rmap.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * inode->i_alloc_sem (vmtruncate_range)
  24. * mm->mmap_sem
  25. * page->flags PG_locked (lock_page)
  26. * mapping->i_mmap_lock
  27. * anon_vma->lock
  28. * mm->page_table_lock or pte_lock
  29. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30. * swap_lock (in swap_duplicate, swap_info_get)
  31. * mmlist_lock (in mmput, drain_mmlist and others)
  32. * mapping->private_lock (in __set_page_dirty_buffers)
  33. * inode_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within inode_lock in __sync_single_inode)
  38. *
  39. * (code doesn't rely on that order so it could be switched around)
  40. * ->tasklist_lock
  41. * anon_vma->lock (memory_failure, collect_procs_anon)
  42. * pte map lock
  43. */
  44. #include <linux/mm.h>
  45. #include <linux/pagemap.h>
  46. #include <linux/swap.h>
  47. #include <linux/swapops.h>
  48. #include <linux/slab.h>
  49. #include <linux/init.h>
  50. #include <linux/ksm.h>
  51. #include <linux/rmap.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/module.h>
  54. #include <linux/memcontrol.h>
  55. #include <linux/mmu_notifier.h>
  56. #include <linux/migrate.h>
  57. #include <asm/tlbflush.h>
  58. #include "internal.h"
  59. static struct kmem_cache *anon_vma_cachep;
  60. static struct kmem_cache *anon_vma_chain_cachep;
  61. static inline struct anon_vma *anon_vma_alloc(void)
  62. {
  63. return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  64. }
  65. void anon_vma_free(struct anon_vma *anon_vma)
  66. {
  67. kmem_cache_free(anon_vma_cachep, anon_vma);
  68. }
  69. static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
  70. {
  71. return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
  72. }
  73. void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  74. {
  75. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  76. }
  77. /**
  78. * anon_vma_prepare - attach an anon_vma to a memory region
  79. * @vma: the memory region in question
  80. *
  81. * This makes sure the memory mapping described by 'vma' has
  82. * an 'anon_vma' attached to it, so that we can associate the
  83. * anonymous pages mapped into it with that anon_vma.
  84. *
  85. * The common case will be that we already have one, but if
  86. * if not we either need to find an adjacent mapping that we
  87. * can re-use the anon_vma from (very common when the only
  88. * reason for splitting a vma has been mprotect()), or we
  89. * allocate a new one.
  90. *
  91. * Anon-vma allocations are very subtle, because we may have
  92. * optimistically looked up an anon_vma in page_lock_anon_vma()
  93. * and that may actually touch the spinlock even in the newly
  94. * allocated vma (it depends on RCU to make sure that the
  95. * anon_vma isn't actually destroyed).
  96. *
  97. * As a result, we need to do proper anon_vma locking even
  98. * for the new allocation. At the same time, we do not want
  99. * to do any locking for the common case of already having
  100. * an anon_vma.
  101. *
  102. * This must be called with the mmap_sem held for reading.
  103. */
  104. int anon_vma_prepare(struct vm_area_struct *vma)
  105. {
  106. struct anon_vma *anon_vma = vma->anon_vma;
  107. struct anon_vma_chain *avc;
  108. might_sleep();
  109. if (unlikely(!anon_vma)) {
  110. struct mm_struct *mm = vma->vm_mm;
  111. struct anon_vma *allocated;
  112. avc = anon_vma_chain_alloc();
  113. if (!avc)
  114. goto out_enomem;
  115. anon_vma = find_mergeable_anon_vma(vma);
  116. allocated = NULL;
  117. if (!anon_vma) {
  118. anon_vma = anon_vma_alloc();
  119. if (unlikely(!anon_vma))
  120. goto out_enomem_free_avc;
  121. allocated = anon_vma;
  122. /*
  123. * This VMA had no anon_vma yet. This anon_vma is
  124. * the root of any anon_vma tree that might form.
  125. */
  126. anon_vma->root = anon_vma;
  127. }
  128. anon_vma_lock(anon_vma);
  129. /* page_table_lock to protect against threads */
  130. spin_lock(&mm->page_table_lock);
  131. if (likely(!vma->anon_vma)) {
  132. vma->anon_vma = anon_vma;
  133. avc->anon_vma = anon_vma;
  134. avc->vma = vma;
  135. list_add(&avc->same_vma, &vma->anon_vma_chain);
  136. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  137. allocated = NULL;
  138. avc = NULL;
  139. }
  140. spin_unlock(&mm->page_table_lock);
  141. anon_vma_unlock(anon_vma);
  142. if (unlikely(allocated))
  143. anon_vma_free(allocated);
  144. if (unlikely(avc))
  145. anon_vma_chain_free(avc);
  146. }
  147. return 0;
  148. out_enomem_free_avc:
  149. anon_vma_chain_free(avc);
  150. out_enomem:
  151. return -ENOMEM;
  152. }
  153. static void anon_vma_chain_link(struct vm_area_struct *vma,
  154. struct anon_vma_chain *avc,
  155. struct anon_vma *anon_vma)
  156. {
  157. avc->vma = vma;
  158. avc->anon_vma = anon_vma;
  159. list_add(&avc->same_vma, &vma->anon_vma_chain);
  160. anon_vma_lock(anon_vma);
  161. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  162. anon_vma_unlock(anon_vma);
  163. }
  164. /*
  165. * Attach the anon_vmas from src to dst.
  166. * Returns 0 on success, -ENOMEM on failure.
  167. */
  168. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  169. {
  170. struct anon_vma_chain *avc, *pavc;
  171. list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
  172. avc = anon_vma_chain_alloc();
  173. if (!avc)
  174. goto enomem_failure;
  175. anon_vma_chain_link(dst, avc, pavc->anon_vma);
  176. }
  177. return 0;
  178. enomem_failure:
  179. unlink_anon_vmas(dst);
  180. return -ENOMEM;
  181. }
  182. /*
  183. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  184. * the corresponding VMA in the parent process is attached to.
  185. * Returns 0 on success, non-zero on failure.
  186. */
  187. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  188. {
  189. struct anon_vma_chain *avc;
  190. struct anon_vma *anon_vma;
  191. /* Don't bother if the parent process has no anon_vma here. */
  192. if (!pvma->anon_vma)
  193. return 0;
  194. /*
  195. * First, attach the new VMA to the parent VMA's anon_vmas,
  196. * so rmap can find non-COWed pages in child processes.
  197. */
  198. if (anon_vma_clone(vma, pvma))
  199. return -ENOMEM;
  200. /* Then add our own anon_vma. */
  201. anon_vma = anon_vma_alloc();
  202. if (!anon_vma)
  203. goto out_error;
  204. avc = anon_vma_chain_alloc();
  205. if (!avc)
  206. goto out_error_free_anon_vma;
  207. /*
  208. * The root anon_vma's spinlock is the lock actually used when we
  209. * lock any of the anon_vmas in this anon_vma tree.
  210. */
  211. anon_vma->root = pvma->anon_vma->root;
  212. /*
  213. * With KSM refcounts, an anon_vma can stay around longer than the
  214. * process it belongs to. The root anon_vma needs to be pinned
  215. * until this anon_vma is freed, because the lock lives in the root.
  216. */
  217. get_anon_vma(anon_vma->root);
  218. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  219. vma->anon_vma = anon_vma;
  220. anon_vma_chain_link(vma, avc, anon_vma);
  221. return 0;
  222. out_error_free_anon_vma:
  223. anon_vma_free(anon_vma);
  224. out_error:
  225. unlink_anon_vmas(vma);
  226. return -ENOMEM;
  227. }
  228. static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
  229. {
  230. struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
  231. int empty;
  232. /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
  233. if (!anon_vma)
  234. return;
  235. anon_vma_lock(anon_vma);
  236. list_del(&anon_vma_chain->same_anon_vma);
  237. /* We must garbage collect the anon_vma if it's empty */
  238. empty = list_empty(&anon_vma->head) && !anonvma_external_refcount(anon_vma);
  239. anon_vma_unlock(anon_vma);
  240. if (empty) {
  241. /* We no longer need the root anon_vma */
  242. if (anon_vma->root != anon_vma)
  243. drop_anon_vma(anon_vma->root);
  244. anon_vma_free(anon_vma);
  245. }
  246. }
  247. void unlink_anon_vmas(struct vm_area_struct *vma)
  248. {
  249. struct anon_vma_chain *avc, *next;
  250. /*
  251. * Unlink each anon_vma chained to the VMA. This list is ordered
  252. * from newest to oldest, ensuring the root anon_vma gets freed last.
  253. */
  254. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  255. anon_vma_unlink(avc);
  256. list_del(&avc->same_vma);
  257. anon_vma_chain_free(avc);
  258. }
  259. }
  260. static void anon_vma_ctor(void *data)
  261. {
  262. struct anon_vma *anon_vma = data;
  263. spin_lock_init(&anon_vma->lock);
  264. anonvma_external_refcount_init(anon_vma);
  265. INIT_LIST_HEAD(&anon_vma->head);
  266. }
  267. void __init anon_vma_init(void)
  268. {
  269. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  270. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  271. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  272. }
  273. /*
  274. * Getting a lock on a stable anon_vma from a page off the LRU is
  275. * tricky: page_lock_anon_vma rely on RCU to guard against the races.
  276. */
  277. struct anon_vma *page_lock_anon_vma(struct page *page)
  278. {
  279. struct anon_vma *anon_vma;
  280. unsigned long anon_mapping;
  281. rcu_read_lock();
  282. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  283. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  284. goto out;
  285. if (!page_mapped(page))
  286. goto out;
  287. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  288. anon_vma_lock(anon_vma);
  289. return anon_vma;
  290. out:
  291. rcu_read_unlock();
  292. return NULL;
  293. }
  294. void page_unlock_anon_vma(struct anon_vma *anon_vma)
  295. {
  296. anon_vma_unlock(anon_vma);
  297. rcu_read_unlock();
  298. }
  299. /*
  300. * At what user virtual address is page expected in @vma?
  301. * Returns virtual address or -EFAULT if page's index/offset is not
  302. * within the range mapped the @vma.
  303. */
  304. static inline unsigned long
  305. vma_address(struct page *page, struct vm_area_struct *vma)
  306. {
  307. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  308. unsigned long address;
  309. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  310. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  311. /* page should be within @vma mapping range */
  312. return -EFAULT;
  313. }
  314. return address;
  315. }
  316. /*
  317. * At what user virtual address is page expected in vma?
  318. * Caller should check the page is actually part of the vma.
  319. */
  320. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  321. {
  322. if (PageAnon(page))
  323. ;
  324. else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  325. if (!vma->vm_file ||
  326. vma->vm_file->f_mapping != page->mapping)
  327. return -EFAULT;
  328. } else
  329. return -EFAULT;
  330. return vma_address(page, vma);
  331. }
  332. /*
  333. * Check that @page is mapped at @address into @mm.
  334. *
  335. * If @sync is false, page_check_address may perform a racy check to avoid
  336. * the page table lock when the pte is not present (helpful when reclaiming
  337. * highly shared pages).
  338. *
  339. * On success returns with pte mapped and locked.
  340. */
  341. pte_t *page_check_address(struct page *page, struct mm_struct *mm,
  342. unsigned long address, spinlock_t **ptlp, int sync)
  343. {
  344. pgd_t *pgd;
  345. pud_t *pud;
  346. pmd_t *pmd;
  347. pte_t *pte;
  348. spinlock_t *ptl;
  349. pgd = pgd_offset(mm, address);
  350. if (!pgd_present(*pgd))
  351. return NULL;
  352. pud = pud_offset(pgd, address);
  353. if (!pud_present(*pud))
  354. return NULL;
  355. pmd = pmd_offset(pud, address);
  356. if (!pmd_present(*pmd))
  357. return NULL;
  358. pte = pte_offset_map(pmd, address);
  359. /* Make a quick check before getting the lock */
  360. if (!sync && !pte_present(*pte)) {
  361. pte_unmap(pte);
  362. return NULL;
  363. }
  364. ptl = pte_lockptr(mm, pmd);
  365. spin_lock(ptl);
  366. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  367. *ptlp = ptl;
  368. return pte;
  369. }
  370. pte_unmap_unlock(pte, ptl);
  371. return NULL;
  372. }
  373. /**
  374. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  375. * @page: the page to test
  376. * @vma: the VMA to test
  377. *
  378. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  379. * if the page is not mapped into the page tables of this VMA. Only
  380. * valid for normal file or anonymous VMAs.
  381. */
  382. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  383. {
  384. unsigned long address;
  385. pte_t *pte;
  386. spinlock_t *ptl;
  387. address = vma_address(page, vma);
  388. if (address == -EFAULT) /* out of vma range */
  389. return 0;
  390. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  391. if (!pte) /* the page is not in this mm */
  392. return 0;
  393. pte_unmap_unlock(pte, ptl);
  394. return 1;
  395. }
  396. /*
  397. * Subfunctions of page_referenced: page_referenced_one called
  398. * repeatedly from either page_referenced_anon or page_referenced_file.
  399. */
  400. int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  401. unsigned long address, unsigned int *mapcount,
  402. unsigned long *vm_flags)
  403. {
  404. struct mm_struct *mm = vma->vm_mm;
  405. pte_t *pte;
  406. spinlock_t *ptl;
  407. int referenced = 0;
  408. pte = page_check_address(page, mm, address, &ptl, 0);
  409. if (!pte)
  410. goto out;
  411. /*
  412. * Don't want to elevate referenced for mlocked page that gets this far,
  413. * in order that it progresses to try_to_unmap and is moved to the
  414. * unevictable list.
  415. */
  416. if (vma->vm_flags & VM_LOCKED) {
  417. *mapcount = 1; /* break early from loop */
  418. *vm_flags |= VM_LOCKED;
  419. goto out_unmap;
  420. }
  421. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  422. /*
  423. * Don't treat a reference through a sequentially read
  424. * mapping as such. If the page has been used in
  425. * another mapping, we will catch it; if this other
  426. * mapping is already gone, the unmap path will have
  427. * set PG_referenced or activated the page.
  428. */
  429. if (likely(!VM_SequentialReadHint(vma)))
  430. referenced++;
  431. }
  432. /* Pretend the page is referenced if the task has the
  433. swap token and is in the middle of a page fault. */
  434. if (mm != current->mm && has_swap_token(mm) &&
  435. rwsem_is_locked(&mm->mmap_sem))
  436. referenced++;
  437. out_unmap:
  438. (*mapcount)--;
  439. pte_unmap_unlock(pte, ptl);
  440. if (referenced)
  441. *vm_flags |= vma->vm_flags;
  442. out:
  443. return referenced;
  444. }
  445. static int page_referenced_anon(struct page *page,
  446. struct mem_cgroup *mem_cont,
  447. unsigned long *vm_flags)
  448. {
  449. unsigned int mapcount;
  450. struct anon_vma *anon_vma;
  451. struct anon_vma_chain *avc;
  452. int referenced = 0;
  453. anon_vma = page_lock_anon_vma(page);
  454. if (!anon_vma)
  455. return referenced;
  456. mapcount = page_mapcount(page);
  457. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  458. struct vm_area_struct *vma = avc->vma;
  459. unsigned long address = vma_address(page, vma);
  460. if (address == -EFAULT)
  461. continue;
  462. /*
  463. * If we are reclaiming on behalf of a cgroup, skip
  464. * counting on behalf of references from different
  465. * cgroups
  466. */
  467. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  468. continue;
  469. referenced += page_referenced_one(page, vma, address,
  470. &mapcount, vm_flags);
  471. if (!mapcount)
  472. break;
  473. }
  474. page_unlock_anon_vma(anon_vma);
  475. return referenced;
  476. }
  477. /**
  478. * page_referenced_file - referenced check for object-based rmap
  479. * @page: the page we're checking references on.
  480. * @mem_cont: target memory controller
  481. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  482. *
  483. * For an object-based mapped page, find all the places it is mapped and
  484. * check/clear the referenced flag. This is done by following the page->mapping
  485. * pointer, then walking the chain of vmas it holds. It returns the number
  486. * of references it found.
  487. *
  488. * This function is only called from page_referenced for object-based pages.
  489. */
  490. static int page_referenced_file(struct page *page,
  491. struct mem_cgroup *mem_cont,
  492. unsigned long *vm_flags)
  493. {
  494. unsigned int mapcount;
  495. struct address_space *mapping = page->mapping;
  496. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  497. struct vm_area_struct *vma;
  498. struct prio_tree_iter iter;
  499. int referenced = 0;
  500. /*
  501. * The caller's checks on page->mapping and !PageAnon have made
  502. * sure that this is a file page: the check for page->mapping
  503. * excludes the case just before it gets set on an anon page.
  504. */
  505. BUG_ON(PageAnon(page));
  506. /*
  507. * The page lock not only makes sure that page->mapping cannot
  508. * suddenly be NULLified by truncation, it makes sure that the
  509. * structure at mapping cannot be freed and reused yet,
  510. * so we can safely take mapping->i_mmap_lock.
  511. */
  512. BUG_ON(!PageLocked(page));
  513. spin_lock(&mapping->i_mmap_lock);
  514. /*
  515. * i_mmap_lock does not stabilize mapcount at all, but mapcount
  516. * is more likely to be accurate if we note it after spinning.
  517. */
  518. mapcount = page_mapcount(page);
  519. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  520. unsigned long address = vma_address(page, vma);
  521. if (address == -EFAULT)
  522. continue;
  523. /*
  524. * If we are reclaiming on behalf of a cgroup, skip
  525. * counting on behalf of references from different
  526. * cgroups
  527. */
  528. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  529. continue;
  530. referenced += page_referenced_one(page, vma, address,
  531. &mapcount, vm_flags);
  532. if (!mapcount)
  533. break;
  534. }
  535. spin_unlock(&mapping->i_mmap_lock);
  536. return referenced;
  537. }
  538. /**
  539. * page_referenced - test if the page was referenced
  540. * @page: the page to test
  541. * @is_locked: caller holds lock on the page
  542. * @mem_cont: target memory controller
  543. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  544. *
  545. * Quick test_and_clear_referenced for all mappings to a page,
  546. * returns the number of ptes which referenced the page.
  547. */
  548. int page_referenced(struct page *page,
  549. int is_locked,
  550. struct mem_cgroup *mem_cont,
  551. unsigned long *vm_flags)
  552. {
  553. int referenced = 0;
  554. int we_locked = 0;
  555. *vm_flags = 0;
  556. if (page_mapped(page) && page_rmapping(page)) {
  557. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  558. we_locked = trylock_page(page);
  559. if (!we_locked) {
  560. referenced++;
  561. goto out;
  562. }
  563. }
  564. if (unlikely(PageKsm(page)))
  565. referenced += page_referenced_ksm(page, mem_cont,
  566. vm_flags);
  567. else if (PageAnon(page))
  568. referenced += page_referenced_anon(page, mem_cont,
  569. vm_flags);
  570. else if (page->mapping)
  571. referenced += page_referenced_file(page, mem_cont,
  572. vm_flags);
  573. if (we_locked)
  574. unlock_page(page);
  575. }
  576. out:
  577. if (page_test_and_clear_young(page))
  578. referenced++;
  579. return referenced;
  580. }
  581. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  582. unsigned long address)
  583. {
  584. struct mm_struct *mm = vma->vm_mm;
  585. pte_t *pte;
  586. spinlock_t *ptl;
  587. int ret = 0;
  588. pte = page_check_address(page, mm, address, &ptl, 1);
  589. if (!pte)
  590. goto out;
  591. if (pte_dirty(*pte) || pte_write(*pte)) {
  592. pte_t entry;
  593. flush_cache_page(vma, address, pte_pfn(*pte));
  594. entry = ptep_clear_flush_notify(vma, address, pte);
  595. entry = pte_wrprotect(entry);
  596. entry = pte_mkclean(entry);
  597. set_pte_at(mm, address, pte, entry);
  598. ret = 1;
  599. }
  600. pte_unmap_unlock(pte, ptl);
  601. out:
  602. return ret;
  603. }
  604. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  605. {
  606. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  607. struct vm_area_struct *vma;
  608. struct prio_tree_iter iter;
  609. int ret = 0;
  610. BUG_ON(PageAnon(page));
  611. spin_lock(&mapping->i_mmap_lock);
  612. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  613. if (vma->vm_flags & VM_SHARED) {
  614. unsigned long address = vma_address(page, vma);
  615. if (address == -EFAULT)
  616. continue;
  617. ret += page_mkclean_one(page, vma, address);
  618. }
  619. }
  620. spin_unlock(&mapping->i_mmap_lock);
  621. return ret;
  622. }
  623. int page_mkclean(struct page *page)
  624. {
  625. int ret = 0;
  626. BUG_ON(!PageLocked(page));
  627. if (page_mapped(page)) {
  628. struct address_space *mapping = page_mapping(page);
  629. if (mapping) {
  630. ret = page_mkclean_file(mapping, page);
  631. if (page_test_dirty(page)) {
  632. page_clear_dirty(page);
  633. ret = 1;
  634. }
  635. }
  636. }
  637. return ret;
  638. }
  639. EXPORT_SYMBOL_GPL(page_mkclean);
  640. /**
  641. * page_move_anon_rmap - move a page to our anon_vma
  642. * @page: the page to move to our anon_vma
  643. * @vma: the vma the page belongs to
  644. * @address: the user virtual address mapped
  645. *
  646. * When a page belongs exclusively to one process after a COW event,
  647. * that page can be moved into the anon_vma that belongs to just that
  648. * process, so the rmap code will not search the parent or sibling
  649. * processes.
  650. */
  651. void page_move_anon_rmap(struct page *page,
  652. struct vm_area_struct *vma, unsigned long address)
  653. {
  654. struct anon_vma *anon_vma = vma->anon_vma;
  655. VM_BUG_ON(!PageLocked(page));
  656. VM_BUG_ON(!anon_vma);
  657. VM_BUG_ON(page->index != linear_page_index(vma, address));
  658. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  659. page->mapping = (struct address_space *) anon_vma;
  660. }
  661. /**
  662. * __page_set_anon_rmap - setup new anonymous rmap
  663. * @page: the page to add the mapping to
  664. * @vma: the vm area in which the mapping is added
  665. * @address: the user virtual address mapped
  666. * @exclusive: the page is exclusively owned by the current process
  667. */
  668. static void __page_set_anon_rmap(struct page *page,
  669. struct vm_area_struct *vma, unsigned long address, int exclusive)
  670. {
  671. struct anon_vma *anon_vma = vma->anon_vma;
  672. BUG_ON(!anon_vma);
  673. /*
  674. * If the page isn't exclusively mapped into this vma,
  675. * we must use the _oldest_ possible anon_vma for the
  676. * page mapping!
  677. */
  678. if (!exclusive) {
  679. if (PageAnon(page))
  680. return;
  681. anon_vma = anon_vma->root;
  682. } else {
  683. /*
  684. * In this case, swapped-out-but-not-discarded swap-cache
  685. * is remapped. So, no need to update page->mapping here.
  686. * We convice anon_vma poitned by page->mapping is not obsolete
  687. * because vma->anon_vma is necessary to be a family of it.
  688. */
  689. if (PageAnon(page))
  690. return;
  691. }
  692. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  693. page->mapping = (struct address_space *) anon_vma;
  694. page->index = linear_page_index(vma, address);
  695. }
  696. /**
  697. * __page_check_anon_rmap - sanity check anonymous rmap addition
  698. * @page: the page to add the mapping to
  699. * @vma: the vm area in which the mapping is added
  700. * @address: the user virtual address mapped
  701. */
  702. static void __page_check_anon_rmap(struct page *page,
  703. struct vm_area_struct *vma, unsigned long address)
  704. {
  705. #ifdef CONFIG_DEBUG_VM
  706. /*
  707. * The page's anon-rmap details (mapping and index) are guaranteed to
  708. * be set up correctly at this point.
  709. *
  710. * We have exclusion against page_add_anon_rmap because the caller
  711. * always holds the page locked, except if called from page_dup_rmap,
  712. * in which case the page is already known to be setup.
  713. *
  714. * We have exclusion against page_add_new_anon_rmap because those pages
  715. * are initially only visible via the pagetables, and the pte is locked
  716. * over the call to page_add_new_anon_rmap.
  717. */
  718. BUG_ON(page->index != linear_page_index(vma, address));
  719. #endif
  720. }
  721. /**
  722. * page_add_anon_rmap - add pte mapping to an anonymous page
  723. * @page: the page to add the mapping to
  724. * @vma: the vm area in which the mapping is added
  725. * @address: the user virtual address mapped
  726. *
  727. * The caller needs to hold the pte lock, and the page must be locked in
  728. * the anon_vma case: to serialize mapping,index checking after setting,
  729. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  730. * (but PageKsm is never downgraded to PageAnon).
  731. */
  732. void page_add_anon_rmap(struct page *page,
  733. struct vm_area_struct *vma, unsigned long address)
  734. {
  735. int first = atomic_inc_and_test(&page->_mapcount);
  736. if (first)
  737. __inc_zone_page_state(page, NR_ANON_PAGES);
  738. if (unlikely(PageKsm(page)))
  739. return;
  740. VM_BUG_ON(!PageLocked(page));
  741. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  742. if (first)
  743. __page_set_anon_rmap(page, vma, address, 0);
  744. else
  745. __page_check_anon_rmap(page, vma, address);
  746. }
  747. /**
  748. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  749. * @page: the page to add the mapping to
  750. * @vma: the vm area in which the mapping is added
  751. * @address: the user virtual address mapped
  752. *
  753. * Same as page_add_anon_rmap but must only be called on *new* pages.
  754. * This means the inc-and-test can be bypassed.
  755. * Page does not have to be locked.
  756. */
  757. void page_add_new_anon_rmap(struct page *page,
  758. struct vm_area_struct *vma, unsigned long address)
  759. {
  760. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  761. SetPageSwapBacked(page);
  762. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  763. __inc_zone_page_state(page, NR_ANON_PAGES);
  764. __page_set_anon_rmap(page, vma, address, 1);
  765. if (page_evictable(page, vma))
  766. lru_cache_add_lru(page, LRU_ACTIVE_ANON);
  767. else
  768. add_page_to_unevictable_list(page);
  769. }
  770. /**
  771. * page_add_file_rmap - add pte mapping to a file page
  772. * @page: the page to add the mapping to
  773. *
  774. * The caller needs to hold the pte lock.
  775. */
  776. void page_add_file_rmap(struct page *page)
  777. {
  778. if (atomic_inc_and_test(&page->_mapcount)) {
  779. __inc_zone_page_state(page, NR_FILE_MAPPED);
  780. mem_cgroup_update_file_mapped(page, 1);
  781. }
  782. }
  783. /**
  784. * page_remove_rmap - take down pte mapping from a page
  785. * @page: page to remove mapping from
  786. *
  787. * The caller needs to hold the pte lock.
  788. */
  789. void page_remove_rmap(struct page *page)
  790. {
  791. /* page still mapped by someone else? */
  792. if (!atomic_add_negative(-1, &page->_mapcount))
  793. return;
  794. /*
  795. * Now that the last pte has gone, s390 must transfer dirty
  796. * flag from storage key to struct page. We can usually skip
  797. * this if the page is anon, so about to be freed; but perhaps
  798. * not if it's in swapcache - there might be another pte slot
  799. * containing the swap entry, but page not yet written to swap.
  800. */
  801. if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
  802. page_clear_dirty(page);
  803. set_page_dirty(page);
  804. }
  805. if (PageAnon(page)) {
  806. mem_cgroup_uncharge_page(page);
  807. __dec_zone_page_state(page, NR_ANON_PAGES);
  808. } else {
  809. __dec_zone_page_state(page, NR_FILE_MAPPED);
  810. mem_cgroup_update_file_mapped(page, -1);
  811. }
  812. /*
  813. * It would be tidy to reset the PageAnon mapping here,
  814. * but that might overwrite a racing page_add_anon_rmap
  815. * which increments mapcount after us but sets mapping
  816. * before us: so leave the reset to free_hot_cold_page,
  817. * and remember that it's only reliable while mapped.
  818. * Leaving it set also helps swapoff to reinstate ptes
  819. * faster for those pages still in swapcache.
  820. */
  821. }
  822. /*
  823. * Subfunctions of try_to_unmap: try_to_unmap_one called
  824. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  825. */
  826. int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  827. unsigned long address, enum ttu_flags flags)
  828. {
  829. struct mm_struct *mm = vma->vm_mm;
  830. pte_t *pte;
  831. pte_t pteval;
  832. spinlock_t *ptl;
  833. int ret = SWAP_AGAIN;
  834. pte = page_check_address(page, mm, address, &ptl, 0);
  835. if (!pte)
  836. goto out;
  837. /*
  838. * If the page is mlock()d, we cannot swap it out.
  839. * If it's recently referenced (perhaps page_referenced
  840. * skipped over this mm) then we should reactivate it.
  841. */
  842. if (!(flags & TTU_IGNORE_MLOCK)) {
  843. if (vma->vm_flags & VM_LOCKED)
  844. goto out_mlock;
  845. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  846. goto out_unmap;
  847. }
  848. if (!(flags & TTU_IGNORE_ACCESS)) {
  849. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  850. ret = SWAP_FAIL;
  851. goto out_unmap;
  852. }
  853. }
  854. /* Nuke the page table entry. */
  855. flush_cache_page(vma, address, page_to_pfn(page));
  856. pteval = ptep_clear_flush_notify(vma, address, pte);
  857. /* Move the dirty bit to the physical page now the pte is gone. */
  858. if (pte_dirty(pteval))
  859. set_page_dirty(page);
  860. /* Update high watermark before we lower rss */
  861. update_hiwater_rss(mm);
  862. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  863. if (PageAnon(page))
  864. dec_mm_counter(mm, MM_ANONPAGES);
  865. else
  866. dec_mm_counter(mm, MM_FILEPAGES);
  867. set_pte_at(mm, address, pte,
  868. swp_entry_to_pte(make_hwpoison_entry(page)));
  869. } else if (PageAnon(page)) {
  870. swp_entry_t entry = { .val = page_private(page) };
  871. if (PageSwapCache(page)) {
  872. /*
  873. * Store the swap location in the pte.
  874. * See handle_pte_fault() ...
  875. */
  876. if (swap_duplicate(entry) < 0) {
  877. set_pte_at(mm, address, pte, pteval);
  878. ret = SWAP_FAIL;
  879. goto out_unmap;
  880. }
  881. if (list_empty(&mm->mmlist)) {
  882. spin_lock(&mmlist_lock);
  883. if (list_empty(&mm->mmlist))
  884. list_add(&mm->mmlist, &init_mm.mmlist);
  885. spin_unlock(&mmlist_lock);
  886. }
  887. dec_mm_counter(mm, MM_ANONPAGES);
  888. inc_mm_counter(mm, MM_SWAPENTS);
  889. } else if (PAGE_MIGRATION) {
  890. /*
  891. * Store the pfn of the page in a special migration
  892. * pte. do_swap_page() will wait until the migration
  893. * pte is removed and then restart fault handling.
  894. */
  895. BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
  896. entry = make_migration_entry(page, pte_write(pteval));
  897. }
  898. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  899. BUG_ON(pte_file(*pte));
  900. } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
  901. /* Establish migration entry for a file page */
  902. swp_entry_t entry;
  903. entry = make_migration_entry(page, pte_write(pteval));
  904. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  905. } else
  906. dec_mm_counter(mm, MM_FILEPAGES);
  907. page_remove_rmap(page);
  908. page_cache_release(page);
  909. out_unmap:
  910. pte_unmap_unlock(pte, ptl);
  911. out:
  912. return ret;
  913. out_mlock:
  914. pte_unmap_unlock(pte, ptl);
  915. /*
  916. * We need mmap_sem locking, Otherwise VM_LOCKED check makes
  917. * unstable result and race. Plus, We can't wait here because
  918. * we now hold anon_vma->lock or mapping->i_mmap_lock.
  919. * if trylock failed, the page remain in evictable lru and later
  920. * vmscan could retry to move the page to unevictable lru if the
  921. * page is actually mlocked.
  922. */
  923. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  924. if (vma->vm_flags & VM_LOCKED) {
  925. mlock_vma_page(page);
  926. ret = SWAP_MLOCK;
  927. }
  928. up_read(&vma->vm_mm->mmap_sem);
  929. }
  930. return ret;
  931. }
  932. /*
  933. * objrmap doesn't work for nonlinear VMAs because the assumption that
  934. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  935. * Consequently, given a particular page and its ->index, we cannot locate the
  936. * ptes which are mapping that page without an exhaustive linear search.
  937. *
  938. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  939. * maps the file to which the target page belongs. The ->vm_private_data field
  940. * holds the current cursor into that scan. Successive searches will circulate
  941. * around the vma's virtual address space.
  942. *
  943. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  944. * more scanning pressure is placed against them as well. Eventually pages
  945. * will become fully unmapped and are eligible for eviction.
  946. *
  947. * For very sparsely populated VMAs this is a little inefficient - chances are
  948. * there there won't be many ptes located within the scan cluster. In this case
  949. * maybe we could scan further - to the end of the pte page, perhaps.
  950. *
  951. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  952. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  953. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  954. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  955. */
  956. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  957. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  958. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  959. struct vm_area_struct *vma, struct page *check_page)
  960. {
  961. struct mm_struct *mm = vma->vm_mm;
  962. pgd_t *pgd;
  963. pud_t *pud;
  964. pmd_t *pmd;
  965. pte_t *pte;
  966. pte_t pteval;
  967. spinlock_t *ptl;
  968. struct page *page;
  969. unsigned long address;
  970. unsigned long end;
  971. int ret = SWAP_AGAIN;
  972. int locked_vma = 0;
  973. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  974. end = address + CLUSTER_SIZE;
  975. if (address < vma->vm_start)
  976. address = vma->vm_start;
  977. if (end > vma->vm_end)
  978. end = vma->vm_end;
  979. pgd = pgd_offset(mm, address);
  980. if (!pgd_present(*pgd))
  981. return ret;
  982. pud = pud_offset(pgd, address);
  983. if (!pud_present(*pud))
  984. return ret;
  985. pmd = pmd_offset(pud, address);
  986. if (!pmd_present(*pmd))
  987. return ret;
  988. /*
  989. * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  990. * keep the sem while scanning the cluster for mlocking pages.
  991. */
  992. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  993. locked_vma = (vma->vm_flags & VM_LOCKED);
  994. if (!locked_vma)
  995. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  996. }
  997. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  998. /* Update high watermark before we lower rss */
  999. update_hiwater_rss(mm);
  1000. for (; address < end; pte++, address += PAGE_SIZE) {
  1001. if (!pte_present(*pte))
  1002. continue;
  1003. page = vm_normal_page(vma, address, *pte);
  1004. BUG_ON(!page || PageAnon(page));
  1005. if (locked_vma) {
  1006. mlock_vma_page(page); /* no-op if already mlocked */
  1007. if (page == check_page)
  1008. ret = SWAP_MLOCK;
  1009. continue; /* don't unmap */
  1010. }
  1011. if (ptep_clear_flush_young_notify(vma, address, pte))
  1012. continue;
  1013. /* Nuke the page table entry. */
  1014. flush_cache_page(vma, address, pte_pfn(*pte));
  1015. pteval = ptep_clear_flush_notify(vma, address, pte);
  1016. /* If nonlinear, store the file page offset in the pte. */
  1017. if (page->index != linear_page_index(vma, address))
  1018. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  1019. /* Move the dirty bit to the physical page now the pte is gone. */
  1020. if (pte_dirty(pteval))
  1021. set_page_dirty(page);
  1022. page_remove_rmap(page);
  1023. page_cache_release(page);
  1024. dec_mm_counter(mm, MM_FILEPAGES);
  1025. (*mapcount)--;
  1026. }
  1027. pte_unmap_unlock(pte - 1, ptl);
  1028. if (locked_vma)
  1029. up_read(&vma->vm_mm->mmap_sem);
  1030. return ret;
  1031. }
  1032. static bool is_vma_temporary_stack(struct vm_area_struct *vma)
  1033. {
  1034. int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
  1035. if (!maybe_stack)
  1036. return false;
  1037. if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
  1038. VM_STACK_INCOMPLETE_SETUP)
  1039. return true;
  1040. return false;
  1041. }
  1042. /**
  1043. * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
  1044. * rmap method
  1045. * @page: the page to unmap/unlock
  1046. * @flags: action and flags
  1047. *
  1048. * Find all the mappings of a page using the mapping pointer and the vma chains
  1049. * contained in the anon_vma struct it points to.
  1050. *
  1051. * This function is only called from try_to_unmap/try_to_munlock for
  1052. * anonymous pages.
  1053. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1054. * where the page was found will be held for write. So, we won't recheck
  1055. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1056. * 'LOCKED.
  1057. */
  1058. static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
  1059. {
  1060. struct anon_vma *anon_vma;
  1061. struct anon_vma_chain *avc;
  1062. int ret = SWAP_AGAIN;
  1063. anon_vma = page_lock_anon_vma(page);
  1064. if (!anon_vma)
  1065. return ret;
  1066. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1067. struct vm_area_struct *vma = avc->vma;
  1068. unsigned long address;
  1069. /*
  1070. * During exec, a temporary VMA is setup and later moved.
  1071. * The VMA is moved under the anon_vma lock but not the
  1072. * page tables leading to a race where migration cannot
  1073. * find the migration ptes. Rather than increasing the
  1074. * locking requirements of exec(), migration skips
  1075. * temporary VMAs until after exec() completes.
  1076. */
  1077. if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
  1078. is_vma_temporary_stack(vma))
  1079. continue;
  1080. address = vma_address(page, vma);
  1081. if (address == -EFAULT)
  1082. continue;
  1083. ret = try_to_unmap_one(page, vma, address, flags);
  1084. if (ret != SWAP_AGAIN || !page_mapped(page))
  1085. break;
  1086. }
  1087. page_unlock_anon_vma(anon_vma);
  1088. return ret;
  1089. }
  1090. /**
  1091. * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
  1092. * @page: the page to unmap/unlock
  1093. * @flags: action and flags
  1094. *
  1095. * Find all the mappings of a page using the mapping pointer and the vma chains
  1096. * contained in the address_space struct it points to.
  1097. *
  1098. * This function is only called from try_to_unmap/try_to_munlock for
  1099. * object-based pages.
  1100. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1101. * where the page was found will be held for write. So, we won't recheck
  1102. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1103. * 'LOCKED.
  1104. */
  1105. static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
  1106. {
  1107. struct address_space *mapping = page->mapping;
  1108. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1109. struct vm_area_struct *vma;
  1110. struct prio_tree_iter iter;
  1111. int ret = SWAP_AGAIN;
  1112. unsigned long cursor;
  1113. unsigned long max_nl_cursor = 0;
  1114. unsigned long max_nl_size = 0;
  1115. unsigned int mapcount;
  1116. spin_lock(&mapping->i_mmap_lock);
  1117. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1118. unsigned long address = vma_address(page, vma);
  1119. if (address == -EFAULT)
  1120. continue;
  1121. ret = try_to_unmap_one(page, vma, address, flags);
  1122. if (ret != SWAP_AGAIN || !page_mapped(page))
  1123. goto out;
  1124. }
  1125. if (list_empty(&mapping->i_mmap_nonlinear))
  1126. goto out;
  1127. /*
  1128. * We don't bother to try to find the munlocked page in nonlinears.
  1129. * It's costly. Instead, later, page reclaim logic may call
  1130. * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
  1131. */
  1132. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1133. goto out;
  1134. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1135. shared.vm_set.list) {
  1136. cursor = (unsigned long) vma->vm_private_data;
  1137. if (cursor > max_nl_cursor)
  1138. max_nl_cursor = cursor;
  1139. cursor = vma->vm_end - vma->vm_start;
  1140. if (cursor > max_nl_size)
  1141. max_nl_size = cursor;
  1142. }
  1143. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1144. ret = SWAP_FAIL;
  1145. goto out;
  1146. }
  1147. /*
  1148. * We don't try to search for this page in the nonlinear vmas,
  1149. * and page_referenced wouldn't have found it anyway. Instead
  1150. * just walk the nonlinear vmas trying to age and unmap some.
  1151. * The mapcount of the page we came in with is irrelevant,
  1152. * but even so use it as a guide to how hard we should try?
  1153. */
  1154. mapcount = page_mapcount(page);
  1155. if (!mapcount)
  1156. goto out;
  1157. cond_resched_lock(&mapping->i_mmap_lock);
  1158. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1159. if (max_nl_cursor == 0)
  1160. max_nl_cursor = CLUSTER_SIZE;
  1161. do {
  1162. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1163. shared.vm_set.list) {
  1164. cursor = (unsigned long) vma->vm_private_data;
  1165. while ( cursor < max_nl_cursor &&
  1166. cursor < vma->vm_end - vma->vm_start) {
  1167. if (try_to_unmap_cluster(cursor, &mapcount,
  1168. vma, page) == SWAP_MLOCK)
  1169. ret = SWAP_MLOCK;
  1170. cursor += CLUSTER_SIZE;
  1171. vma->vm_private_data = (void *) cursor;
  1172. if ((int)mapcount <= 0)
  1173. goto out;
  1174. }
  1175. vma->vm_private_data = (void *) max_nl_cursor;
  1176. }
  1177. cond_resched_lock(&mapping->i_mmap_lock);
  1178. max_nl_cursor += CLUSTER_SIZE;
  1179. } while (max_nl_cursor <= max_nl_size);
  1180. /*
  1181. * Don't loop forever (perhaps all the remaining pages are
  1182. * in locked vmas). Reset cursor on all unreserved nonlinear
  1183. * vmas, now forgetting on which ones it had fallen behind.
  1184. */
  1185. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1186. vma->vm_private_data = NULL;
  1187. out:
  1188. spin_unlock(&mapping->i_mmap_lock);
  1189. return ret;
  1190. }
  1191. /**
  1192. * try_to_unmap - try to remove all page table mappings to a page
  1193. * @page: the page to get unmapped
  1194. * @flags: action and flags
  1195. *
  1196. * Tries to remove all the page table entries which are mapping this
  1197. * page, used in the pageout path. Caller must hold the page lock.
  1198. * Return values are:
  1199. *
  1200. * SWAP_SUCCESS - we succeeded in removing all mappings
  1201. * SWAP_AGAIN - we missed a mapping, try again later
  1202. * SWAP_FAIL - the page is unswappable
  1203. * SWAP_MLOCK - page is mlocked.
  1204. */
  1205. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1206. {
  1207. int ret;
  1208. BUG_ON(!PageLocked(page));
  1209. if (unlikely(PageKsm(page)))
  1210. ret = try_to_unmap_ksm(page, flags);
  1211. else if (PageAnon(page))
  1212. ret = try_to_unmap_anon(page, flags);
  1213. else
  1214. ret = try_to_unmap_file(page, flags);
  1215. if (ret != SWAP_MLOCK && !page_mapped(page))
  1216. ret = SWAP_SUCCESS;
  1217. return ret;
  1218. }
  1219. /**
  1220. * try_to_munlock - try to munlock a page
  1221. * @page: the page to be munlocked
  1222. *
  1223. * Called from munlock code. Checks all of the VMAs mapping the page
  1224. * to make sure nobody else has this page mlocked. The page will be
  1225. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1226. *
  1227. * Return values are:
  1228. *
  1229. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1230. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1231. * SWAP_FAIL - page cannot be located at present
  1232. * SWAP_MLOCK - page is now mlocked.
  1233. */
  1234. int try_to_munlock(struct page *page)
  1235. {
  1236. VM_BUG_ON(!PageLocked(page) || PageLRU(page));
  1237. if (unlikely(PageKsm(page)))
  1238. return try_to_unmap_ksm(page, TTU_MUNLOCK);
  1239. else if (PageAnon(page))
  1240. return try_to_unmap_anon(page, TTU_MUNLOCK);
  1241. else
  1242. return try_to_unmap_file(page, TTU_MUNLOCK);
  1243. }
  1244. #if defined(CONFIG_KSM) || defined(CONFIG_MIGRATION)
  1245. /*
  1246. * Drop an anon_vma refcount, freeing the anon_vma and anon_vma->root
  1247. * if necessary. Be careful to do all the tests under the lock. Once
  1248. * we know we are the last user, nobody else can get a reference and we
  1249. * can do the freeing without the lock.
  1250. */
  1251. void drop_anon_vma(struct anon_vma *anon_vma)
  1252. {
  1253. if (atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->root->lock)) {
  1254. struct anon_vma *root = anon_vma->root;
  1255. int empty = list_empty(&anon_vma->head);
  1256. int last_root_user = 0;
  1257. int root_empty = 0;
  1258. /*
  1259. * The refcount on a non-root anon_vma got dropped. Drop
  1260. * the refcount on the root and check if we need to free it.
  1261. */
  1262. if (empty && anon_vma != root) {
  1263. last_root_user = atomic_dec_and_test(&root->external_refcount);
  1264. root_empty = list_empty(&root->head);
  1265. }
  1266. anon_vma_unlock(anon_vma);
  1267. if (empty) {
  1268. anon_vma_free(anon_vma);
  1269. if (root_empty && last_root_user)
  1270. anon_vma_free(root);
  1271. }
  1272. }
  1273. }
  1274. #endif
  1275. #ifdef CONFIG_MIGRATION
  1276. /*
  1277. * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
  1278. * Called by migrate.c to remove migration ptes, but might be used more later.
  1279. */
  1280. static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
  1281. struct vm_area_struct *, unsigned long, void *), void *arg)
  1282. {
  1283. struct anon_vma *anon_vma;
  1284. struct anon_vma_chain *avc;
  1285. int ret = SWAP_AGAIN;
  1286. /*
  1287. * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
  1288. * because that depends on page_mapped(); but not all its usages
  1289. * are holding mmap_sem. Users without mmap_sem are required to
  1290. * take a reference count to prevent the anon_vma disappearing
  1291. */
  1292. anon_vma = page_anon_vma(page);
  1293. if (!anon_vma)
  1294. return ret;
  1295. anon_vma_lock(anon_vma);
  1296. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1297. struct vm_area_struct *vma = avc->vma;
  1298. unsigned long address = vma_address(page, vma);
  1299. if (address == -EFAULT)
  1300. continue;
  1301. ret = rmap_one(page, vma, address, arg);
  1302. if (ret != SWAP_AGAIN)
  1303. break;
  1304. }
  1305. anon_vma_unlock(anon_vma);
  1306. return ret;
  1307. }
  1308. static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
  1309. struct vm_area_struct *, unsigned long, void *), void *arg)
  1310. {
  1311. struct address_space *mapping = page->mapping;
  1312. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1313. struct vm_area_struct *vma;
  1314. struct prio_tree_iter iter;
  1315. int ret = SWAP_AGAIN;
  1316. if (!mapping)
  1317. return ret;
  1318. spin_lock(&mapping->i_mmap_lock);
  1319. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1320. unsigned long address = vma_address(page, vma);
  1321. if (address == -EFAULT)
  1322. continue;
  1323. ret = rmap_one(page, vma, address, arg);
  1324. if (ret != SWAP_AGAIN)
  1325. break;
  1326. }
  1327. /*
  1328. * No nonlinear handling: being always shared, nonlinear vmas
  1329. * never contain migration ptes. Decide what to do about this
  1330. * limitation to linear when we need rmap_walk() on nonlinear.
  1331. */
  1332. spin_unlock(&mapping->i_mmap_lock);
  1333. return ret;
  1334. }
  1335. int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
  1336. struct vm_area_struct *, unsigned long, void *), void *arg)
  1337. {
  1338. VM_BUG_ON(!PageLocked(page));
  1339. if (unlikely(PageKsm(page)))
  1340. return rmap_walk_ksm(page, rmap_one, arg);
  1341. else if (PageAnon(page))
  1342. return rmap_walk_anon(page, rmap_one, arg);
  1343. else
  1344. return rmap_walk_file(page, rmap_one, arg);
  1345. }
  1346. #endif /* CONFIG_MIGRATION */