sched_fair.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. /*
  23. * Targeted preemption latency for CPU-bound tasks:
  24. * (default: 20ms, units: nanoseconds)
  25. *
  26. * NOTE: this latency value is not the same as the concept of
  27. * 'timeslice length' - timeslices in CFS are of variable length.
  28. * (to see the precise effective timeslice length of your workload,
  29. * run vmstat and monitor the context-switches field)
  30. *
  31. * On SMP systems the value of this is multiplied by the log2 of the
  32. * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
  33. * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
  34. * Targeted preemption latency for CPU-bound tasks:
  35. */
  36. const_debug unsigned int sysctl_sched_latency = 20000000ULL;
  37. /*
  38. * After fork, child runs first. (default) If set to 0 then
  39. * parent will (try to) run first.
  40. */
  41. const_debug unsigned int sysctl_sched_child_runs_first = 1;
  42. /*
  43. * Minimal preemption granularity for CPU-bound tasks:
  44. * (default: 2 msec, units: nanoseconds)
  45. */
  46. unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
  47. /*
  48. * sys_sched_yield() compat mode
  49. *
  50. * This option switches the agressive yield implementation of the
  51. * old scheduler back on.
  52. */
  53. unsigned int __read_mostly sysctl_sched_compat_yield;
  54. /*
  55. * SCHED_BATCH wake-up granularity.
  56. * (default: 25 msec, units: nanoseconds)
  57. *
  58. * This option delays the preemption effects of decoupled workloads
  59. * and reduces their over-scheduling. Synchronous workloads will still
  60. * have immediate wakeup/sleep latencies.
  61. */
  62. const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
  63. /*
  64. * SCHED_OTHER wake-up granularity.
  65. * (default: 1 msec, units: nanoseconds)
  66. *
  67. * This option delays the preemption effects of decoupled workloads
  68. * and reduces their over-scheduling. Synchronous workloads will still
  69. * have immediate wakeup/sleep latencies.
  70. */
  71. const_debug unsigned int sysctl_sched_wakeup_granularity = 2000000UL;
  72. unsigned int sysctl_sched_runtime_limit __read_mostly;
  73. extern struct sched_class fair_sched_class;
  74. /**************************************************************
  75. * CFS operations on generic schedulable entities:
  76. */
  77. #ifdef CONFIG_FAIR_GROUP_SCHED
  78. /* cpu runqueue to which this cfs_rq is attached */
  79. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  80. {
  81. return cfs_rq->rq;
  82. }
  83. /* An entity is a task if it doesn't "own" a runqueue */
  84. #define entity_is_task(se) (!se->my_q)
  85. #else /* CONFIG_FAIR_GROUP_SCHED */
  86. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  87. {
  88. return container_of(cfs_rq, struct rq, cfs);
  89. }
  90. #define entity_is_task(se) 1
  91. #endif /* CONFIG_FAIR_GROUP_SCHED */
  92. static inline struct task_struct *task_of(struct sched_entity *se)
  93. {
  94. return container_of(se, struct task_struct, se);
  95. }
  96. /**************************************************************
  97. * Scheduling class tree data structure manipulation methods:
  98. */
  99. static inline void
  100. set_leftmost(struct cfs_rq *cfs_rq, struct rb_node *leftmost)
  101. {
  102. struct sched_entity *se;
  103. cfs_rq->rb_leftmost = leftmost;
  104. if (leftmost) {
  105. se = rb_entry(leftmost, struct sched_entity, run_node);
  106. cfs_rq->min_vruntime = max(se->vruntime,
  107. cfs_rq->min_vruntime);
  108. }
  109. }
  110. /*
  111. * Enqueue an entity into the rb-tree:
  112. */
  113. static void
  114. __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  115. {
  116. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  117. struct rb_node *parent = NULL;
  118. struct sched_entity *entry;
  119. s64 key = se->fair_key;
  120. int leftmost = 1;
  121. /*
  122. * Find the right place in the rbtree:
  123. */
  124. while (*link) {
  125. parent = *link;
  126. entry = rb_entry(parent, struct sched_entity, run_node);
  127. /*
  128. * We dont care about collisions. Nodes with
  129. * the same key stay together.
  130. */
  131. if (key - entry->fair_key < 0) {
  132. link = &parent->rb_left;
  133. } else {
  134. link = &parent->rb_right;
  135. leftmost = 0;
  136. }
  137. }
  138. /*
  139. * Maintain a cache of leftmost tree entries (it is frequently
  140. * used):
  141. */
  142. if (leftmost)
  143. set_leftmost(cfs_rq, &se->run_node);
  144. rb_link_node(&se->run_node, parent, link);
  145. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  146. update_load_add(&cfs_rq->load, se->load.weight);
  147. cfs_rq->nr_running++;
  148. se->on_rq = 1;
  149. schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
  150. }
  151. static void
  152. __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  153. {
  154. if (cfs_rq->rb_leftmost == &se->run_node)
  155. set_leftmost(cfs_rq, rb_next(&se->run_node));
  156. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  157. update_load_sub(&cfs_rq->load, se->load.weight);
  158. cfs_rq->nr_running--;
  159. se->on_rq = 0;
  160. schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
  161. }
  162. static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
  163. {
  164. return cfs_rq->rb_leftmost;
  165. }
  166. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  167. {
  168. return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
  169. }
  170. static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  171. {
  172. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  173. struct sched_entity *se = NULL;
  174. struct rb_node *parent;
  175. while (*link) {
  176. parent = *link;
  177. se = rb_entry(parent, struct sched_entity, run_node);
  178. link = &parent->rb_right;
  179. }
  180. return se;
  181. }
  182. /**************************************************************
  183. * Scheduling class statistics methods:
  184. */
  185. static u64 __sched_period(unsigned long nr_running)
  186. {
  187. u64 period = sysctl_sched_latency;
  188. unsigned long nr_latency =
  189. sysctl_sched_latency / sysctl_sched_min_granularity;
  190. if (unlikely(nr_running > nr_latency)) {
  191. period *= nr_running;
  192. do_div(period, nr_latency);
  193. }
  194. return period;
  195. }
  196. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  197. {
  198. u64 period = __sched_period(cfs_rq->nr_running);
  199. period *= se->load.weight;
  200. do_div(period, cfs_rq->load.weight);
  201. return period;
  202. }
  203. static inline void
  204. limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
  205. {
  206. long limit = sysctl_sched_runtime_limit;
  207. /*
  208. * Niced tasks have the same history dynamic range as
  209. * non-niced tasks:
  210. */
  211. if (unlikely(se->wait_runtime > limit)) {
  212. se->wait_runtime = limit;
  213. schedstat_inc(se, wait_runtime_overruns);
  214. schedstat_inc(cfs_rq, wait_runtime_overruns);
  215. }
  216. if (unlikely(se->wait_runtime < -limit)) {
  217. se->wait_runtime = -limit;
  218. schedstat_inc(se, wait_runtime_underruns);
  219. schedstat_inc(cfs_rq, wait_runtime_underruns);
  220. }
  221. }
  222. static inline void
  223. __add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
  224. {
  225. se->wait_runtime += delta;
  226. schedstat_add(se, sum_wait_runtime, delta);
  227. limit_wait_runtime(cfs_rq, se);
  228. }
  229. static void
  230. add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
  231. {
  232. schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
  233. __add_wait_runtime(cfs_rq, se, delta);
  234. schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
  235. }
  236. /*
  237. * Update the current task's runtime statistics. Skip current tasks that
  238. * are not in our scheduling class.
  239. */
  240. static inline void
  241. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  242. unsigned long delta_exec)
  243. {
  244. unsigned long delta, delta_fair, delta_mine, delta_exec_weighted;
  245. struct load_weight *lw = &cfs_rq->load;
  246. unsigned long load = lw->weight;
  247. schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
  248. curr->sum_exec_runtime += delta_exec;
  249. cfs_rq->exec_clock += delta_exec;
  250. delta_exec_weighted = delta_exec;
  251. if (unlikely(curr->load.weight != NICE_0_LOAD)) {
  252. delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
  253. &curr->load);
  254. }
  255. curr->vruntime += delta_exec_weighted;
  256. if (!sched_feat(FAIR_SLEEPERS))
  257. return;
  258. if (unlikely(!load))
  259. return;
  260. delta_fair = calc_delta_fair(delta_exec, lw);
  261. delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);
  262. if (cfs_rq->sleeper_bonus > sysctl_sched_min_granularity) {
  263. delta = min((u64)delta_mine, cfs_rq->sleeper_bonus);
  264. delta = min(delta, (unsigned long)(
  265. (long)sysctl_sched_runtime_limit - curr->wait_runtime));
  266. cfs_rq->sleeper_bonus -= delta;
  267. delta_mine -= delta;
  268. }
  269. cfs_rq->fair_clock += delta_fair;
  270. /*
  271. * We executed delta_exec amount of time on the CPU,
  272. * but we were only entitled to delta_mine amount of
  273. * time during that period (if nr_running == 1 then
  274. * the two values are equal)
  275. * [Note: delta_mine - delta_exec is negative]:
  276. */
  277. add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
  278. }
  279. static void update_curr(struct cfs_rq *cfs_rq)
  280. {
  281. struct sched_entity *curr = cfs_rq->curr;
  282. u64 now = rq_of(cfs_rq)->clock;
  283. unsigned long delta_exec;
  284. if (unlikely(!curr))
  285. return;
  286. /*
  287. * Get the amount of time the current task was running
  288. * since the last time we changed load (this cannot
  289. * overflow on 32 bits):
  290. */
  291. delta_exec = (unsigned long)(now - curr->exec_start);
  292. __update_curr(cfs_rq, curr, delta_exec);
  293. curr->exec_start = now;
  294. }
  295. static inline void
  296. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  297. {
  298. se->wait_start_fair = cfs_rq->fair_clock;
  299. schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
  300. }
  301. static inline unsigned long
  302. calc_weighted(unsigned long delta, struct sched_entity *se)
  303. {
  304. unsigned long weight = se->load.weight;
  305. if (unlikely(weight != NICE_0_LOAD))
  306. return (u64)delta * se->load.weight >> NICE_0_SHIFT;
  307. else
  308. return delta;
  309. }
  310. /*
  311. * Task is being enqueued - update stats:
  312. */
  313. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  314. {
  315. /*
  316. * Are we enqueueing a waiting task? (for current tasks
  317. * a dequeue/enqueue event is a NOP)
  318. */
  319. if (se != cfs_rq->curr)
  320. update_stats_wait_start(cfs_rq, se);
  321. /*
  322. * Update the key:
  323. */
  324. se->fair_key = se->vruntime;
  325. }
  326. /*
  327. * Note: must be called with a freshly updated rq->fair_clock.
  328. */
  329. static inline void
  330. __update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se,
  331. unsigned long delta_fair)
  332. {
  333. schedstat_set(se->wait_max, max(se->wait_max,
  334. rq_of(cfs_rq)->clock - se->wait_start));
  335. delta_fair = calc_weighted(delta_fair, se);
  336. add_wait_runtime(cfs_rq, se, delta_fair);
  337. }
  338. static void
  339. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  340. {
  341. unsigned long delta_fair;
  342. if (unlikely(!se->wait_start_fair))
  343. return;
  344. delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
  345. (u64)(cfs_rq->fair_clock - se->wait_start_fair));
  346. __update_stats_wait_end(cfs_rq, se, delta_fair);
  347. se->wait_start_fair = 0;
  348. schedstat_set(se->wait_start, 0);
  349. }
  350. static inline void
  351. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  352. {
  353. update_curr(cfs_rq);
  354. /*
  355. * Mark the end of the wait period if dequeueing a
  356. * waiting task:
  357. */
  358. if (se != cfs_rq->curr)
  359. update_stats_wait_end(cfs_rq, se);
  360. }
  361. /*
  362. * We are picking a new current task - update its stats:
  363. */
  364. static inline void
  365. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  366. {
  367. /*
  368. * We are starting a new run period:
  369. */
  370. se->exec_start = rq_of(cfs_rq)->clock;
  371. }
  372. /*
  373. * We are descheduling a task - update its stats:
  374. */
  375. static inline void
  376. update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  377. {
  378. se->exec_start = 0;
  379. }
  380. /**************************************************
  381. * Scheduling class queueing methods:
  382. */
  383. static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se,
  384. unsigned long delta_fair)
  385. {
  386. unsigned long load = cfs_rq->load.weight;
  387. long prev_runtime;
  388. /*
  389. * Do not boost sleepers if there's too much bonus 'in flight'
  390. * already:
  391. */
  392. if (unlikely(cfs_rq->sleeper_bonus > sysctl_sched_runtime_limit))
  393. return;
  394. if (sched_feat(SLEEPER_LOAD_AVG))
  395. load = rq_of(cfs_rq)->cpu_load[2];
  396. /*
  397. * Fix up delta_fair with the effect of us running
  398. * during the whole sleep period:
  399. */
  400. if (sched_feat(SLEEPER_AVG))
  401. delta_fair = div64_likely32((u64)delta_fair * load,
  402. load + se->load.weight);
  403. delta_fair = calc_weighted(delta_fair, se);
  404. prev_runtime = se->wait_runtime;
  405. __add_wait_runtime(cfs_rq, se, delta_fair);
  406. delta_fair = se->wait_runtime - prev_runtime;
  407. /*
  408. * Track the amount of bonus we've given to sleepers:
  409. */
  410. cfs_rq->sleeper_bonus += delta_fair;
  411. }
  412. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  413. {
  414. struct task_struct *tsk = task_of(se);
  415. unsigned long delta_fair;
  416. if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
  417. !sched_feat(FAIR_SLEEPERS))
  418. return;
  419. delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
  420. (u64)(cfs_rq->fair_clock - se->sleep_start_fair));
  421. __enqueue_sleeper(cfs_rq, se, delta_fair);
  422. se->sleep_start_fair = 0;
  423. #ifdef CONFIG_SCHEDSTATS
  424. if (se->sleep_start) {
  425. u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
  426. if ((s64)delta < 0)
  427. delta = 0;
  428. if (unlikely(delta > se->sleep_max))
  429. se->sleep_max = delta;
  430. se->sleep_start = 0;
  431. se->sum_sleep_runtime += delta;
  432. }
  433. if (se->block_start) {
  434. u64 delta = rq_of(cfs_rq)->clock - se->block_start;
  435. if ((s64)delta < 0)
  436. delta = 0;
  437. if (unlikely(delta > se->block_max))
  438. se->block_max = delta;
  439. se->block_start = 0;
  440. se->sum_sleep_runtime += delta;
  441. /*
  442. * Blocking time is in units of nanosecs, so shift by 20 to
  443. * get a milliseconds-range estimation of the amount of
  444. * time that the task spent sleeping:
  445. */
  446. if (unlikely(prof_on == SLEEP_PROFILING)) {
  447. profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
  448. delta >> 20);
  449. }
  450. }
  451. #endif
  452. }
  453. static void
  454. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  455. {
  456. struct sched_entity *last = __pick_last_entity(cfs_rq);
  457. u64 min_runtime, latency;
  458. min_runtime = cfs_rq->min_vruntime;
  459. if (last) {
  460. min_runtime += last->vruntime;
  461. min_runtime >>= 1;
  462. if (initial && sched_feat(START_DEBIT))
  463. min_runtime += sysctl_sched_latency/2;
  464. }
  465. if (!initial && sched_feat(NEW_FAIR_SLEEPERS)) {
  466. latency = sysctl_sched_latency;
  467. if (min_runtime > latency)
  468. min_runtime -= latency;
  469. else
  470. min_runtime = 0;
  471. }
  472. se->vruntime = max(se->vruntime, min_runtime);
  473. }
  474. static void
  475. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
  476. {
  477. /*
  478. * Update the fair clock.
  479. */
  480. update_curr(cfs_rq);
  481. if (wakeup) {
  482. place_entity(cfs_rq, se, 0);
  483. enqueue_sleeper(cfs_rq, se);
  484. }
  485. update_stats_enqueue(cfs_rq, se);
  486. __enqueue_entity(cfs_rq, se);
  487. }
  488. static void
  489. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
  490. {
  491. update_stats_dequeue(cfs_rq, se);
  492. if (sleep) {
  493. se->sleep_start_fair = cfs_rq->fair_clock;
  494. #ifdef CONFIG_SCHEDSTATS
  495. if (entity_is_task(se)) {
  496. struct task_struct *tsk = task_of(se);
  497. if (tsk->state & TASK_INTERRUPTIBLE)
  498. se->sleep_start = rq_of(cfs_rq)->clock;
  499. if (tsk->state & TASK_UNINTERRUPTIBLE)
  500. se->block_start = rq_of(cfs_rq)->clock;
  501. }
  502. #endif
  503. }
  504. __dequeue_entity(cfs_rq, se);
  505. }
  506. /*
  507. * Preempt the current task with a newly woken task if needed:
  508. */
  509. static void
  510. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  511. {
  512. unsigned long ideal_runtime, delta_exec;
  513. ideal_runtime = sched_slice(cfs_rq, curr);
  514. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  515. if (delta_exec > ideal_runtime)
  516. resched_task(rq_of(cfs_rq)->curr);
  517. }
  518. static inline void
  519. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  520. {
  521. /*
  522. * Any task has to be enqueued before it get to execute on
  523. * a CPU. So account for the time it spent waiting on the
  524. * runqueue. (note, here we rely on pick_next_task() having
  525. * done a put_prev_task_fair() shortly before this, which
  526. * updated rq->fair_clock - used by update_stats_wait_end())
  527. */
  528. update_stats_wait_end(cfs_rq, se);
  529. update_stats_curr_start(cfs_rq, se);
  530. cfs_rq->curr = se;
  531. #ifdef CONFIG_SCHEDSTATS
  532. /*
  533. * Track our maximum slice length, if the CPU's load is at
  534. * least twice that of our own weight (i.e. dont track it
  535. * when there are only lesser-weight tasks around):
  536. */
  537. if (rq_of(cfs_rq)->ls.load.weight >= 2*se->load.weight) {
  538. se->slice_max = max(se->slice_max,
  539. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  540. }
  541. #endif
  542. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  543. }
  544. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  545. {
  546. struct sched_entity *se = __pick_next_entity(cfs_rq);
  547. set_next_entity(cfs_rq, se);
  548. return se;
  549. }
  550. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  551. {
  552. /*
  553. * If still on the runqueue then deactivate_task()
  554. * was not called and update_curr() has to be done:
  555. */
  556. if (prev->on_rq)
  557. update_curr(cfs_rq);
  558. update_stats_curr_end(cfs_rq, prev);
  559. if (prev->on_rq)
  560. update_stats_wait_start(cfs_rq, prev);
  561. cfs_rq->curr = NULL;
  562. }
  563. static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  564. {
  565. /*
  566. * Dequeue and enqueue the task to update its
  567. * position within the tree:
  568. */
  569. dequeue_entity(cfs_rq, curr, 0);
  570. enqueue_entity(cfs_rq, curr, 0);
  571. if (cfs_rq->nr_running > 1)
  572. check_preempt_tick(cfs_rq, curr);
  573. }
  574. /**************************************************
  575. * CFS operations on tasks:
  576. */
  577. #ifdef CONFIG_FAIR_GROUP_SCHED
  578. /* Walk up scheduling entities hierarchy */
  579. #define for_each_sched_entity(se) \
  580. for (; se; se = se->parent)
  581. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  582. {
  583. return p->se.cfs_rq;
  584. }
  585. /* runqueue on which this entity is (to be) queued */
  586. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  587. {
  588. return se->cfs_rq;
  589. }
  590. /* runqueue "owned" by this group */
  591. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  592. {
  593. return grp->my_q;
  594. }
  595. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  596. * another cpu ('this_cpu')
  597. */
  598. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  599. {
  600. /* A later patch will take group into account */
  601. return &cpu_rq(this_cpu)->cfs;
  602. }
  603. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  604. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  605. list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  606. /* Do the two (enqueued) tasks belong to the same group ? */
  607. static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
  608. {
  609. if (curr->se.cfs_rq == p->se.cfs_rq)
  610. return 1;
  611. return 0;
  612. }
  613. #else /* CONFIG_FAIR_GROUP_SCHED */
  614. #define for_each_sched_entity(se) \
  615. for (; se; se = NULL)
  616. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  617. {
  618. return &task_rq(p)->cfs;
  619. }
  620. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  621. {
  622. struct task_struct *p = task_of(se);
  623. struct rq *rq = task_rq(p);
  624. return &rq->cfs;
  625. }
  626. /* runqueue "owned" by this group */
  627. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  628. {
  629. return NULL;
  630. }
  631. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  632. {
  633. return &cpu_rq(this_cpu)->cfs;
  634. }
  635. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  636. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  637. static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
  638. {
  639. return 1;
  640. }
  641. #endif /* CONFIG_FAIR_GROUP_SCHED */
  642. /*
  643. * The enqueue_task method is called before nr_running is
  644. * increased. Here we update the fair scheduling stats and
  645. * then put the task into the rbtree:
  646. */
  647. static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
  648. {
  649. struct cfs_rq *cfs_rq;
  650. struct sched_entity *se = &p->se;
  651. for_each_sched_entity(se) {
  652. if (se->on_rq)
  653. break;
  654. cfs_rq = cfs_rq_of(se);
  655. enqueue_entity(cfs_rq, se, wakeup);
  656. }
  657. }
  658. /*
  659. * The dequeue_task method is called before nr_running is
  660. * decreased. We remove the task from the rbtree and
  661. * update the fair scheduling stats:
  662. */
  663. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
  664. {
  665. struct cfs_rq *cfs_rq;
  666. struct sched_entity *se = &p->se;
  667. for_each_sched_entity(se) {
  668. cfs_rq = cfs_rq_of(se);
  669. dequeue_entity(cfs_rq, se, sleep);
  670. /* Don't dequeue parent if it has other entities besides us */
  671. if (cfs_rq->load.weight)
  672. break;
  673. }
  674. }
  675. /*
  676. * sched_yield() support is very simple - we dequeue and enqueue.
  677. *
  678. * If compat_yield is turned on then we requeue to the end of the tree.
  679. */
  680. static void yield_task_fair(struct rq *rq, struct task_struct *p)
  681. {
  682. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  683. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  684. struct sched_entity *rightmost, *se = &p->se;
  685. struct rb_node *parent;
  686. /*
  687. * Are we the only task in the tree?
  688. */
  689. if (unlikely(cfs_rq->nr_running == 1))
  690. return;
  691. if (likely(!sysctl_sched_compat_yield)) {
  692. __update_rq_clock(rq);
  693. /*
  694. * Dequeue and enqueue the task to update its
  695. * position within the tree:
  696. */
  697. dequeue_entity(cfs_rq, &p->se, 0);
  698. enqueue_entity(cfs_rq, &p->se, 0);
  699. return;
  700. }
  701. /*
  702. * Find the rightmost entry in the rbtree:
  703. */
  704. do {
  705. parent = *link;
  706. link = &parent->rb_right;
  707. } while (*link);
  708. rightmost = rb_entry(parent, struct sched_entity, run_node);
  709. /*
  710. * Already in the rightmost position?
  711. */
  712. if (unlikely(rightmost == se))
  713. return;
  714. /*
  715. * Minimally necessary key value to be last in the tree:
  716. */
  717. se->fair_key = rightmost->fair_key + 1;
  718. if (cfs_rq->rb_leftmost == &se->run_node)
  719. cfs_rq->rb_leftmost = rb_next(&se->run_node);
  720. /*
  721. * Relink the task to the rightmost position:
  722. */
  723. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  724. rb_link_node(&se->run_node, parent, link);
  725. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  726. }
  727. /*
  728. * Preempt the current task with a newly woken task if needed:
  729. */
  730. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
  731. {
  732. struct task_struct *curr = rq->curr;
  733. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  734. if (unlikely(rt_prio(p->prio))) {
  735. update_rq_clock(rq);
  736. update_curr(cfs_rq);
  737. resched_task(curr);
  738. return;
  739. }
  740. if (is_same_group(curr, p)) {
  741. s64 delta = curr->se.vruntime - p->se.vruntime;
  742. if (delta > (s64)sysctl_sched_wakeup_granularity)
  743. resched_task(curr);
  744. }
  745. }
  746. static struct task_struct *pick_next_task_fair(struct rq *rq)
  747. {
  748. struct cfs_rq *cfs_rq = &rq->cfs;
  749. struct sched_entity *se;
  750. if (unlikely(!cfs_rq->nr_running))
  751. return NULL;
  752. do {
  753. se = pick_next_entity(cfs_rq);
  754. cfs_rq = group_cfs_rq(se);
  755. } while (cfs_rq);
  756. return task_of(se);
  757. }
  758. /*
  759. * Account for a descheduled task:
  760. */
  761. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  762. {
  763. struct sched_entity *se = &prev->se;
  764. struct cfs_rq *cfs_rq;
  765. for_each_sched_entity(se) {
  766. cfs_rq = cfs_rq_of(se);
  767. put_prev_entity(cfs_rq, se);
  768. }
  769. }
  770. /**************************************************
  771. * Fair scheduling class load-balancing methods:
  772. */
  773. /*
  774. * Load-balancing iterator. Note: while the runqueue stays locked
  775. * during the whole iteration, the current task might be
  776. * dequeued so the iterator has to be dequeue-safe. Here we
  777. * achieve that by always pre-iterating before returning
  778. * the current task:
  779. */
  780. static inline struct task_struct *
  781. __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
  782. {
  783. struct task_struct *p;
  784. if (!curr)
  785. return NULL;
  786. p = rb_entry(curr, struct task_struct, se.run_node);
  787. cfs_rq->rb_load_balance_curr = rb_next(curr);
  788. return p;
  789. }
  790. static struct task_struct *load_balance_start_fair(void *arg)
  791. {
  792. struct cfs_rq *cfs_rq = arg;
  793. return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
  794. }
  795. static struct task_struct *load_balance_next_fair(void *arg)
  796. {
  797. struct cfs_rq *cfs_rq = arg;
  798. return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
  799. }
  800. #ifdef CONFIG_FAIR_GROUP_SCHED
  801. static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
  802. {
  803. struct sched_entity *curr;
  804. struct task_struct *p;
  805. if (!cfs_rq->nr_running)
  806. return MAX_PRIO;
  807. curr = __pick_next_entity(cfs_rq);
  808. p = task_of(curr);
  809. return p->prio;
  810. }
  811. #endif
  812. static unsigned long
  813. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  814. unsigned long max_nr_move, unsigned long max_load_move,
  815. struct sched_domain *sd, enum cpu_idle_type idle,
  816. int *all_pinned, int *this_best_prio)
  817. {
  818. struct cfs_rq *busy_cfs_rq;
  819. unsigned long load_moved, total_nr_moved = 0, nr_moved;
  820. long rem_load_move = max_load_move;
  821. struct rq_iterator cfs_rq_iterator;
  822. cfs_rq_iterator.start = load_balance_start_fair;
  823. cfs_rq_iterator.next = load_balance_next_fair;
  824. for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
  825. #ifdef CONFIG_FAIR_GROUP_SCHED
  826. struct cfs_rq *this_cfs_rq;
  827. long imbalance;
  828. unsigned long maxload;
  829. this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
  830. imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
  831. /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
  832. if (imbalance <= 0)
  833. continue;
  834. /* Don't pull more than imbalance/2 */
  835. imbalance /= 2;
  836. maxload = min(rem_load_move, imbalance);
  837. *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
  838. #else
  839. # define maxload rem_load_move
  840. #endif
  841. /* pass busy_cfs_rq argument into
  842. * load_balance_[start|next]_fair iterators
  843. */
  844. cfs_rq_iterator.arg = busy_cfs_rq;
  845. nr_moved = balance_tasks(this_rq, this_cpu, busiest,
  846. max_nr_move, maxload, sd, idle, all_pinned,
  847. &load_moved, this_best_prio, &cfs_rq_iterator);
  848. total_nr_moved += nr_moved;
  849. max_nr_move -= nr_moved;
  850. rem_load_move -= load_moved;
  851. if (max_nr_move <= 0 || rem_load_move <= 0)
  852. break;
  853. }
  854. return max_load_move - rem_load_move;
  855. }
  856. /*
  857. * scheduler tick hitting a task of our scheduling class:
  858. */
  859. static void task_tick_fair(struct rq *rq, struct task_struct *curr)
  860. {
  861. struct cfs_rq *cfs_rq;
  862. struct sched_entity *se = &curr->se;
  863. for_each_sched_entity(se) {
  864. cfs_rq = cfs_rq_of(se);
  865. entity_tick(cfs_rq, se);
  866. }
  867. }
  868. #define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
  869. /*
  870. * Share the fairness runtime between parent and child, thus the
  871. * total amount of pressure for CPU stays equal - new tasks
  872. * get a chance to run but frequent forkers are not allowed to
  873. * monopolize the CPU. Note: the parent runqueue is locked,
  874. * the child is not running yet.
  875. */
  876. static void task_new_fair(struct rq *rq, struct task_struct *p)
  877. {
  878. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  879. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  880. sched_info_queued(p);
  881. update_curr(cfs_rq);
  882. place_entity(cfs_rq, se, 1);
  883. /*
  884. * The statistical average of wait_runtime is about
  885. * -granularity/2, so initialize the task with that:
  886. */
  887. if (sched_feat(START_DEBIT))
  888. se->wait_runtime = -(__sched_period(cfs_rq->nr_running+1) / 2);
  889. if (sysctl_sched_child_runs_first &&
  890. curr->vruntime < se->vruntime) {
  891. dequeue_entity(cfs_rq, curr, 0);
  892. swap(curr->vruntime, se->vruntime);
  893. enqueue_entity(cfs_rq, curr, 0);
  894. }
  895. update_stats_enqueue(cfs_rq, se);
  896. __enqueue_entity(cfs_rq, se);
  897. resched_task(rq->curr);
  898. }
  899. #ifdef CONFIG_FAIR_GROUP_SCHED
  900. /* Account for a task changing its policy or group.
  901. *
  902. * This routine is mostly called to set cfs_rq->curr field when a task
  903. * migrates between groups/classes.
  904. */
  905. static void set_curr_task_fair(struct rq *rq)
  906. {
  907. struct sched_entity *se = &rq->curr->se;
  908. for_each_sched_entity(se)
  909. set_next_entity(cfs_rq_of(se), se);
  910. }
  911. #else
  912. static void set_curr_task_fair(struct rq *rq)
  913. {
  914. }
  915. #endif
  916. /*
  917. * All the scheduling class methods:
  918. */
  919. struct sched_class fair_sched_class __read_mostly = {
  920. .enqueue_task = enqueue_task_fair,
  921. .dequeue_task = dequeue_task_fair,
  922. .yield_task = yield_task_fair,
  923. .check_preempt_curr = check_preempt_wakeup,
  924. .pick_next_task = pick_next_task_fair,
  925. .put_prev_task = put_prev_task_fair,
  926. .load_balance = load_balance_fair,
  927. .set_curr_task = set_curr_task_fair,
  928. .task_tick = task_tick_fair,
  929. .task_new = task_new_fair,
  930. };
  931. #ifdef CONFIG_SCHED_DEBUG
  932. static void print_cfs_stats(struct seq_file *m, int cpu)
  933. {
  934. struct cfs_rq *cfs_rq;
  935. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  936. print_cfs_rq(m, cpu, cfs_rq);
  937. }
  938. #endif