m25p80.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023
  1. /*
  2. * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
  3. *
  4. * Author: Mike Lavender, mike@steroidmicros.com
  5. *
  6. * Copyright (c) 2005, Intec Automation Inc.
  7. *
  8. * Some parts are based on lart.c by Abraham Van Der Merwe
  9. *
  10. * Cleaned up and generalized based on mtd_dataflash.c
  11. *
  12. * This code is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License version 2 as
  14. * published by the Free Software Foundation.
  15. *
  16. */
  17. #include <linux/init.h>
  18. #include <linux/err.h>
  19. #include <linux/errno.h>
  20. #include <linux/module.h>
  21. #include <linux/device.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/mutex.h>
  24. #include <linux/math64.h>
  25. #include <linux/slab.h>
  26. #include <linux/sched.h>
  27. #include <linux/mod_devicetable.h>
  28. #include <linux/mtd/cfi.h>
  29. #include <linux/mtd/mtd.h>
  30. #include <linux/mtd/partitions.h>
  31. #include <linux/spi/spi.h>
  32. #include <linux/spi/flash.h>
  33. /* Flash opcodes. */
  34. #define OPCODE_WREN 0x06 /* Write enable */
  35. #define OPCODE_RDSR 0x05 /* Read status register */
  36. #define OPCODE_WRSR 0x01 /* Write status register 1 byte */
  37. #define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
  38. #define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
  39. #define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
  40. #define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
  41. #define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
  42. #define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */
  43. #define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
  44. #define OPCODE_RDID 0x9f /* Read JEDEC ID */
  45. /* Used for SST flashes only. */
  46. #define OPCODE_BP 0x02 /* Byte program */
  47. #define OPCODE_WRDI 0x04 /* Write disable */
  48. #define OPCODE_AAI_WP 0xad /* Auto address increment word program */
  49. /* Used for Macronix flashes only. */
  50. #define OPCODE_EN4B 0xb7 /* Enter 4-byte mode */
  51. #define OPCODE_EX4B 0xe9 /* Exit 4-byte mode */
  52. /* Used for Spansion flashes only. */
  53. #define OPCODE_BRWR 0x17 /* Bank register write */
  54. /* Status Register bits. */
  55. #define SR_WIP 1 /* Write in progress */
  56. #define SR_WEL 2 /* Write enable latch */
  57. /* meaning of other SR_* bits may differ between vendors */
  58. #define SR_BP0 4 /* Block protect 0 */
  59. #define SR_BP1 8 /* Block protect 1 */
  60. #define SR_BP2 0x10 /* Block protect 2 */
  61. #define SR_SRWD 0x80 /* SR write protect */
  62. /* Define max times to check status register before we give up. */
  63. #define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
  64. #define MAX_CMD_SIZE 5
  65. #ifdef CONFIG_M25PXX_USE_FAST_READ
  66. #define OPCODE_READ OPCODE_FAST_READ
  67. #define FAST_READ_DUMMY_BYTE 1
  68. #else
  69. #define OPCODE_READ OPCODE_NORM_READ
  70. #define FAST_READ_DUMMY_BYTE 0
  71. #endif
  72. #define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16)
  73. /****************************************************************************/
  74. struct m25p {
  75. struct spi_device *spi;
  76. struct mutex lock;
  77. struct mtd_info mtd;
  78. u16 page_size;
  79. u16 addr_width;
  80. u8 erase_opcode;
  81. u8 *command;
  82. };
  83. static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
  84. {
  85. return container_of(mtd, struct m25p, mtd);
  86. }
  87. /****************************************************************************/
  88. /*
  89. * Internal helper functions
  90. */
  91. /*
  92. * Read the status register, returning its value in the location
  93. * Return the status register value.
  94. * Returns negative if error occurred.
  95. */
  96. static int read_sr(struct m25p *flash)
  97. {
  98. ssize_t retval;
  99. u8 code = OPCODE_RDSR;
  100. u8 val;
  101. retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);
  102. if (retval < 0) {
  103. dev_err(&flash->spi->dev, "error %d reading SR\n",
  104. (int) retval);
  105. return retval;
  106. }
  107. return val;
  108. }
  109. /*
  110. * Write status register 1 byte
  111. * Returns negative if error occurred.
  112. */
  113. static int write_sr(struct m25p *flash, u8 val)
  114. {
  115. flash->command[0] = OPCODE_WRSR;
  116. flash->command[1] = val;
  117. return spi_write(flash->spi, flash->command, 2);
  118. }
  119. /*
  120. * Set write enable latch with Write Enable command.
  121. * Returns negative if error occurred.
  122. */
  123. static inline int write_enable(struct m25p *flash)
  124. {
  125. u8 code = OPCODE_WREN;
  126. return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
  127. }
  128. /*
  129. * Send write disble instruction to the chip.
  130. */
  131. static inline int write_disable(struct m25p *flash)
  132. {
  133. u8 code = OPCODE_WRDI;
  134. return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
  135. }
  136. /*
  137. * Enable/disable 4-byte addressing mode.
  138. */
  139. static inline int set_4byte(struct m25p *flash, u32 jedec_id, int enable)
  140. {
  141. switch (JEDEC_MFR(jedec_id)) {
  142. case CFI_MFR_MACRONIX:
  143. flash->command[0] = enable ? OPCODE_EN4B : OPCODE_EX4B;
  144. return spi_write(flash->spi, flash->command, 1);
  145. default:
  146. /* Spansion style */
  147. flash->command[0] = OPCODE_BRWR;
  148. flash->command[1] = enable << 7;
  149. return spi_write(flash->spi, flash->command, 2);
  150. }
  151. }
  152. /*
  153. * Service routine to read status register until ready, or timeout occurs.
  154. * Returns non-zero if error.
  155. */
  156. static int wait_till_ready(struct m25p *flash)
  157. {
  158. unsigned long deadline;
  159. int sr;
  160. deadline = jiffies + MAX_READY_WAIT_JIFFIES;
  161. do {
  162. if ((sr = read_sr(flash)) < 0)
  163. break;
  164. else if (!(sr & SR_WIP))
  165. return 0;
  166. cond_resched();
  167. } while (!time_after_eq(jiffies, deadline));
  168. return 1;
  169. }
  170. /*
  171. * Erase the whole flash memory
  172. *
  173. * Returns 0 if successful, non-zero otherwise.
  174. */
  175. static int erase_chip(struct m25p *flash)
  176. {
  177. pr_debug("%s: %s %lldKiB\n",
  178. dev_name(&flash->spi->dev), __func__,
  179. (long long)(flash->mtd.size >> 10));
  180. /* Wait until finished previous write command. */
  181. if (wait_till_ready(flash))
  182. return 1;
  183. /* Send write enable, then erase commands. */
  184. write_enable(flash);
  185. /* Set up command buffer. */
  186. flash->command[0] = OPCODE_CHIP_ERASE;
  187. spi_write(flash->spi, flash->command, 1);
  188. return 0;
  189. }
  190. static void m25p_addr2cmd(struct m25p *flash, unsigned int addr, u8 *cmd)
  191. {
  192. /* opcode is in cmd[0] */
  193. cmd[1] = addr >> (flash->addr_width * 8 - 8);
  194. cmd[2] = addr >> (flash->addr_width * 8 - 16);
  195. cmd[3] = addr >> (flash->addr_width * 8 - 24);
  196. cmd[4] = addr >> (flash->addr_width * 8 - 32);
  197. }
  198. static int m25p_cmdsz(struct m25p *flash)
  199. {
  200. return 1 + flash->addr_width;
  201. }
  202. /*
  203. * Erase one sector of flash memory at offset ``offset'' which is any
  204. * address within the sector which should be erased.
  205. *
  206. * Returns 0 if successful, non-zero otherwise.
  207. */
  208. static int erase_sector(struct m25p *flash, u32 offset)
  209. {
  210. pr_debug("%s: %s %dKiB at 0x%08x\n",
  211. dev_name(&flash->spi->dev), __func__,
  212. flash->mtd.erasesize / 1024, offset);
  213. /* Wait until finished previous write command. */
  214. if (wait_till_ready(flash))
  215. return 1;
  216. /* Send write enable, then erase commands. */
  217. write_enable(flash);
  218. /* Set up command buffer. */
  219. flash->command[0] = flash->erase_opcode;
  220. m25p_addr2cmd(flash, offset, flash->command);
  221. spi_write(flash->spi, flash->command, m25p_cmdsz(flash));
  222. return 0;
  223. }
  224. /****************************************************************************/
  225. /*
  226. * MTD implementation
  227. */
  228. /*
  229. * Erase an address range on the flash chip. The address range may extend
  230. * one or more erase sectors. Return an error is there is a problem erasing.
  231. */
  232. static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
  233. {
  234. struct m25p *flash = mtd_to_m25p(mtd);
  235. u32 addr,len;
  236. uint32_t rem;
  237. pr_debug("%s: %s %s 0x%llx, len %lld\n",
  238. dev_name(&flash->spi->dev), __func__, "at",
  239. (long long)instr->addr, (long long)instr->len);
  240. /* sanity checks */
  241. if (instr->addr + instr->len > flash->mtd.size)
  242. return -EINVAL;
  243. div_u64_rem(instr->len, mtd->erasesize, &rem);
  244. if (rem)
  245. return -EINVAL;
  246. addr = instr->addr;
  247. len = instr->len;
  248. mutex_lock(&flash->lock);
  249. /* whole-chip erase? */
  250. if (len == flash->mtd.size) {
  251. if (erase_chip(flash)) {
  252. instr->state = MTD_ERASE_FAILED;
  253. mutex_unlock(&flash->lock);
  254. return -EIO;
  255. }
  256. /* REVISIT in some cases we could speed up erasing large regions
  257. * by using OPCODE_SE instead of OPCODE_BE_4K. We may have set up
  258. * to use "small sector erase", but that's not always optimal.
  259. */
  260. /* "sector"-at-a-time erase */
  261. } else {
  262. while (len) {
  263. if (erase_sector(flash, addr)) {
  264. instr->state = MTD_ERASE_FAILED;
  265. mutex_unlock(&flash->lock);
  266. return -EIO;
  267. }
  268. addr += mtd->erasesize;
  269. len -= mtd->erasesize;
  270. }
  271. }
  272. mutex_unlock(&flash->lock);
  273. instr->state = MTD_ERASE_DONE;
  274. mtd_erase_callback(instr);
  275. return 0;
  276. }
  277. /*
  278. * Read an address range from the flash chip. The address range
  279. * may be any size provided it is within the physical boundaries.
  280. */
  281. static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
  282. size_t *retlen, u_char *buf)
  283. {
  284. struct m25p *flash = mtd_to_m25p(mtd);
  285. struct spi_transfer t[2];
  286. struct spi_message m;
  287. pr_debug("%s: %s %s 0x%08x, len %zd\n",
  288. dev_name(&flash->spi->dev), __func__, "from",
  289. (u32)from, len);
  290. /* sanity checks */
  291. if (!len)
  292. return 0;
  293. if (from + len > flash->mtd.size)
  294. return -EINVAL;
  295. spi_message_init(&m);
  296. memset(t, 0, (sizeof t));
  297. /* NOTE:
  298. * OPCODE_FAST_READ (if available) is faster.
  299. * Should add 1 byte DUMMY_BYTE.
  300. */
  301. t[0].tx_buf = flash->command;
  302. t[0].len = m25p_cmdsz(flash) + FAST_READ_DUMMY_BYTE;
  303. spi_message_add_tail(&t[0], &m);
  304. t[1].rx_buf = buf;
  305. t[1].len = len;
  306. spi_message_add_tail(&t[1], &m);
  307. /* Byte count starts at zero. */
  308. *retlen = 0;
  309. mutex_lock(&flash->lock);
  310. /* Wait till previous write/erase is done. */
  311. if (wait_till_ready(flash)) {
  312. /* REVISIT status return?? */
  313. mutex_unlock(&flash->lock);
  314. return 1;
  315. }
  316. /* FIXME switch to OPCODE_FAST_READ. It's required for higher
  317. * clocks; and at this writing, every chip this driver handles
  318. * supports that opcode.
  319. */
  320. /* Set up the write data buffer. */
  321. flash->command[0] = OPCODE_READ;
  322. m25p_addr2cmd(flash, from, flash->command);
  323. spi_sync(flash->spi, &m);
  324. *retlen = m.actual_length - m25p_cmdsz(flash) - FAST_READ_DUMMY_BYTE;
  325. mutex_unlock(&flash->lock);
  326. return 0;
  327. }
  328. /*
  329. * Write an address range to the flash chip. Data must be written in
  330. * FLASH_PAGESIZE chunks. The address range may be any size provided
  331. * it is within the physical boundaries.
  332. */
  333. static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
  334. size_t *retlen, const u_char *buf)
  335. {
  336. struct m25p *flash = mtd_to_m25p(mtd);
  337. u32 page_offset, page_size;
  338. struct spi_transfer t[2];
  339. struct spi_message m;
  340. pr_debug("%s: %s %s 0x%08x, len %zd\n",
  341. dev_name(&flash->spi->dev), __func__, "to",
  342. (u32)to, len);
  343. *retlen = 0;
  344. /* sanity checks */
  345. if (!len)
  346. return(0);
  347. if (to + len > flash->mtd.size)
  348. return -EINVAL;
  349. spi_message_init(&m);
  350. memset(t, 0, (sizeof t));
  351. t[0].tx_buf = flash->command;
  352. t[0].len = m25p_cmdsz(flash);
  353. spi_message_add_tail(&t[0], &m);
  354. t[1].tx_buf = buf;
  355. spi_message_add_tail(&t[1], &m);
  356. mutex_lock(&flash->lock);
  357. /* Wait until finished previous write command. */
  358. if (wait_till_ready(flash)) {
  359. mutex_unlock(&flash->lock);
  360. return 1;
  361. }
  362. write_enable(flash);
  363. /* Set up the opcode in the write buffer. */
  364. flash->command[0] = OPCODE_PP;
  365. m25p_addr2cmd(flash, to, flash->command);
  366. page_offset = to & (flash->page_size - 1);
  367. /* do all the bytes fit onto one page? */
  368. if (page_offset + len <= flash->page_size) {
  369. t[1].len = len;
  370. spi_sync(flash->spi, &m);
  371. *retlen = m.actual_length - m25p_cmdsz(flash);
  372. } else {
  373. u32 i;
  374. /* the size of data remaining on the first page */
  375. page_size = flash->page_size - page_offset;
  376. t[1].len = page_size;
  377. spi_sync(flash->spi, &m);
  378. *retlen = m.actual_length - m25p_cmdsz(flash);
  379. /* write everything in flash->page_size chunks */
  380. for (i = page_size; i < len; i += page_size) {
  381. page_size = len - i;
  382. if (page_size > flash->page_size)
  383. page_size = flash->page_size;
  384. /* write the next page to flash */
  385. m25p_addr2cmd(flash, to + i, flash->command);
  386. t[1].tx_buf = buf + i;
  387. t[1].len = page_size;
  388. wait_till_ready(flash);
  389. write_enable(flash);
  390. spi_sync(flash->spi, &m);
  391. *retlen += m.actual_length - m25p_cmdsz(flash);
  392. }
  393. }
  394. mutex_unlock(&flash->lock);
  395. return 0;
  396. }
  397. static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
  398. size_t *retlen, const u_char *buf)
  399. {
  400. struct m25p *flash = mtd_to_m25p(mtd);
  401. struct spi_transfer t[2];
  402. struct spi_message m;
  403. size_t actual;
  404. int cmd_sz, ret;
  405. pr_debug("%s: %s %s 0x%08x, len %zd\n",
  406. dev_name(&flash->spi->dev), __func__, "to",
  407. (u32)to, len);
  408. *retlen = 0;
  409. /* sanity checks */
  410. if (!len)
  411. return 0;
  412. if (to + len > flash->mtd.size)
  413. return -EINVAL;
  414. spi_message_init(&m);
  415. memset(t, 0, (sizeof t));
  416. t[0].tx_buf = flash->command;
  417. t[0].len = m25p_cmdsz(flash);
  418. spi_message_add_tail(&t[0], &m);
  419. t[1].tx_buf = buf;
  420. spi_message_add_tail(&t[1], &m);
  421. mutex_lock(&flash->lock);
  422. /* Wait until finished previous write command. */
  423. ret = wait_till_ready(flash);
  424. if (ret)
  425. goto time_out;
  426. write_enable(flash);
  427. actual = to % 2;
  428. /* Start write from odd address. */
  429. if (actual) {
  430. flash->command[0] = OPCODE_BP;
  431. m25p_addr2cmd(flash, to, flash->command);
  432. /* write one byte. */
  433. t[1].len = 1;
  434. spi_sync(flash->spi, &m);
  435. ret = wait_till_ready(flash);
  436. if (ret)
  437. goto time_out;
  438. *retlen += m.actual_length - m25p_cmdsz(flash);
  439. }
  440. to += actual;
  441. flash->command[0] = OPCODE_AAI_WP;
  442. m25p_addr2cmd(flash, to, flash->command);
  443. /* Write out most of the data here. */
  444. cmd_sz = m25p_cmdsz(flash);
  445. for (; actual < len - 1; actual += 2) {
  446. t[0].len = cmd_sz;
  447. /* write two bytes. */
  448. t[1].len = 2;
  449. t[1].tx_buf = buf + actual;
  450. spi_sync(flash->spi, &m);
  451. ret = wait_till_ready(flash);
  452. if (ret)
  453. goto time_out;
  454. *retlen += m.actual_length - cmd_sz;
  455. cmd_sz = 1;
  456. to += 2;
  457. }
  458. write_disable(flash);
  459. ret = wait_till_ready(flash);
  460. if (ret)
  461. goto time_out;
  462. /* Write out trailing byte if it exists. */
  463. if (actual != len) {
  464. write_enable(flash);
  465. flash->command[0] = OPCODE_BP;
  466. m25p_addr2cmd(flash, to, flash->command);
  467. t[0].len = m25p_cmdsz(flash);
  468. t[1].len = 1;
  469. t[1].tx_buf = buf + actual;
  470. spi_sync(flash->spi, &m);
  471. ret = wait_till_ready(flash);
  472. if (ret)
  473. goto time_out;
  474. *retlen += m.actual_length - m25p_cmdsz(flash);
  475. write_disable(flash);
  476. }
  477. time_out:
  478. mutex_unlock(&flash->lock);
  479. return ret;
  480. }
  481. /****************************************************************************/
  482. /*
  483. * SPI device driver setup and teardown
  484. */
  485. struct flash_info {
  486. /* JEDEC id zero means "no ID" (most older chips); otherwise it has
  487. * a high byte of zero plus three data bytes: the manufacturer id,
  488. * then a two byte device id.
  489. */
  490. u32 jedec_id;
  491. u16 ext_id;
  492. /* The size listed here is what works with OPCODE_SE, which isn't
  493. * necessarily called a "sector" by the vendor.
  494. */
  495. unsigned sector_size;
  496. u16 n_sectors;
  497. u16 page_size;
  498. u16 addr_width;
  499. u16 flags;
  500. #define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
  501. #define M25P_NO_ERASE 0x02 /* No erase command needed */
  502. };
  503. #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
  504. ((kernel_ulong_t)&(struct flash_info) { \
  505. .jedec_id = (_jedec_id), \
  506. .ext_id = (_ext_id), \
  507. .sector_size = (_sector_size), \
  508. .n_sectors = (_n_sectors), \
  509. .page_size = 256, \
  510. .flags = (_flags), \
  511. })
  512. #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width) \
  513. ((kernel_ulong_t)&(struct flash_info) { \
  514. .sector_size = (_sector_size), \
  515. .n_sectors = (_n_sectors), \
  516. .page_size = (_page_size), \
  517. .addr_width = (_addr_width), \
  518. .flags = M25P_NO_ERASE, \
  519. })
  520. /* NOTE: double check command sets and memory organization when you add
  521. * more flash chips. This current list focusses on newer chips, which
  522. * have been converging on command sets which including JEDEC ID.
  523. */
  524. static const struct spi_device_id m25p_ids[] = {
  525. /* Atmel -- some are (confusingly) marketed as "DataFlash" */
  526. { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
  527. { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
  528. { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
  529. { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
  530. { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
  531. { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
  532. { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
  533. { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
  534. /* EON -- en25xxx */
  535. { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
  536. { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
  537. { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
  538. /* Intel/Numonyx -- xxxs33b */
  539. { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
  540. { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
  541. { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
  542. /* Macronix */
  543. { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
  544. { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
  545. { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
  546. { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
  547. { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
  548. { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
  549. { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
  550. { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
  551. { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
  552. /* Spansion -- single (large) sector size only, at least
  553. * for the chips listed here (without boot sectors).
  554. */
  555. { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
  556. { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
  557. { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
  558. { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
  559. { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SECT_4K) },
  560. { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
  561. { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
  562. { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, 0) },
  563. { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, 0) },
  564. { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
  565. { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
  566. { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
  567. { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
  568. { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
  569. { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) },
  570. { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
  571. /* SST -- large erase sizes are "overlays", "sectors" are 4K */
  572. { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K) },
  573. { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K) },
  574. { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K) },
  575. { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K) },
  576. { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K) },
  577. { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K) },
  578. { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K) },
  579. { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K) },
  580. /* ST Microelectronics -- newer production may have feature updates */
  581. { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
  582. { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
  583. { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
  584. { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
  585. { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
  586. { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
  587. { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
  588. { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
  589. { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
  590. { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
  591. { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
  592. { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
  593. { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
  594. { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
  595. { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
  596. { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
  597. { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
  598. { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
  599. { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
  600. { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
  601. { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
  602. { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
  603. { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
  604. { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
  605. { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
  606. { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
  607. { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
  608. /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
  609. { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
  610. { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
  611. { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
  612. { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
  613. { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
  614. { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
  615. { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
  616. { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
  617. { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
  618. /* Catalyst / On Semiconductor -- non-JEDEC */
  619. { "cat25c11", CAT25_INFO( 16, 8, 16, 1) },
  620. { "cat25c03", CAT25_INFO( 32, 8, 16, 2) },
  621. { "cat25c09", CAT25_INFO( 128, 8, 32, 2) },
  622. { "cat25c17", CAT25_INFO( 256, 8, 32, 2) },
  623. { "cat25128", CAT25_INFO(2048, 8, 64, 2) },
  624. { },
  625. };
  626. MODULE_DEVICE_TABLE(spi, m25p_ids);
  627. static const struct spi_device_id *__devinit jedec_probe(struct spi_device *spi)
  628. {
  629. int tmp;
  630. u8 code = OPCODE_RDID;
  631. u8 id[5];
  632. u32 jedec;
  633. u16 ext_jedec;
  634. struct flash_info *info;
  635. /* JEDEC also defines an optional "extended device information"
  636. * string for after vendor-specific data, after the three bytes
  637. * we use here. Supporting some chips might require using it.
  638. */
  639. tmp = spi_write_then_read(spi, &code, 1, id, 5);
  640. if (tmp < 0) {
  641. pr_debug("%s: error %d reading JEDEC ID\n",
  642. dev_name(&spi->dev), tmp);
  643. return ERR_PTR(tmp);
  644. }
  645. jedec = id[0];
  646. jedec = jedec << 8;
  647. jedec |= id[1];
  648. jedec = jedec << 8;
  649. jedec |= id[2];
  650. ext_jedec = id[3] << 8 | id[4];
  651. for (tmp = 0; tmp < ARRAY_SIZE(m25p_ids) - 1; tmp++) {
  652. info = (void *)m25p_ids[tmp].driver_data;
  653. if (info->jedec_id == jedec) {
  654. if (info->ext_id != 0 && info->ext_id != ext_jedec)
  655. continue;
  656. return &m25p_ids[tmp];
  657. }
  658. }
  659. dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
  660. return ERR_PTR(-ENODEV);
  661. }
  662. /*
  663. * board specific setup should have ensured the SPI clock used here
  664. * matches what the READ command supports, at least until this driver
  665. * understands FAST_READ (for clocks over 25 MHz).
  666. */
  667. static int __devinit m25p_probe(struct spi_device *spi)
  668. {
  669. const struct spi_device_id *id = spi_get_device_id(spi);
  670. struct flash_platform_data *data;
  671. struct m25p *flash;
  672. struct flash_info *info;
  673. unsigned i;
  674. struct mtd_part_parser_data ppdata;
  675. /* Platform data helps sort out which chip type we have, as
  676. * well as how this board partitions it. If we don't have
  677. * a chip ID, try the JEDEC id commands; they'll work for most
  678. * newer chips, even if we don't recognize the particular chip.
  679. */
  680. data = spi->dev.platform_data;
  681. if (data && data->type) {
  682. const struct spi_device_id *plat_id;
  683. for (i = 0; i < ARRAY_SIZE(m25p_ids) - 1; i++) {
  684. plat_id = &m25p_ids[i];
  685. if (strcmp(data->type, plat_id->name))
  686. continue;
  687. break;
  688. }
  689. if (i < ARRAY_SIZE(m25p_ids) - 1)
  690. id = plat_id;
  691. else
  692. dev_warn(&spi->dev, "unrecognized id %s\n", data->type);
  693. }
  694. info = (void *)id->driver_data;
  695. if (info->jedec_id) {
  696. const struct spi_device_id *jid;
  697. jid = jedec_probe(spi);
  698. if (IS_ERR(jid)) {
  699. return PTR_ERR(jid);
  700. } else if (jid != id) {
  701. /*
  702. * JEDEC knows better, so overwrite platform ID. We
  703. * can't trust partitions any longer, but we'll let
  704. * mtd apply them anyway, since some partitions may be
  705. * marked read-only, and we don't want to lose that
  706. * information, even if it's not 100% accurate.
  707. */
  708. dev_warn(&spi->dev, "found %s, expected %s\n",
  709. jid->name, id->name);
  710. id = jid;
  711. info = (void *)jid->driver_data;
  712. }
  713. }
  714. flash = kzalloc(sizeof *flash, GFP_KERNEL);
  715. if (!flash)
  716. return -ENOMEM;
  717. flash->command = kmalloc(MAX_CMD_SIZE + FAST_READ_DUMMY_BYTE, GFP_KERNEL);
  718. if (!flash->command) {
  719. kfree(flash);
  720. return -ENOMEM;
  721. }
  722. flash->spi = spi;
  723. mutex_init(&flash->lock);
  724. dev_set_drvdata(&spi->dev, flash);
  725. /*
  726. * Atmel, SST and Intel/Numonyx serial flash tend to power
  727. * up with the software protection bits set
  728. */
  729. if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
  730. JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
  731. JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
  732. write_enable(flash);
  733. write_sr(flash, 0);
  734. }
  735. if (data && data->name)
  736. flash->mtd.name = data->name;
  737. else
  738. flash->mtd.name = dev_name(&spi->dev);
  739. flash->mtd.type = MTD_NORFLASH;
  740. flash->mtd.writesize = 1;
  741. flash->mtd.flags = MTD_CAP_NORFLASH;
  742. flash->mtd.size = info->sector_size * info->n_sectors;
  743. flash->mtd.erase = m25p80_erase;
  744. flash->mtd.read = m25p80_read;
  745. /* sst flash chips use AAI word program */
  746. if (JEDEC_MFR(info->jedec_id) == CFI_MFR_SST)
  747. flash->mtd.write = sst_write;
  748. else
  749. flash->mtd.write = m25p80_write;
  750. /* prefer "small sector" erase if possible */
  751. if (info->flags & SECT_4K) {
  752. flash->erase_opcode = OPCODE_BE_4K;
  753. flash->mtd.erasesize = 4096;
  754. } else {
  755. flash->erase_opcode = OPCODE_SE;
  756. flash->mtd.erasesize = info->sector_size;
  757. }
  758. if (info->flags & M25P_NO_ERASE)
  759. flash->mtd.flags |= MTD_NO_ERASE;
  760. ppdata.of_node = spi->dev.of_node;
  761. flash->mtd.dev.parent = &spi->dev;
  762. flash->page_size = info->page_size;
  763. if (info->addr_width)
  764. flash->addr_width = info->addr_width;
  765. else {
  766. /* enable 4-byte addressing if the device exceeds 16MiB */
  767. if (flash->mtd.size > 0x1000000) {
  768. flash->addr_width = 4;
  769. set_4byte(flash, info->jedec_id, 1);
  770. } else
  771. flash->addr_width = 3;
  772. }
  773. dev_info(&spi->dev, "%s (%lld Kbytes)\n", id->name,
  774. (long long)flash->mtd.size >> 10);
  775. pr_debug("mtd .name = %s, .size = 0x%llx (%lldMiB) "
  776. ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
  777. flash->mtd.name,
  778. (long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
  779. flash->mtd.erasesize, flash->mtd.erasesize / 1024,
  780. flash->mtd.numeraseregions);
  781. if (flash->mtd.numeraseregions)
  782. for (i = 0; i < flash->mtd.numeraseregions; i++)
  783. pr_debug("mtd.eraseregions[%d] = { .offset = 0x%llx, "
  784. ".erasesize = 0x%.8x (%uKiB), "
  785. ".numblocks = %d }\n",
  786. i, (long long)flash->mtd.eraseregions[i].offset,
  787. flash->mtd.eraseregions[i].erasesize,
  788. flash->mtd.eraseregions[i].erasesize / 1024,
  789. flash->mtd.eraseregions[i].numblocks);
  790. /* partitions should match sector boundaries; and it may be good to
  791. * use readonly partitions for writeprotected sectors (BP2..BP0).
  792. */
  793. return mtd_device_parse_register(&flash->mtd, NULL, &ppdata,
  794. data ? data->parts : NULL,
  795. data ? data->nr_parts : 0);
  796. }
  797. static int __devexit m25p_remove(struct spi_device *spi)
  798. {
  799. struct m25p *flash = dev_get_drvdata(&spi->dev);
  800. int status;
  801. /* Clean up MTD stuff. */
  802. status = mtd_device_unregister(&flash->mtd);
  803. if (status == 0) {
  804. kfree(flash->command);
  805. kfree(flash);
  806. }
  807. return 0;
  808. }
  809. static struct spi_driver m25p80_driver = {
  810. .driver = {
  811. .name = "m25p80",
  812. .bus = &spi_bus_type,
  813. .owner = THIS_MODULE,
  814. },
  815. .id_table = m25p_ids,
  816. .probe = m25p_probe,
  817. .remove = __devexit_p(m25p_remove),
  818. /* REVISIT: many of these chips have deep power-down modes, which
  819. * should clearly be entered on suspend() to minimize power use.
  820. * And also when they're otherwise idle...
  821. */
  822. };
  823. static int __init m25p80_init(void)
  824. {
  825. return spi_register_driver(&m25p80_driver);
  826. }
  827. static void __exit m25p80_exit(void)
  828. {
  829. spi_unregister_driver(&m25p80_driver);
  830. }
  831. module_init(m25p80_init);
  832. module_exit(m25p80_exit);
  833. MODULE_LICENSE("GPL");
  834. MODULE_AUTHOR("Mike Lavender");
  835. MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");