nommu.c 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372
  1. /*
  2. * linux/arch/arm/mm/nommu.c
  3. *
  4. * ARM uCLinux supporting functions.
  5. */
  6. #include <linux/module.h>
  7. #include <linux/mm.h>
  8. #include <linux/pagemap.h>
  9. #include <linux/io.h>
  10. #include <linux/memblock.h>
  11. #include <linux/kernel.h>
  12. #include <asm/cacheflush.h>
  13. #include <asm/sections.h>
  14. #include <asm/page.h>
  15. #include <asm/setup.h>
  16. #include <asm/traps.h>
  17. #include <asm/mach/arch.h>
  18. #include <asm/cputype.h>
  19. #include <asm/mpu.h>
  20. #include "mm.h"
  21. #ifdef CONFIG_ARM_MPU
  22. struct mpu_rgn_info mpu_rgn_info;
  23. /* Region number */
  24. static void rgnr_write(u32 v)
  25. {
  26. asm("mcr p15, 0, %0, c6, c2, 0" : : "r" (v));
  27. }
  28. /* Data-side / unified region attributes */
  29. /* Region access control register */
  30. static void dracr_write(u32 v)
  31. {
  32. asm("mcr p15, 0, %0, c6, c1, 4" : : "r" (v));
  33. }
  34. /* Region size register */
  35. static void drsr_write(u32 v)
  36. {
  37. asm("mcr p15, 0, %0, c6, c1, 2" : : "r" (v));
  38. }
  39. /* Region base address register */
  40. static void drbar_write(u32 v)
  41. {
  42. asm("mcr p15, 0, %0, c6, c1, 0" : : "r" (v));
  43. }
  44. static u32 drbar_read(void)
  45. {
  46. u32 v;
  47. asm("mrc p15, 0, %0, c6, c1, 0" : "=r" (v));
  48. return v;
  49. }
  50. /* Optional instruction-side region attributes */
  51. /* I-side Region access control register */
  52. static void iracr_write(u32 v)
  53. {
  54. asm("mcr p15, 0, %0, c6, c1, 5" : : "r" (v));
  55. }
  56. /* I-side Region size register */
  57. static void irsr_write(u32 v)
  58. {
  59. asm("mcr p15, 0, %0, c6, c1, 3" : : "r" (v));
  60. }
  61. /* I-side Region base address register */
  62. static void irbar_write(u32 v)
  63. {
  64. asm("mcr p15, 0, %0, c6, c1, 1" : : "r" (v));
  65. }
  66. static unsigned long irbar_read(void)
  67. {
  68. unsigned long v;
  69. asm("mrc p15, 0, %0, c6, c1, 1" : "=r" (v));
  70. return v;
  71. }
  72. /* MPU initialisation functions */
  73. void __init sanity_check_meminfo_mpu(void)
  74. {
  75. int i;
  76. struct membank *bank = meminfo.bank;
  77. phys_addr_t phys_offset = PHYS_OFFSET;
  78. phys_addr_t aligned_region_size, specified_mem_size, rounded_mem_size;
  79. /* Initially only use memory continuous from PHYS_OFFSET */
  80. if (bank_phys_start(&bank[0]) != phys_offset)
  81. panic("First memory bank must be contiguous from PHYS_OFFSET");
  82. /* Banks have already been sorted by start address */
  83. for (i = 1; i < meminfo.nr_banks; i++) {
  84. if (bank[i].start <= bank_phys_end(&bank[0]) &&
  85. bank_phys_end(&bank[i]) > bank_phys_end(&bank[0])) {
  86. bank[0].size = bank_phys_end(&bank[i]) - bank[0].start;
  87. } else {
  88. pr_notice("Ignoring RAM after 0x%.8lx. "
  89. "First non-contiguous (ignored) bank start: 0x%.8lx\n",
  90. (unsigned long)bank_phys_end(&bank[0]),
  91. (unsigned long)bank_phys_start(&bank[i]));
  92. break;
  93. }
  94. }
  95. /* All contiguous banks are now merged in to the first bank */
  96. meminfo.nr_banks = 1;
  97. specified_mem_size = bank[0].size;
  98. /*
  99. * MPU has curious alignment requirements: Size must be power of 2, and
  100. * region start must be aligned to the region size
  101. */
  102. if (phys_offset != 0)
  103. pr_info("PHYS_OFFSET != 0 => MPU Region size constrained by alignment requirements\n");
  104. /*
  105. * Maximum aligned region might overflow phys_addr_t if phys_offset is
  106. * 0. Hence we keep everything below 4G until we take the smaller of
  107. * the aligned_region_size and rounded_mem_size, one of which is
  108. * guaranteed to be smaller than the maximum physical address.
  109. */
  110. aligned_region_size = (phys_offset - 1) ^ (phys_offset);
  111. /* Find the max power-of-two sized region that fits inside our bank */
  112. rounded_mem_size = (1 << __fls(bank[0].size)) - 1;
  113. /* The actual region size is the smaller of the two */
  114. aligned_region_size = aligned_region_size < rounded_mem_size
  115. ? aligned_region_size + 1
  116. : rounded_mem_size + 1;
  117. if (aligned_region_size != specified_mem_size)
  118. pr_warn("Truncating memory from 0x%.8lx to 0x%.8lx (MPU region constraints)",
  119. (unsigned long)specified_mem_size,
  120. (unsigned long)aligned_region_size);
  121. meminfo.bank[0].size = aligned_region_size;
  122. pr_debug("MPU Region from 0x%.8lx size 0x%.8lx (end 0x%.8lx))\n",
  123. (unsigned long)phys_offset,
  124. (unsigned long)aligned_region_size,
  125. (unsigned long)bank_phys_end(&bank[0]));
  126. }
  127. static int mpu_present(void)
  128. {
  129. return ((read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA) == MMFR0_PMSAv7);
  130. }
  131. static int mpu_max_regions(void)
  132. {
  133. /*
  134. * We don't support a different number of I/D side regions so if we
  135. * have separate instruction and data memory maps then return
  136. * whichever side has a smaller number of supported regions.
  137. */
  138. u32 dregions, iregions, mpuir;
  139. mpuir = read_cpuid(CPUID_MPUIR);
  140. dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION;
  141. /* Check for separate d-side and i-side memory maps */
  142. if (mpuir & MPUIR_nU)
  143. iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION;
  144. /* Use the smallest of the two maxima */
  145. return min(dregions, iregions);
  146. }
  147. static int mpu_iside_independent(void)
  148. {
  149. /* MPUIR.nU specifies whether there is *not* a unified memory map */
  150. return read_cpuid(CPUID_MPUIR) & MPUIR_nU;
  151. }
  152. static int mpu_min_region_order(void)
  153. {
  154. u32 drbar_result, irbar_result;
  155. /* We've kept a region free for this probing */
  156. rgnr_write(MPU_PROBE_REGION);
  157. isb();
  158. /*
  159. * As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum
  160. * region order
  161. */
  162. drbar_write(0xFFFFFFFC);
  163. drbar_result = irbar_result = drbar_read();
  164. drbar_write(0x0);
  165. /* If the MPU is non-unified, we use the larger of the two minima*/
  166. if (mpu_iside_independent()) {
  167. irbar_write(0xFFFFFFFC);
  168. irbar_result = irbar_read();
  169. irbar_write(0x0);
  170. }
  171. isb(); /* Ensure that MPU region operations have completed */
  172. /* Return whichever result is larger */
  173. return __ffs(max(drbar_result, irbar_result));
  174. }
  175. static int mpu_setup_region(unsigned int number, phys_addr_t start,
  176. unsigned int size_order, unsigned int properties)
  177. {
  178. u32 size_data;
  179. /* We kept a region free for probing resolution of MPU regions*/
  180. if (number > mpu_max_regions() || number == MPU_PROBE_REGION)
  181. return -ENOENT;
  182. if (size_order > 32)
  183. return -ENOMEM;
  184. if (size_order < mpu_min_region_order())
  185. return -ENOMEM;
  186. /* Writing N to bits 5:1 (RSR_SZ) specifies region size 2^N+1 */
  187. size_data = ((size_order - 1) << MPU_RSR_SZ) | 1 << MPU_RSR_EN;
  188. dsb(); /* Ensure all previous data accesses occur with old mappings */
  189. rgnr_write(number);
  190. isb();
  191. drbar_write(start);
  192. dracr_write(properties);
  193. isb(); /* Propagate properties before enabling region */
  194. drsr_write(size_data);
  195. /* Check for independent I-side registers */
  196. if (mpu_iside_independent()) {
  197. irbar_write(start);
  198. iracr_write(properties);
  199. isb();
  200. irsr_write(size_data);
  201. }
  202. isb();
  203. /* Store region info (we treat i/d side the same, so only store d) */
  204. mpu_rgn_info.rgns[number].dracr = properties;
  205. mpu_rgn_info.rgns[number].drbar = start;
  206. mpu_rgn_info.rgns[number].drsr = size_data;
  207. return 0;
  208. }
  209. /*
  210. * Set up default MPU regions, doing nothing if there is no MPU
  211. */
  212. void __init mpu_setup(void)
  213. {
  214. int region_err;
  215. if (!mpu_present())
  216. return;
  217. region_err = mpu_setup_region(MPU_RAM_REGION, PHYS_OFFSET,
  218. ilog2(meminfo.bank[0].size),
  219. MPU_AP_PL1RW_PL0RW | MPU_RGN_NORMAL);
  220. if (region_err) {
  221. panic("MPU region initialization failure! %d", region_err);
  222. } else {
  223. pr_info("Using ARMv7 PMSA Compliant MPU. "
  224. "Region independence: %s, Max regions: %d\n",
  225. mpu_iside_independent() ? "Yes" : "No",
  226. mpu_max_regions());
  227. }
  228. }
  229. #else
  230. static void sanity_check_meminfo_mpu(void) {}
  231. static void __init mpu_setup(void) {}
  232. #endif /* CONFIG_ARM_MPU */
  233. void __init arm_mm_memblock_reserve(void)
  234. {
  235. #ifndef CONFIG_CPU_V7M
  236. /*
  237. * Register the exception vector page.
  238. * some architectures which the DRAM is the exception vector to trap,
  239. * alloc_page breaks with error, although it is not NULL, but "0."
  240. */
  241. memblock_reserve(CONFIG_VECTORS_BASE, PAGE_SIZE);
  242. #else /* ifndef CONFIG_CPU_V7M */
  243. /*
  244. * There is no dedicated vector page on V7-M. So nothing needs to be
  245. * reserved here.
  246. */
  247. #endif
  248. }
  249. void __init sanity_check_meminfo(void)
  250. {
  251. phys_addr_t end;
  252. sanity_check_meminfo_mpu();
  253. end = bank_phys_end(&meminfo.bank[meminfo.nr_banks - 1]);
  254. high_memory = __va(end - 1) + 1;
  255. }
  256. /*
  257. * paging_init() sets up the page tables, initialises the zone memory
  258. * maps, and sets up the zero page, bad page and bad page tables.
  259. */
  260. void __init paging_init(const struct machine_desc *mdesc)
  261. {
  262. early_trap_init((void *)CONFIG_VECTORS_BASE);
  263. mpu_setup();
  264. bootmem_init();
  265. }
  266. /*
  267. * We don't need to do anything here for nommu machines.
  268. */
  269. void setup_mm_for_reboot(void)
  270. {
  271. }
  272. void flush_dcache_page(struct page *page)
  273. {
  274. __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
  275. }
  276. EXPORT_SYMBOL(flush_dcache_page);
  277. void flush_kernel_dcache_page(struct page *page)
  278. {
  279. __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
  280. }
  281. EXPORT_SYMBOL(flush_kernel_dcache_page);
  282. void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
  283. unsigned long uaddr, void *dst, const void *src,
  284. unsigned long len)
  285. {
  286. memcpy(dst, src, len);
  287. if (vma->vm_flags & VM_EXEC)
  288. __cpuc_coherent_user_range(uaddr, uaddr + len);
  289. }
  290. void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset,
  291. size_t size, unsigned int mtype)
  292. {
  293. if (pfn >= (0x100000000ULL >> PAGE_SHIFT))
  294. return NULL;
  295. return (void __iomem *) (offset + (pfn << PAGE_SHIFT));
  296. }
  297. EXPORT_SYMBOL(__arm_ioremap_pfn);
  298. void __iomem *__arm_ioremap_pfn_caller(unsigned long pfn, unsigned long offset,
  299. size_t size, unsigned int mtype, void *caller)
  300. {
  301. return __arm_ioremap_pfn(pfn, offset, size, mtype);
  302. }
  303. void __iomem *__arm_ioremap(phys_addr_t phys_addr, size_t size,
  304. unsigned int mtype)
  305. {
  306. return (void __iomem *)phys_addr;
  307. }
  308. EXPORT_SYMBOL(__arm_ioremap);
  309. void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *);
  310. void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
  311. unsigned int mtype, void *caller)
  312. {
  313. return __arm_ioremap(phys_addr, size, mtype);
  314. }
  315. void (*arch_iounmap)(volatile void __iomem *);
  316. void __arm_iounmap(volatile void __iomem *addr)
  317. {
  318. }
  319. EXPORT_SYMBOL(__arm_iounmap);