dma-default.c 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Copyright (C) 2000 Ani Joshi <ajoshi@unixbox.com>
  7. * Copyright (C) 2000, 2001, 06 Ralf Baechle <ralf@linux-mips.org>
  8. * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
  9. */
  10. #include <linux/types.h>
  11. #include <linux/dma-mapping.h>
  12. #include <linux/mm.h>
  13. #include <linux/module.h>
  14. #include <linux/scatterlist.h>
  15. #include <linux/string.h>
  16. #include <linux/gfp.h>
  17. #include <linux/highmem.h>
  18. #include <asm/cache.h>
  19. #include <asm/cpu-type.h>
  20. #include <asm/io.h>
  21. #include <dma-coherence.h>
  22. int coherentio = 0; /* User defined DMA coherency from command line. */
  23. EXPORT_SYMBOL_GPL(coherentio);
  24. int hw_coherentio = 0; /* Actual hardware supported DMA coherency setting. */
  25. static int __init setcoherentio(char *str)
  26. {
  27. coherentio = 1;
  28. pr_info("Hardware DMA cache coherency (command line)\n");
  29. return 0;
  30. }
  31. early_param("coherentio", setcoherentio);
  32. static int __init setnocoherentio(char *str)
  33. {
  34. coherentio = 0;
  35. pr_info("Software DMA cache coherency (command line)\n");
  36. return 0;
  37. }
  38. early_param("nocoherentio", setnocoherentio);
  39. static inline struct page *dma_addr_to_page(struct device *dev,
  40. dma_addr_t dma_addr)
  41. {
  42. return pfn_to_page(
  43. plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
  44. }
  45. /*
  46. * The affected CPUs below in 'cpu_needs_post_dma_flush()' can
  47. * speculatively fill random cachelines with stale data at any time,
  48. * requiring an extra flush post-DMA.
  49. *
  50. * Warning on the terminology - Linux calls an uncached area coherent;
  51. * MIPS terminology calls memory areas with hardware maintained coherency
  52. * coherent.
  53. */
  54. static inline int cpu_needs_post_dma_flush(struct device *dev)
  55. {
  56. return !plat_device_is_coherent(dev) &&
  57. (boot_cpu_type() == CPU_R10000 ||
  58. boot_cpu_type() == CPU_R12000 ||
  59. boot_cpu_type() == CPU_BMIPS5000);
  60. }
  61. static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
  62. {
  63. gfp_t dma_flag;
  64. /* ignore region specifiers */
  65. gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
  66. #ifdef CONFIG_ISA
  67. if (dev == NULL)
  68. dma_flag = __GFP_DMA;
  69. else
  70. #endif
  71. #if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
  72. if (dev->coherent_dma_mask < DMA_BIT_MASK(32))
  73. dma_flag = __GFP_DMA;
  74. else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
  75. dma_flag = __GFP_DMA32;
  76. else
  77. #endif
  78. #if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
  79. if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
  80. dma_flag = __GFP_DMA32;
  81. else
  82. #endif
  83. #if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
  84. if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
  85. dma_flag = __GFP_DMA;
  86. else
  87. #endif
  88. dma_flag = 0;
  89. /* Don't invoke OOM killer */
  90. gfp |= __GFP_NORETRY;
  91. return gfp | dma_flag;
  92. }
  93. void *dma_alloc_noncoherent(struct device *dev, size_t size,
  94. dma_addr_t * dma_handle, gfp_t gfp)
  95. {
  96. void *ret;
  97. gfp = massage_gfp_flags(dev, gfp);
  98. ret = (void *) __get_free_pages(gfp, get_order(size));
  99. if (ret != NULL) {
  100. memset(ret, 0, size);
  101. *dma_handle = plat_map_dma_mem(dev, ret, size);
  102. }
  103. return ret;
  104. }
  105. EXPORT_SYMBOL(dma_alloc_noncoherent);
  106. static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
  107. dma_addr_t * dma_handle, gfp_t gfp, struct dma_attrs *attrs)
  108. {
  109. void *ret;
  110. if (dma_alloc_from_coherent(dev, size, dma_handle, &ret))
  111. return ret;
  112. gfp = massage_gfp_flags(dev, gfp);
  113. ret = (void *) __get_free_pages(gfp, get_order(size));
  114. if (ret) {
  115. memset(ret, 0, size);
  116. *dma_handle = plat_map_dma_mem(dev, ret, size);
  117. if (!plat_device_is_coherent(dev)) {
  118. dma_cache_wback_inv((unsigned long) ret, size);
  119. if (!hw_coherentio)
  120. ret = UNCAC_ADDR(ret);
  121. }
  122. }
  123. return ret;
  124. }
  125. void dma_free_noncoherent(struct device *dev, size_t size, void *vaddr,
  126. dma_addr_t dma_handle)
  127. {
  128. plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
  129. free_pages((unsigned long) vaddr, get_order(size));
  130. }
  131. EXPORT_SYMBOL(dma_free_noncoherent);
  132. static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
  133. dma_addr_t dma_handle, struct dma_attrs *attrs)
  134. {
  135. unsigned long addr = (unsigned long) vaddr;
  136. int order = get_order(size);
  137. if (dma_release_from_coherent(dev, order, vaddr))
  138. return;
  139. plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
  140. if (!plat_device_is_coherent(dev) && !hw_coherentio)
  141. addr = CAC_ADDR(addr);
  142. free_pages(addr, get_order(size));
  143. }
  144. static inline void __dma_sync_virtual(void *addr, size_t size,
  145. enum dma_data_direction direction)
  146. {
  147. switch (direction) {
  148. case DMA_TO_DEVICE:
  149. dma_cache_wback((unsigned long)addr, size);
  150. break;
  151. case DMA_FROM_DEVICE:
  152. dma_cache_inv((unsigned long)addr, size);
  153. break;
  154. case DMA_BIDIRECTIONAL:
  155. dma_cache_wback_inv((unsigned long)addr, size);
  156. break;
  157. default:
  158. BUG();
  159. }
  160. }
  161. /*
  162. * A single sg entry may refer to multiple physically contiguous
  163. * pages. But we still need to process highmem pages individually.
  164. * If highmem is not configured then the bulk of this loop gets
  165. * optimized out.
  166. */
  167. static inline void __dma_sync(struct page *page,
  168. unsigned long offset, size_t size, enum dma_data_direction direction)
  169. {
  170. size_t left = size;
  171. do {
  172. size_t len = left;
  173. if (PageHighMem(page)) {
  174. void *addr;
  175. if (offset + len > PAGE_SIZE) {
  176. if (offset >= PAGE_SIZE) {
  177. page += offset >> PAGE_SHIFT;
  178. offset &= ~PAGE_MASK;
  179. }
  180. len = PAGE_SIZE - offset;
  181. }
  182. addr = kmap_atomic(page);
  183. __dma_sync_virtual(addr + offset, len, direction);
  184. kunmap_atomic(addr);
  185. } else
  186. __dma_sync_virtual(page_address(page) + offset,
  187. size, direction);
  188. offset = 0;
  189. page++;
  190. left -= len;
  191. } while (left);
  192. }
  193. static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
  194. size_t size, enum dma_data_direction direction, struct dma_attrs *attrs)
  195. {
  196. if (cpu_needs_post_dma_flush(dev))
  197. __dma_sync(dma_addr_to_page(dev, dma_addr),
  198. dma_addr & ~PAGE_MASK, size, direction);
  199. plat_unmap_dma_mem(dev, dma_addr, size, direction);
  200. }
  201. static int mips_dma_map_sg(struct device *dev, struct scatterlist *sg,
  202. int nents, enum dma_data_direction direction, struct dma_attrs *attrs)
  203. {
  204. int i;
  205. for (i = 0; i < nents; i++, sg++) {
  206. if (!plat_device_is_coherent(dev))
  207. __dma_sync(sg_page(sg), sg->offset, sg->length,
  208. direction);
  209. #ifdef CONFIG_NEED_SG_DMA_LENGTH
  210. sg->dma_length = sg->length;
  211. #endif
  212. sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
  213. sg->offset;
  214. }
  215. return nents;
  216. }
  217. static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
  218. unsigned long offset, size_t size, enum dma_data_direction direction,
  219. struct dma_attrs *attrs)
  220. {
  221. if (!plat_device_is_coherent(dev))
  222. __dma_sync(page, offset, size, direction);
  223. return plat_map_dma_mem_page(dev, page) + offset;
  224. }
  225. static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
  226. int nhwentries, enum dma_data_direction direction,
  227. struct dma_attrs *attrs)
  228. {
  229. int i;
  230. for (i = 0; i < nhwentries; i++, sg++) {
  231. if (!plat_device_is_coherent(dev) &&
  232. direction != DMA_TO_DEVICE)
  233. __dma_sync(sg_page(sg), sg->offset, sg->length,
  234. direction);
  235. plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
  236. }
  237. }
  238. static void mips_dma_sync_single_for_cpu(struct device *dev,
  239. dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
  240. {
  241. if (cpu_needs_post_dma_flush(dev))
  242. __dma_sync(dma_addr_to_page(dev, dma_handle),
  243. dma_handle & ~PAGE_MASK, size, direction);
  244. }
  245. static void mips_dma_sync_single_for_device(struct device *dev,
  246. dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
  247. {
  248. plat_extra_sync_for_device(dev);
  249. if (!plat_device_is_coherent(dev))
  250. __dma_sync(dma_addr_to_page(dev, dma_handle),
  251. dma_handle & ~PAGE_MASK, size, direction);
  252. }
  253. static void mips_dma_sync_sg_for_cpu(struct device *dev,
  254. struct scatterlist *sg, int nelems, enum dma_data_direction direction)
  255. {
  256. int i;
  257. if (cpu_needs_post_dma_flush(dev))
  258. for (i = 0; i < nelems; i++, sg++)
  259. __dma_sync(sg_page(sg), sg->offset, sg->length,
  260. direction);
  261. }
  262. static void mips_dma_sync_sg_for_device(struct device *dev,
  263. struct scatterlist *sg, int nelems, enum dma_data_direction direction)
  264. {
  265. int i;
  266. if (!plat_device_is_coherent(dev))
  267. for (i = 0; i < nelems; i++, sg++)
  268. __dma_sync(sg_page(sg), sg->offset, sg->length,
  269. direction);
  270. }
  271. int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
  272. {
  273. return plat_dma_mapping_error(dev, dma_addr);
  274. }
  275. int mips_dma_supported(struct device *dev, u64 mask)
  276. {
  277. return plat_dma_supported(dev, mask);
  278. }
  279. void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
  280. enum dma_data_direction direction)
  281. {
  282. BUG_ON(direction == DMA_NONE);
  283. plat_extra_sync_for_device(dev);
  284. if (!plat_device_is_coherent(dev))
  285. __dma_sync_virtual(vaddr, size, direction);
  286. }
  287. EXPORT_SYMBOL(dma_cache_sync);
  288. static struct dma_map_ops mips_default_dma_map_ops = {
  289. .alloc = mips_dma_alloc_coherent,
  290. .free = mips_dma_free_coherent,
  291. .map_page = mips_dma_map_page,
  292. .unmap_page = mips_dma_unmap_page,
  293. .map_sg = mips_dma_map_sg,
  294. .unmap_sg = mips_dma_unmap_sg,
  295. .sync_single_for_cpu = mips_dma_sync_single_for_cpu,
  296. .sync_single_for_device = mips_dma_sync_single_for_device,
  297. .sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
  298. .sync_sg_for_device = mips_dma_sync_sg_for_device,
  299. .mapping_error = mips_dma_mapping_error,
  300. .dma_supported = mips_dma_supported
  301. };
  302. struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
  303. EXPORT_SYMBOL(mips_dma_map_ops);
  304. #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
  305. static int __init mips_dma_init(void)
  306. {
  307. dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
  308. return 0;
  309. }
  310. fs_initcall(mips_dma_init);