sungem.c 76 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054
  1. /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
  2. * sungem.c: Sun GEM ethernet driver.
  3. *
  4. * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
  5. *
  6. * Support for Apple GMAC and assorted PHYs, WOL, Power Management
  7. * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
  8. * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
  9. *
  10. * NAPI and NETPOLL support
  11. * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
  12. *
  13. */
  14. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  15. #include <linux/module.h>
  16. #include <linux/kernel.h>
  17. #include <linux/types.h>
  18. #include <linux/fcntl.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/ioport.h>
  21. #include <linux/in.h>
  22. #include <linux/sched.h>
  23. #include <linux/string.h>
  24. #include <linux/delay.h>
  25. #include <linux/init.h>
  26. #include <linux/errno.h>
  27. #include <linux/pci.h>
  28. #include <linux/dma-mapping.h>
  29. #include <linux/netdevice.h>
  30. #include <linux/etherdevice.h>
  31. #include <linux/skbuff.h>
  32. #include <linux/mii.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/crc32.h>
  35. #include <linux/random.h>
  36. #include <linux/workqueue.h>
  37. #include <linux/if_vlan.h>
  38. #include <linux/bitops.h>
  39. #include <linux/mm.h>
  40. #include <linux/gfp.h>
  41. #include <asm/system.h>
  42. #include <asm/io.h>
  43. #include <asm/byteorder.h>
  44. #include <asm/uaccess.h>
  45. #include <asm/irq.h>
  46. #ifdef CONFIG_SPARC
  47. #include <asm/idprom.h>
  48. #include <asm/prom.h>
  49. #endif
  50. #ifdef CONFIG_PPC_PMAC
  51. #include <asm/pci-bridge.h>
  52. #include <asm/prom.h>
  53. #include <asm/machdep.h>
  54. #include <asm/pmac_feature.h>
  55. #endif
  56. #include "sungem_phy.h"
  57. #include "sungem.h"
  58. /* Stripping FCS is causing problems, disabled for now */
  59. #undef STRIP_FCS
  60. #define DEFAULT_MSG (NETIF_MSG_DRV | \
  61. NETIF_MSG_PROBE | \
  62. NETIF_MSG_LINK)
  63. #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
  64. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
  65. SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
  66. SUPPORTED_Pause | SUPPORTED_Autoneg)
  67. #define DRV_NAME "sungem"
  68. #define DRV_VERSION "1.0"
  69. #define DRV_AUTHOR "David S. Miller <davem@redhat.com>"
  70. static char version[] __devinitdata =
  71. DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n";
  72. MODULE_AUTHOR(DRV_AUTHOR);
  73. MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
  74. MODULE_LICENSE("GPL");
  75. #define GEM_MODULE_NAME "gem"
  76. static DEFINE_PCI_DEVICE_TABLE(gem_pci_tbl) = {
  77. { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
  78. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  79. /* These models only differ from the original GEM in
  80. * that their tx/rx fifos are of a different size and
  81. * they only support 10/100 speeds. -DaveM
  82. *
  83. * Apple's GMAC does support gigabit on machines with
  84. * the BCM54xx PHYs. -BenH
  85. */
  86. { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
  87. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  88. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
  89. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  90. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
  91. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  92. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
  93. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  94. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
  95. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  96. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
  97. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  98. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
  99. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  100. {0, }
  101. };
  102. MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
  103. static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
  104. {
  105. u32 cmd;
  106. int limit = 10000;
  107. cmd = (1 << 30);
  108. cmd |= (2 << 28);
  109. cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
  110. cmd |= (reg << 18) & MIF_FRAME_REGAD;
  111. cmd |= (MIF_FRAME_TAMSB);
  112. writel(cmd, gp->regs + MIF_FRAME);
  113. while (--limit) {
  114. cmd = readl(gp->regs + MIF_FRAME);
  115. if (cmd & MIF_FRAME_TALSB)
  116. break;
  117. udelay(10);
  118. }
  119. if (!limit)
  120. cmd = 0xffff;
  121. return cmd & MIF_FRAME_DATA;
  122. }
  123. static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
  124. {
  125. struct gem *gp = netdev_priv(dev);
  126. return __phy_read(gp, mii_id, reg);
  127. }
  128. static inline u16 phy_read(struct gem *gp, int reg)
  129. {
  130. return __phy_read(gp, gp->mii_phy_addr, reg);
  131. }
  132. static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
  133. {
  134. u32 cmd;
  135. int limit = 10000;
  136. cmd = (1 << 30);
  137. cmd |= (1 << 28);
  138. cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
  139. cmd |= (reg << 18) & MIF_FRAME_REGAD;
  140. cmd |= (MIF_FRAME_TAMSB);
  141. cmd |= (val & MIF_FRAME_DATA);
  142. writel(cmd, gp->regs + MIF_FRAME);
  143. while (limit--) {
  144. cmd = readl(gp->regs + MIF_FRAME);
  145. if (cmd & MIF_FRAME_TALSB)
  146. break;
  147. udelay(10);
  148. }
  149. }
  150. static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
  151. {
  152. struct gem *gp = netdev_priv(dev);
  153. __phy_write(gp, mii_id, reg, val & 0xffff);
  154. }
  155. static inline void phy_write(struct gem *gp, int reg, u16 val)
  156. {
  157. __phy_write(gp, gp->mii_phy_addr, reg, val);
  158. }
  159. static inline void gem_enable_ints(struct gem *gp)
  160. {
  161. /* Enable all interrupts but TXDONE */
  162. writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
  163. }
  164. static inline void gem_disable_ints(struct gem *gp)
  165. {
  166. /* Disable all interrupts, including TXDONE */
  167. writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
  168. (void)readl(gp->regs + GREG_IMASK); /* write posting */
  169. }
  170. static void gem_get_cell(struct gem *gp)
  171. {
  172. BUG_ON(gp->cell_enabled < 0);
  173. gp->cell_enabled++;
  174. #ifdef CONFIG_PPC_PMAC
  175. if (gp->cell_enabled == 1) {
  176. mb();
  177. pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
  178. udelay(10);
  179. }
  180. #endif /* CONFIG_PPC_PMAC */
  181. }
  182. /* Turn off the chip's clock */
  183. static void gem_put_cell(struct gem *gp)
  184. {
  185. BUG_ON(gp->cell_enabled <= 0);
  186. gp->cell_enabled--;
  187. #ifdef CONFIG_PPC_PMAC
  188. if (gp->cell_enabled == 0) {
  189. mb();
  190. pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
  191. udelay(10);
  192. }
  193. #endif /* CONFIG_PPC_PMAC */
  194. }
  195. static inline void gem_netif_stop(struct gem *gp)
  196. {
  197. gp->dev->trans_start = jiffies; /* prevent tx timeout */
  198. napi_disable(&gp->napi);
  199. netif_tx_disable(gp->dev);
  200. }
  201. static inline void gem_netif_start(struct gem *gp)
  202. {
  203. /* NOTE: unconditional netif_wake_queue is only
  204. * appropriate so long as all callers are assured to
  205. * have free tx slots.
  206. */
  207. netif_wake_queue(gp->dev);
  208. napi_enable(&gp->napi);
  209. }
  210. static void gem_schedule_reset(struct gem *gp)
  211. {
  212. gp->reset_task_pending = 1;
  213. schedule_work(&gp->reset_task);
  214. }
  215. static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
  216. {
  217. if (netif_msg_intr(gp))
  218. printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
  219. }
  220. static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  221. {
  222. u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
  223. u32 pcs_miistat;
  224. if (netif_msg_intr(gp))
  225. printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
  226. gp->dev->name, pcs_istat);
  227. if (!(pcs_istat & PCS_ISTAT_LSC)) {
  228. netdev_err(dev, "PCS irq but no link status change???\n");
  229. return 0;
  230. }
  231. /* The link status bit latches on zero, so you must
  232. * read it twice in such a case to see a transition
  233. * to the link being up.
  234. */
  235. pcs_miistat = readl(gp->regs + PCS_MIISTAT);
  236. if (!(pcs_miistat & PCS_MIISTAT_LS))
  237. pcs_miistat |=
  238. (readl(gp->regs + PCS_MIISTAT) &
  239. PCS_MIISTAT_LS);
  240. if (pcs_miistat & PCS_MIISTAT_ANC) {
  241. /* The remote-fault indication is only valid
  242. * when autoneg has completed.
  243. */
  244. if (pcs_miistat & PCS_MIISTAT_RF)
  245. netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
  246. else
  247. netdev_info(dev, "PCS AutoNEG complete\n");
  248. }
  249. if (pcs_miistat & PCS_MIISTAT_LS) {
  250. netdev_info(dev, "PCS link is now up\n");
  251. netif_carrier_on(gp->dev);
  252. } else {
  253. netdev_info(dev, "PCS link is now down\n");
  254. netif_carrier_off(gp->dev);
  255. /* If this happens and the link timer is not running,
  256. * reset so we re-negotiate.
  257. */
  258. if (!timer_pending(&gp->link_timer))
  259. return 1;
  260. }
  261. return 0;
  262. }
  263. static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  264. {
  265. u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
  266. if (netif_msg_intr(gp))
  267. printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
  268. gp->dev->name, txmac_stat);
  269. /* Defer timer expiration is quite normal,
  270. * don't even log the event.
  271. */
  272. if ((txmac_stat & MAC_TXSTAT_DTE) &&
  273. !(txmac_stat & ~MAC_TXSTAT_DTE))
  274. return 0;
  275. if (txmac_stat & MAC_TXSTAT_URUN) {
  276. netdev_err(dev, "TX MAC xmit underrun\n");
  277. dev->stats.tx_fifo_errors++;
  278. }
  279. if (txmac_stat & MAC_TXSTAT_MPE) {
  280. netdev_err(dev, "TX MAC max packet size error\n");
  281. dev->stats.tx_errors++;
  282. }
  283. /* The rest are all cases of one of the 16-bit TX
  284. * counters expiring.
  285. */
  286. if (txmac_stat & MAC_TXSTAT_NCE)
  287. dev->stats.collisions += 0x10000;
  288. if (txmac_stat & MAC_TXSTAT_ECE) {
  289. dev->stats.tx_aborted_errors += 0x10000;
  290. dev->stats.collisions += 0x10000;
  291. }
  292. if (txmac_stat & MAC_TXSTAT_LCE) {
  293. dev->stats.tx_aborted_errors += 0x10000;
  294. dev->stats.collisions += 0x10000;
  295. }
  296. /* We do not keep track of MAC_TXSTAT_FCE and
  297. * MAC_TXSTAT_PCE events.
  298. */
  299. return 0;
  300. }
  301. /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
  302. * so we do the following.
  303. *
  304. * If any part of the reset goes wrong, we return 1 and that causes the
  305. * whole chip to be reset.
  306. */
  307. static int gem_rxmac_reset(struct gem *gp)
  308. {
  309. struct net_device *dev = gp->dev;
  310. int limit, i;
  311. u64 desc_dma;
  312. u32 val;
  313. /* First, reset & disable MAC RX. */
  314. writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
  315. for (limit = 0; limit < 5000; limit++) {
  316. if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
  317. break;
  318. udelay(10);
  319. }
  320. if (limit == 5000) {
  321. netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
  322. return 1;
  323. }
  324. writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
  325. gp->regs + MAC_RXCFG);
  326. for (limit = 0; limit < 5000; limit++) {
  327. if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
  328. break;
  329. udelay(10);
  330. }
  331. if (limit == 5000) {
  332. netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
  333. return 1;
  334. }
  335. /* Second, disable RX DMA. */
  336. writel(0, gp->regs + RXDMA_CFG);
  337. for (limit = 0; limit < 5000; limit++) {
  338. if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
  339. break;
  340. udelay(10);
  341. }
  342. if (limit == 5000) {
  343. netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
  344. return 1;
  345. }
  346. udelay(5000);
  347. /* Execute RX reset command. */
  348. writel(gp->swrst_base | GREG_SWRST_RXRST,
  349. gp->regs + GREG_SWRST);
  350. for (limit = 0; limit < 5000; limit++) {
  351. if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
  352. break;
  353. udelay(10);
  354. }
  355. if (limit == 5000) {
  356. netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
  357. return 1;
  358. }
  359. /* Refresh the RX ring. */
  360. for (i = 0; i < RX_RING_SIZE; i++) {
  361. struct gem_rxd *rxd = &gp->init_block->rxd[i];
  362. if (gp->rx_skbs[i] == NULL) {
  363. netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
  364. return 1;
  365. }
  366. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  367. }
  368. gp->rx_new = gp->rx_old = 0;
  369. /* Now we must reprogram the rest of RX unit. */
  370. desc_dma = (u64) gp->gblock_dvma;
  371. desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
  372. writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
  373. writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
  374. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  375. val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
  376. ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
  377. writel(val, gp->regs + RXDMA_CFG);
  378. if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
  379. writel(((5 & RXDMA_BLANK_IPKTS) |
  380. ((8 << 12) & RXDMA_BLANK_ITIME)),
  381. gp->regs + RXDMA_BLANK);
  382. else
  383. writel(((5 & RXDMA_BLANK_IPKTS) |
  384. ((4 << 12) & RXDMA_BLANK_ITIME)),
  385. gp->regs + RXDMA_BLANK);
  386. val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
  387. val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
  388. writel(val, gp->regs + RXDMA_PTHRESH);
  389. val = readl(gp->regs + RXDMA_CFG);
  390. writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  391. writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
  392. val = readl(gp->regs + MAC_RXCFG);
  393. writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  394. return 0;
  395. }
  396. static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  397. {
  398. u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
  399. int ret = 0;
  400. if (netif_msg_intr(gp))
  401. printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
  402. gp->dev->name, rxmac_stat);
  403. if (rxmac_stat & MAC_RXSTAT_OFLW) {
  404. u32 smac = readl(gp->regs + MAC_SMACHINE);
  405. netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
  406. dev->stats.rx_over_errors++;
  407. dev->stats.rx_fifo_errors++;
  408. ret = gem_rxmac_reset(gp);
  409. }
  410. if (rxmac_stat & MAC_RXSTAT_ACE)
  411. dev->stats.rx_frame_errors += 0x10000;
  412. if (rxmac_stat & MAC_RXSTAT_CCE)
  413. dev->stats.rx_crc_errors += 0x10000;
  414. if (rxmac_stat & MAC_RXSTAT_LCE)
  415. dev->stats.rx_length_errors += 0x10000;
  416. /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
  417. * events.
  418. */
  419. return ret;
  420. }
  421. static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  422. {
  423. u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
  424. if (netif_msg_intr(gp))
  425. printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
  426. gp->dev->name, mac_cstat);
  427. /* This interrupt is just for pause frame and pause
  428. * tracking. It is useful for diagnostics and debug
  429. * but probably by default we will mask these events.
  430. */
  431. if (mac_cstat & MAC_CSTAT_PS)
  432. gp->pause_entered++;
  433. if (mac_cstat & MAC_CSTAT_PRCV)
  434. gp->pause_last_time_recvd = (mac_cstat >> 16);
  435. return 0;
  436. }
  437. static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  438. {
  439. u32 mif_status = readl(gp->regs + MIF_STATUS);
  440. u32 reg_val, changed_bits;
  441. reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
  442. changed_bits = (mif_status & MIF_STATUS_STAT);
  443. gem_handle_mif_event(gp, reg_val, changed_bits);
  444. return 0;
  445. }
  446. static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  447. {
  448. u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
  449. if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
  450. gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  451. netdev_err(dev, "PCI error [%04x]", pci_estat);
  452. if (pci_estat & GREG_PCIESTAT_BADACK)
  453. pr_cont(" <No ACK64# during ABS64 cycle>");
  454. if (pci_estat & GREG_PCIESTAT_DTRTO)
  455. pr_cont(" <Delayed transaction timeout>");
  456. if (pci_estat & GREG_PCIESTAT_OTHER)
  457. pr_cont(" <other>");
  458. pr_cont("\n");
  459. } else {
  460. pci_estat |= GREG_PCIESTAT_OTHER;
  461. netdev_err(dev, "PCI error\n");
  462. }
  463. if (pci_estat & GREG_PCIESTAT_OTHER) {
  464. u16 pci_cfg_stat;
  465. /* Interrogate PCI config space for the
  466. * true cause.
  467. */
  468. pci_read_config_word(gp->pdev, PCI_STATUS,
  469. &pci_cfg_stat);
  470. netdev_err(dev, "Read PCI cfg space status [%04x]\n",
  471. pci_cfg_stat);
  472. if (pci_cfg_stat & PCI_STATUS_PARITY)
  473. netdev_err(dev, "PCI parity error detected\n");
  474. if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
  475. netdev_err(dev, "PCI target abort\n");
  476. if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
  477. netdev_err(dev, "PCI master acks target abort\n");
  478. if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
  479. netdev_err(dev, "PCI master abort\n");
  480. if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
  481. netdev_err(dev, "PCI system error SERR#\n");
  482. if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
  483. netdev_err(dev, "PCI parity error\n");
  484. /* Write the error bits back to clear them. */
  485. pci_cfg_stat &= (PCI_STATUS_PARITY |
  486. PCI_STATUS_SIG_TARGET_ABORT |
  487. PCI_STATUS_REC_TARGET_ABORT |
  488. PCI_STATUS_REC_MASTER_ABORT |
  489. PCI_STATUS_SIG_SYSTEM_ERROR |
  490. PCI_STATUS_DETECTED_PARITY);
  491. pci_write_config_word(gp->pdev,
  492. PCI_STATUS, pci_cfg_stat);
  493. }
  494. /* For all PCI errors, we should reset the chip. */
  495. return 1;
  496. }
  497. /* All non-normal interrupt conditions get serviced here.
  498. * Returns non-zero if we should just exit the interrupt
  499. * handler right now (ie. if we reset the card which invalidates
  500. * all of the other original irq status bits).
  501. */
  502. static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
  503. {
  504. if (gem_status & GREG_STAT_RXNOBUF) {
  505. /* Frame arrived, no free RX buffers available. */
  506. if (netif_msg_rx_err(gp))
  507. printk(KERN_DEBUG "%s: no buffer for rx frame\n",
  508. gp->dev->name);
  509. dev->stats.rx_dropped++;
  510. }
  511. if (gem_status & GREG_STAT_RXTAGERR) {
  512. /* corrupt RX tag framing */
  513. if (netif_msg_rx_err(gp))
  514. printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
  515. gp->dev->name);
  516. dev->stats.rx_errors++;
  517. return 1;
  518. }
  519. if (gem_status & GREG_STAT_PCS) {
  520. if (gem_pcs_interrupt(dev, gp, gem_status))
  521. return 1;
  522. }
  523. if (gem_status & GREG_STAT_TXMAC) {
  524. if (gem_txmac_interrupt(dev, gp, gem_status))
  525. return 1;
  526. }
  527. if (gem_status & GREG_STAT_RXMAC) {
  528. if (gem_rxmac_interrupt(dev, gp, gem_status))
  529. return 1;
  530. }
  531. if (gem_status & GREG_STAT_MAC) {
  532. if (gem_mac_interrupt(dev, gp, gem_status))
  533. return 1;
  534. }
  535. if (gem_status & GREG_STAT_MIF) {
  536. if (gem_mif_interrupt(dev, gp, gem_status))
  537. return 1;
  538. }
  539. if (gem_status & GREG_STAT_PCIERR) {
  540. if (gem_pci_interrupt(dev, gp, gem_status))
  541. return 1;
  542. }
  543. return 0;
  544. }
  545. static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
  546. {
  547. int entry, limit;
  548. entry = gp->tx_old;
  549. limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
  550. while (entry != limit) {
  551. struct sk_buff *skb;
  552. struct gem_txd *txd;
  553. dma_addr_t dma_addr;
  554. u32 dma_len;
  555. int frag;
  556. if (netif_msg_tx_done(gp))
  557. printk(KERN_DEBUG "%s: tx done, slot %d\n",
  558. gp->dev->name, entry);
  559. skb = gp->tx_skbs[entry];
  560. if (skb_shinfo(skb)->nr_frags) {
  561. int last = entry + skb_shinfo(skb)->nr_frags;
  562. int walk = entry;
  563. int incomplete = 0;
  564. last &= (TX_RING_SIZE - 1);
  565. for (;;) {
  566. walk = NEXT_TX(walk);
  567. if (walk == limit)
  568. incomplete = 1;
  569. if (walk == last)
  570. break;
  571. }
  572. if (incomplete)
  573. break;
  574. }
  575. gp->tx_skbs[entry] = NULL;
  576. dev->stats.tx_bytes += skb->len;
  577. for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
  578. txd = &gp->init_block->txd[entry];
  579. dma_addr = le64_to_cpu(txd->buffer);
  580. dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
  581. pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
  582. entry = NEXT_TX(entry);
  583. }
  584. dev->stats.tx_packets++;
  585. dev_kfree_skb(skb);
  586. }
  587. gp->tx_old = entry;
  588. /* Need to make the tx_old update visible to gem_start_xmit()
  589. * before checking for netif_queue_stopped(). Without the
  590. * memory barrier, there is a small possibility that gem_start_xmit()
  591. * will miss it and cause the queue to be stopped forever.
  592. */
  593. smp_mb();
  594. if (unlikely(netif_queue_stopped(dev) &&
  595. TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) {
  596. struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
  597. __netif_tx_lock(txq, smp_processor_id());
  598. if (netif_queue_stopped(dev) &&
  599. TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
  600. netif_wake_queue(dev);
  601. __netif_tx_unlock(txq);
  602. }
  603. }
  604. static __inline__ void gem_post_rxds(struct gem *gp, int limit)
  605. {
  606. int cluster_start, curr, count, kick;
  607. cluster_start = curr = (gp->rx_new & ~(4 - 1));
  608. count = 0;
  609. kick = -1;
  610. wmb();
  611. while (curr != limit) {
  612. curr = NEXT_RX(curr);
  613. if (++count == 4) {
  614. struct gem_rxd *rxd =
  615. &gp->init_block->rxd[cluster_start];
  616. for (;;) {
  617. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  618. rxd++;
  619. cluster_start = NEXT_RX(cluster_start);
  620. if (cluster_start == curr)
  621. break;
  622. }
  623. kick = curr;
  624. count = 0;
  625. }
  626. }
  627. if (kick >= 0) {
  628. mb();
  629. writel(kick, gp->regs + RXDMA_KICK);
  630. }
  631. }
  632. #define ALIGNED_RX_SKB_ADDR(addr) \
  633. ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr))
  634. static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size,
  635. gfp_t gfp_flags)
  636. {
  637. struct sk_buff *skb = alloc_skb(size + 64, gfp_flags);
  638. if (likely(skb)) {
  639. unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data);
  640. skb_reserve(skb, offset);
  641. skb->dev = dev;
  642. }
  643. return skb;
  644. }
  645. static int gem_rx(struct gem *gp, int work_to_do)
  646. {
  647. struct net_device *dev = gp->dev;
  648. int entry, drops, work_done = 0;
  649. u32 done;
  650. __sum16 csum;
  651. if (netif_msg_rx_status(gp))
  652. printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
  653. gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
  654. entry = gp->rx_new;
  655. drops = 0;
  656. done = readl(gp->regs + RXDMA_DONE);
  657. for (;;) {
  658. struct gem_rxd *rxd = &gp->init_block->rxd[entry];
  659. struct sk_buff *skb;
  660. u64 status = le64_to_cpu(rxd->status_word);
  661. dma_addr_t dma_addr;
  662. int len;
  663. if ((status & RXDCTRL_OWN) != 0)
  664. break;
  665. if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
  666. break;
  667. /* When writing back RX descriptor, GEM writes status
  668. * then buffer address, possibly in separate transactions.
  669. * If we don't wait for the chip to write both, we could
  670. * post a new buffer to this descriptor then have GEM spam
  671. * on the buffer address. We sync on the RX completion
  672. * register to prevent this from happening.
  673. */
  674. if (entry == done) {
  675. done = readl(gp->regs + RXDMA_DONE);
  676. if (entry == done)
  677. break;
  678. }
  679. /* We can now account for the work we're about to do */
  680. work_done++;
  681. skb = gp->rx_skbs[entry];
  682. len = (status & RXDCTRL_BUFSZ) >> 16;
  683. if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
  684. dev->stats.rx_errors++;
  685. if (len < ETH_ZLEN)
  686. dev->stats.rx_length_errors++;
  687. if (len & RXDCTRL_BAD)
  688. dev->stats.rx_crc_errors++;
  689. /* We'll just return it to GEM. */
  690. drop_it:
  691. dev->stats.rx_dropped++;
  692. goto next;
  693. }
  694. dma_addr = le64_to_cpu(rxd->buffer);
  695. if (len > RX_COPY_THRESHOLD) {
  696. struct sk_buff *new_skb;
  697. new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
  698. if (new_skb == NULL) {
  699. drops++;
  700. goto drop_it;
  701. }
  702. pci_unmap_page(gp->pdev, dma_addr,
  703. RX_BUF_ALLOC_SIZE(gp),
  704. PCI_DMA_FROMDEVICE);
  705. gp->rx_skbs[entry] = new_skb;
  706. skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
  707. rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
  708. virt_to_page(new_skb->data),
  709. offset_in_page(new_skb->data),
  710. RX_BUF_ALLOC_SIZE(gp),
  711. PCI_DMA_FROMDEVICE));
  712. skb_reserve(new_skb, RX_OFFSET);
  713. /* Trim the original skb for the netif. */
  714. skb_trim(skb, len);
  715. } else {
  716. struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2);
  717. if (copy_skb == NULL) {
  718. drops++;
  719. goto drop_it;
  720. }
  721. skb_reserve(copy_skb, 2);
  722. skb_put(copy_skb, len);
  723. pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
  724. skb_copy_from_linear_data(skb, copy_skb->data, len);
  725. pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
  726. /* We'll reuse the original ring buffer. */
  727. skb = copy_skb;
  728. }
  729. csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
  730. skb->csum = csum_unfold(csum);
  731. skb->ip_summed = CHECKSUM_COMPLETE;
  732. skb->protocol = eth_type_trans(skb, gp->dev);
  733. napi_gro_receive(&gp->napi, skb);
  734. dev->stats.rx_packets++;
  735. dev->stats.rx_bytes += len;
  736. next:
  737. entry = NEXT_RX(entry);
  738. }
  739. gem_post_rxds(gp, entry);
  740. gp->rx_new = entry;
  741. if (drops)
  742. netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
  743. return work_done;
  744. }
  745. static int gem_poll(struct napi_struct *napi, int budget)
  746. {
  747. struct gem *gp = container_of(napi, struct gem, napi);
  748. struct net_device *dev = gp->dev;
  749. int work_done;
  750. work_done = 0;
  751. do {
  752. /* Handle anomalies */
  753. if (unlikely(gp->status & GREG_STAT_ABNORMAL)) {
  754. struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
  755. int reset;
  756. /* We run the abnormal interrupt handling code with
  757. * the Tx lock. It only resets the Rx portion of the
  758. * chip, but we need to guard it against DMA being
  759. * restarted by the link poll timer
  760. */
  761. __netif_tx_lock(txq, smp_processor_id());
  762. reset = gem_abnormal_irq(dev, gp, gp->status);
  763. __netif_tx_unlock(txq);
  764. if (reset) {
  765. gem_schedule_reset(gp);
  766. napi_complete(napi);
  767. return work_done;
  768. }
  769. }
  770. /* Run TX completion thread */
  771. gem_tx(dev, gp, gp->status);
  772. /* Run RX thread. We don't use any locking here,
  773. * code willing to do bad things - like cleaning the
  774. * rx ring - must call napi_disable(), which
  775. * schedule_timeout()'s if polling is already disabled.
  776. */
  777. work_done += gem_rx(gp, budget - work_done);
  778. if (work_done >= budget)
  779. return work_done;
  780. gp->status = readl(gp->regs + GREG_STAT);
  781. } while (gp->status & GREG_STAT_NAPI);
  782. napi_complete(napi);
  783. gem_enable_ints(gp);
  784. return work_done;
  785. }
  786. static irqreturn_t gem_interrupt(int irq, void *dev_id)
  787. {
  788. struct net_device *dev = dev_id;
  789. struct gem *gp = netdev_priv(dev);
  790. if (napi_schedule_prep(&gp->napi)) {
  791. u32 gem_status = readl(gp->regs + GREG_STAT);
  792. if (unlikely(gem_status == 0)) {
  793. napi_enable(&gp->napi);
  794. return IRQ_NONE;
  795. }
  796. if (netif_msg_intr(gp))
  797. printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n",
  798. gp->dev->name, gem_status);
  799. gp->status = gem_status;
  800. gem_disable_ints(gp);
  801. __napi_schedule(&gp->napi);
  802. }
  803. /* If polling was disabled at the time we received that
  804. * interrupt, we may return IRQ_HANDLED here while we
  805. * should return IRQ_NONE. No big deal...
  806. */
  807. return IRQ_HANDLED;
  808. }
  809. #ifdef CONFIG_NET_POLL_CONTROLLER
  810. static void gem_poll_controller(struct net_device *dev)
  811. {
  812. struct gem *gp = netdev_priv(dev);
  813. disable_irq(gp->pdev->irq);
  814. gem_interrupt(gp->pdev->irq, dev);
  815. enable_irq(gp->pdev->irq);
  816. }
  817. #endif
  818. static void gem_tx_timeout(struct net_device *dev)
  819. {
  820. struct gem *gp = netdev_priv(dev);
  821. netdev_err(dev, "transmit timed out, resetting\n");
  822. netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
  823. readl(gp->regs + TXDMA_CFG),
  824. readl(gp->regs + MAC_TXSTAT),
  825. readl(gp->regs + MAC_TXCFG));
  826. netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
  827. readl(gp->regs + RXDMA_CFG),
  828. readl(gp->regs + MAC_RXSTAT),
  829. readl(gp->regs + MAC_RXCFG));
  830. gem_schedule_reset(gp);
  831. }
  832. static __inline__ int gem_intme(int entry)
  833. {
  834. /* Algorithm: IRQ every 1/2 of descriptors. */
  835. if (!(entry & ((TX_RING_SIZE>>1)-1)))
  836. return 1;
  837. return 0;
  838. }
  839. static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
  840. struct net_device *dev)
  841. {
  842. struct gem *gp = netdev_priv(dev);
  843. int entry;
  844. u64 ctrl;
  845. ctrl = 0;
  846. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  847. const u64 csum_start_off = skb_checksum_start_offset(skb);
  848. const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
  849. ctrl = (TXDCTRL_CENAB |
  850. (csum_start_off << 15) |
  851. (csum_stuff_off << 21));
  852. }
  853. if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) {
  854. /* This is a hard error, log it. */
  855. if (!netif_queue_stopped(dev)) {
  856. netif_stop_queue(dev);
  857. netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
  858. }
  859. return NETDEV_TX_BUSY;
  860. }
  861. entry = gp->tx_new;
  862. gp->tx_skbs[entry] = skb;
  863. if (skb_shinfo(skb)->nr_frags == 0) {
  864. struct gem_txd *txd = &gp->init_block->txd[entry];
  865. dma_addr_t mapping;
  866. u32 len;
  867. len = skb->len;
  868. mapping = pci_map_page(gp->pdev,
  869. virt_to_page(skb->data),
  870. offset_in_page(skb->data),
  871. len, PCI_DMA_TODEVICE);
  872. ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
  873. if (gem_intme(entry))
  874. ctrl |= TXDCTRL_INTME;
  875. txd->buffer = cpu_to_le64(mapping);
  876. wmb();
  877. txd->control_word = cpu_to_le64(ctrl);
  878. entry = NEXT_TX(entry);
  879. } else {
  880. struct gem_txd *txd;
  881. u32 first_len;
  882. u64 intme;
  883. dma_addr_t first_mapping;
  884. int frag, first_entry = entry;
  885. intme = 0;
  886. if (gem_intme(entry))
  887. intme |= TXDCTRL_INTME;
  888. /* We must give this initial chunk to the device last.
  889. * Otherwise we could race with the device.
  890. */
  891. first_len = skb_headlen(skb);
  892. first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
  893. offset_in_page(skb->data),
  894. first_len, PCI_DMA_TODEVICE);
  895. entry = NEXT_TX(entry);
  896. for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
  897. skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
  898. u32 len;
  899. dma_addr_t mapping;
  900. u64 this_ctrl;
  901. len = this_frag->size;
  902. mapping = pci_map_page(gp->pdev,
  903. this_frag->page,
  904. this_frag->page_offset,
  905. len, PCI_DMA_TODEVICE);
  906. this_ctrl = ctrl;
  907. if (frag == skb_shinfo(skb)->nr_frags - 1)
  908. this_ctrl |= TXDCTRL_EOF;
  909. txd = &gp->init_block->txd[entry];
  910. txd->buffer = cpu_to_le64(mapping);
  911. wmb();
  912. txd->control_word = cpu_to_le64(this_ctrl | len);
  913. if (gem_intme(entry))
  914. intme |= TXDCTRL_INTME;
  915. entry = NEXT_TX(entry);
  916. }
  917. txd = &gp->init_block->txd[first_entry];
  918. txd->buffer = cpu_to_le64(first_mapping);
  919. wmb();
  920. txd->control_word =
  921. cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
  922. }
  923. gp->tx_new = entry;
  924. if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) {
  925. netif_stop_queue(dev);
  926. /* netif_stop_queue() must be done before checking
  927. * checking tx index in TX_BUFFS_AVAIL() below, because
  928. * in gem_tx(), we update tx_old before checking for
  929. * netif_queue_stopped().
  930. */
  931. smp_mb();
  932. if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
  933. netif_wake_queue(dev);
  934. }
  935. if (netif_msg_tx_queued(gp))
  936. printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
  937. dev->name, entry, skb->len);
  938. mb();
  939. writel(gp->tx_new, gp->regs + TXDMA_KICK);
  940. return NETDEV_TX_OK;
  941. }
  942. static void gem_pcs_reset(struct gem *gp)
  943. {
  944. int limit;
  945. u32 val;
  946. /* Reset PCS unit. */
  947. val = readl(gp->regs + PCS_MIICTRL);
  948. val |= PCS_MIICTRL_RST;
  949. writel(val, gp->regs + PCS_MIICTRL);
  950. limit = 32;
  951. while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
  952. udelay(100);
  953. if (limit-- <= 0)
  954. break;
  955. }
  956. if (limit < 0)
  957. netdev_warn(gp->dev, "PCS reset bit would not clear\n");
  958. }
  959. static void gem_pcs_reinit_adv(struct gem *gp)
  960. {
  961. u32 val;
  962. /* Make sure PCS is disabled while changing advertisement
  963. * configuration.
  964. */
  965. val = readl(gp->regs + PCS_CFG);
  966. val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
  967. writel(val, gp->regs + PCS_CFG);
  968. /* Advertise all capabilities except asymmetric
  969. * pause.
  970. */
  971. val = readl(gp->regs + PCS_MIIADV);
  972. val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
  973. PCS_MIIADV_SP | PCS_MIIADV_AP);
  974. writel(val, gp->regs + PCS_MIIADV);
  975. /* Enable and restart auto-negotiation, disable wrapback/loopback,
  976. * and re-enable PCS.
  977. */
  978. val = readl(gp->regs + PCS_MIICTRL);
  979. val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
  980. val &= ~PCS_MIICTRL_WB;
  981. writel(val, gp->regs + PCS_MIICTRL);
  982. val = readl(gp->regs + PCS_CFG);
  983. val |= PCS_CFG_ENABLE;
  984. writel(val, gp->regs + PCS_CFG);
  985. /* Make sure serialink loopback is off. The meaning
  986. * of this bit is logically inverted based upon whether
  987. * you are in Serialink or SERDES mode.
  988. */
  989. val = readl(gp->regs + PCS_SCTRL);
  990. if (gp->phy_type == phy_serialink)
  991. val &= ~PCS_SCTRL_LOOP;
  992. else
  993. val |= PCS_SCTRL_LOOP;
  994. writel(val, gp->regs + PCS_SCTRL);
  995. }
  996. #define STOP_TRIES 32
  997. static void gem_reset(struct gem *gp)
  998. {
  999. int limit;
  1000. u32 val;
  1001. /* Make sure we won't get any more interrupts */
  1002. writel(0xffffffff, gp->regs + GREG_IMASK);
  1003. /* Reset the chip */
  1004. writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
  1005. gp->regs + GREG_SWRST);
  1006. limit = STOP_TRIES;
  1007. do {
  1008. udelay(20);
  1009. val = readl(gp->regs + GREG_SWRST);
  1010. if (limit-- <= 0)
  1011. break;
  1012. } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
  1013. if (limit < 0)
  1014. netdev_err(gp->dev, "SW reset is ghetto\n");
  1015. if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
  1016. gem_pcs_reinit_adv(gp);
  1017. }
  1018. static void gem_start_dma(struct gem *gp)
  1019. {
  1020. u32 val;
  1021. /* We are ready to rock, turn everything on. */
  1022. val = readl(gp->regs + TXDMA_CFG);
  1023. writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
  1024. val = readl(gp->regs + RXDMA_CFG);
  1025. writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  1026. val = readl(gp->regs + MAC_TXCFG);
  1027. writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
  1028. val = readl(gp->regs + MAC_RXCFG);
  1029. writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  1030. (void) readl(gp->regs + MAC_RXCFG);
  1031. udelay(100);
  1032. gem_enable_ints(gp);
  1033. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  1034. }
  1035. /* DMA won't be actually stopped before about 4ms tho ...
  1036. */
  1037. static void gem_stop_dma(struct gem *gp)
  1038. {
  1039. u32 val;
  1040. /* We are done rocking, turn everything off. */
  1041. val = readl(gp->regs + TXDMA_CFG);
  1042. writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
  1043. val = readl(gp->regs + RXDMA_CFG);
  1044. writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  1045. val = readl(gp->regs + MAC_TXCFG);
  1046. writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
  1047. val = readl(gp->regs + MAC_RXCFG);
  1048. writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  1049. (void) readl(gp->regs + MAC_RXCFG);
  1050. /* Need to wait a bit ... done by the caller */
  1051. }
  1052. // XXX dbl check what that function should do when called on PCS PHY
  1053. static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
  1054. {
  1055. u32 advertise, features;
  1056. int autoneg;
  1057. int speed;
  1058. int duplex;
  1059. if (gp->phy_type != phy_mii_mdio0 &&
  1060. gp->phy_type != phy_mii_mdio1)
  1061. goto non_mii;
  1062. /* Setup advertise */
  1063. if (found_mii_phy(gp))
  1064. features = gp->phy_mii.def->features;
  1065. else
  1066. features = 0;
  1067. advertise = features & ADVERTISE_MASK;
  1068. if (gp->phy_mii.advertising != 0)
  1069. advertise &= gp->phy_mii.advertising;
  1070. autoneg = gp->want_autoneg;
  1071. speed = gp->phy_mii.speed;
  1072. duplex = gp->phy_mii.duplex;
  1073. /* Setup link parameters */
  1074. if (!ep)
  1075. goto start_aneg;
  1076. if (ep->autoneg == AUTONEG_ENABLE) {
  1077. advertise = ep->advertising;
  1078. autoneg = 1;
  1079. } else {
  1080. autoneg = 0;
  1081. speed = ethtool_cmd_speed(ep);
  1082. duplex = ep->duplex;
  1083. }
  1084. start_aneg:
  1085. /* Sanitize settings based on PHY capabilities */
  1086. if ((features & SUPPORTED_Autoneg) == 0)
  1087. autoneg = 0;
  1088. if (speed == SPEED_1000 &&
  1089. !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
  1090. speed = SPEED_100;
  1091. if (speed == SPEED_100 &&
  1092. !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
  1093. speed = SPEED_10;
  1094. if (duplex == DUPLEX_FULL &&
  1095. !(features & (SUPPORTED_1000baseT_Full |
  1096. SUPPORTED_100baseT_Full |
  1097. SUPPORTED_10baseT_Full)))
  1098. duplex = DUPLEX_HALF;
  1099. if (speed == 0)
  1100. speed = SPEED_10;
  1101. /* If we are asleep, we don't try to actually setup the PHY, we
  1102. * just store the settings
  1103. */
  1104. if (!netif_device_present(gp->dev)) {
  1105. gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
  1106. gp->phy_mii.speed = speed;
  1107. gp->phy_mii.duplex = duplex;
  1108. return;
  1109. }
  1110. /* Configure PHY & start aneg */
  1111. gp->want_autoneg = autoneg;
  1112. if (autoneg) {
  1113. if (found_mii_phy(gp))
  1114. gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
  1115. gp->lstate = link_aneg;
  1116. } else {
  1117. if (found_mii_phy(gp))
  1118. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
  1119. gp->lstate = link_force_ok;
  1120. }
  1121. non_mii:
  1122. gp->timer_ticks = 0;
  1123. mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
  1124. }
  1125. /* A link-up condition has occurred, initialize and enable the
  1126. * rest of the chip.
  1127. */
  1128. static int gem_set_link_modes(struct gem *gp)
  1129. {
  1130. struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0);
  1131. int full_duplex, speed, pause;
  1132. u32 val;
  1133. full_duplex = 0;
  1134. speed = SPEED_10;
  1135. pause = 0;
  1136. if (found_mii_phy(gp)) {
  1137. if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
  1138. return 1;
  1139. full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
  1140. speed = gp->phy_mii.speed;
  1141. pause = gp->phy_mii.pause;
  1142. } else if (gp->phy_type == phy_serialink ||
  1143. gp->phy_type == phy_serdes) {
  1144. u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
  1145. if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
  1146. full_duplex = 1;
  1147. speed = SPEED_1000;
  1148. }
  1149. netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
  1150. speed, (full_duplex ? "full" : "half"));
  1151. /* We take the tx queue lock to avoid collisions between
  1152. * this code, the tx path and the NAPI-driven error path
  1153. */
  1154. __netif_tx_lock(txq, smp_processor_id());
  1155. val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
  1156. if (full_duplex) {
  1157. val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
  1158. } else {
  1159. /* MAC_TXCFG_NBO must be zero. */
  1160. }
  1161. writel(val, gp->regs + MAC_TXCFG);
  1162. val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
  1163. if (!full_duplex &&
  1164. (gp->phy_type == phy_mii_mdio0 ||
  1165. gp->phy_type == phy_mii_mdio1)) {
  1166. val |= MAC_XIFCFG_DISE;
  1167. } else if (full_duplex) {
  1168. val |= MAC_XIFCFG_FLED;
  1169. }
  1170. if (speed == SPEED_1000)
  1171. val |= (MAC_XIFCFG_GMII);
  1172. writel(val, gp->regs + MAC_XIFCFG);
  1173. /* If gigabit and half-duplex, enable carrier extension
  1174. * mode. Else, disable it.
  1175. */
  1176. if (speed == SPEED_1000 && !full_duplex) {
  1177. val = readl(gp->regs + MAC_TXCFG);
  1178. writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
  1179. val = readl(gp->regs + MAC_RXCFG);
  1180. writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
  1181. } else {
  1182. val = readl(gp->regs + MAC_TXCFG);
  1183. writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
  1184. val = readl(gp->regs + MAC_RXCFG);
  1185. writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
  1186. }
  1187. if (gp->phy_type == phy_serialink ||
  1188. gp->phy_type == phy_serdes) {
  1189. u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
  1190. if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
  1191. pause = 1;
  1192. }
  1193. if (!full_duplex)
  1194. writel(512, gp->regs + MAC_STIME);
  1195. else
  1196. writel(64, gp->regs + MAC_STIME);
  1197. val = readl(gp->regs + MAC_MCCFG);
  1198. if (pause)
  1199. val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
  1200. else
  1201. val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
  1202. writel(val, gp->regs + MAC_MCCFG);
  1203. gem_start_dma(gp);
  1204. __netif_tx_unlock(txq);
  1205. if (netif_msg_link(gp)) {
  1206. if (pause) {
  1207. netdev_info(gp->dev,
  1208. "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
  1209. gp->rx_fifo_sz,
  1210. gp->rx_pause_off,
  1211. gp->rx_pause_on);
  1212. } else {
  1213. netdev_info(gp->dev, "Pause is disabled\n");
  1214. }
  1215. }
  1216. return 0;
  1217. }
  1218. static int gem_mdio_link_not_up(struct gem *gp)
  1219. {
  1220. switch (gp->lstate) {
  1221. case link_force_ret:
  1222. netif_info(gp, link, gp->dev,
  1223. "Autoneg failed again, keeping forced mode\n");
  1224. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
  1225. gp->last_forced_speed, DUPLEX_HALF);
  1226. gp->timer_ticks = 5;
  1227. gp->lstate = link_force_ok;
  1228. return 0;
  1229. case link_aneg:
  1230. /* We try forced modes after a failed aneg only on PHYs that don't
  1231. * have "magic_aneg" bit set, which means they internally do the
  1232. * while forced-mode thingy. On these, we just restart aneg
  1233. */
  1234. if (gp->phy_mii.def->magic_aneg)
  1235. return 1;
  1236. netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
  1237. /* Try forced modes. */
  1238. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
  1239. DUPLEX_HALF);
  1240. gp->timer_ticks = 5;
  1241. gp->lstate = link_force_try;
  1242. return 0;
  1243. case link_force_try:
  1244. /* Downgrade from 100 to 10 Mbps if necessary.
  1245. * If already at 10Mbps, warn user about the
  1246. * situation every 10 ticks.
  1247. */
  1248. if (gp->phy_mii.speed == SPEED_100) {
  1249. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
  1250. DUPLEX_HALF);
  1251. gp->timer_ticks = 5;
  1252. netif_info(gp, link, gp->dev,
  1253. "switching to forced 10bt\n");
  1254. return 0;
  1255. } else
  1256. return 1;
  1257. default:
  1258. return 0;
  1259. }
  1260. }
  1261. static void gem_link_timer(unsigned long data)
  1262. {
  1263. struct gem *gp = (struct gem *) data;
  1264. struct net_device *dev = gp->dev;
  1265. int restart_aneg = 0;
  1266. /* There's no point doing anything if we're going to be reset */
  1267. if (gp->reset_task_pending)
  1268. return;
  1269. if (gp->phy_type == phy_serialink ||
  1270. gp->phy_type == phy_serdes) {
  1271. u32 val = readl(gp->regs + PCS_MIISTAT);
  1272. if (!(val & PCS_MIISTAT_LS))
  1273. val = readl(gp->regs + PCS_MIISTAT);
  1274. if ((val & PCS_MIISTAT_LS) != 0) {
  1275. if (gp->lstate == link_up)
  1276. goto restart;
  1277. gp->lstate = link_up;
  1278. netif_carrier_on(dev);
  1279. (void)gem_set_link_modes(gp);
  1280. }
  1281. goto restart;
  1282. }
  1283. if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
  1284. /* Ok, here we got a link. If we had it due to a forced
  1285. * fallback, and we were configured for autoneg, we do
  1286. * retry a short autoneg pass. If you know your hub is
  1287. * broken, use ethtool ;)
  1288. */
  1289. if (gp->lstate == link_force_try && gp->want_autoneg) {
  1290. gp->lstate = link_force_ret;
  1291. gp->last_forced_speed = gp->phy_mii.speed;
  1292. gp->timer_ticks = 5;
  1293. if (netif_msg_link(gp))
  1294. netdev_info(dev,
  1295. "Got link after fallback, retrying autoneg once...\n");
  1296. gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
  1297. } else if (gp->lstate != link_up) {
  1298. gp->lstate = link_up;
  1299. netif_carrier_on(dev);
  1300. if (gem_set_link_modes(gp))
  1301. restart_aneg = 1;
  1302. }
  1303. } else {
  1304. /* If the link was previously up, we restart the
  1305. * whole process
  1306. */
  1307. if (gp->lstate == link_up) {
  1308. gp->lstate = link_down;
  1309. netif_info(gp, link, dev, "Link down\n");
  1310. netif_carrier_off(dev);
  1311. gem_schedule_reset(gp);
  1312. /* The reset task will restart the timer */
  1313. return;
  1314. } else if (++gp->timer_ticks > 10) {
  1315. if (found_mii_phy(gp))
  1316. restart_aneg = gem_mdio_link_not_up(gp);
  1317. else
  1318. restart_aneg = 1;
  1319. }
  1320. }
  1321. if (restart_aneg) {
  1322. gem_begin_auto_negotiation(gp, NULL);
  1323. return;
  1324. }
  1325. restart:
  1326. mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
  1327. }
  1328. static void gem_clean_rings(struct gem *gp)
  1329. {
  1330. struct gem_init_block *gb = gp->init_block;
  1331. struct sk_buff *skb;
  1332. int i;
  1333. dma_addr_t dma_addr;
  1334. for (i = 0; i < RX_RING_SIZE; i++) {
  1335. struct gem_rxd *rxd;
  1336. rxd = &gb->rxd[i];
  1337. if (gp->rx_skbs[i] != NULL) {
  1338. skb = gp->rx_skbs[i];
  1339. dma_addr = le64_to_cpu(rxd->buffer);
  1340. pci_unmap_page(gp->pdev, dma_addr,
  1341. RX_BUF_ALLOC_SIZE(gp),
  1342. PCI_DMA_FROMDEVICE);
  1343. dev_kfree_skb_any(skb);
  1344. gp->rx_skbs[i] = NULL;
  1345. }
  1346. rxd->status_word = 0;
  1347. wmb();
  1348. rxd->buffer = 0;
  1349. }
  1350. for (i = 0; i < TX_RING_SIZE; i++) {
  1351. if (gp->tx_skbs[i] != NULL) {
  1352. struct gem_txd *txd;
  1353. int frag;
  1354. skb = gp->tx_skbs[i];
  1355. gp->tx_skbs[i] = NULL;
  1356. for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
  1357. int ent = i & (TX_RING_SIZE - 1);
  1358. txd = &gb->txd[ent];
  1359. dma_addr = le64_to_cpu(txd->buffer);
  1360. pci_unmap_page(gp->pdev, dma_addr,
  1361. le64_to_cpu(txd->control_word) &
  1362. TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
  1363. if (frag != skb_shinfo(skb)->nr_frags)
  1364. i++;
  1365. }
  1366. dev_kfree_skb_any(skb);
  1367. }
  1368. }
  1369. }
  1370. static void gem_init_rings(struct gem *gp)
  1371. {
  1372. struct gem_init_block *gb = gp->init_block;
  1373. struct net_device *dev = gp->dev;
  1374. int i;
  1375. dma_addr_t dma_addr;
  1376. gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
  1377. gem_clean_rings(gp);
  1378. gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
  1379. (unsigned)VLAN_ETH_FRAME_LEN);
  1380. for (i = 0; i < RX_RING_SIZE; i++) {
  1381. struct sk_buff *skb;
  1382. struct gem_rxd *rxd = &gb->rxd[i];
  1383. skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL);
  1384. if (!skb) {
  1385. rxd->buffer = 0;
  1386. rxd->status_word = 0;
  1387. continue;
  1388. }
  1389. gp->rx_skbs[i] = skb;
  1390. skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
  1391. dma_addr = pci_map_page(gp->pdev,
  1392. virt_to_page(skb->data),
  1393. offset_in_page(skb->data),
  1394. RX_BUF_ALLOC_SIZE(gp),
  1395. PCI_DMA_FROMDEVICE);
  1396. rxd->buffer = cpu_to_le64(dma_addr);
  1397. wmb();
  1398. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  1399. skb_reserve(skb, RX_OFFSET);
  1400. }
  1401. for (i = 0; i < TX_RING_SIZE; i++) {
  1402. struct gem_txd *txd = &gb->txd[i];
  1403. txd->control_word = 0;
  1404. wmb();
  1405. txd->buffer = 0;
  1406. }
  1407. wmb();
  1408. }
  1409. /* Init PHY interface and start link poll state machine */
  1410. static void gem_init_phy(struct gem *gp)
  1411. {
  1412. u32 mifcfg;
  1413. /* Revert MIF CFG setting done on stop_phy */
  1414. mifcfg = readl(gp->regs + MIF_CFG);
  1415. mifcfg &= ~MIF_CFG_BBMODE;
  1416. writel(mifcfg, gp->regs + MIF_CFG);
  1417. if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
  1418. int i;
  1419. /* Those delay sucks, the HW seem to love them though, I'll
  1420. * serisouly consider breaking some locks here to be able
  1421. * to schedule instead
  1422. */
  1423. for (i = 0; i < 3; i++) {
  1424. #ifdef CONFIG_PPC_PMAC
  1425. pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
  1426. msleep(20);
  1427. #endif
  1428. /* Some PHYs used by apple have problem getting back to us,
  1429. * we do an additional reset here
  1430. */
  1431. phy_write(gp, MII_BMCR, BMCR_RESET);
  1432. msleep(20);
  1433. if (phy_read(gp, MII_BMCR) != 0xffff)
  1434. break;
  1435. if (i == 2)
  1436. netdev_warn(gp->dev, "GMAC PHY not responding !\n");
  1437. }
  1438. }
  1439. if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
  1440. gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  1441. u32 val;
  1442. /* Init datapath mode register. */
  1443. if (gp->phy_type == phy_mii_mdio0 ||
  1444. gp->phy_type == phy_mii_mdio1) {
  1445. val = PCS_DMODE_MGM;
  1446. } else if (gp->phy_type == phy_serialink) {
  1447. val = PCS_DMODE_SM | PCS_DMODE_GMOE;
  1448. } else {
  1449. val = PCS_DMODE_ESM;
  1450. }
  1451. writel(val, gp->regs + PCS_DMODE);
  1452. }
  1453. if (gp->phy_type == phy_mii_mdio0 ||
  1454. gp->phy_type == phy_mii_mdio1) {
  1455. /* Reset and detect MII PHY */
  1456. mii_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
  1457. /* Init PHY */
  1458. if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
  1459. gp->phy_mii.def->ops->init(&gp->phy_mii);
  1460. } else {
  1461. gem_pcs_reset(gp);
  1462. gem_pcs_reinit_adv(gp);
  1463. }
  1464. /* Default aneg parameters */
  1465. gp->timer_ticks = 0;
  1466. gp->lstate = link_down;
  1467. netif_carrier_off(gp->dev);
  1468. /* Print things out */
  1469. if (gp->phy_type == phy_mii_mdio0 ||
  1470. gp->phy_type == phy_mii_mdio1)
  1471. netdev_info(gp->dev, "Found %s PHY\n",
  1472. gp->phy_mii.def ? gp->phy_mii.def->name : "no");
  1473. gem_begin_auto_negotiation(gp, NULL);
  1474. }
  1475. static void gem_init_dma(struct gem *gp)
  1476. {
  1477. u64 desc_dma = (u64) gp->gblock_dvma;
  1478. u32 val;
  1479. val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
  1480. writel(val, gp->regs + TXDMA_CFG);
  1481. writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
  1482. writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
  1483. desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
  1484. writel(0, gp->regs + TXDMA_KICK);
  1485. val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
  1486. ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
  1487. writel(val, gp->regs + RXDMA_CFG);
  1488. writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
  1489. writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
  1490. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  1491. val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
  1492. val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
  1493. writel(val, gp->regs + RXDMA_PTHRESH);
  1494. if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
  1495. writel(((5 & RXDMA_BLANK_IPKTS) |
  1496. ((8 << 12) & RXDMA_BLANK_ITIME)),
  1497. gp->regs + RXDMA_BLANK);
  1498. else
  1499. writel(((5 & RXDMA_BLANK_IPKTS) |
  1500. ((4 << 12) & RXDMA_BLANK_ITIME)),
  1501. gp->regs + RXDMA_BLANK);
  1502. }
  1503. static u32 gem_setup_multicast(struct gem *gp)
  1504. {
  1505. u32 rxcfg = 0;
  1506. int i;
  1507. if ((gp->dev->flags & IFF_ALLMULTI) ||
  1508. (netdev_mc_count(gp->dev) > 256)) {
  1509. for (i=0; i<16; i++)
  1510. writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
  1511. rxcfg |= MAC_RXCFG_HFE;
  1512. } else if (gp->dev->flags & IFF_PROMISC) {
  1513. rxcfg |= MAC_RXCFG_PROM;
  1514. } else {
  1515. u16 hash_table[16];
  1516. u32 crc;
  1517. struct netdev_hw_addr *ha;
  1518. int i;
  1519. memset(hash_table, 0, sizeof(hash_table));
  1520. netdev_for_each_mc_addr(ha, gp->dev) {
  1521. char *addrs = ha->addr;
  1522. if (!(*addrs & 1))
  1523. continue;
  1524. crc = ether_crc_le(6, addrs);
  1525. crc >>= 24;
  1526. hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
  1527. }
  1528. for (i=0; i<16; i++)
  1529. writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
  1530. rxcfg |= MAC_RXCFG_HFE;
  1531. }
  1532. return rxcfg;
  1533. }
  1534. static void gem_init_mac(struct gem *gp)
  1535. {
  1536. unsigned char *e = &gp->dev->dev_addr[0];
  1537. writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
  1538. writel(0x00, gp->regs + MAC_IPG0);
  1539. writel(0x08, gp->regs + MAC_IPG1);
  1540. writel(0x04, gp->regs + MAC_IPG2);
  1541. writel(0x40, gp->regs + MAC_STIME);
  1542. writel(0x40, gp->regs + MAC_MINFSZ);
  1543. /* Ethernet payload + header + FCS + optional VLAN tag. */
  1544. writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
  1545. writel(0x07, gp->regs + MAC_PASIZE);
  1546. writel(0x04, gp->regs + MAC_JAMSIZE);
  1547. writel(0x10, gp->regs + MAC_ATTLIM);
  1548. writel(0x8808, gp->regs + MAC_MCTYPE);
  1549. writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
  1550. writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
  1551. writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
  1552. writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
  1553. writel(0, gp->regs + MAC_ADDR3);
  1554. writel(0, gp->regs + MAC_ADDR4);
  1555. writel(0, gp->regs + MAC_ADDR5);
  1556. writel(0x0001, gp->regs + MAC_ADDR6);
  1557. writel(0xc200, gp->regs + MAC_ADDR7);
  1558. writel(0x0180, gp->regs + MAC_ADDR8);
  1559. writel(0, gp->regs + MAC_AFILT0);
  1560. writel(0, gp->regs + MAC_AFILT1);
  1561. writel(0, gp->regs + MAC_AFILT2);
  1562. writel(0, gp->regs + MAC_AF21MSK);
  1563. writel(0, gp->regs + MAC_AF0MSK);
  1564. gp->mac_rx_cfg = gem_setup_multicast(gp);
  1565. #ifdef STRIP_FCS
  1566. gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
  1567. #endif
  1568. writel(0, gp->regs + MAC_NCOLL);
  1569. writel(0, gp->regs + MAC_FASUCC);
  1570. writel(0, gp->regs + MAC_ECOLL);
  1571. writel(0, gp->regs + MAC_LCOLL);
  1572. writel(0, gp->regs + MAC_DTIMER);
  1573. writel(0, gp->regs + MAC_PATMPS);
  1574. writel(0, gp->regs + MAC_RFCTR);
  1575. writel(0, gp->regs + MAC_LERR);
  1576. writel(0, gp->regs + MAC_AERR);
  1577. writel(0, gp->regs + MAC_FCSERR);
  1578. writel(0, gp->regs + MAC_RXCVERR);
  1579. /* Clear RX/TX/MAC/XIF config, we will set these up and enable
  1580. * them once a link is established.
  1581. */
  1582. writel(0, gp->regs + MAC_TXCFG);
  1583. writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
  1584. writel(0, gp->regs + MAC_MCCFG);
  1585. writel(0, gp->regs + MAC_XIFCFG);
  1586. /* Setup MAC interrupts. We want to get all of the interesting
  1587. * counter expiration events, but we do not want to hear about
  1588. * normal rx/tx as the DMA engine tells us that.
  1589. */
  1590. writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
  1591. writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
  1592. /* Don't enable even the PAUSE interrupts for now, we
  1593. * make no use of those events other than to record them.
  1594. */
  1595. writel(0xffffffff, gp->regs + MAC_MCMASK);
  1596. /* Don't enable GEM's WOL in normal operations
  1597. */
  1598. if (gp->has_wol)
  1599. writel(0, gp->regs + WOL_WAKECSR);
  1600. }
  1601. static void gem_init_pause_thresholds(struct gem *gp)
  1602. {
  1603. u32 cfg;
  1604. /* Calculate pause thresholds. Setting the OFF threshold to the
  1605. * full RX fifo size effectively disables PAUSE generation which
  1606. * is what we do for 10/100 only GEMs which have FIFOs too small
  1607. * to make real gains from PAUSE.
  1608. */
  1609. if (gp->rx_fifo_sz <= (2 * 1024)) {
  1610. gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
  1611. } else {
  1612. int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
  1613. int off = (gp->rx_fifo_sz - (max_frame * 2));
  1614. int on = off - max_frame;
  1615. gp->rx_pause_off = off;
  1616. gp->rx_pause_on = on;
  1617. }
  1618. /* Configure the chip "burst" DMA mode & enable some
  1619. * HW bug fixes on Apple version
  1620. */
  1621. cfg = 0;
  1622. if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
  1623. cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
  1624. #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
  1625. cfg |= GREG_CFG_IBURST;
  1626. #endif
  1627. cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
  1628. cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
  1629. writel(cfg, gp->regs + GREG_CFG);
  1630. /* If Infinite Burst didn't stick, then use different
  1631. * thresholds (and Apple bug fixes don't exist)
  1632. */
  1633. if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
  1634. cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
  1635. cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
  1636. writel(cfg, gp->regs + GREG_CFG);
  1637. }
  1638. }
  1639. static int gem_check_invariants(struct gem *gp)
  1640. {
  1641. struct pci_dev *pdev = gp->pdev;
  1642. u32 mif_cfg;
  1643. /* On Apple's sungem, we can't rely on registers as the chip
  1644. * was been powered down by the firmware. The PHY is looked
  1645. * up later on.
  1646. */
  1647. if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
  1648. gp->phy_type = phy_mii_mdio0;
  1649. gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
  1650. gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
  1651. gp->swrst_base = 0;
  1652. mif_cfg = readl(gp->regs + MIF_CFG);
  1653. mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
  1654. mif_cfg |= MIF_CFG_MDI0;
  1655. writel(mif_cfg, gp->regs + MIF_CFG);
  1656. writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
  1657. writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
  1658. /* We hard-code the PHY address so we can properly bring it out of
  1659. * reset later on, we can't really probe it at this point, though
  1660. * that isn't an issue.
  1661. */
  1662. if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
  1663. gp->mii_phy_addr = 1;
  1664. else
  1665. gp->mii_phy_addr = 0;
  1666. return 0;
  1667. }
  1668. mif_cfg = readl(gp->regs + MIF_CFG);
  1669. if (pdev->vendor == PCI_VENDOR_ID_SUN &&
  1670. pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
  1671. /* One of the MII PHYs _must_ be present
  1672. * as this chip has no gigabit PHY.
  1673. */
  1674. if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
  1675. pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
  1676. mif_cfg);
  1677. return -1;
  1678. }
  1679. }
  1680. /* Determine initial PHY interface type guess. MDIO1 is the
  1681. * external PHY and thus takes precedence over MDIO0.
  1682. */
  1683. if (mif_cfg & MIF_CFG_MDI1) {
  1684. gp->phy_type = phy_mii_mdio1;
  1685. mif_cfg |= MIF_CFG_PSELECT;
  1686. writel(mif_cfg, gp->regs + MIF_CFG);
  1687. } else if (mif_cfg & MIF_CFG_MDI0) {
  1688. gp->phy_type = phy_mii_mdio0;
  1689. mif_cfg &= ~MIF_CFG_PSELECT;
  1690. writel(mif_cfg, gp->regs + MIF_CFG);
  1691. } else {
  1692. #ifdef CONFIG_SPARC
  1693. const char *p;
  1694. p = of_get_property(gp->of_node, "shared-pins", NULL);
  1695. if (p && !strcmp(p, "serdes"))
  1696. gp->phy_type = phy_serdes;
  1697. else
  1698. #endif
  1699. gp->phy_type = phy_serialink;
  1700. }
  1701. if (gp->phy_type == phy_mii_mdio1 ||
  1702. gp->phy_type == phy_mii_mdio0) {
  1703. int i;
  1704. for (i = 0; i < 32; i++) {
  1705. gp->mii_phy_addr = i;
  1706. if (phy_read(gp, MII_BMCR) != 0xffff)
  1707. break;
  1708. }
  1709. if (i == 32) {
  1710. if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
  1711. pr_err("RIO MII phy will not respond\n");
  1712. return -1;
  1713. }
  1714. gp->phy_type = phy_serdes;
  1715. }
  1716. }
  1717. /* Fetch the FIFO configurations now too. */
  1718. gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
  1719. gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
  1720. if (pdev->vendor == PCI_VENDOR_ID_SUN) {
  1721. if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  1722. if (gp->tx_fifo_sz != (9 * 1024) ||
  1723. gp->rx_fifo_sz != (20 * 1024)) {
  1724. pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
  1725. gp->tx_fifo_sz, gp->rx_fifo_sz);
  1726. return -1;
  1727. }
  1728. gp->swrst_base = 0;
  1729. } else {
  1730. if (gp->tx_fifo_sz != (2 * 1024) ||
  1731. gp->rx_fifo_sz != (2 * 1024)) {
  1732. pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
  1733. gp->tx_fifo_sz, gp->rx_fifo_sz);
  1734. return -1;
  1735. }
  1736. gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
  1737. }
  1738. }
  1739. return 0;
  1740. }
  1741. static void gem_reinit_chip(struct gem *gp)
  1742. {
  1743. /* Reset the chip */
  1744. gem_reset(gp);
  1745. /* Make sure ints are disabled */
  1746. gem_disable_ints(gp);
  1747. /* Allocate & setup ring buffers */
  1748. gem_init_rings(gp);
  1749. /* Configure pause thresholds */
  1750. gem_init_pause_thresholds(gp);
  1751. /* Init DMA & MAC engines */
  1752. gem_init_dma(gp);
  1753. gem_init_mac(gp);
  1754. }
  1755. static void gem_stop_phy(struct gem *gp, int wol)
  1756. {
  1757. u32 mifcfg;
  1758. /* Let the chip settle down a bit, it seems that helps
  1759. * for sleep mode on some models
  1760. */
  1761. msleep(10);
  1762. /* Make sure we aren't polling PHY status change. We
  1763. * don't currently use that feature though
  1764. */
  1765. mifcfg = readl(gp->regs + MIF_CFG);
  1766. mifcfg &= ~MIF_CFG_POLL;
  1767. writel(mifcfg, gp->regs + MIF_CFG);
  1768. if (wol && gp->has_wol) {
  1769. unsigned char *e = &gp->dev->dev_addr[0];
  1770. u32 csr;
  1771. /* Setup wake-on-lan for MAGIC packet */
  1772. writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
  1773. gp->regs + MAC_RXCFG);
  1774. writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
  1775. writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
  1776. writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
  1777. writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
  1778. csr = WOL_WAKECSR_ENABLE;
  1779. if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
  1780. csr |= WOL_WAKECSR_MII;
  1781. writel(csr, gp->regs + WOL_WAKECSR);
  1782. } else {
  1783. writel(0, gp->regs + MAC_RXCFG);
  1784. (void)readl(gp->regs + MAC_RXCFG);
  1785. /* Machine sleep will die in strange ways if we
  1786. * dont wait a bit here, looks like the chip takes
  1787. * some time to really shut down
  1788. */
  1789. msleep(10);
  1790. }
  1791. writel(0, gp->regs + MAC_TXCFG);
  1792. writel(0, gp->regs + MAC_XIFCFG);
  1793. writel(0, gp->regs + TXDMA_CFG);
  1794. writel(0, gp->regs + RXDMA_CFG);
  1795. if (!wol) {
  1796. gem_reset(gp);
  1797. writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
  1798. writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
  1799. if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
  1800. gp->phy_mii.def->ops->suspend(&gp->phy_mii);
  1801. /* According to Apple, we must set the MDIO pins to this begnign
  1802. * state or we may 1) eat more current, 2) damage some PHYs
  1803. */
  1804. writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
  1805. writel(0, gp->regs + MIF_BBCLK);
  1806. writel(0, gp->regs + MIF_BBDATA);
  1807. writel(0, gp->regs + MIF_BBOENAB);
  1808. writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
  1809. (void) readl(gp->regs + MAC_XIFCFG);
  1810. }
  1811. }
  1812. static int gem_do_start(struct net_device *dev)
  1813. {
  1814. struct gem *gp = netdev_priv(dev);
  1815. int rc;
  1816. /* Enable the cell */
  1817. gem_get_cell(gp);
  1818. /* Make sure PCI access and bus master are enabled */
  1819. rc = pci_enable_device(gp->pdev);
  1820. if (rc) {
  1821. netdev_err(dev, "Failed to enable chip on PCI bus !\n");
  1822. /* Put cell and forget it for now, it will be considered as
  1823. * still asleep, a new sleep cycle may bring it back
  1824. */
  1825. gem_put_cell(gp);
  1826. return -ENXIO;
  1827. }
  1828. pci_set_master(gp->pdev);
  1829. /* Init & setup chip hardware */
  1830. gem_reinit_chip(gp);
  1831. /* An interrupt might come in handy */
  1832. rc = request_irq(gp->pdev->irq, gem_interrupt,
  1833. IRQF_SHARED, dev->name, (void *)dev);
  1834. if (rc) {
  1835. netdev_err(dev, "failed to request irq !\n");
  1836. gem_reset(gp);
  1837. gem_clean_rings(gp);
  1838. gem_put_cell(gp);
  1839. return rc;
  1840. }
  1841. /* Mark us as attached again if we come from resume(), this has
  1842. * no effect if we weren't detatched and needs to be done now.
  1843. */
  1844. netif_device_attach(dev);
  1845. /* Restart NAPI & queues */
  1846. gem_netif_start(gp);
  1847. /* Detect & init PHY, start autoneg etc... this will
  1848. * eventually result in starting DMA operations when
  1849. * the link is up
  1850. */
  1851. gem_init_phy(gp);
  1852. return 0;
  1853. }
  1854. static void gem_do_stop(struct net_device *dev, int wol)
  1855. {
  1856. struct gem *gp = netdev_priv(dev);
  1857. /* Stop NAPI and stop tx queue */
  1858. gem_netif_stop(gp);
  1859. /* Make sure ints are disabled. We don't care about
  1860. * synchronizing as NAPI is disabled, thus a stray
  1861. * interrupt will do nothing bad (our irq handler
  1862. * just schedules NAPI)
  1863. */
  1864. gem_disable_ints(gp);
  1865. /* Stop the link timer */
  1866. del_timer_sync(&gp->link_timer);
  1867. /* We cannot cancel the reset task while holding the
  1868. * rtnl lock, we'd get an A->B / B->A deadlock stituation
  1869. * if we did. This is not an issue however as the reset
  1870. * task is synchronized vs. us (rtnl_lock) and will do
  1871. * nothing if the device is down or suspended. We do
  1872. * still clear reset_task_pending to avoid a spurrious
  1873. * reset later on in case we do resume before it gets
  1874. * scheduled.
  1875. */
  1876. gp->reset_task_pending = 0;
  1877. /* If we are going to sleep with WOL */
  1878. gem_stop_dma(gp);
  1879. msleep(10);
  1880. if (!wol)
  1881. gem_reset(gp);
  1882. msleep(10);
  1883. /* Get rid of rings */
  1884. gem_clean_rings(gp);
  1885. /* No irq needed anymore */
  1886. free_irq(gp->pdev->irq, (void *) dev);
  1887. /* Shut the PHY down eventually and setup WOL */
  1888. gem_stop_phy(gp, wol);
  1889. /* Make sure bus master is disabled */
  1890. pci_disable_device(gp->pdev);
  1891. /* Cell not needed neither if no WOL */
  1892. if (!wol)
  1893. gem_put_cell(gp);
  1894. }
  1895. static void gem_reset_task(struct work_struct *work)
  1896. {
  1897. struct gem *gp = container_of(work, struct gem, reset_task);
  1898. /* Lock out the network stack (essentially shield ourselves
  1899. * against a racing open, close, control call, or suspend
  1900. */
  1901. rtnl_lock();
  1902. /* Skip the reset task if suspended or closed, or if it's
  1903. * been cancelled by gem_do_stop (see comment there)
  1904. */
  1905. if (!netif_device_present(gp->dev) ||
  1906. !netif_running(gp->dev) ||
  1907. !gp->reset_task_pending) {
  1908. rtnl_unlock();
  1909. return;
  1910. }
  1911. /* Stop the link timer */
  1912. del_timer_sync(&gp->link_timer);
  1913. /* Stop NAPI and tx */
  1914. gem_netif_stop(gp);
  1915. /* Reset the chip & rings */
  1916. gem_reinit_chip(gp);
  1917. if (gp->lstate == link_up)
  1918. gem_set_link_modes(gp);
  1919. /* Restart NAPI and Tx */
  1920. gem_netif_start(gp);
  1921. /* We are back ! */
  1922. gp->reset_task_pending = 0;
  1923. /* If the link is not up, restart autoneg, else restart the
  1924. * polling timer
  1925. */
  1926. if (gp->lstate != link_up)
  1927. gem_begin_auto_negotiation(gp, NULL);
  1928. else
  1929. mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
  1930. rtnl_unlock();
  1931. }
  1932. static int gem_open(struct net_device *dev)
  1933. {
  1934. /* We allow open while suspended, we just do nothing,
  1935. * the chip will be initialized in resume()
  1936. */
  1937. if (netif_device_present(dev))
  1938. return gem_do_start(dev);
  1939. return 0;
  1940. }
  1941. static int gem_close(struct net_device *dev)
  1942. {
  1943. if (netif_device_present(dev))
  1944. gem_do_stop(dev, 0);
  1945. return 0;
  1946. }
  1947. #ifdef CONFIG_PM
  1948. static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
  1949. {
  1950. struct net_device *dev = pci_get_drvdata(pdev);
  1951. struct gem *gp = netdev_priv(dev);
  1952. /* Lock the network stack first to avoid racing with open/close,
  1953. * reset task and setting calls
  1954. */
  1955. rtnl_lock();
  1956. /* Not running, mark ourselves non-present, no need for
  1957. * a lock here
  1958. */
  1959. if (!netif_running(dev)) {
  1960. netif_device_detach(dev);
  1961. rtnl_unlock();
  1962. return 0;
  1963. }
  1964. netdev_info(dev, "suspending, WakeOnLan %s\n",
  1965. (gp->wake_on_lan && netif_running(dev)) ?
  1966. "enabled" : "disabled");
  1967. /* Tell the network stack we're gone. gem_do_stop() below will
  1968. * synchronize with TX, stop NAPI etc...
  1969. */
  1970. netif_device_detach(dev);
  1971. /* Switch off chip, remember WOL setting */
  1972. gp->asleep_wol = gp->wake_on_lan;
  1973. gem_do_stop(dev, gp->asleep_wol);
  1974. /* Unlock the network stack */
  1975. rtnl_unlock();
  1976. return 0;
  1977. }
  1978. static int gem_resume(struct pci_dev *pdev)
  1979. {
  1980. struct net_device *dev = pci_get_drvdata(pdev);
  1981. struct gem *gp = netdev_priv(dev);
  1982. /* See locking comment in gem_suspend */
  1983. rtnl_lock();
  1984. /* Not running, mark ourselves present, no need for
  1985. * a lock here
  1986. */
  1987. if (!netif_running(dev)) {
  1988. netif_device_attach(dev);
  1989. rtnl_unlock();
  1990. return 0;
  1991. }
  1992. /* Restart chip. If that fails there isn't much we can do, we
  1993. * leave things stopped.
  1994. */
  1995. gem_do_start(dev);
  1996. /* If we had WOL enabled, the cell clock was never turned off during
  1997. * sleep, so we end up beeing unbalanced. Fix that here
  1998. */
  1999. if (gp->asleep_wol)
  2000. gem_put_cell(gp);
  2001. /* Unlock the network stack */
  2002. rtnl_unlock();
  2003. return 0;
  2004. }
  2005. #endif /* CONFIG_PM */
  2006. static struct net_device_stats *gem_get_stats(struct net_device *dev)
  2007. {
  2008. struct gem *gp = netdev_priv(dev);
  2009. /* I have seen this being called while the PM was in progress,
  2010. * so we shield against this. Let's also not poke at registers
  2011. * while the reset task is going on.
  2012. *
  2013. * TODO: Move stats collection elsewhere (link timer ?) and
  2014. * make this a nop to avoid all those synchro issues
  2015. */
  2016. if (!netif_device_present(dev) || !netif_running(dev))
  2017. goto bail;
  2018. /* Better safe than sorry... */
  2019. if (WARN_ON(!gp->cell_enabled))
  2020. goto bail;
  2021. dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR);
  2022. writel(0, gp->regs + MAC_FCSERR);
  2023. dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR);
  2024. writel(0, gp->regs + MAC_AERR);
  2025. dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR);
  2026. writel(0, gp->regs + MAC_LERR);
  2027. dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
  2028. dev->stats.collisions +=
  2029. (readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL));
  2030. writel(0, gp->regs + MAC_ECOLL);
  2031. writel(0, gp->regs + MAC_LCOLL);
  2032. bail:
  2033. return &dev->stats;
  2034. }
  2035. static int gem_set_mac_address(struct net_device *dev, void *addr)
  2036. {
  2037. struct sockaddr *macaddr = (struct sockaddr *) addr;
  2038. struct gem *gp = netdev_priv(dev);
  2039. unsigned char *e = &dev->dev_addr[0];
  2040. if (!is_valid_ether_addr(macaddr->sa_data))
  2041. return -EADDRNOTAVAIL;
  2042. memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
  2043. /* We'll just catch it later when the device is up'd or resumed */
  2044. if (!netif_running(dev) || !netif_device_present(dev))
  2045. return 0;
  2046. /* Better safe than sorry... */
  2047. if (WARN_ON(!gp->cell_enabled))
  2048. return 0;
  2049. writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
  2050. writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
  2051. writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
  2052. return 0;
  2053. }
  2054. static void gem_set_multicast(struct net_device *dev)
  2055. {
  2056. struct gem *gp = netdev_priv(dev);
  2057. u32 rxcfg, rxcfg_new;
  2058. int limit = 10000;
  2059. if (!netif_running(dev) || !netif_device_present(dev))
  2060. return;
  2061. /* Better safe than sorry... */
  2062. if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled))
  2063. return;
  2064. rxcfg = readl(gp->regs + MAC_RXCFG);
  2065. rxcfg_new = gem_setup_multicast(gp);
  2066. #ifdef STRIP_FCS
  2067. rxcfg_new |= MAC_RXCFG_SFCS;
  2068. #endif
  2069. gp->mac_rx_cfg = rxcfg_new;
  2070. writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  2071. while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
  2072. if (!limit--)
  2073. break;
  2074. udelay(10);
  2075. }
  2076. rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
  2077. rxcfg |= rxcfg_new;
  2078. writel(rxcfg, gp->regs + MAC_RXCFG);
  2079. }
  2080. /* Jumbo-grams don't seem to work :-( */
  2081. #define GEM_MIN_MTU 68
  2082. #if 1
  2083. #define GEM_MAX_MTU 1500
  2084. #else
  2085. #define GEM_MAX_MTU 9000
  2086. #endif
  2087. static int gem_change_mtu(struct net_device *dev, int new_mtu)
  2088. {
  2089. struct gem *gp = netdev_priv(dev);
  2090. if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
  2091. return -EINVAL;
  2092. dev->mtu = new_mtu;
  2093. /* We'll just catch it later when the device is up'd or resumed */
  2094. if (!netif_running(dev) || !netif_device_present(dev))
  2095. return 0;
  2096. /* Better safe than sorry... */
  2097. if (WARN_ON(!gp->cell_enabled))
  2098. return 0;
  2099. gem_netif_stop(gp);
  2100. gem_reinit_chip(gp);
  2101. if (gp->lstate == link_up)
  2102. gem_set_link_modes(gp);
  2103. gem_netif_start(gp);
  2104. return 0;
  2105. }
  2106. static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  2107. {
  2108. struct gem *gp = netdev_priv(dev);
  2109. strcpy(info->driver, DRV_NAME);
  2110. strcpy(info->version, DRV_VERSION);
  2111. strcpy(info->bus_info, pci_name(gp->pdev));
  2112. }
  2113. static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2114. {
  2115. struct gem *gp = netdev_priv(dev);
  2116. if (gp->phy_type == phy_mii_mdio0 ||
  2117. gp->phy_type == phy_mii_mdio1) {
  2118. if (gp->phy_mii.def)
  2119. cmd->supported = gp->phy_mii.def->features;
  2120. else
  2121. cmd->supported = (SUPPORTED_10baseT_Half |
  2122. SUPPORTED_10baseT_Full);
  2123. /* XXX hardcoded stuff for now */
  2124. cmd->port = PORT_MII;
  2125. cmd->transceiver = XCVR_EXTERNAL;
  2126. cmd->phy_address = 0; /* XXX fixed PHYAD */
  2127. /* Return current PHY settings */
  2128. cmd->autoneg = gp->want_autoneg;
  2129. ethtool_cmd_speed_set(cmd, gp->phy_mii.speed);
  2130. cmd->duplex = gp->phy_mii.duplex;
  2131. cmd->advertising = gp->phy_mii.advertising;
  2132. /* If we started with a forced mode, we don't have a default
  2133. * advertise set, we need to return something sensible so
  2134. * userland can re-enable autoneg properly.
  2135. */
  2136. if (cmd->advertising == 0)
  2137. cmd->advertising = cmd->supported;
  2138. } else { // XXX PCS ?
  2139. cmd->supported =
  2140. (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  2141. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  2142. SUPPORTED_Autoneg);
  2143. cmd->advertising = cmd->supported;
  2144. ethtool_cmd_speed_set(cmd, 0);
  2145. cmd->duplex = cmd->port = cmd->phy_address =
  2146. cmd->transceiver = cmd->autoneg = 0;
  2147. /* serdes means usually a Fibre connector, with most fixed */
  2148. if (gp->phy_type == phy_serdes) {
  2149. cmd->port = PORT_FIBRE;
  2150. cmd->supported = (SUPPORTED_1000baseT_Half |
  2151. SUPPORTED_1000baseT_Full |
  2152. SUPPORTED_FIBRE | SUPPORTED_Autoneg |
  2153. SUPPORTED_Pause | SUPPORTED_Asym_Pause);
  2154. cmd->advertising = cmd->supported;
  2155. cmd->transceiver = XCVR_INTERNAL;
  2156. if (gp->lstate == link_up)
  2157. ethtool_cmd_speed_set(cmd, SPEED_1000);
  2158. cmd->duplex = DUPLEX_FULL;
  2159. cmd->autoneg = 1;
  2160. }
  2161. }
  2162. cmd->maxtxpkt = cmd->maxrxpkt = 0;
  2163. return 0;
  2164. }
  2165. static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2166. {
  2167. struct gem *gp = netdev_priv(dev);
  2168. u32 speed = ethtool_cmd_speed(cmd);
  2169. /* Verify the settings we care about. */
  2170. if (cmd->autoneg != AUTONEG_ENABLE &&
  2171. cmd->autoneg != AUTONEG_DISABLE)
  2172. return -EINVAL;
  2173. if (cmd->autoneg == AUTONEG_ENABLE &&
  2174. cmd->advertising == 0)
  2175. return -EINVAL;
  2176. if (cmd->autoneg == AUTONEG_DISABLE &&
  2177. ((speed != SPEED_1000 &&
  2178. speed != SPEED_100 &&
  2179. speed != SPEED_10) ||
  2180. (cmd->duplex != DUPLEX_HALF &&
  2181. cmd->duplex != DUPLEX_FULL)))
  2182. return -EINVAL;
  2183. /* Apply settings and restart link process. */
  2184. if (netif_device_present(gp->dev)) {
  2185. del_timer_sync(&gp->link_timer);
  2186. gem_begin_auto_negotiation(gp, cmd);
  2187. }
  2188. return 0;
  2189. }
  2190. static int gem_nway_reset(struct net_device *dev)
  2191. {
  2192. struct gem *gp = netdev_priv(dev);
  2193. if (!gp->want_autoneg)
  2194. return -EINVAL;
  2195. /* Restart link process */
  2196. if (netif_device_present(gp->dev)) {
  2197. del_timer_sync(&gp->link_timer);
  2198. gem_begin_auto_negotiation(gp, NULL);
  2199. }
  2200. return 0;
  2201. }
  2202. static u32 gem_get_msglevel(struct net_device *dev)
  2203. {
  2204. struct gem *gp = netdev_priv(dev);
  2205. return gp->msg_enable;
  2206. }
  2207. static void gem_set_msglevel(struct net_device *dev, u32 value)
  2208. {
  2209. struct gem *gp = netdev_priv(dev);
  2210. gp->msg_enable = value;
  2211. }
  2212. /* Add more when I understand how to program the chip */
  2213. /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
  2214. #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
  2215. static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2216. {
  2217. struct gem *gp = netdev_priv(dev);
  2218. /* Add more when I understand how to program the chip */
  2219. if (gp->has_wol) {
  2220. wol->supported = WOL_SUPPORTED_MASK;
  2221. wol->wolopts = gp->wake_on_lan;
  2222. } else {
  2223. wol->supported = 0;
  2224. wol->wolopts = 0;
  2225. }
  2226. }
  2227. static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2228. {
  2229. struct gem *gp = netdev_priv(dev);
  2230. if (!gp->has_wol)
  2231. return -EOPNOTSUPP;
  2232. gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
  2233. return 0;
  2234. }
  2235. static const struct ethtool_ops gem_ethtool_ops = {
  2236. .get_drvinfo = gem_get_drvinfo,
  2237. .get_link = ethtool_op_get_link,
  2238. .get_settings = gem_get_settings,
  2239. .set_settings = gem_set_settings,
  2240. .nway_reset = gem_nway_reset,
  2241. .get_msglevel = gem_get_msglevel,
  2242. .set_msglevel = gem_set_msglevel,
  2243. .get_wol = gem_get_wol,
  2244. .set_wol = gem_set_wol,
  2245. };
  2246. static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2247. {
  2248. struct gem *gp = netdev_priv(dev);
  2249. struct mii_ioctl_data *data = if_mii(ifr);
  2250. int rc = -EOPNOTSUPP;
  2251. /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that
  2252. * netif_device_present() is true and holds rtnl_lock for us
  2253. * so we have nothing to worry about
  2254. */
  2255. switch (cmd) {
  2256. case SIOCGMIIPHY: /* Get address of MII PHY in use. */
  2257. data->phy_id = gp->mii_phy_addr;
  2258. /* Fallthrough... */
  2259. case SIOCGMIIREG: /* Read MII PHY register. */
  2260. data->val_out = __phy_read(gp, data->phy_id & 0x1f,
  2261. data->reg_num & 0x1f);
  2262. rc = 0;
  2263. break;
  2264. case SIOCSMIIREG: /* Write MII PHY register. */
  2265. __phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
  2266. data->val_in);
  2267. rc = 0;
  2268. break;
  2269. }
  2270. return rc;
  2271. }
  2272. #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
  2273. /* Fetch MAC address from vital product data of PCI ROM. */
  2274. static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
  2275. {
  2276. int this_offset;
  2277. for (this_offset = 0x20; this_offset < len; this_offset++) {
  2278. void __iomem *p = rom_base + this_offset;
  2279. int i;
  2280. if (readb(p + 0) != 0x90 ||
  2281. readb(p + 1) != 0x00 ||
  2282. readb(p + 2) != 0x09 ||
  2283. readb(p + 3) != 0x4e ||
  2284. readb(p + 4) != 0x41 ||
  2285. readb(p + 5) != 0x06)
  2286. continue;
  2287. this_offset += 6;
  2288. p += 6;
  2289. for (i = 0; i < 6; i++)
  2290. dev_addr[i] = readb(p + i);
  2291. return 1;
  2292. }
  2293. return 0;
  2294. }
  2295. static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
  2296. {
  2297. size_t size;
  2298. void __iomem *p = pci_map_rom(pdev, &size);
  2299. if (p) {
  2300. int found;
  2301. found = readb(p) == 0x55 &&
  2302. readb(p + 1) == 0xaa &&
  2303. find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
  2304. pci_unmap_rom(pdev, p);
  2305. if (found)
  2306. return;
  2307. }
  2308. /* Sun MAC prefix then 3 random bytes. */
  2309. dev_addr[0] = 0x08;
  2310. dev_addr[1] = 0x00;
  2311. dev_addr[2] = 0x20;
  2312. get_random_bytes(dev_addr + 3, 3);
  2313. }
  2314. #endif /* not Sparc and not PPC */
  2315. static int __devinit gem_get_device_address(struct gem *gp)
  2316. {
  2317. #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
  2318. struct net_device *dev = gp->dev;
  2319. const unsigned char *addr;
  2320. addr = of_get_property(gp->of_node, "local-mac-address", NULL);
  2321. if (addr == NULL) {
  2322. #ifdef CONFIG_SPARC
  2323. addr = idprom->id_ethaddr;
  2324. #else
  2325. printk("\n");
  2326. pr_err("%s: can't get mac-address\n", dev->name);
  2327. return -1;
  2328. #endif
  2329. }
  2330. memcpy(dev->dev_addr, addr, 6);
  2331. #else
  2332. get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
  2333. #endif
  2334. return 0;
  2335. }
  2336. static void gem_remove_one(struct pci_dev *pdev)
  2337. {
  2338. struct net_device *dev = pci_get_drvdata(pdev);
  2339. if (dev) {
  2340. struct gem *gp = netdev_priv(dev);
  2341. unregister_netdev(dev);
  2342. /* Ensure reset task is truely gone */
  2343. cancel_work_sync(&gp->reset_task);
  2344. /* Free resources */
  2345. pci_free_consistent(pdev,
  2346. sizeof(struct gem_init_block),
  2347. gp->init_block,
  2348. gp->gblock_dvma);
  2349. iounmap(gp->regs);
  2350. pci_release_regions(pdev);
  2351. free_netdev(dev);
  2352. pci_set_drvdata(pdev, NULL);
  2353. }
  2354. }
  2355. static const struct net_device_ops gem_netdev_ops = {
  2356. .ndo_open = gem_open,
  2357. .ndo_stop = gem_close,
  2358. .ndo_start_xmit = gem_start_xmit,
  2359. .ndo_get_stats = gem_get_stats,
  2360. .ndo_set_multicast_list = gem_set_multicast,
  2361. .ndo_do_ioctl = gem_ioctl,
  2362. .ndo_tx_timeout = gem_tx_timeout,
  2363. .ndo_change_mtu = gem_change_mtu,
  2364. .ndo_validate_addr = eth_validate_addr,
  2365. .ndo_set_mac_address = gem_set_mac_address,
  2366. #ifdef CONFIG_NET_POLL_CONTROLLER
  2367. .ndo_poll_controller = gem_poll_controller,
  2368. #endif
  2369. };
  2370. static int __devinit gem_init_one(struct pci_dev *pdev,
  2371. const struct pci_device_id *ent)
  2372. {
  2373. unsigned long gemreg_base, gemreg_len;
  2374. struct net_device *dev;
  2375. struct gem *gp;
  2376. int err, pci_using_dac;
  2377. printk_once(KERN_INFO "%s", version);
  2378. /* Apple gmac note: during probe, the chip is powered up by
  2379. * the arch code to allow the code below to work (and to let
  2380. * the chip be probed on the config space. It won't stay powered
  2381. * up until the interface is brought up however, so we can't rely
  2382. * on register configuration done at this point.
  2383. */
  2384. err = pci_enable_device(pdev);
  2385. if (err) {
  2386. pr_err("Cannot enable MMIO operation, aborting\n");
  2387. return err;
  2388. }
  2389. pci_set_master(pdev);
  2390. /* Configure DMA attributes. */
  2391. /* All of the GEM documentation states that 64-bit DMA addressing
  2392. * is fully supported and should work just fine. However the
  2393. * front end for RIO based GEMs is different and only supports
  2394. * 32-bit addressing.
  2395. *
  2396. * For now we assume the various PPC GEMs are 32-bit only as well.
  2397. */
  2398. if (pdev->vendor == PCI_VENDOR_ID_SUN &&
  2399. pdev->device == PCI_DEVICE_ID_SUN_GEM &&
  2400. !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  2401. pci_using_dac = 1;
  2402. } else {
  2403. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  2404. if (err) {
  2405. pr_err("No usable DMA configuration, aborting\n");
  2406. goto err_disable_device;
  2407. }
  2408. pci_using_dac = 0;
  2409. }
  2410. gemreg_base = pci_resource_start(pdev, 0);
  2411. gemreg_len = pci_resource_len(pdev, 0);
  2412. if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
  2413. pr_err("Cannot find proper PCI device base address, aborting\n");
  2414. err = -ENODEV;
  2415. goto err_disable_device;
  2416. }
  2417. dev = alloc_etherdev(sizeof(*gp));
  2418. if (!dev) {
  2419. pr_err("Etherdev alloc failed, aborting\n");
  2420. err = -ENOMEM;
  2421. goto err_disable_device;
  2422. }
  2423. SET_NETDEV_DEV(dev, &pdev->dev);
  2424. gp = netdev_priv(dev);
  2425. err = pci_request_regions(pdev, DRV_NAME);
  2426. if (err) {
  2427. pr_err("Cannot obtain PCI resources, aborting\n");
  2428. goto err_out_free_netdev;
  2429. }
  2430. gp->pdev = pdev;
  2431. dev->base_addr = (long) pdev;
  2432. gp->dev = dev;
  2433. gp->msg_enable = DEFAULT_MSG;
  2434. init_timer(&gp->link_timer);
  2435. gp->link_timer.function = gem_link_timer;
  2436. gp->link_timer.data = (unsigned long) gp;
  2437. INIT_WORK(&gp->reset_task, gem_reset_task);
  2438. gp->lstate = link_down;
  2439. gp->timer_ticks = 0;
  2440. netif_carrier_off(dev);
  2441. gp->regs = ioremap(gemreg_base, gemreg_len);
  2442. if (!gp->regs) {
  2443. pr_err("Cannot map device registers, aborting\n");
  2444. err = -EIO;
  2445. goto err_out_free_res;
  2446. }
  2447. /* On Apple, we want a reference to the Open Firmware device-tree
  2448. * node. We use it for clock control.
  2449. */
  2450. #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
  2451. gp->of_node = pci_device_to_OF_node(pdev);
  2452. #endif
  2453. /* Only Apple version supports WOL afaik */
  2454. if (pdev->vendor == PCI_VENDOR_ID_APPLE)
  2455. gp->has_wol = 1;
  2456. /* Make sure cell is enabled */
  2457. gem_get_cell(gp);
  2458. /* Make sure everything is stopped and in init state */
  2459. gem_reset(gp);
  2460. /* Fill up the mii_phy structure (even if we won't use it) */
  2461. gp->phy_mii.dev = dev;
  2462. gp->phy_mii.mdio_read = _phy_read;
  2463. gp->phy_mii.mdio_write = _phy_write;
  2464. #ifdef CONFIG_PPC_PMAC
  2465. gp->phy_mii.platform_data = gp->of_node;
  2466. #endif
  2467. /* By default, we start with autoneg */
  2468. gp->want_autoneg = 1;
  2469. /* Check fifo sizes, PHY type, etc... */
  2470. if (gem_check_invariants(gp)) {
  2471. err = -ENODEV;
  2472. goto err_out_iounmap;
  2473. }
  2474. /* It is guaranteed that the returned buffer will be at least
  2475. * PAGE_SIZE aligned.
  2476. */
  2477. gp->init_block = (struct gem_init_block *)
  2478. pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
  2479. &gp->gblock_dvma);
  2480. if (!gp->init_block) {
  2481. pr_err("Cannot allocate init block, aborting\n");
  2482. err = -ENOMEM;
  2483. goto err_out_iounmap;
  2484. }
  2485. if (gem_get_device_address(gp))
  2486. goto err_out_free_consistent;
  2487. dev->netdev_ops = &gem_netdev_ops;
  2488. netif_napi_add(dev, &gp->napi, gem_poll, 64);
  2489. dev->ethtool_ops = &gem_ethtool_ops;
  2490. dev->watchdog_timeo = 5 * HZ;
  2491. dev->irq = pdev->irq;
  2492. dev->dma = 0;
  2493. /* Set that now, in case PM kicks in now */
  2494. pci_set_drvdata(pdev, dev);
  2495. /* We can do scatter/gather and HW checksum */
  2496. dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM;
  2497. dev->features |= dev->hw_features | NETIF_F_RXCSUM;
  2498. if (pci_using_dac)
  2499. dev->features |= NETIF_F_HIGHDMA;
  2500. /* Register with kernel */
  2501. if (register_netdev(dev)) {
  2502. pr_err("Cannot register net device, aborting\n");
  2503. err = -ENOMEM;
  2504. goto err_out_free_consistent;
  2505. }
  2506. /* Undo the get_cell with appropriate locking (we could use
  2507. * ndo_init/uninit but that would be even more clumsy imho)
  2508. */
  2509. rtnl_lock();
  2510. gem_put_cell(gp);
  2511. rtnl_unlock();
  2512. netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
  2513. dev->dev_addr);
  2514. return 0;
  2515. err_out_free_consistent:
  2516. gem_remove_one(pdev);
  2517. err_out_iounmap:
  2518. gem_put_cell(gp);
  2519. iounmap(gp->regs);
  2520. err_out_free_res:
  2521. pci_release_regions(pdev);
  2522. err_out_free_netdev:
  2523. free_netdev(dev);
  2524. err_disable_device:
  2525. pci_disable_device(pdev);
  2526. return err;
  2527. }
  2528. static struct pci_driver gem_driver = {
  2529. .name = GEM_MODULE_NAME,
  2530. .id_table = gem_pci_tbl,
  2531. .probe = gem_init_one,
  2532. .remove = gem_remove_one,
  2533. #ifdef CONFIG_PM
  2534. .suspend = gem_suspend,
  2535. .resume = gem_resume,
  2536. #endif /* CONFIG_PM */
  2537. };
  2538. static int __init gem_init(void)
  2539. {
  2540. return pci_register_driver(&gem_driver);
  2541. }
  2542. static void __exit gem_cleanup(void)
  2543. {
  2544. pci_unregister_driver(&gem_driver);
  2545. }
  2546. module_init(gem_init);
  2547. module_exit(gem_cleanup);