oom_kill.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637
  1. /*
  2. * linux/mm/oom_kill.c
  3. *
  4. * Copyright (C) 1998,2000 Rik van Riel
  5. * Thanks go out to Claus Fischer for some serious inspiration and
  6. * for goading me into coding this file...
  7. *
  8. * The routines in this file are used to kill a process when
  9. * we're seriously out of memory. This gets called from __alloc_pages()
  10. * in mm/page_alloc.c when we really run out of memory.
  11. *
  12. * Since we won't call these routines often (on a well-configured
  13. * machine) this file will double as a 'coding guide' and a signpost
  14. * for newbie kernel hackers. It features several pointers to major
  15. * kernel subsystems and hints as to where to find out what things do.
  16. */
  17. #include <linux/oom.h>
  18. #include <linux/mm.h>
  19. #include <linux/err.h>
  20. #include <linux/sched.h>
  21. #include <linux/swap.h>
  22. #include <linux/timex.h>
  23. #include <linux/jiffies.h>
  24. #include <linux/cpuset.h>
  25. #include <linux/module.h>
  26. #include <linux/notifier.h>
  27. #include <linux/memcontrol.h>
  28. #include <linux/security.h>
  29. int sysctl_panic_on_oom;
  30. int sysctl_oom_kill_allocating_task;
  31. int sysctl_oom_dump_tasks;
  32. static DEFINE_SPINLOCK(zone_scan_lock);
  33. /* #define DEBUG */
  34. /**
  35. * badness - calculate a numeric value for how bad this task has been
  36. * @p: task struct of which task we should calculate
  37. * @uptime: current uptime in seconds
  38. *
  39. * The formula used is relatively simple and documented inline in the
  40. * function. The main rationale is that we want to select a good task
  41. * to kill when we run out of memory.
  42. *
  43. * Good in this context means that:
  44. * 1) we lose the minimum amount of work done
  45. * 2) we recover a large amount of memory
  46. * 3) we don't kill anything innocent of eating tons of memory
  47. * 4) we want to kill the minimum amount of processes (one)
  48. * 5) we try to kill the process the user expects us to kill, this
  49. * algorithm has been meticulously tuned to meet the principle
  50. * of least surprise ... (be careful when you change it)
  51. */
  52. unsigned long badness(struct task_struct *p, unsigned long uptime)
  53. {
  54. unsigned long points, cpu_time, run_time;
  55. struct mm_struct *mm;
  56. struct task_struct *child;
  57. int oom_adj = p->signal->oom_adj;
  58. if (oom_adj == OOM_DISABLE)
  59. return 0;
  60. task_lock(p);
  61. mm = p->mm;
  62. if (!mm) {
  63. task_unlock(p);
  64. return 0;
  65. }
  66. /*
  67. * The memory size of the process is the basis for the badness.
  68. */
  69. points = mm->total_vm;
  70. /*
  71. * After this unlock we can no longer dereference local variable `mm'
  72. */
  73. task_unlock(p);
  74. /*
  75. * swapoff can easily use up all memory, so kill those first.
  76. */
  77. if (p->flags & PF_OOM_ORIGIN)
  78. return ULONG_MAX;
  79. /*
  80. * Processes which fork a lot of child processes are likely
  81. * a good choice. We add half the vmsize of the children if they
  82. * have an own mm. This prevents forking servers to flood the
  83. * machine with an endless amount of children. In case a single
  84. * child is eating the vast majority of memory, adding only half
  85. * to the parents will make the child our kill candidate of choice.
  86. */
  87. list_for_each_entry(child, &p->children, sibling) {
  88. task_lock(child);
  89. if (child->mm != mm && child->mm)
  90. points += child->mm->total_vm/2 + 1;
  91. task_unlock(child);
  92. }
  93. /*
  94. * CPU time is in tens of seconds and run time is in thousands
  95. * of seconds. There is no particular reason for this other than
  96. * that it turned out to work very well in practice.
  97. */
  98. cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
  99. >> (SHIFT_HZ + 3);
  100. if (uptime >= p->start_time.tv_sec)
  101. run_time = (uptime - p->start_time.tv_sec) >> 10;
  102. else
  103. run_time = 0;
  104. if (cpu_time)
  105. points /= int_sqrt(cpu_time);
  106. if (run_time)
  107. points /= int_sqrt(int_sqrt(run_time));
  108. /*
  109. * Niced processes are most likely less important, so double
  110. * their badness points.
  111. */
  112. if (task_nice(p) > 0)
  113. points *= 2;
  114. /*
  115. * Superuser processes are usually more important, so we make it
  116. * less likely that we kill those.
  117. */
  118. if (has_capability_noaudit(p, CAP_SYS_ADMIN) ||
  119. has_capability_noaudit(p, CAP_SYS_RESOURCE))
  120. points /= 4;
  121. /*
  122. * We don't want to kill a process with direct hardware access.
  123. * Not only could that mess up the hardware, but usually users
  124. * tend to only have this flag set on applications they think
  125. * of as important.
  126. */
  127. if (has_capability_noaudit(p, CAP_SYS_RAWIO))
  128. points /= 4;
  129. /*
  130. * If p's nodes don't overlap ours, it may still help to kill p
  131. * because p may have allocated or otherwise mapped memory on
  132. * this node before. However it will be less likely.
  133. */
  134. if (!cpuset_mems_allowed_intersects(current, p))
  135. points /= 8;
  136. /*
  137. * Adjust the score by oom_adj.
  138. */
  139. if (oom_adj) {
  140. if (oom_adj > 0) {
  141. if (!points)
  142. points = 1;
  143. points <<= oom_adj;
  144. } else
  145. points >>= -(oom_adj);
  146. }
  147. #ifdef DEBUG
  148. printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
  149. p->pid, p->comm, points);
  150. #endif
  151. return points;
  152. }
  153. /*
  154. * Determine the type of allocation constraint.
  155. */
  156. static inline enum oom_constraint constrained_alloc(struct zonelist *zonelist,
  157. gfp_t gfp_mask)
  158. {
  159. #ifdef CONFIG_NUMA
  160. struct zone *zone;
  161. struct zoneref *z;
  162. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  163. nodemask_t nodes = node_states[N_HIGH_MEMORY];
  164. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  165. if (cpuset_zone_allowed_softwall(zone, gfp_mask))
  166. node_clear(zone_to_nid(zone), nodes);
  167. else
  168. return CONSTRAINT_CPUSET;
  169. if (!nodes_empty(nodes))
  170. return CONSTRAINT_MEMORY_POLICY;
  171. #endif
  172. return CONSTRAINT_NONE;
  173. }
  174. /*
  175. * Simple selection loop. We chose the process with the highest
  176. * number of 'points'. We expect the caller will lock the tasklist.
  177. *
  178. * (not docbooked, we don't want this one cluttering up the manual)
  179. */
  180. static struct task_struct *select_bad_process(unsigned long *ppoints,
  181. struct mem_cgroup *mem)
  182. {
  183. struct task_struct *g, *p;
  184. struct task_struct *chosen = NULL;
  185. struct timespec uptime;
  186. *ppoints = 0;
  187. do_posix_clock_monotonic_gettime(&uptime);
  188. do_each_thread(g, p) {
  189. unsigned long points;
  190. /*
  191. * skip kernel threads and tasks which have already released
  192. * their mm.
  193. */
  194. if (!p->mm)
  195. continue;
  196. /* skip the init task */
  197. if (is_global_init(p))
  198. continue;
  199. if (mem && !task_in_mem_cgroup(p, mem))
  200. continue;
  201. /*
  202. * This task already has access to memory reserves and is
  203. * being killed. Don't allow any other task access to the
  204. * memory reserve.
  205. *
  206. * Note: this may have a chance of deadlock if it gets
  207. * blocked waiting for another task which itself is waiting
  208. * for memory. Is there a better alternative?
  209. */
  210. if (test_tsk_thread_flag(p, TIF_MEMDIE))
  211. return ERR_PTR(-1UL);
  212. /*
  213. * This is in the process of releasing memory so wait for it
  214. * to finish before killing some other task by mistake.
  215. *
  216. * However, if p is the current task, we allow the 'kill' to
  217. * go ahead if it is exiting: this will simply set TIF_MEMDIE,
  218. * which will allow it to gain access to memory reserves in
  219. * the process of exiting and releasing its resources.
  220. * Otherwise we could get an easy OOM deadlock.
  221. */
  222. if (p->flags & PF_EXITING) {
  223. if (p != current)
  224. return ERR_PTR(-1UL);
  225. chosen = p;
  226. *ppoints = ULONG_MAX;
  227. }
  228. if (p->signal->oom_adj == OOM_DISABLE)
  229. continue;
  230. points = badness(p, uptime.tv_sec);
  231. if (points > *ppoints || !chosen) {
  232. chosen = p;
  233. *ppoints = points;
  234. }
  235. } while_each_thread(g, p);
  236. return chosen;
  237. }
  238. /**
  239. * dump_tasks - dump current memory state of all system tasks
  240. * @mem: target memory controller
  241. *
  242. * Dumps the current memory state of all system tasks, excluding kernel threads.
  243. * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
  244. * score, and name.
  245. *
  246. * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are
  247. * shown.
  248. *
  249. * Call with tasklist_lock read-locked.
  250. */
  251. static void dump_tasks(const struct mem_cgroup *mem)
  252. {
  253. struct task_struct *g, *p;
  254. printk(KERN_INFO "[ pid ] uid tgid total_vm rss cpu oom_adj "
  255. "name\n");
  256. do_each_thread(g, p) {
  257. struct mm_struct *mm;
  258. if (mem && !task_in_mem_cgroup(p, mem))
  259. continue;
  260. if (!thread_group_leader(p))
  261. continue;
  262. task_lock(p);
  263. mm = p->mm;
  264. if (!mm) {
  265. /*
  266. * total_vm and rss sizes do not exist for tasks with no
  267. * mm so there's no need to report them; they can't be
  268. * oom killed anyway.
  269. */
  270. task_unlock(p);
  271. continue;
  272. }
  273. printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3d %3d %s\n",
  274. p->pid, __task_cred(p)->uid, p->tgid, mm->total_vm,
  275. get_mm_rss(mm), (int)task_cpu(p), p->signal->oom_adj,
  276. p->comm);
  277. task_unlock(p);
  278. } while_each_thread(g, p);
  279. }
  280. /*
  281. * Send SIGKILL to the selected process irrespective of CAP_SYS_RAW_IO
  282. * flag though it's unlikely that we select a process with CAP_SYS_RAW_IO
  283. * set.
  284. */
  285. static void __oom_kill_task(struct task_struct *p, int verbose)
  286. {
  287. if (is_global_init(p)) {
  288. WARN_ON(1);
  289. printk(KERN_WARNING "tried to kill init!\n");
  290. return;
  291. }
  292. if (!p->mm) {
  293. WARN_ON(1);
  294. printk(KERN_WARNING "tried to kill an mm-less task!\n");
  295. return;
  296. }
  297. if (verbose)
  298. printk(KERN_ERR "Killed process %d (%s)\n",
  299. task_pid_nr(p), p->comm);
  300. /*
  301. * We give our sacrificial lamb high priority and access to
  302. * all the memory it needs. That way it should be able to
  303. * exit() and clear out its resources quickly...
  304. */
  305. p->rt.time_slice = HZ;
  306. set_tsk_thread_flag(p, TIF_MEMDIE);
  307. force_sig(SIGKILL, p);
  308. }
  309. static int oom_kill_task(struct task_struct *p)
  310. {
  311. struct mm_struct *mm;
  312. struct task_struct *g, *q;
  313. mm = p->mm;
  314. /* WARNING: mm may not be dereferenced since we did not obtain its
  315. * value from get_task_mm(p). This is OK since all we need to do is
  316. * compare mm to q->mm below.
  317. *
  318. * Furthermore, even if mm contains a non-NULL value, p->mm may
  319. * change to NULL at any time since we do not hold task_lock(p).
  320. * However, this is of no concern to us.
  321. */
  322. if (!mm || p->signal->oom_adj == OOM_DISABLE)
  323. return 1;
  324. __oom_kill_task(p, 1);
  325. /*
  326. * kill all processes that share the ->mm (i.e. all threads),
  327. * but are in a different thread group. Don't let them have access
  328. * to memory reserves though, otherwise we might deplete all memory.
  329. */
  330. do_each_thread(g, q) {
  331. if (q->mm == mm && !same_thread_group(q, p))
  332. force_sig(SIGKILL, q);
  333. } while_each_thread(g, q);
  334. return 0;
  335. }
  336. static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
  337. unsigned long points, struct mem_cgroup *mem,
  338. const char *message)
  339. {
  340. struct task_struct *c;
  341. if (printk_ratelimit()) {
  342. printk(KERN_WARNING "%s invoked oom-killer: "
  343. "gfp_mask=0x%x, order=%d, oom_adj=%d\n",
  344. current->comm, gfp_mask, order,
  345. current->signal->oom_adj);
  346. task_lock(current);
  347. cpuset_print_task_mems_allowed(current);
  348. task_unlock(current);
  349. dump_stack();
  350. mem_cgroup_print_oom_info(mem, current);
  351. show_mem();
  352. if (sysctl_oom_dump_tasks)
  353. dump_tasks(mem);
  354. }
  355. /*
  356. * If the task is already exiting, don't alarm the sysadmin or kill
  357. * its children or threads, just set TIF_MEMDIE so it can die quickly
  358. */
  359. if (p->flags & PF_EXITING) {
  360. __oom_kill_task(p, 0);
  361. return 0;
  362. }
  363. printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
  364. message, task_pid_nr(p), p->comm, points);
  365. /* Try to kill a child first */
  366. list_for_each_entry(c, &p->children, sibling) {
  367. if (c->mm == p->mm)
  368. continue;
  369. if (!oom_kill_task(c))
  370. return 0;
  371. }
  372. return oom_kill_task(p);
  373. }
  374. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  375. void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
  376. {
  377. unsigned long points = 0;
  378. struct task_struct *p;
  379. read_lock(&tasklist_lock);
  380. retry:
  381. p = select_bad_process(&points, mem);
  382. if (PTR_ERR(p) == -1UL)
  383. goto out;
  384. if (!p)
  385. p = current;
  386. if (oom_kill_process(p, gfp_mask, 0, points, mem,
  387. "Memory cgroup out of memory"))
  388. goto retry;
  389. out:
  390. read_unlock(&tasklist_lock);
  391. }
  392. #endif
  393. static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
  394. int register_oom_notifier(struct notifier_block *nb)
  395. {
  396. return blocking_notifier_chain_register(&oom_notify_list, nb);
  397. }
  398. EXPORT_SYMBOL_GPL(register_oom_notifier);
  399. int unregister_oom_notifier(struct notifier_block *nb)
  400. {
  401. return blocking_notifier_chain_unregister(&oom_notify_list, nb);
  402. }
  403. EXPORT_SYMBOL_GPL(unregister_oom_notifier);
  404. /*
  405. * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero
  406. * if a parallel OOM killing is already taking place that includes a zone in
  407. * the zonelist. Otherwise, locks all zones in the zonelist and returns 1.
  408. */
  409. int try_set_zone_oom(struct zonelist *zonelist, gfp_t gfp_mask)
  410. {
  411. struct zoneref *z;
  412. struct zone *zone;
  413. int ret = 1;
  414. spin_lock(&zone_scan_lock);
  415. for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
  416. if (zone_is_oom_locked(zone)) {
  417. ret = 0;
  418. goto out;
  419. }
  420. }
  421. for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
  422. /*
  423. * Lock each zone in the zonelist under zone_scan_lock so a
  424. * parallel invocation of try_set_zone_oom() doesn't succeed
  425. * when it shouldn't.
  426. */
  427. zone_set_flag(zone, ZONE_OOM_LOCKED);
  428. }
  429. out:
  430. spin_unlock(&zone_scan_lock);
  431. return ret;
  432. }
  433. /*
  434. * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
  435. * allocation attempts with zonelists containing them may now recall the OOM
  436. * killer, if necessary.
  437. */
  438. void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
  439. {
  440. struct zoneref *z;
  441. struct zone *zone;
  442. spin_lock(&zone_scan_lock);
  443. for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
  444. zone_clear_flag(zone, ZONE_OOM_LOCKED);
  445. }
  446. spin_unlock(&zone_scan_lock);
  447. }
  448. /*
  449. * Must be called with tasklist_lock held for read.
  450. */
  451. static void __out_of_memory(gfp_t gfp_mask, int order)
  452. {
  453. struct task_struct *p;
  454. unsigned long points;
  455. if (sysctl_oom_kill_allocating_task)
  456. if (!oom_kill_process(current, gfp_mask, order, 0, NULL,
  457. "Out of memory (oom_kill_allocating_task)"))
  458. return;
  459. retry:
  460. /*
  461. * Rambo mode: Shoot down a process and hope it solves whatever
  462. * issues we may have.
  463. */
  464. p = select_bad_process(&points, NULL);
  465. if (PTR_ERR(p) == -1UL)
  466. return;
  467. /* Found nothing?!?! Either we hang forever, or we panic. */
  468. if (!p) {
  469. read_unlock(&tasklist_lock);
  470. panic("Out of memory and no killable processes...\n");
  471. }
  472. if (oom_kill_process(p, gfp_mask, order, points, NULL,
  473. "Out of memory"))
  474. goto retry;
  475. }
  476. /*
  477. * pagefault handler calls into here because it is out of memory but
  478. * doesn't know exactly how or why.
  479. */
  480. void pagefault_out_of_memory(void)
  481. {
  482. unsigned long freed = 0;
  483. blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
  484. if (freed > 0)
  485. /* Got some memory back in the last second. */
  486. return;
  487. /*
  488. * If this is from memcg, oom-killer is already invoked.
  489. * and not worth to go system-wide-oom.
  490. */
  491. if (mem_cgroup_oom_called(current))
  492. goto rest_and_return;
  493. if (sysctl_panic_on_oom)
  494. panic("out of memory from page fault. panic_on_oom is selected.\n");
  495. read_lock(&tasklist_lock);
  496. __out_of_memory(0, 0); /* unknown gfp_mask and order */
  497. read_unlock(&tasklist_lock);
  498. /*
  499. * Give "p" a good chance of killing itself before we
  500. * retry to allocate memory.
  501. */
  502. rest_and_return:
  503. if (!test_thread_flag(TIF_MEMDIE))
  504. schedule_timeout_uninterruptible(1);
  505. }
  506. /**
  507. * out_of_memory - kill the "best" process when we run out of memory
  508. * @zonelist: zonelist pointer
  509. * @gfp_mask: memory allocation flags
  510. * @order: amount of memory being requested as a power of 2
  511. *
  512. * If we run out of memory, we have the choice between either
  513. * killing a random task (bad), letting the system crash (worse)
  514. * OR try to be smart about which process to kill. Note that we
  515. * don't have to be perfect here, we just have to be good.
  516. */
  517. void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
  518. {
  519. unsigned long freed = 0;
  520. enum oom_constraint constraint;
  521. blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
  522. if (freed > 0)
  523. /* Got some memory back in the last second. */
  524. return;
  525. if (sysctl_panic_on_oom == 2)
  526. panic("out of memory. Compulsory panic_on_oom is selected.\n");
  527. /*
  528. * Check if there were limitations on the allocation (only relevant for
  529. * NUMA) that may require different handling.
  530. */
  531. constraint = constrained_alloc(zonelist, gfp_mask);
  532. read_lock(&tasklist_lock);
  533. switch (constraint) {
  534. case CONSTRAINT_MEMORY_POLICY:
  535. oom_kill_process(current, gfp_mask, order, 0, NULL,
  536. "No available memory (MPOL_BIND)");
  537. break;
  538. case CONSTRAINT_NONE:
  539. if (sysctl_panic_on_oom)
  540. panic("out of memory. panic_on_oom is selected\n");
  541. /* Fall-through */
  542. case CONSTRAINT_CPUSET:
  543. __out_of_memory(gfp_mask, order);
  544. break;
  545. }
  546. read_unlock(&tasklist_lock);
  547. /*
  548. * Give "p" a good chance of killing itself before we
  549. * retry to allocate memory unless "p" is current
  550. */
  551. if (!test_thread_flag(TIF_MEMDIE))
  552. schedule_timeout_uninterruptible(1);
  553. }