assume worst case size for labels and relocs */
  269. static struct uasm_label labels[128];
  270. static struct uasm_reloc relocs[128];
  271. static int check_for_high_segbits;
  272. static unsigned int kscratch_used_mask;
  273. static inline int __maybe_unused c0_kscratch(void)
  274. {
  275. switch (current_cpu_type()) {
  276. case CPU_XLP:
  277. case CPU_XLR:
  278. return 22;
  279. default:
  280. return 31;
  281. }
  282. }
  283. static int allocate_kscratch(void)
  284. {
  285. int r;
  286. unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
  287. r = ffs(a);
  288. if (r == 0)
  289. return -1;
  290. r--; /* make it zero based */
  291. kscratch_used_mask |= (1 << r);
  292. return r;
  293. }
  294. static int scratch_reg;
  295. static int pgd_reg;
  296. enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
  297. static struct work_registers build_get_work_registers(u32 **p)
  298. {
  299. struct work_registers r;
  300. int smp_processor_id_reg;
  301. int smp_processor_id_sel;
  302. int smp_processor_id_shift;
  303. if (scratch_reg >= 0) {
  304. /* Save in CPU local C0_KScratch? */
  305. UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
  306. r.r1 = K0;
  307. r.r2 = K1;
  308. r.r3 = 1;
  309. return r;
  310. }
  311. if (num_possible_cpus() > 1) {
  312. #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
  313. smp_processor_id_shift = 51;
  314. smp_processor_id_reg = 20; /* XContext */
  315. smp_processor_id_sel = 0;
  316. #else
  317. # ifdef CONFIG_32BIT
  318. smp_processor_id_shift = 25;
  319. smp_processor_id_reg = 4; /* Context */
  320. smp_processor_id_sel = 0;
  321. # endif
  322. # ifdef CONFIG_64BIT
  323. smp_processor_id_shift = 26;
  324. smp_processor_id_reg = 4; /* Context */
  325. smp_processor_id_sel = 0;
  326. # endif
  327. #endif
  328. /* Get smp_processor_id */
  329. UASM_i_MFC0(p, K0, smp_processor_id_reg, smp_processor_id_sel);
  330. UASM_i_SRL_SAFE(p, K0, K0, smp_processor_id_shift);
  331. /* handler_reg_save index in K0 */
  332. UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
  333. UASM_i_LA(p, K1, (long)&handler_reg_save);
  334. UASM_i_ADDU(p, K0, K0, K1);
  335. } else {
  336. UASM_i_LA(p, K0, (long)&handler_reg_save);
  337. }
  338. /* K0 now points to save area, save $1 and $2 */
  339. UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
  340. UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
  341. r.r1 = K1;
  342. r.r2 = 1;
  343. r.r3 = 2;
  344. return r;
  345. }
  346. static void build_restore_work_registers(u32 **p)
  347. {
  348. if (scratch_reg >= 0) {
  349. UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
  350. return;
  351. }
  352. /* K0 already points to save area, restore $1 and $2 */
  353. UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
  354. UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
  355. }
  356. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  357. /*
  358. * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
  359. * we cannot do r3000 under these circumstances.
  360. *
  361. * Declare pgd_current here instead of including mmu_context.h to avoid type
  362. * conflicts for tlbmiss_handler_setup_pgd
  363. */
  364. extern unsigned long pgd_current[];
  365. /*
  366. * The R3000 TLB handler is simple.
  367. */
  368. static void build_r3000_tlb_refill_handler(void)
  369. {
  370. long pgdc = (long)pgd_current;
  371. u32 *p;
  372. memset(tlb_handler, 0, sizeof(tlb_handler));
  373. p = tlb_handler;
  374. uasm_i_mfc0(&p, K0, C0_BADVADDR);
  375. uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
  376. uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
  377. uasm_i_srl(&p, K0, K0, 22); /* load delay */
  378. uasm_i_sll(&p, K0, K0, 2);
  379. uasm_i_addu(&p, K1, K1, K0);
  380. uasm_i_mfc0(&p, K0, C0_CONTEXT);
  381. uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
  382. uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
  383. uasm_i_addu(&p, K1, K1, K0);
  384. uasm_i_lw(&p, K0, 0, K1);
  385. uasm_i_nop(&p); /* load delay */
  386. uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
  387. uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
  388. uasm_i_tlbwr(&p); /* cp0 delay */
  389. uasm_i_jr(&p, K1);
  390. uasm_i_rfe(&p); /* branch delay */
  391. if (p > tlb_handler + 32)
  392. panic("TLB refill handler space exceeded");
  393. pr_debug("Wrote TLB refill handler (%u instructions).\n",
  394. (unsigned int)(p - tlb_handler));
  395. memcpy((void *)ebase, tlb_handler, 0x80);
  396. dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
  397. }
  398. #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
  399. /*
  400. * The R4000 TLB handler is much more complicated. We have two
  401. * consecutive handler areas with 32 instructions space each.
  402. * Since they aren't used at the same time, we can overflow in the
  403. * other one.To keep things simple, we first assume linear space,
  404. * then we relocate it to the final handler layout as needed.
  405. */
  406. static u32 final_handler[64];
  407. /*
  408. * Hazards
  409. *
  410. * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
  411. * 2. A timing hazard exists for the TLBP instruction.
  412. *
  413. * stalling_instruction
  414. * TLBP
  415. *
  416. * The JTLB is being read for the TLBP throughout the stall generated by the
  417. * previous instruction. This is not really correct as the stalling instruction
  418. * can modify the address used to access the JTLB. The failure symptom is that
  419. * the TLBP instruction will use an address created for the stalling instruction
  420. * and not the address held in C0_ENHI and thus report the wrong results.
  421. *
  422. * The software work-around is to not allow the instruction preceding the TLBP
  423. * to stall - make it an NOP or some other instruction guaranteed not to stall.
  424. *
  425. * Errata 2 will not be fixed. This errata is also on the R5000.
  426. *
  427. * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
  428. */
  429. static void __maybe_unused build_tlb_probe_entry(u32 **p)
  430. {
  431. switch (current_cpu_type()) {
  432. /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
  433. case CPU_R4600:
  434. case CPU_R4700:
  435. case CPU_R5000:
  436. case CPU_NEVADA:
  437. uasm_i_nop(p);
  438. uasm_i_tlbp(p);
  439. break;
  440. default:
  441. uasm_i_tlbp(p);
  442. break;
  443. }
  444. }
  445. /*
  446. * Write random or indexed TLB entry, and care about the hazards from
  447. * the preceding mtc0 and for the following eret.
  448. */
  449. enum tlb_write_entry { tlb_random, tlb_indexed };
  450. static void build_tlb_write_entry(u32 **p, struct uasm_label **l,
  451. struct uasm_reloc **r,
  452. enum tlb_write_entry wmode)
  453. {
  454. void(*tlbw)(u32 **) = NULL;
  455. switch (wmode) {
  456. case tlb_random: tlbw = uasm_i_tlbwr; break;
  457. case tlb_indexed: tlbw = uasm_i_tlbwi; break;
  458. }
  459. if (cpu_has_mips_r2) {
  460. /*
  461. * The architecture spec says an ehb is required here,
  462. * but a number of cores do not have the hazard and
  463. * using an ehb causes an expensive pipeline stall.
  464. */
  465. switch (current_cpu_type()) {
  466. case CPU_M14KC:
  467. case CPU_74K:
  468. break;
  469. default:
  470. uasm_i_ehb(p);
  471. break;
  472. }
  473. tlbw(p);
  474. return;
  475. }
  476. switch (current_cpu_type()) {
  477. case CPU_R4000PC:
  478. case CPU_R4000SC:
  479. case CPU_R4000MC:
  480. case CPU_R4400PC:
  481. case CPU_R4400SC:
  482. case CPU_R4400MC:
  483. /*
  484. * This branch uses up a mtc0 hazard nop slot and saves
  485. * two nops after the tlbw instruction.
  486. */
  487. uasm_bgezl_hazard(p, r, hazard_instance);
  488. tlbw(p);
  489. uasm_bgezl_label(l, p, hazard_instance);
  490. hazard_instance++;
  491. uasm_i_nop(p);
  492. break;
  493. case CPU_R4600:
  494. case CPU_R4700:
  495. uasm_i_nop(p);
  496. tlbw(p);
  497. uasm_i_nop(p);
  498. break;
  499. case CPU_R5000:
  500. case CPU_NEVADA:
  501. uasm_i_nop(p); /* QED specifies 2 nops hazard */
  502. uasm_i_nop(p); /* QED specifies 2 nops hazard */
  503. tlbw(p);
  504. break;
  505. case CPU_R4300:
  506. case CPU_5KC:
  507. case CPU_TX49XX:
  508. case CPU_PR4450:
  509. case CPU_XLR:
  510. uasm_i_nop(p);
  511. tlbw(p);
  512. break;
  513. case CPU_R10000:
  514. case CPU_R12000:
  515. case CPU_R14000:
  516. case CPU_4KC:
  517. case CPU_4KEC:
  518. case CPU_M14KC:
  519. case CPU_M14KEC:
  520. case CPU_SB1:
  521. case CPU_SB1A:
  522. case CPU_4KSC:
  523. case CPU_20KC:
  524. case CPU_25KF:
  525. case CPU_BMIPS32:
  526. case CPU_BMIPS3300:
  527. case CPU_BMIPS4350:
  528. case CPU_BMIPS4380:
  529. case CPU_BMIPS5000:
  530. case CPU_LOONGSON2:
  531. case CPU_R5500:
  532. if (m4kc_tlbp_war())
  533. uasm_i_nop(p);
  534. case CPU_ALCHEMY:
  535. tlbw(p);
  536. break;
  537. case CPU_RM7000:
  538. uasm_i_nop(p);
  539. uasm_i_nop(p);
  540. uasm_i_nop(p);
  541. uasm_i_nop(p);
  542. tlbw(p);
  543. break;
  544. case CPU_VR4111:
  545. case CPU_VR4121:
  546. case CPU_VR4122:
  547. case CPU_VR4181:
  548. case CPU_VR4181A:
  549. uasm_i_nop(p);
  550. uasm_i_nop(p);
  551. tlbw(p);
  552. uasm_i_nop(p);
  553. uasm_i_nop(p);
  554. break;
  555. case CPU_VR4131:
  556. case CPU_VR4133:
  557. case CPU_R5432:
  558. uasm_i_nop(p);
  559. uasm_i_nop(p);
  560. tlbw(p);
  561. break;
  562. case CPU_JZRISC:
  563. tlbw(p);
  564. uasm_i_nop(p);
  565. break;
  566. default:
  567. panic("No TLB refill handler yet (CPU type: %d)",
  568. current_cpu_data.cputype);
  569. break;
  570. }
  571. }
  572. static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
  573. unsigned int reg)
  574. {
  575. if (cpu_has_rixi) {
  576. UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
  577. } else {
  578. #ifdef CONFIG_64BIT_PHYS_ADDR
  579. uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
  580. #else
  581. UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
  582. #endif
  583. }
  584. }
  585. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  586. static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
  587. unsigned int tmp, enum label_id lid,
  588. int restore_scratch)
  589. {
  590. if (restore_scratch) {
  591. /* Reset default page size */
  592. if (PM_DEFAULT_MASK >> 16) {
  593. uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
  594. uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
  595. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  596. uasm_il_b(p, r, lid);
  597. } else if (PM_DEFAULT_MASK) {
  598. uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
  599. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  600. uasm_il_b(p, r, lid);
  601. } else {
  602. uasm_i_mtc0(p, 0, C0_PAGEMASK);
  603. uasm_il_b(p, r, lid);
  604. }
  605. if (scratch_reg >= 0)
  606. UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
  607. else
  608. UASM_i_LW(p, 1, scratchpad_offset(0), 0);
  609. } else {
  610. /* Reset default page size */
  611. if (PM_DEFAULT_MASK >> 16) {
  612. uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
  613. uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
  614. uasm_il_b(p, r, lid);
  615. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  616. } else if (PM_DEFAULT_MASK) {
  617. uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
  618. uasm_il_b(p, r, lid);
  619. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  620. } else {
  621. uasm_il_b(p, r, lid);
  622. uasm_i_mtc0(p, 0, C0_PAGEMASK);
  623. }
  624. }
  625. }
  626. static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
  627. struct uasm_reloc **r,
  628. unsigned int tmp,
  629. enum tlb_write_entry wmode,
  630. int restore_scratch)
  631. {
  632. /* Set huge page tlb entry size */
  633. uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
  634. uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
  635. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  636. build_tlb_write_entry(p, l, r, wmode);
  637. build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
  638. }
  639. /*
  640. * Check if Huge PTE is present, if so then jump to LABEL.
  641. */
  642. static void
  643. build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
  644. unsigned int pmd, int lid)
  645. {
  646. UASM_i_LW(p, tmp, 0, pmd);
  647. if (use_bbit_insns()) {
  648. uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
  649. } else {
  650. uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
  651. uasm_il_bnez(p, r, tmp, lid);
  652. }
  653. }
  654. static void build_huge_update_entries(u32 **p, unsigned int pte,
  655. unsigned int tmp)
  656. {
  657. int small_sequence;
  658. /*
  659. * A huge PTE describes an area the size of the
  660. * configured huge page size. This is twice the
  661. * of the large TLB entry size we intend to use.
  662. * A TLB entry half the size of the configured
  663. * huge page size is configured into entrylo0
  664. * and entrylo1 to cover the contiguous huge PTE
  665. * address space.
  666. */
  667. small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
  668. /* We can clobber tmp. It isn't used after this.*/
  669. if (!small_sequence)
  670. uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
  671. build_convert_pte_to_entrylo(p, pte);
  672. UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
  673. /* convert to entrylo1 */
  674. if (small_sequence)
  675. UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
  676. else
  677. UASM_i_ADDU(p, pte, pte, tmp);
  678. UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
  679. }
  680. static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
  681. struct uasm_label **l,
  682. unsigned int pte,
  683. unsigned int ptr)
  684. {
  685. #ifdef CONFIG_SMP
  686. UASM_i_SC(p, pte, 0, ptr);
  687. uasm_il_beqz(p, r, pte, label_tlb_huge_update);
  688. UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
  689. #else
  690. UASM_i_SW(p, pte, 0, ptr);
  691. #endif
  692. build_huge_update_entries(p, pte, ptr);
  693. build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
  694. }
  695. #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
  696. #ifdef CONFIG_64BIT
  697. /*
  698. * TMP and PTR are scratch.
  699. * TMP will be clobbered, PTR will hold the pmd entry.
  700. */
  701. static void
  702. build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
  703. unsigned int tmp, unsigned int ptr)
  704. {
  705. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  706. long pgdc = (long)pgd_current;
  707. #endif
  708. /*
  709. * The vmalloc handling is not in the hotpath.
  710. */
  711. uasm_i_dmfc0(p, tmp, C0_BADVADDR);
  712. if (check_for_high_segbits) {
  713. /*
  714. * The kernel currently implicitely assumes that the
  715. * MIPS SEGBITS parameter for the processor is
  716. * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
  717. * allocate virtual addresses outside the maximum
  718. * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
  719. * that doesn't prevent user code from accessing the
  720. * higher xuseg addresses. Here, we make sure that
  721. * everything but the lower xuseg addresses goes down
  722. * the module_alloc/vmalloc path.
  723. */
  724. uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
  725. uasm_il_bnez(p, r, ptr, label_vmalloc);
  726. } else {
  727. uasm_il_bltz(p, r, tmp, label_vmalloc);
  728. }
  729. /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
  730. #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
  731. if (pgd_reg != -1) {
  732. /* pgd is in pgd_reg */
  733. UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
  734. } else {
  735. /*
  736. * &pgd << 11 stored in CONTEXT [23..63].
  737. */
  738. UASM_i_MFC0(p, ptr, C0_CONTEXT);
  739. /* Clear lower 23 bits of context. */
  740. uasm_i_dins(p, ptr, 0, 0, 23);
  741. /* 1 0 1 0 1 << 6 xkphys cached */
  742. uasm_i_ori(p, ptr, ptr, 0x540);
  743. uasm_i_drotr(p, ptr, ptr, 11);
  744. }
  745. #elif defined(CONFIG_SMP)
  746. # ifdef CONFIG_MIPS_MT_SMTC
  747. /*
  748. * SMTC uses TCBind value as "CPU" index
  749. */
  750. uasm_i_mfc0(p, ptr, C0_TCBIND);
  751. uasm_i_dsrl_safe(p, ptr, ptr, 19);
  752. # else
  753. /*
  754. * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
  755. * stored in CONTEXT.
  756. */
  757. uasm_i_dmfc0(p, ptr, C0_CONTEXT);
  758. uasm_i_dsrl_safe(p, ptr, ptr, 23);
  759. # endif
  760. UASM_i_LA_mostly(p, tmp, pgdc);
  761. uasm_i_daddu(p, ptr, ptr, tmp);
  762. uasm_i_dmfc0(p, tmp, C0_BADVADDR);
  763. uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
  764. #else
  765. UASM_i_LA_mostly(p, ptr, pgdc);
  766. uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
  767. #endif
  768. uasm_l_vmalloc_done(l, *p);
  769. /* get pgd offset in bytes */
  770. uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
  771. uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
  772. uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
  773. #ifndef __PAGETABLE_PMD_FOLDED
  774. uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  775. uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
  776. uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
  777. uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
  778. uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
  779. #endif
  780. }
  781. /*
  782. * BVADDR is the faulting address, PTR is scratch.
  783. * PTR will hold the pgd for vmalloc.
  784. */
  785. static void
  786. build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
  787. unsigned int bvaddr, unsigned int ptr,
  788. enum vmalloc64_mode mode)
  789. {
  790. long swpd = (long)swapper_pg_dir;
  791. int single_insn_swpd;
  792. int did_vmalloc_branch = 0;
  793. single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
  794. uasm_l_vmalloc(l, *p);
  795. if (mode != not_refill && check_for_high_segbits) {
  796. if (single_insn_swpd) {
  797. uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
  798. uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
  799. did_vmalloc_branch = 1;
  800. /* fall through */
  801. } else {
  802. uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
  803. }
  804. }
  805. if (!did_vmalloc_branch) {
  806. if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
  807. uasm_il_b(p, r, label_vmalloc_done);
  808. uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
  809. } else {
  810. UASM_i_LA_mostly(p, ptr, swpd);
  811. uasm_il_b(p, r, label_vmalloc_done);
  812. if (uasm_in_compat_space_p(swpd))
  813. uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
  814. else
  815. uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
  816. }
  817. }
  818. if (mode != not_refill && check_for_high_segbits) {
  819. uasm_l_large_segbits_fault(l, *p);
  820. /*
  821. * We get here if we are an xsseg address, or if we are
  822. * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
  823. *
  824. * Ignoring xsseg (assume disabled so would generate
  825. * (address errors?), the only remaining possibility
  826. * is the upper xuseg addresses. On processors with
  827. * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
  828. * addresses would have taken an address error. We try
  829. * to mimic that here by taking a load/istream page
  830. * fault.
  831. */
  832. UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
  833. uasm_i_jr(p, ptr);
  834. if (mode == refill_scratch) {
  835. if (scratch_reg >= 0)
  836. UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
  837. else
  838. UASM_i_LW(p, 1, scratchpad_offset(0), 0);
  839. } else {
  840. uasm_i_nop(p);
  841. }
  842. }
  843. }
  844. #else /* !CONFIG_64BIT */
  845. /*
  846. * TMP and PTR are scratch.
  847. * TMP will be clobbered, PTR will hold the pgd entry.
  848. */
  849. static void __maybe_unused
  850. build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
  851. {
  852. long pgdc = (long)pgd_current;
  853. /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
  854. #ifdef CONFIG_SMP
  855. #ifdef CONFIG_MIPS_MT_SMTC
  856. /*
  857. * SMTC uses TCBind value as "CPU" index
  858. */
  859. uasm_i_mfc0(p, ptr, C0_TCBIND);
  860. UASM_i_LA_mostly(p, tmp, pgdc);
  861. uasm_i_srl(p, ptr, ptr, 19);
  862. #else
  863. /*
  864. * smp_processor_id() << 2 is stored in CONTEXT.
  865. */
  866. uasm_i_mfc0(p, ptr, C0_CONTEXT);
  867. UASM_i_LA_mostly(p, tmp, pgdc);
  868. uasm_i_srl(p, ptr, ptr, 23);
  869. #endif
  870. uasm_i_addu(p, ptr, tmp, ptr);
  871. #else
  872. UASM_i_LA_mostly(p, ptr, pgdc);
  873. #endif
  874. uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  875. uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
  876. uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
  877. uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
  878. uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
  879. }
  880. #endif /* !CONFIG_64BIT */
  881. static void build_adjust_context(u32 **p, unsigned int ctx)
  882. {
  883. unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
  884. unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
  885. switch (current_cpu_type()) {
  886. case CPU_VR41XX:
  887. case CPU_VR4111:
  888. case CPU_VR4121:
  889. case CPU_VR4122:
  890. case CPU_VR4131:
  891. case CPU_VR4181:
  892. case CPU_VR4181A:
  893. case CPU_VR4133:
  894. shift += 2;
  895. break;
  896. default:
  897. break;
  898. }
  899. if (shift)
  900. UASM_i_SRL(p, ctx, ctx, shift);
  901. uasm_i_andi(p, ctx, ctx, mask);
  902. }
  903. static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
  904. {
  905. /*
  906. * Bug workaround for the Nevada. It seems as if under certain
  907. * circumstances the move from cp0_context might produce a
  908. * bogus result when the mfc0 instruction and its consumer are
  909. * in a different cacheline or a load instruction, probably any
  910. * memory reference, is between them.
  911. */
  912. switch (current_cpu_type()) {
  913. case CPU_NEVADA:
  914. UASM_i_LW(p, ptr, 0, ptr);
  915. GET_CONTEXT(p, tmp); /* get context reg */
  916. break;
  917. default:
  918. GET_CONTEXT(p, tmp); /* get context reg */
  919. UASM_i_LW(p, ptr, 0, ptr);
  920. break;
  921. }
  922. build_adjust_context(p, tmp);
  923. UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
  924. }
  925. static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
  926. {
  927. /*
  928. * 64bit address support (36bit on a 32bit CPU) in a 32bit
  929. * Kernel is a special case. Only a few CPUs use it.
  930. */
  931. #ifdef CONFIG_64BIT_PHYS_ADDR
  932. if (cpu_has_64bits) {
  933. uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
  934. uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
  935. if (cpu_has_rixi) {
  936. UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
  937. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  938. UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
  939. } else {
  940. uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
  941. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  942. uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
  943. }
  944. UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
  945. } else {
  946. int pte_off_even = sizeof(pte_t) / 2;
  947. int pte_off_odd = pte_off_even + sizeof(pte_t);
  948. /* The pte entries are pre-shifted */
  949. uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
  950. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  951. uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
  952. UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
  953. }
  954. #else
  955. UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
  956. UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
  957. if (r45k_bvahwbug())
  958. build_tlb_probe_entry(p);
  959. if (cpu_has_rixi) {
  960. UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
  961. if (r4k_250MHZhwbug())
  962. UASM_i_MTC0(p, 0, C0_ENTRYLO0);
  963. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  964. UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
  965. } else {
  966. UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
  967. if (r4k_250MHZhwbug())
  968. UASM_i_MTC0(p, 0, C0_ENTRYLO0);
  969. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  970. UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
  971. if (r45k_bvahwbug())
  972. uasm_i_mfc0(p, tmp, C0_INDEX);
  973. }
  974. if (r4k_250MHZhwbug())
  975. UASM_i_MTC0(p, 0, C0_ENTRYLO1);
  976. UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
  977. #endif
  978. }
  979. struct mips_huge_tlb_info {
  980. int huge_pte;
  981. int restore_scratch;
  982. };
  983. static struct mips_huge_tlb_info
  984. build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
  985. struct uasm_reloc **r, unsigned int tmp,
  986. unsigned int ptr, int c0_scratch_reg)
  987. {
  988. struct mips_huge_tlb_info rv;
  989. unsigned int even, odd;
  990. int vmalloc_branch_delay_filled = 0;
  991. const int scratch = 1; /* Our extra working register */
  992. rv.huge_pte = scratch;
  993. rv.restore_scratch = 0;
  994. if (check_for_high_segbits) {
  995. UASM_i_MFC0(p, tmp, C0_BADVADDR);
  996. if (pgd_reg != -1)
  997. UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
  998. else
  999. UASM_i_MFC0(p, ptr, C0_CONTEXT);
  1000. if (c0_scratch_reg >= 0)
  1001. UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
  1002. else
  1003. UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
  1004. uasm_i_dsrl_safe(p, scratch, tmp,
  1005. PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
  1006. uasm_il_bnez(p, r, scratch, label_vmalloc);
  1007. if (pgd_reg == -1) {
  1008. vmalloc_branch_delay_filled = 1;
  1009. /* Clear lower 23 bits of context. */
  1010. uasm_i_dins(p, ptr, 0, 0, 23);
  1011. }
  1012. } else {
  1013. if (pgd_reg != -1)
  1014. UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
  1015. else
  1016. UASM_i_MFC0(p, ptr, C0_CONTEXT);
  1017. UASM_i_MFC0(p, tmp, C0_BADVADDR);
  1018. if (c0_scratch_reg >= 0)
  1019. UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
  1020. else
  1021. UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
  1022. if (pgd_reg == -1)
  1023. /* Clear lower 23 bits of context. */
  1024. uasm_i_dins(p, ptr, 0, 0, 23);
  1025. uasm_il_bltz(p, r, tmp, label_vmalloc);
  1026. }
  1027. if (pgd_reg == -1) {
  1028. vmalloc_branch_delay_filled = 1;
  1029. /* 1 0 1 0 1 << 6 xkphys cached */
  1030. uasm_i_ori(p, ptr, ptr, 0x540);
  1031. uasm_i_drotr(p, ptr, ptr, 11);
  1032. }
  1033. #ifdef __PAGETABLE_PMD_FOLDED
  1034. #define LOC_PTEP scratch
  1035. #else
  1036. #define LOC_PTEP ptr
  1037. #endif
  1038. if (!vmalloc_branch_delay_filled)
  1039. /* get pgd offset in bytes */
  1040. uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
  1041. uasm_l_vmalloc_done(l, *p);
  1042. /*
  1043. * tmp ptr
  1044. * fall-through case = badvaddr *pgd_current
  1045. * vmalloc case = badvaddr swapper_pg_dir
  1046. */
  1047. if (vmalloc_branch_delay_filled)
  1048. /* get pgd offset in bytes */
  1049. uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
  1050. #ifdef __PAGETABLE_PMD_FOLDED
  1051. GET_CONTEXT(p, tmp); /* get context reg */
  1052. #endif
  1053. uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
  1054. if (use_lwx_insns()) {
  1055. UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
  1056. } else {
  1057. uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
  1058. uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
  1059. }
  1060. #ifndef __PAGETABLE_PMD_FOLDED
  1061. /* get pmd offset in bytes */
  1062. uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
  1063. uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
  1064. GET_CONTEXT(p, tmp); /* get context reg */
  1065. if (use_lwx_insns()) {
  1066. UASM_i_LWX(p, scratch, scratch, ptr);
  1067. } else {
  1068. uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
  1069. UASM_i_LW(p, scratch, 0, ptr);
  1070. }
  1071. #endif
  1072. /* Adjust the context during the load latency. */
  1073. build_adjust_context(p, tmp);
  1074. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1075. uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
  1076. /*
  1077. * The in the LWX case we don't want to do the load in the
  1078. * delay slot. It cannot issue in the same cycle and may be
  1079. * speculative and unneeded.
  1080. */
  1081. if (use_lwx_insns())
  1082. uasm_i_nop(p);
  1083. #endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
  1084. /* build_update_entries */
  1085. if (use_lwx_insns()) {
  1086. even = ptr;
  1087. odd = tmp;
  1088. UASM_i_LWX(p, even, scratch, tmp);
  1089. UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
  1090. UASM_i_LWX(p, odd, scratch, tmp);
  1091. } else {
  1092. UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
  1093. even = tmp;
  1094. odd = ptr;
  1095. UASM_i_LW(p, even, 0, ptr); /* get even pte */
  1096. UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
  1097. }
  1098. if (cpu_has_rixi) {
  1099. uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
  1100. UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
  1101. uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
  1102. } else {
  1103. uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
  1104. UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
  1105. uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
  1106. }
  1107. UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
  1108. if (c0_scratch_reg >= 0) {
  1109. UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
  1110. build_tlb_write_entry(p, l, r, tlb_random);
  1111. uasm_l_leave(l, *p);
  1112. rv.restore_scratch = 1;
  1113. } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
  1114. build_tlb_write_entry(p, l, r, tlb_random);
  1115. uasm_l_leave(l, *p);
  1116. UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
  1117. } else {
  1118. UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
  1119. build_tlb_write_entry(p, l, r, tlb_random);
  1120. uasm_l_leave(l, *p);
  1121. rv.restore_scratch = 1;
  1122. }
  1123. uasm_i_eret(p); /* return from trap */
  1124. return rv;
  1125. }
  1126. /*
  1127. * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
  1128. * because EXL == 0. If we wrap, we can also use the 32 instruction
  1129. * slots before the XTLB refill exception handler which belong to the
  1130. * unused TLB refill exception.
  1131. */
  1132. #define MIPS64_REFILL_INSNS 32
  1133. static void build_r4000_tlb_refill_handler(void)
  1134. {
  1135. u32 *p = tlb_handler;
  1136. struct uasm_label *l = labels;
  1137. struct uasm_reloc *r = relocs;
  1138. u32 *f;
  1139. unsigned int final_len;
  1140. struct mips_huge_tlb_info htlb_info __maybe_unused;
  1141. enum vmalloc64_mode vmalloc_mode __maybe_unused;
  1142. memset(tlb_handler, 0, sizeof(tlb_handler));
  1143. memset(labels, 0, sizeof(labels));
  1144. memset(relocs, 0, sizeof(relocs));
  1145. memset(final_handler, 0, sizeof(final_handler));
  1146. if ((scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
  1147. htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
  1148. scratch_reg);
  1149. vmalloc_mode = refill_scratch;
  1150. } else {
  1151. htlb_info.huge_pte = K0;
  1152. htlb_info.restore_scratch = 0;
  1153. vmalloc_mode = refill_noscratch;
  1154. /*
  1155. * create the plain linear handler
  1156. */
  1157. if (bcm1250_m3_war()) {
  1158. unsigned int segbits = 44;
  1159. uasm_i_dmfc0(&p, K0, C0_BADVADDR);
  1160. uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
  1161. uasm_i_xor(&p, K0, K0, K1);
  1162. uasm_i_dsrl_safe(&p, K1, K0, 62);
  1163. uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
  1164. uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
  1165. uasm_i_or(&p, K0, K0, K1);
  1166. uasm_il_bnez(&p, &r, K0, label_leave);
  1167. /* No need for uasm_i_nop */
  1168. }
  1169. #ifdef CONFIG_64BIT
  1170. build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
  1171. #else
  1172. build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
  1173. #endif
  1174. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1175. build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
  1176. #endif
  1177. build_get_ptep(&p, K0, K1);
  1178. build_update_entries(&p, K0, K1);
  1179. build_tlb_write_entry(&p, &l, &r, tlb_random);
  1180. uasm_l_leave(&l, p);
  1181. uasm_i_eret(&p); /* return from trap */
  1182. }
  1183. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1184. uasm_l_tlb_huge_update(&l, p);
  1185. build_huge_update_entries(&p, htlb_info.huge_pte, K1);
  1186. build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
  1187. htlb_info.restore_scratch);
  1188. #endif
  1189. #ifdef CONFIG_64BIT
  1190. build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
  1191. #endif
  1192. /*
  1193. * Overflow check: For the 64bit handler, we need at least one
  1194. * free instruction slot for the wrap-around branch. In worst
  1195. * case, if the intended insertion point is a delay slot, we
  1196. * need three, with the second nop'ed and the third being
  1197. * unused.
  1198. */
  1199. /* Loongson2 ebase is different than r4k, we have more space */
  1200. #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
  1201. if ((p - tlb_handler) > 64)
  1202. panic("TLB refill handler space exceeded");
  1203. #else
  1204. if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
  1205. || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
  1206. && uasm_insn_has_bdelay(relocs,
  1207. tlb_handler + MIPS64_REFILL_INSNS - 3)))
  1208. panic("TLB refill handler space exceeded");
  1209. #endif
  1210. /*
  1211. * Now fold the handler in the TLB refill handler space.
  1212. */
  1213. #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
  1214. f = final_handler;
  1215. /* Simplest case, just copy the handler. */
  1216. uasm_copy_handler(relocs, labels, tlb_handler, p, f);
  1217. final_len = p - tlb_handler;
  1218. #else /* CONFIG_64BIT */
  1219. f = final_handler + MIPS64_REFILL_INSNS;
  1220. if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
  1221. /* Just copy the handler. */
  1222. uasm_copy_handler(relocs, labels, tlb_handler, p, f);
  1223. final_len = p - tlb_handler;
  1224. } else {
  1225. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1226. const enum label_id ls = label_tlb_huge_update;
  1227. #else
  1228. const enum label_id ls = label_vmalloc;
  1229. #endif
  1230. u32 *split;
  1231. int ov = 0;
  1232. int i;
  1233. for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
  1234. ;
  1235. BUG_ON(i == ARRAY_SIZE(labels));
  1236. split = labels[i].addr;
  1237. /*
  1238. * See if we have overflown one way or the other.
  1239. */
  1240. if (split > tlb_handler + MIPS64_REFILL_INSNS ||
  1241. split < p - MIPS64_REFILL_INSNS)
  1242. ov = 1;
  1243. if (ov) {
  1244. /*
  1245. * Split two instructions before the end. One
  1246. * for the branch and one for the instruction
  1247. * in the delay slot.
  1248. */
  1249. split = tlb_handler + MIPS64_REFILL_INSNS - 2;
  1250. /*
  1251. * If the branch would fall in a delay slot,
  1252. * we must back up an additional instruction
  1253. * so that it is no longer in a delay slot.
  1254. */
  1255. if (uasm_insn_has_bdelay(relocs, split - 1))
  1256. split--;
  1257. }
  1258. /* Copy first part of the handler. */
  1259. uasm_copy_handler(relocs, labels, tlb_handler, split, f);
  1260. f += split - tlb_handler;
  1261. if (ov) {
  1262. /* Insert branch. */
  1263. uasm_l_split(&l, final_handler);
  1264. uasm_il_b(&f, &r, label_split);
  1265. if (uasm_insn_has_bdelay(relocs, split))
  1266. uasm_i_nop(&f);
  1267. else {
  1268. uasm_copy_handler(relocs, labels,
  1269. split, split + 1, f);
  1270. uasm_move_labels(labels, f, f + 1, -1);
  1271. f++;
  1272. split++;
  1273. }
  1274. }
  1275. /* Copy the rest of the handler. */
  1276. uasm_copy_handler(relocs, labels, split, p, final_handler);
  1277. final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
  1278. (p - split);
  1279. }
  1280. #endif /* CONFIG_64BIT */
  1281. uasm_resolve_relocs(relocs, labels);
  1282. pr_debug("Wrote TLB refill handler (%u instructions).\n",
  1283. final_len);
  1284. memcpy((void *)ebase, final_handler, 0x100);
  1285. dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
  1286. }
  1287. extern u32 handle_tlbl[], handle_tlbl_end[];
  1288. extern u32 handle_tlbs[], handle_tlbs_end[];
  1289. extern u32 handle_tlbm[], handle_tlbm_end[];
  1290. #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
  1291. extern u32 tlbmiss_handler_setup_pgd[], tlbmiss_handler_setup_pgd_end[];
  1292. static void build_r4000_setup_pgd(void)
  1293. {
  1294. const int a0 = 4;
  1295. const int a1 = 5;
  1296. u32 *p = tlbmiss_handler_setup_pgd;
  1297. const int tlbmiss_handler_setup_pgd_size =
  1298. tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd;
  1299. struct uasm_label *l = labels;
  1300. struct uasm_reloc *r = relocs;
  1301. memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
  1302. sizeof(tlbmiss_handler_setup_pgd[0]));
  1303. memset(labels, 0, sizeof(labels));
  1304. memset(relocs, 0, sizeof(relocs));
  1305. pgd_reg = allocate_kscratch();
  1306. if (pgd_reg == -1) {
  1307. /* PGD << 11 in c0_Context */
  1308. /*
  1309. * If it is a ckseg0 address, convert to a physical
  1310. * address. Shifting right by 29 and adding 4 will
  1311. * result in zero for these addresses.
  1312. *
  1313. */
  1314. UASM_i_SRA(&p, a1, a0, 29);
  1315. UASM_i_ADDIU(&p, a1, a1, 4);
  1316. uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
  1317. uasm_i_nop(&p);
  1318. uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
  1319. uasm_l_tlbl_goaround1(&l, p);
  1320. UASM_i_SLL(&p, a0, a0, 11);
  1321. uasm_i_jr(&p, 31);
  1322. UASM_i_MTC0(&p, a0, C0_CONTEXT);
  1323. } else {
  1324. /* PGD in c0_KScratch */
  1325. uasm_i_jr(&p, 31);
  1326. UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
  1327. }
  1328. if (p >= tlbmiss_handler_setup_pgd_end)
  1329. panic("tlbmiss_handler_setup_pgd space exceeded");
  1330. uasm_resolve_relocs(relocs, labels);
  1331. pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
  1332. (unsigned int)(p - tlbmiss_handler_setup_pgd));
  1333. dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
  1334. tlbmiss_handler_setup_pgd_size);
  1335. }
  1336. #endif
  1337. static void
  1338. iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
  1339. {
  1340. #ifdef CONFIG_SMP
  1341. # ifdef CONFIG_64BIT_PHYS_ADDR
  1342. if (cpu_has_64bits)
  1343. uasm_i_lld(p, pte, 0, ptr);
  1344. else
  1345. # endif
  1346. UASM_i_LL(p, pte, 0, ptr);
  1347. #else
  1348. # ifdef CONFIG_64BIT_PHYS_ADDR
  1349. if (cpu_has_64bits)
  1350. uasm_i_ld(p, pte, 0, ptr);
  1351. else
  1352. # endif
  1353. UASM_i_LW(p, pte, 0, ptr);
  1354. #endif
  1355. }
  1356. static void
  1357. iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
  1358. unsigned int mode)
  1359. {
  1360. #ifdef CONFIG_64BIT_PHYS_ADDR
  1361. unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
  1362. #endif
  1363. uasm_i_ori(p, pte, pte, mode);
  1364. #ifdef CONFIG_SMP
  1365. # ifdef CONFIG_64BIT_PHYS_ADDR
  1366. if (cpu_has_64bits)
  1367. uasm_i_scd(p, pte, 0, ptr);
  1368. else
  1369. # endif
  1370. UASM_i_SC(p, pte, 0, ptr);
  1371. if (r10000_llsc_war())
  1372. uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
  1373. else
  1374. uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
  1375. # ifdef CONFIG_64BIT_PHYS_ADDR
  1376. if (!cpu_has_64bits) {
  1377. /* no uasm_i_nop needed */
  1378. uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
  1379. uasm_i_ori(p, pte, pte, hwmode);
  1380. uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
  1381. uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
  1382. /* no uasm_i_nop needed */
  1383. uasm_i_lw(p, pte, 0, ptr);
  1384. } else
  1385. uasm_i_nop(p);
  1386. # else
  1387. uasm_i_nop(p);
  1388. # endif
  1389. #else
  1390. # ifdef CONFIG_64BIT_PHYS_ADDR
  1391. if (cpu_has_64bits)
  1392. uasm_i_sd(p, pte, 0, ptr);
  1393. else
  1394. # endif
  1395. UASM_i_SW(p, pte, 0, ptr);
  1396. # ifdef CONFIG_64BIT_PHYS_ADDR
  1397. if (!cpu_has_64bits) {
  1398. uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
  1399. uasm_i_ori(p, pte, pte, hwmode);
  1400. uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
  1401. uasm_i_lw(p, pte, 0, ptr);
  1402. }
  1403. # endif
  1404. #endif
  1405. }
  1406. /*
  1407. * Check if PTE is present, if not then jump to LABEL. PTR points to
  1408. * the page table where this PTE is located, PTE will be re-loaded
  1409. * with it's original value.
  1410. */
  1411. static void
  1412. build_pte_present(u32 **p, struct uasm_reloc **r,
  1413. int pte, int ptr, int scratch, enum label_id lid)
  1414. {
  1415. int t = scratch >= 0 ? scratch : pte;
  1416. if (cpu_has_rixi) {
  1417. if (use_bbit_insns()) {
  1418. uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
  1419. uasm_i_nop(p);
  1420. } else {
  1421. uasm_i_andi(p, t, pte, _PAGE_PRESENT);
  1422. uasm_il_beqz(p, r, t, lid);
  1423. if (pte == t)
  1424. /* You lose the SMP race :-(*/
  1425. iPTE_LW(p, pte, ptr);
  1426. }
  1427. } else {
  1428. uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
  1429. uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
  1430. uasm_il_bnez(p, r, t, lid);
  1431. if (pte == t)
  1432. /* You lose the SMP race :-(*/
  1433. iPTE_LW(p, pte, ptr);
  1434. }
  1435. }
  1436. /* Make PTE valid, store result in PTR. */
  1437. static void
  1438. build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
  1439. unsigned int ptr)
  1440. {
  1441. unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
  1442. iPTE_SW(p, r, pte, ptr, mode);
  1443. }
  1444. /*
  1445. * Check if PTE can be written to, if not branch to LABEL. Regardless
  1446. * restore PTE with value from PTR when done.
  1447. */
  1448. static void
  1449. build_pte_writable(u32 **p, struct uasm_reloc **r,
  1450. unsigned int pte, unsigned int ptr, int scratch,
  1451. enum label_id lid)
  1452. {
  1453. int t = scratch >= 0 ? scratch : pte;
  1454. uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
  1455. uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
  1456. uasm_il_bnez(p, r, t, lid);
  1457. if (pte == t)
  1458. /* You lose the SMP race :-(*/
  1459. iPTE_LW(p, pte, ptr);
  1460. else
  1461. uasm_i_nop(p);
  1462. }
  1463. /* Make PTE writable, update software status bits as well, then store
  1464. * at PTR.
  1465. */
  1466. static void
  1467. build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
  1468. unsigned int ptr)
  1469. {
  1470. unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
  1471. | _PAGE_DIRTY);
  1472. iPTE_SW(p, r, pte, ptr, mode);
  1473. }
  1474. /*
  1475. * Check if PTE can be modified, if not branch to LABEL. Regardless
  1476. * restore PTE with value from PTR when done.
  1477. */
  1478. static void
  1479. build_pte_modifiable(u32 **p, struct uasm_reloc **r,
  1480. unsigned int pte, unsigned int ptr, int scratch,
  1481. enum label_id lid)
  1482. {
  1483. if (use_bbit_insns()) {
  1484. uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
  1485. uasm_i_nop(p);
  1486. } else {
  1487. int t = scratch >= 0 ? scratch : pte;
  1488. uasm_i_andi(p, t, pte, _PAGE_WRITE);
  1489. uasm_il_beqz(p, r, t, lid);
  1490. if (pte == t)
  1491. /* You lose the SMP race :-(*/
  1492. iPTE_LW(p, pte, ptr);
  1493. }
  1494. }
  1495. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  1496. /*
  1497. * R3000 style TLB load/store/modify handlers.
  1498. */
  1499. /*
  1500. * This places the pte into ENTRYLO0 and writes it with tlbwi.
  1501. * Then it returns.
  1502. */
  1503. static void
  1504. build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
  1505. {
  1506. uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
  1507. uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
  1508. uasm_i_tlbwi(p);
  1509. uasm_i_jr(p, tmp);
  1510. uasm_i_rfe(p); /* branch delay */
  1511. }
  1512. /*
  1513. * This places the pte into ENTRYLO0 and writes it with tlbwi
  1514. * or tlbwr as appropriate. This is because the index register
  1515. * may have the probe fail bit set as a result of a trap on a
  1516. * kseg2 access, i.e. without refill. Then it returns.
  1517. */
  1518. static void
  1519. build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
  1520. struct uasm_reloc **r, unsigned int pte,
  1521. unsigned int tmp)
  1522. {
  1523. uasm_i_mfc0(p, tmp, C0_INDEX);
  1524. uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
  1525. uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
  1526. uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
  1527. uasm_i_tlbwi(p); /* cp0 delay */
  1528. uasm_i_jr(p, tmp);
  1529. uasm_i_rfe(p); /* branch delay */
  1530. uasm_l_r3000_write_probe_fail(l, *p);
  1531. uasm_i_tlbwr(p); /* cp0 delay */
  1532. uasm_i_jr(p, tmp);
  1533. uasm_i_rfe(p); /* branch delay */
  1534. }
  1535. static void
  1536. build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
  1537. unsigned int ptr)
  1538. {
  1539. long pgdc = (long)pgd_current;
  1540. uasm_i_mfc0(p, pte, C0_BADVADDR);
  1541. uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
  1542. uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
  1543. uasm_i_srl(p, pte, pte, 22); /* load delay */
  1544. uasm_i_sll(p, pte, pte, 2);
  1545. uasm_i_addu(p, ptr, ptr, pte);
  1546. uasm_i_mfc0(p, pte, C0_CONTEXT);
  1547. uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
  1548. uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
  1549. uasm_i_addu(p, ptr, ptr, pte);
  1550. uasm_i_lw(p, pte, 0, ptr);
  1551. uasm_i_tlbp(p); /* load delay */
  1552. }
  1553. static void build_r3000_tlb_load_handler(void)
  1554. {
  1555. u32 *p = handle_tlbl;
  1556. const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
  1557. struct uasm_label *l = labels;
  1558. struct uasm_reloc *r = relocs;
  1559. memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
  1560. memset(labels, 0, sizeof(labels));
  1561. memset(relocs, 0, sizeof(relocs));
  1562. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1563. build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
  1564. uasm_i_nop(&p); /* load delay */
  1565. build_make_valid(&p, &r, K0, K1);
  1566. build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
  1567. uasm_l_nopage_tlbl(&l, p);
  1568. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
  1569. uasm_i_nop(&p);
  1570. if (p >= handle_tlbl_end)
  1571. panic("TLB load handler fastpath space exceeded");
  1572. uasm_resolve_relocs(relocs, labels);
  1573. pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
  1574. (unsigned int)(p - handle_tlbl));
  1575. dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
  1576. }
  1577. static void build_r3000_tlb_store_handler(void)
  1578. {
  1579. u32 *p = handle_tlbs;
  1580. const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
  1581. struct uasm_label *l = labels;
  1582. struct uasm_reloc *r = relocs;
  1583. memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
  1584. memset(labels, 0, sizeof(labels));
  1585. memset(relocs, 0, sizeof(relocs));
  1586. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1587. build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
  1588. uasm_i_nop(&p); /* load delay */
  1589. build_make_write(&p, &r, K0, K1);
  1590. build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
  1591. uasm_l_nopage_tlbs(&l, p);
  1592. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1593. uasm_i_nop(&p);
  1594. if (p >= handle_tlbs_end)
  1595. panic("TLB store handler fastpath space exceeded");
  1596. uasm_resolve_relocs(relocs, labels);
  1597. pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
  1598. (unsigned int)(p - handle_tlbs));
  1599. dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
  1600. }
  1601. static void build_r3000_tlb_modify_handler(void)
  1602. {
  1603. u32 *p = handle_tlbm;
  1604. const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
  1605. struct uasm_label *l = labels;
  1606. struct uasm_reloc *r = relocs;
  1607. memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
  1608. memset(labels, 0, sizeof(labels));
  1609. memset(relocs, 0, sizeof(relocs));
  1610. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1611. build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
  1612. uasm_i_nop(&p); /* load delay */
  1613. build_make_write(&p, &r, K0, K1);
  1614. build_r3000_pte_reload_tlbwi(&p, K0, K1);
  1615. uasm_l_nopage_tlbm(&l, p);
  1616. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1617. uasm_i_nop(&p);
  1618. if (p >= handle_tlbm_end)
  1619. panic("TLB modify handler fastpath space exceeded");
  1620. uasm_resolve_relocs(relocs, labels);
  1621. pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
  1622. (unsigned int)(p - handle_tlbm));
  1623. dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
  1624. }
  1625. #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
  1626. /*
  1627. * R4000 style TLB load/store/modify handlers.
  1628. */
  1629. static struct work_registers
  1630. build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
  1631. struct uasm_reloc **r)
  1632. {
  1633. struct work_registers wr = build_get_work_registers(p);
  1634. #ifdef CONFIG_64BIT
  1635. build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
  1636. #else
  1637. build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
  1638. #endif
  1639. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1640. /*
  1641. * For huge tlb entries, pmd doesn't contain an address but
  1642. * instead contains the tlb pte. Check the PAGE_HUGE bit and
  1643. * see if we need to jump to huge tlb processing.
  1644. */
  1645. build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
  1646. #endif
  1647. UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
  1648. UASM_i_LW(p, wr.r2, 0, wr.r2);
  1649. UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
  1650. uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
  1651. UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
  1652. #ifdef CONFIG_SMP
  1653. uasm_l_smp_pgtable_change(l, *p);
  1654. #endif
  1655. iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
  1656. if (!m4kc_tlbp_war())
  1657. build_tlb_probe_entry(p);
  1658. return wr;
  1659. }
  1660. static void
  1661. build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
  1662. struct uasm_reloc **r, unsigned int tmp,
  1663. unsigned int ptr)
  1664. {
  1665. uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
  1666. uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
  1667. build_update_entries(p, tmp, ptr);
  1668. build_tlb_write_entry(p, l, r, tlb_indexed);
  1669. uasm_l_leave(l, *p);
  1670. build_restore_work_registers(p);
  1671. uasm_i_eret(p); /* return from trap */
  1672. #ifdef CONFIG_64BIT
  1673. build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
  1674. #endif
  1675. }
  1676. static void build_r4000_tlb_load_handler(void)
  1677. {
  1678. u32 *p = handle_tlbl;
  1679. const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
  1680. struct uasm_label *l = labels;
  1681. struct uasm_reloc *r = relocs;
  1682. struct work_registers wr;
  1683. memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
  1684. memset(labels, 0, sizeof(labels));
  1685. memset(relocs, 0, sizeof(relocs));
  1686. if (bcm1250_m3_war()) {
  1687. unsigned int segbits = 44;
  1688. uasm_i_dmfc0(&p, K0, C0_BADVADDR);
  1689. uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
  1690. uasm_i_xor(&p, K0, K0, K1);
  1691. uasm_i_dsrl_safe(&p, K1, K0, 62);
  1692. uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
  1693. uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
  1694. uasm_i_or(&p, K0, K0, K1);
  1695. uasm_il_bnez(&p, &r, K0, label_leave);
  1696. /* No need for uasm_i_nop */
  1697. }
  1698. wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
  1699. build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
  1700. if (m4kc_tlbp_war())
  1701. build_tlb_probe_entry(&p);
  1702. if (cpu_has_rixi) {
  1703. /*
  1704. * If the page is not _PAGE_VALID, RI or XI could not
  1705. * have triggered it. Skip the expensive test..
  1706. */
  1707. if (use_bbit_insns()) {
  1708. uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
  1709. label_tlbl_goaround1);
  1710. } else {
  1711. uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
  1712. uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
  1713. }
  1714. uasm_i_nop(&p);
  1715. uasm_i_tlbr(&p);
  1716. switch (current_cpu_type()) {
  1717. default:
  1718. if (cpu_has_mips_r2) {
  1719. uasm_i_ehb(&p);
  1720. case CPU_CAVIUM_OCTEON:
  1721. case CPU_CAVIUM_OCTEON_PLUS:
  1722. case CPU_CAVIUM_OCTEON2:
  1723. break;
  1724. }
  1725. }
  1726. /* Examine entrylo 0 or 1 based on ptr. */
  1727. if (use_bbit_insns()) {
  1728. uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
  1729. } else {
  1730. uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
  1731. uasm_i_beqz(&p, wr.r3, 8);
  1732. }
  1733. /* load it in the delay slot*/
  1734. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
  1735. /* load it if ptr is odd */
  1736. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
  1737. /*
  1738. * If the entryLo (now in wr.r3) is valid (bit 1), RI or
  1739. * XI must have triggered it.
  1740. */
  1741. if (use_bbit_insns()) {
  1742. uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
  1743. uasm_i_nop(&p);
  1744. uasm_l_tlbl_goaround1(&l, p);
  1745. } else {
  1746. uasm_i_andi(&p, wr.r3, wr.r3, 2);
  1747. uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
  1748. uasm_i_nop(&p);
  1749. }
  1750. uasm_l_tlbl_goaround1(&l, p);
  1751. }
  1752. build_make_valid(&p, &r, wr.r1, wr.r2);
  1753. build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
  1754. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1755. /*
  1756. * This is the entry point when build_r4000_tlbchange_handler_head
  1757. * spots a huge page.
  1758. */
  1759. uasm_l_tlb_huge_update(&l, p);
  1760. iPTE_LW(&p, wr.r1, wr.r2);
  1761. build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
  1762. build_tlb_probe_entry(&p);
  1763. if (cpu_has_rixi) {
  1764. /*
  1765. * If the page is not _PAGE_VALID, RI or XI could not
  1766. * have triggered it. Skip the expensive test..
  1767. */
  1768. if (use_bbit_insns()) {
  1769. uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
  1770. label_tlbl_goaround2);
  1771. } else {
  1772. uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
  1773. uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
  1774. }
  1775. uasm_i_nop(&p);
  1776. uasm_i_tlbr(&p);
  1777. switch (current_cpu_type()) {
  1778. default:
  1779. if (cpu_has_mips_r2) {
  1780. uasm_i_ehb(&p);
  1781. case CPU_CAVIUM_OCTEON:
  1782. case CPU_CAVIUM_OCTEON_PLUS:
  1783. case CPU_CAVIUM_OCTEON2:
  1784. break;
  1785. }
  1786. }
  1787. /* Examine entrylo 0 or 1 based on ptr. */
  1788. if (use_bbit_insns()) {
  1789. uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
  1790. } else {
  1791. uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
  1792. uasm_i_beqz(&p, wr.r3, 8);
  1793. }
  1794. /* load it in the delay slot*/
  1795. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
  1796. /* load it if ptr is odd */
  1797. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
  1798. /*
  1799. * If the entryLo (now in wr.r3) is valid (bit 1), RI or
  1800. * XI must have triggered it.
  1801. */
  1802. if (use_bbit_insns()) {
  1803. uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
  1804. } else {
  1805. uasm_i_andi(&p, wr.r3, wr.r3, 2);
  1806. uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
  1807. }
  1808. if (PM_DEFAULT_MASK == 0)
  1809. uasm_i_nop(&p);
  1810. /*
  1811. * We clobbered C0_PAGEMASK, restore it. On the other branch
  1812. * it is restored in build_huge_tlb_write_entry.
  1813. */
  1814. build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
  1815. uasm_l_tlbl_goaround2(&l, p);
  1816. }
  1817. uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
  1818. build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
  1819. #endif
  1820. uasm_l_nopage_tlbl(&l, p);
  1821. build_restore_work_registers(&p);
  1822. #ifdef CONFIG_CPU_MICROMIPS
  1823. if ((unsigned long)tlb_do_page_fault_0 & 1) {
  1824. uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
  1825. uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
  1826. uasm_i_jr(&p, K0);
  1827. } else
  1828. #endif
  1829. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
  1830. uasm_i_nop(&p);
  1831. if (p >= handle_tlbl_end)
  1832. panic("TLB load handler fastpath space exceeded");
  1833. uasm_resolve_relocs(relocs, labels);
  1834. pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
  1835. (unsigned int)(p - handle_tlbl));
  1836. dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
  1837. }
  1838. static void build_r4000_tlb_store_handler(void)
  1839. {
  1840. u32 *p = handle_tlbs;
  1841. const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
  1842. struct uasm_label *l = labels;
  1843. struct uasm_reloc *r = relocs;
  1844. struct work_registers wr;
  1845. memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
  1846. memset(labels, 0, sizeof(labels));
  1847. memset(relocs, 0, sizeof(relocs));
  1848. wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
  1849. build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
  1850. if (m4kc_tlbp_war())
  1851. build_tlb_probe_entry(&p);
  1852. build_make_write(&p, &r, wr.r1, wr.r2);
  1853. build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
  1854. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1855. /*
  1856. * This is the entry point when
  1857. * build_r4000_tlbchange_handler_head spots a huge page.
  1858. */
  1859. uasm_l_tlb_huge_update(&l, p);
  1860. iPTE_LW(&p, wr.r1, wr.r2);
  1861. build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
  1862. build_tlb_probe_entry(&p);
  1863. uasm_i_ori(&p, wr.r1, wr.r1,
  1864. _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
  1865. build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
  1866. #endif
  1867. uasm_l_nopage_tlbs(&l, p);
  1868. build_restore_work_registers(&p);
  1869. #ifdef CONFIG_CPU_MICROMIPS
  1870. if ((unsigned long)tlb_do_page_fault_1 & 1) {
  1871. uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
  1872. uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
  1873. uasm_i_jr(&p, K0);
  1874. } else
  1875. #endif
  1876. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1877. uasm_i_nop(&p);
  1878. if (p >= handle_tlbs_end)
  1879. panic("TLB store handler fastpath space exceeded");
  1880. uasm_resolve_relocs(relocs, labels);
  1881. pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
  1882. (unsigned int)(p - handle_tlbs));
  1883. dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
  1884. }
  1885. static void build_r4000_tlb_modify_handler(void)
  1886. {
  1887. u32 *p = handle_tlbm;
  1888. const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
  1889. struct uasm_label *l = labels;
  1890. struct uasm_reloc *r = relocs;
  1891. struct work_registers wr;
  1892. memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
  1893. memset(labels, 0, sizeof(labels));
  1894. memset(relocs, 0, sizeof(relocs));
  1895. wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
  1896. build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
  1897. if (m4kc_tlbp_war())
  1898. build_tlb_probe_entry(&p);
  1899. /* Present and writable bits set, set accessed and dirty bits. */
  1900. build_make_write(&p, &r, wr.r1, wr.r2);
  1901. build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
  1902. #ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
  1903. /*
  1904. * This is the entry point when
  1905. * build_r4000_tlbchange_handler_head spots a huge page.
  1906. */
  1907. uasm_l_tlb_huge_update(&l, p);
  1908. iPTE_LW(&p, wr.r1, wr.r2);
  1909. build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
  1910. build_tlb_probe_entry(&p);
  1911. uasm_i_ori(&p, wr.r1, wr.r1,
  1912. _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
  1913. build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
  1914. #endif
  1915. uasm_l_nopage_tlbm(&l, p);
  1916. build_restore_work_registers(&p);
  1917. #ifdef CONFIG_CPU_MICROMIPS
  1918. if ((unsigned long)tlb_do_page_fault_1 & 1) {
  1919. uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
  1920. uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
  1921. uasm_i_jr(&p, K0);
  1922. } else
  1923. #endif
  1924. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1925. uasm_i_nop(&p);
  1926. if (p >= handle_tlbm_end)
  1927. panic("TLB modify handler fastpath space exceeded");
  1928. uasm_resolve_relocs(relocs, labels);
  1929. pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
  1930. (unsigned int)(p - handle_tlbm));
  1931. dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
  1932. }
  1933. static void flush_tlb_handlers(void)
  1934. {
  1935. local_flush_icache_range((unsigned long)handle_tlbl,
  1936. (unsigned long)handle_tlbl_end);
  1937. local_flush_icache_range((unsigned long)handle_tlbs,
  1938. (unsigned long)handle_tlbs_end);
  1939. local_flush_icache_range((unsigned long)handle_tlbm,
  1940. (unsigned long)handle_tlbm_end);
  1941. #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
  1942. local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
  1943. (unsigned long)tlbmiss_handler_setup_pgd_end);
  1944. #endif
  1945. }
  1946. void build_tlb_refill_handler(void)
  1947. {
  1948. /*
  1949. * The refill handler is generated per-CPU, multi-node systems
  1950. * may have local storage for it. The other handlers are only
  1951. * needed once.
  1952. */
  1953. static int run_once = 0;
  1954. output_pgtable_bits_defines();
  1955. #ifdef CONFIG_64BIT
  1956. check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
  1957. #endif
  1958. switch (current_cpu_type()) {
  1959. case CPU_R2000:
  1960. case CPU_R3000:
  1961. case CPU_R3000A:
  1962. case CPU_R3081E:
  1963. case CPU_TX3912:
  1964. case CPU_TX3922:
  1965. case CPU_TX3927:
  1966. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  1967. if (cpu_has_local_ebase)
  1968. build_r3000_tlb_refill_handler();
  1969. if (!run_once) {
  1970. if (!cpu_has_local_ebase)
  1971. build_r3000_tlb_refill_handler();
  1972. build_r3000_tlb_load_handler();
  1973. build_r3000_tlb_store_handler();
  1974. build_r3000_tlb_modify_handler();
  1975. flush_tlb_handlers();
  1976. run_once++;
  1977. }
  1978. #else
  1979. panic("No R3000 TLB refill handler");
  1980. #endif
  1981. break;
  1982. case CPU_R6000:
  1983. case CPU_R6000A:
  1984. panic("No R6000 TLB refill handler yet");
  1985. break;
  1986. case CPU_R8000:
  1987. panic("No R8000 TLB refill handler yet");
  1988. break;
  1989. default:
  1990. if (!run_once) {
  1991. scratch_reg = allocate_kscratch();
  1992. #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
  1993. build_r4000_setup_pgd();
  1994. #endif
  1995. build_r4000_tlb_load_handler();
  1996. build_r4000_tlb_store_handler();
  1997. build_r4000_tlb_modify_handler();
  1998. if (!cpu_has_local_ebase)
  1999. build_r4000_tlb_refill_handler();
  2000. flush_tlb_handlers();
  2001. run_once++;
  2002. }
  2003. if (cpu_has_local_ebase)
  2004. build_r4000_tlb_refill_handler();
  2005. }
  2006. }