cifsencrypt.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810
  1. /*
  2. * fs/cifs/cifsencrypt.c
  3. *
  4. * Copyright (C) International Business Machines Corp., 2005,2006
  5. * Author(s): Steve French (sfrench@us.ibm.com)
  6. *
  7. * This library is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU Lesser General Public License as published
  9. * by the Free Software Foundation; either version 2.1 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This library is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  15. * the GNU Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public License
  18. * along with this library; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. #include <linux/fs.h>
  22. #include <linux/slab.h>
  23. #include "cifspdu.h"
  24. #include "cifsglob.h"
  25. #include "cifs_debug.h"
  26. #include "cifs_unicode.h"
  27. #include "cifsproto.h"
  28. #include "ntlmssp.h"
  29. #include <linux/ctype.h>
  30. #include <linux/random.h>
  31. /*
  32. * Calculate and return the CIFS signature based on the mac key and SMB PDU.
  33. * The 16 byte signature must be allocated by the caller. Note we only use the
  34. * 1st eight bytes and that the smb header signature field on input contains
  35. * the sequence number before this function is called. Also, this function
  36. * should be called with the server->srv_mutex held.
  37. */
  38. static int cifs_calculate_signature(const struct smb_hdr *cifs_pdu,
  39. struct TCP_Server_Info *server, char *signature)
  40. {
  41. int rc;
  42. if (cifs_pdu == NULL || signature == NULL || server == NULL)
  43. return -EINVAL;
  44. if (!server->secmech.sdescmd5) {
  45. cERROR(1, "%s: Can't generate signature\n", __func__);
  46. return -1;
  47. }
  48. rc = crypto_shash_init(&server->secmech.sdescmd5->shash);
  49. if (rc) {
  50. cERROR(1, "%s: Could not init md5\n", __func__);
  51. return rc;
  52. }
  53. rc = crypto_shash_update(&server->secmech.sdescmd5->shash,
  54. server->session_key.response, server->session_key.len);
  55. if (rc) {
  56. cERROR(1, "%s: Could not update with response\n", __func__);
  57. return rc;
  58. }
  59. rc = crypto_shash_update(&server->secmech.sdescmd5->shash,
  60. cifs_pdu->Protocol, be32_to_cpu(cifs_pdu->smb_buf_length));
  61. if (rc) {
  62. cERROR(1, "%s: Could not update with payload\n", __func__);
  63. return rc;
  64. }
  65. rc = crypto_shash_final(&server->secmech.sdescmd5->shash, signature);
  66. if (rc)
  67. cERROR(1, "%s: Could not generate md5 hash\n", __func__);
  68. return rc;
  69. }
  70. /* must be called with server->srv_mutex held */
  71. int cifs_sign_smb(struct smb_hdr *cifs_pdu, struct TCP_Server_Info *server,
  72. __u32 *pexpected_response_sequence_number)
  73. {
  74. int rc = 0;
  75. char smb_signature[20];
  76. if ((cifs_pdu == NULL) || (server == NULL))
  77. return -EINVAL;
  78. if (!(cifs_pdu->Flags2 & SMBFLG2_SECURITY_SIGNATURE) ||
  79. server->tcpStatus == CifsNeedNegotiate)
  80. return rc;
  81. if (!server->session_estab) {
  82. strncpy(cifs_pdu->Signature.SecuritySignature, "BSRSPYL", 8);
  83. return rc;
  84. }
  85. cifs_pdu->Signature.Sequence.SequenceNumber =
  86. cpu_to_le32(server->sequence_number);
  87. cifs_pdu->Signature.Sequence.Reserved = 0;
  88. *pexpected_response_sequence_number = server->sequence_number++;
  89. server->sequence_number++;
  90. rc = cifs_calculate_signature(cifs_pdu, server, smb_signature);
  91. if (rc)
  92. memset(cifs_pdu->Signature.SecuritySignature, 0, 8);
  93. else
  94. memcpy(cifs_pdu->Signature.SecuritySignature, smb_signature, 8);
  95. return rc;
  96. }
  97. static int cifs_calc_signature2(const struct kvec *iov, int n_vec,
  98. struct TCP_Server_Info *server, char *signature)
  99. {
  100. int i;
  101. int rc;
  102. if (iov == NULL || signature == NULL || server == NULL)
  103. return -EINVAL;
  104. if (!server->secmech.sdescmd5) {
  105. cERROR(1, "%s: Can't generate signature\n", __func__);
  106. return -1;
  107. }
  108. rc = crypto_shash_init(&server->secmech.sdescmd5->shash);
  109. if (rc) {
  110. cERROR(1, "%s: Could not init md5\n", __func__);
  111. return rc;
  112. }
  113. rc = crypto_shash_update(&server->secmech.sdescmd5->shash,
  114. server->session_key.response, server->session_key.len);
  115. if (rc) {
  116. cERROR(1, "%s: Could not update with response\n", __func__);
  117. return rc;
  118. }
  119. for (i = 0; i < n_vec; i++) {
  120. if (iov[i].iov_len == 0)
  121. continue;
  122. if (iov[i].iov_base == NULL) {
  123. cERROR(1, "null iovec entry");
  124. return -EIO;
  125. }
  126. /* The first entry includes a length field (which does not get
  127. signed that occupies the first 4 bytes before the header */
  128. if (i == 0) {
  129. if (iov[0].iov_len <= 8) /* cmd field at offset 9 */
  130. break; /* nothing to sign or corrupt header */
  131. rc =
  132. crypto_shash_update(&server->secmech.sdescmd5->shash,
  133. iov[i].iov_base + 4, iov[i].iov_len - 4);
  134. } else {
  135. rc =
  136. crypto_shash_update(&server->secmech.sdescmd5->shash,
  137. iov[i].iov_base, iov[i].iov_len);
  138. }
  139. if (rc) {
  140. cERROR(1, "%s: Could not update with payload\n",
  141. __func__);
  142. return rc;
  143. }
  144. }
  145. rc = crypto_shash_final(&server->secmech.sdescmd5->shash, signature);
  146. if (rc)
  147. cERROR(1, "%s: Could not generate md5 hash\n", __func__);
  148. return rc;
  149. }
  150. /* must be called with server->srv_mutex held */
  151. int cifs_sign_smb2(struct kvec *iov, int n_vec, struct TCP_Server_Info *server,
  152. __u32 *pexpected_response_sequence_number)
  153. {
  154. int rc = 0;
  155. char smb_signature[20];
  156. struct smb_hdr *cifs_pdu = iov[0].iov_base;
  157. if ((cifs_pdu == NULL) || (server == NULL))
  158. return -EINVAL;
  159. if (!(cifs_pdu->Flags2 & SMBFLG2_SECURITY_SIGNATURE) ||
  160. server->tcpStatus == CifsNeedNegotiate)
  161. return rc;
  162. if (!server->session_estab) {
  163. strncpy(cifs_pdu->Signature.SecuritySignature, "BSRSPYL", 8);
  164. return rc;
  165. }
  166. cifs_pdu->Signature.Sequence.SequenceNumber =
  167. cpu_to_le32(server->sequence_number);
  168. cifs_pdu->Signature.Sequence.Reserved = 0;
  169. *pexpected_response_sequence_number = server->sequence_number++;
  170. server->sequence_number++;
  171. rc = cifs_calc_signature2(iov, n_vec, server, smb_signature);
  172. if (rc)
  173. memset(cifs_pdu->Signature.SecuritySignature, 0, 8);
  174. else
  175. memcpy(cifs_pdu->Signature.SecuritySignature, smb_signature, 8);
  176. return rc;
  177. }
  178. int cifs_verify_signature(struct smb_hdr *cifs_pdu,
  179. struct TCP_Server_Info *server,
  180. __u32 expected_sequence_number)
  181. {
  182. unsigned int rc;
  183. char server_response_sig[8];
  184. char what_we_think_sig_should_be[20];
  185. if (cifs_pdu == NULL || server == NULL)
  186. return -EINVAL;
  187. if (!server->session_estab)
  188. return 0;
  189. if (cifs_pdu->Command == SMB_COM_LOCKING_ANDX) {
  190. struct smb_com_lock_req *pSMB =
  191. (struct smb_com_lock_req *)cifs_pdu;
  192. if (pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE)
  193. return 0;
  194. }
  195. /* BB what if signatures are supposed to be on for session but
  196. server does not send one? BB */
  197. /* Do not need to verify session setups with signature "BSRSPYL " */
  198. if (memcmp(cifs_pdu->Signature.SecuritySignature, "BSRSPYL ", 8) == 0)
  199. cFYI(1, "dummy signature received for smb command 0x%x",
  200. cifs_pdu->Command);
  201. /* save off the origiginal signature so we can modify the smb and check
  202. its signature against what the server sent */
  203. memcpy(server_response_sig, cifs_pdu->Signature.SecuritySignature, 8);
  204. cifs_pdu->Signature.Sequence.SequenceNumber =
  205. cpu_to_le32(expected_sequence_number);
  206. cifs_pdu->Signature.Sequence.Reserved = 0;
  207. mutex_lock(&server->srv_mutex);
  208. rc = cifs_calculate_signature(cifs_pdu, server,
  209. what_we_think_sig_should_be);
  210. mutex_unlock(&server->srv_mutex);
  211. if (rc)
  212. return rc;
  213. /* cifs_dump_mem("what we think it should be: ",
  214. what_we_think_sig_should_be, 16); */
  215. if (memcmp(server_response_sig, what_we_think_sig_should_be, 8))
  216. return -EACCES;
  217. else
  218. return 0;
  219. }
  220. /* first calculate 24 bytes ntlm response and then 16 byte session key */
  221. int setup_ntlm_response(struct cifs_ses *ses)
  222. {
  223. int rc = 0;
  224. unsigned int temp_len = CIFS_SESS_KEY_SIZE + CIFS_AUTH_RESP_SIZE;
  225. char temp_key[CIFS_SESS_KEY_SIZE];
  226. if (!ses)
  227. return -EINVAL;
  228. ses->auth_key.response = kmalloc(temp_len, GFP_KERNEL);
  229. if (!ses->auth_key.response) {
  230. cERROR(1, "NTLM can't allocate (%u bytes) memory", temp_len);
  231. return -ENOMEM;
  232. }
  233. ses->auth_key.len = temp_len;
  234. rc = SMBNTencrypt(ses->password, ses->server->cryptkey,
  235. ses->auth_key.response + CIFS_SESS_KEY_SIZE);
  236. if (rc) {
  237. cFYI(1, "%s Can't generate NTLM response, error: %d",
  238. __func__, rc);
  239. return rc;
  240. }
  241. rc = E_md4hash(ses->password, temp_key);
  242. if (rc) {
  243. cFYI(1, "%s Can't generate NT hash, error: %d", __func__, rc);
  244. return rc;
  245. }
  246. rc = mdfour(ses->auth_key.response, temp_key, CIFS_SESS_KEY_SIZE);
  247. if (rc)
  248. cFYI(1, "%s Can't generate NTLM session key, error: %d",
  249. __func__, rc);
  250. return rc;
  251. }
  252. #ifdef CONFIG_CIFS_WEAK_PW_HASH
  253. int calc_lanman_hash(const char *password, const char *cryptkey, bool encrypt,
  254. char *lnm_session_key)
  255. {
  256. int i;
  257. int rc;
  258. char password_with_pad[CIFS_ENCPWD_SIZE];
  259. memset(password_with_pad, 0, CIFS_ENCPWD_SIZE);
  260. if (password)
  261. strncpy(password_with_pad, password, CIFS_ENCPWD_SIZE);
  262. if (!encrypt && global_secflags & CIFSSEC_MAY_PLNTXT) {
  263. memset(lnm_session_key, 0, CIFS_SESS_KEY_SIZE);
  264. memcpy(lnm_session_key, password_with_pad,
  265. CIFS_ENCPWD_SIZE);
  266. return 0;
  267. }
  268. /* calculate old style session key */
  269. /* calling toupper is less broken than repeatedly
  270. calling nls_toupper would be since that will never
  271. work for UTF8, but neither handles multibyte code pages
  272. but the only alternative would be converting to UCS-16 (Unicode)
  273. (using a routine something like UniStrupr) then
  274. uppercasing and then converting back from Unicode - which
  275. would only worth doing it if we knew it were utf8. Basically
  276. utf8 and other multibyte codepages each need their own strupper
  277. function since a byte at a time will ont work. */
  278. for (i = 0; i < CIFS_ENCPWD_SIZE; i++)
  279. password_with_pad[i] = toupper(password_with_pad[i]);
  280. rc = SMBencrypt(password_with_pad, cryptkey, lnm_session_key);
  281. return rc;
  282. }
  283. #endif /* CIFS_WEAK_PW_HASH */
  284. /* Build a proper attribute value/target info pairs blob.
  285. * Fill in netbios and dns domain name and workstation name
  286. * and client time (total five av pairs and + one end of fields indicator.
  287. * Allocate domain name which gets freed when session struct is deallocated.
  288. */
  289. static int
  290. build_avpair_blob(struct cifs_ses *ses, const struct nls_table *nls_cp)
  291. {
  292. unsigned int dlen;
  293. unsigned int size = 2 * sizeof(struct ntlmssp2_name);
  294. char *defdmname = "WORKGROUP";
  295. unsigned char *blobptr;
  296. struct ntlmssp2_name *attrptr;
  297. if (!ses->domainName) {
  298. ses->domainName = kstrdup(defdmname, GFP_KERNEL);
  299. if (!ses->domainName)
  300. return -ENOMEM;
  301. }
  302. dlen = strlen(ses->domainName);
  303. /*
  304. * The length of this blob is two times the size of a
  305. * structure (av pair) which holds name/size
  306. * ( for NTLMSSP_AV_NB_DOMAIN_NAME followed by NTLMSSP_AV_EOL ) +
  307. * unicode length of a netbios domain name
  308. */
  309. ses->auth_key.len = size + 2 * dlen;
  310. ses->auth_key.response = kzalloc(ses->auth_key.len, GFP_KERNEL);
  311. if (!ses->auth_key.response) {
  312. ses->auth_key.len = 0;
  313. cERROR(1, "Challenge target info allocation failure");
  314. return -ENOMEM;
  315. }
  316. blobptr = ses->auth_key.response;
  317. attrptr = (struct ntlmssp2_name *) blobptr;
  318. /*
  319. * As defined in MS-NTLM 3.3.2, just this av pair field
  320. * is sufficient as part of the temp
  321. */
  322. attrptr->type = cpu_to_le16(NTLMSSP_AV_NB_DOMAIN_NAME);
  323. attrptr->length = cpu_to_le16(2 * dlen);
  324. blobptr = (unsigned char *)attrptr + sizeof(struct ntlmssp2_name);
  325. cifs_strtoUCS((__le16 *)blobptr, ses->domainName, dlen, nls_cp);
  326. return 0;
  327. }
  328. /* Server has provided av pairs/target info in the type 2 challenge
  329. * packet and we have plucked it and stored within smb session.
  330. * We parse that blob here to find netbios domain name to be used
  331. * as part of ntlmv2 authentication (in Target String), if not already
  332. * specified on the command line.
  333. * If this function returns without any error but without fetching
  334. * domain name, authentication may fail against some server but
  335. * may not fail against other (those who are not very particular
  336. * about target string i.e. for some, just user name might suffice.
  337. */
  338. static int
  339. find_domain_name(struct cifs_ses *ses, const struct nls_table *nls_cp)
  340. {
  341. unsigned int attrsize;
  342. unsigned int type;
  343. unsigned int onesize = sizeof(struct ntlmssp2_name);
  344. unsigned char *blobptr;
  345. unsigned char *blobend;
  346. struct ntlmssp2_name *attrptr;
  347. if (!ses->auth_key.len || !ses->auth_key.response)
  348. return 0;
  349. blobptr = ses->auth_key.response;
  350. blobend = blobptr + ses->auth_key.len;
  351. while (blobptr + onesize < blobend) {
  352. attrptr = (struct ntlmssp2_name *) blobptr;
  353. type = le16_to_cpu(attrptr->type);
  354. if (type == NTLMSSP_AV_EOL)
  355. break;
  356. blobptr += 2; /* advance attr type */
  357. attrsize = le16_to_cpu(attrptr->length);
  358. blobptr += 2; /* advance attr size */
  359. if (blobptr + attrsize > blobend)
  360. break;
  361. if (type == NTLMSSP_AV_NB_DOMAIN_NAME) {
  362. if (!attrsize)
  363. break;
  364. if (!ses->domainName) {
  365. ses->domainName =
  366. kmalloc(attrsize + 1, GFP_KERNEL);
  367. if (!ses->domainName)
  368. return -ENOMEM;
  369. cifs_from_ucs2(ses->domainName,
  370. (__le16 *)blobptr, attrsize, attrsize,
  371. nls_cp, false);
  372. break;
  373. }
  374. }
  375. blobptr += attrsize; /* advance attr value */
  376. }
  377. return 0;
  378. }
  379. static int calc_ntlmv2_hash(struct cifs_ses *ses, char *ntlmv2_hash,
  380. const struct nls_table *nls_cp)
  381. {
  382. int rc = 0;
  383. int len;
  384. char nt_hash[CIFS_NTHASH_SIZE];
  385. wchar_t *user;
  386. wchar_t *domain;
  387. wchar_t *server;
  388. if (!ses->server->secmech.sdeschmacmd5) {
  389. cERROR(1, "calc_ntlmv2_hash: can't generate ntlmv2 hash\n");
  390. return -1;
  391. }
  392. /* calculate md4 hash of password */
  393. E_md4hash(ses->password, nt_hash);
  394. rc = crypto_shash_setkey(ses->server->secmech.hmacmd5, nt_hash,
  395. CIFS_NTHASH_SIZE);
  396. if (rc) {
  397. cERROR(1, "%s: Could not set NT Hash as a key", __func__);
  398. return rc;
  399. }
  400. rc = crypto_shash_init(&ses->server->secmech.sdeschmacmd5->shash);
  401. if (rc) {
  402. cERROR(1, "calc_ntlmv2_hash: could not init hmacmd5\n");
  403. return rc;
  404. }
  405. /* convert ses->user_name to unicode and uppercase */
  406. len = strlen(ses->user_name);
  407. user = kmalloc(2 + (len * 2), GFP_KERNEL);
  408. if (user == NULL) {
  409. cERROR(1, "calc_ntlmv2_hash: user mem alloc failure\n");
  410. rc = -ENOMEM;
  411. return rc;
  412. }
  413. len = cifs_strtoUCS((__le16 *)user, ses->user_name, len, nls_cp);
  414. UniStrupr(user);
  415. rc = crypto_shash_update(&ses->server->secmech.sdeschmacmd5->shash,
  416. (char *)user, 2 * len);
  417. kfree(user);
  418. if (rc) {
  419. cERROR(1, "%s: Could not update with user\n", __func__);
  420. return rc;
  421. }
  422. /* convert ses->domainName to unicode and uppercase */
  423. if (ses->domainName) {
  424. len = strlen(ses->domainName);
  425. domain = kmalloc(2 + (len * 2), GFP_KERNEL);
  426. if (domain == NULL) {
  427. cERROR(1, "calc_ntlmv2_hash: domain mem alloc failure");
  428. rc = -ENOMEM;
  429. return rc;
  430. }
  431. len = cifs_strtoUCS((__le16 *)domain, ses->domainName, len,
  432. nls_cp);
  433. rc =
  434. crypto_shash_update(&ses->server->secmech.sdeschmacmd5->shash,
  435. (char *)domain, 2 * len);
  436. kfree(domain);
  437. if (rc) {
  438. cERROR(1, "%s: Could not update with domain\n",
  439. __func__);
  440. return rc;
  441. }
  442. } else if (ses->serverName) {
  443. len = strlen(ses->serverName);
  444. server = kmalloc(2 + (len * 2), GFP_KERNEL);
  445. if (server == NULL) {
  446. cERROR(1, "calc_ntlmv2_hash: server mem alloc failure");
  447. rc = -ENOMEM;
  448. return rc;
  449. }
  450. len = cifs_strtoUCS((__le16 *)server, ses->serverName, len,
  451. nls_cp);
  452. rc =
  453. crypto_shash_update(&ses->server->secmech.sdeschmacmd5->shash,
  454. (char *)server, 2 * len);
  455. kfree(server);
  456. if (rc) {
  457. cERROR(1, "%s: Could not update with server\n",
  458. __func__);
  459. return rc;
  460. }
  461. }
  462. rc = crypto_shash_final(&ses->server->secmech.sdeschmacmd5->shash,
  463. ntlmv2_hash);
  464. if (rc)
  465. cERROR(1, "%s: Could not generate md5 hash\n", __func__);
  466. return rc;
  467. }
  468. static int
  469. CalcNTLMv2_response(const struct cifs_ses *ses, char *ntlmv2_hash)
  470. {
  471. int rc;
  472. unsigned int offset = CIFS_SESS_KEY_SIZE + 8;
  473. if (!ses->server->secmech.sdeschmacmd5) {
  474. cERROR(1, "calc_ntlmv2_hash: can't generate ntlmv2 hash\n");
  475. return -1;
  476. }
  477. rc = crypto_shash_setkey(ses->server->secmech.hmacmd5,
  478. ntlmv2_hash, CIFS_HMAC_MD5_HASH_SIZE);
  479. if (rc) {
  480. cERROR(1, "%s: Could not set NTLMV2 Hash as a key", __func__);
  481. return rc;
  482. }
  483. rc = crypto_shash_init(&ses->server->secmech.sdeschmacmd5->shash);
  484. if (rc) {
  485. cERROR(1, "CalcNTLMv2_response: could not init hmacmd5");
  486. return rc;
  487. }
  488. if (ses->server->secType == RawNTLMSSP)
  489. memcpy(ses->auth_key.response + offset,
  490. ses->ntlmssp->cryptkey, CIFS_SERVER_CHALLENGE_SIZE);
  491. else
  492. memcpy(ses->auth_key.response + offset,
  493. ses->server->cryptkey, CIFS_SERVER_CHALLENGE_SIZE);
  494. rc = crypto_shash_update(&ses->server->secmech.sdeschmacmd5->shash,
  495. ses->auth_key.response + offset, ses->auth_key.len - offset);
  496. if (rc) {
  497. cERROR(1, "%s: Could not update with response\n", __func__);
  498. return rc;
  499. }
  500. rc = crypto_shash_final(&ses->server->secmech.sdeschmacmd5->shash,
  501. ses->auth_key.response + CIFS_SESS_KEY_SIZE);
  502. if (rc)
  503. cERROR(1, "%s: Could not generate md5 hash\n", __func__);
  504. return rc;
  505. }
  506. int
  507. setup_ntlmv2_rsp(struct cifs_ses *ses, const struct nls_table *nls_cp)
  508. {
  509. int rc;
  510. int baselen;
  511. unsigned int tilen;
  512. struct ntlmv2_resp *buf;
  513. char ntlmv2_hash[16];
  514. unsigned char *tiblob = NULL; /* target info blob */
  515. if (ses->server->secType == RawNTLMSSP) {
  516. if (!ses->domainName) {
  517. rc = find_domain_name(ses, nls_cp);
  518. if (rc) {
  519. cERROR(1, "error %d finding domain name", rc);
  520. goto setup_ntlmv2_rsp_ret;
  521. }
  522. }
  523. } else {
  524. rc = build_avpair_blob(ses, nls_cp);
  525. if (rc) {
  526. cERROR(1, "error %d building av pair blob", rc);
  527. goto setup_ntlmv2_rsp_ret;
  528. }
  529. }
  530. baselen = CIFS_SESS_KEY_SIZE + sizeof(struct ntlmv2_resp);
  531. tilen = ses->auth_key.len;
  532. tiblob = ses->auth_key.response;
  533. ses->auth_key.response = kmalloc(baselen + tilen, GFP_KERNEL);
  534. if (!ses->auth_key.response) {
  535. rc = ENOMEM;
  536. ses->auth_key.len = 0;
  537. cERROR(1, "%s: Can't allocate auth blob", __func__);
  538. goto setup_ntlmv2_rsp_ret;
  539. }
  540. ses->auth_key.len += baselen;
  541. buf = (struct ntlmv2_resp *)
  542. (ses->auth_key.response + CIFS_SESS_KEY_SIZE);
  543. buf->blob_signature = cpu_to_le32(0x00000101);
  544. buf->reserved = 0;
  545. buf->time = cpu_to_le64(cifs_UnixTimeToNT(CURRENT_TIME));
  546. get_random_bytes(&buf->client_chal, sizeof(buf->client_chal));
  547. buf->reserved2 = 0;
  548. memcpy(ses->auth_key.response + baselen, tiblob, tilen);
  549. /* calculate ntlmv2_hash */
  550. rc = calc_ntlmv2_hash(ses, ntlmv2_hash, nls_cp);
  551. if (rc) {
  552. cERROR(1, "could not get v2 hash rc %d", rc);
  553. goto setup_ntlmv2_rsp_ret;
  554. }
  555. /* calculate first part of the client response (CR1) */
  556. rc = CalcNTLMv2_response(ses, ntlmv2_hash);
  557. if (rc) {
  558. cERROR(1, "Could not calculate CR1 rc: %d", rc);
  559. goto setup_ntlmv2_rsp_ret;
  560. }
  561. /* now calculate the session key for NTLMv2 */
  562. rc = crypto_shash_setkey(ses->server->secmech.hmacmd5,
  563. ntlmv2_hash, CIFS_HMAC_MD5_HASH_SIZE);
  564. if (rc) {
  565. cERROR(1, "%s: Could not set NTLMV2 Hash as a key", __func__);
  566. goto setup_ntlmv2_rsp_ret;
  567. }
  568. rc = crypto_shash_init(&ses->server->secmech.sdeschmacmd5->shash);
  569. if (rc) {
  570. cERROR(1, "%s: Could not init hmacmd5\n", __func__);
  571. goto setup_ntlmv2_rsp_ret;
  572. }
  573. rc = crypto_shash_update(&ses->server->secmech.sdeschmacmd5->shash,
  574. ses->auth_key.response + CIFS_SESS_KEY_SIZE,
  575. CIFS_HMAC_MD5_HASH_SIZE);
  576. if (rc) {
  577. cERROR(1, "%s: Could not update with response\n", __func__);
  578. goto setup_ntlmv2_rsp_ret;
  579. }
  580. rc = crypto_shash_final(&ses->server->secmech.sdeschmacmd5->shash,
  581. ses->auth_key.response);
  582. if (rc)
  583. cERROR(1, "%s: Could not generate md5 hash\n", __func__);
  584. setup_ntlmv2_rsp_ret:
  585. kfree(tiblob);
  586. return rc;
  587. }
  588. int
  589. calc_seckey(struct cifs_ses *ses)
  590. {
  591. int rc;
  592. struct crypto_blkcipher *tfm_arc4;
  593. struct scatterlist sgin, sgout;
  594. struct blkcipher_desc desc;
  595. unsigned char sec_key[CIFS_SESS_KEY_SIZE]; /* a nonce */
  596. get_random_bytes(sec_key, CIFS_SESS_KEY_SIZE);
  597. tfm_arc4 = crypto_alloc_blkcipher("ecb(arc4)", 0, CRYPTO_ALG_ASYNC);
  598. if (IS_ERR(tfm_arc4)) {
  599. rc = PTR_ERR(tfm_arc4);
  600. cERROR(1, "could not allocate crypto API arc4\n");
  601. return rc;
  602. }
  603. desc.tfm = tfm_arc4;
  604. rc = crypto_blkcipher_setkey(tfm_arc4, ses->auth_key.response,
  605. CIFS_SESS_KEY_SIZE);
  606. if (rc) {
  607. cERROR(1, "%s: Could not set response as a key", __func__);
  608. return rc;
  609. }
  610. sg_init_one(&sgin, sec_key, CIFS_SESS_KEY_SIZE);
  611. sg_init_one(&sgout, ses->ntlmssp->ciphertext, CIFS_CPHTXT_SIZE);
  612. rc = crypto_blkcipher_encrypt(&desc, &sgout, &sgin, CIFS_CPHTXT_SIZE);
  613. if (rc) {
  614. cERROR(1, "could not encrypt session key rc: %d\n", rc);
  615. crypto_free_blkcipher(tfm_arc4);
  616. return rc;
  617. }
  618. /* make secondary_key/nonce as session key */
  619. memcpy(ses->auth_key.response, sec_key, CIFS_SESS_KEY_SIZE);
  620. /* and make len as that of session key only */
  621. ses->auth_key.len = CIFS_SESS_KEY_SIZE;
  622. crypto_free_blkcipher(tfm_arc4);
  623. return rc;
  624. }
  625. void
  626. cifs_crypto_shash_release(struct TCP_Server_Info *server)
  627. {
  628. if (server->secmech.md5)
  629. crypto_free_shash(server->secmech.md5);
  630. if (server->secmech.hmacmd5)
  631. crypto_free_shash(server->secmech.hmacmd5);
  632. kfree(server->secmech.sdeschmacmd5);
  633. kfree(server->secmech.sdescmd5);
  634. }
  635. int
  636. cifs_crypto_shash_allocate(struct TCP_Server_Info *server)
  637. {
  638. int rc;
  639. unsigned int size;
  640. server->secmech.hmacmd5 = crypto_alloc_shash("hmac(md5)", 0, 0);
  641. if (IS_ERR(server->secmech.hmacmd5)) {
  642. cERROR(1, "could not allocate crypto hmacmd5\n");
  643. return PTR_ERR(server->secmech.hmacmd5);
  644. }
  645. server->secmech.md5 = crypto_alloc_shash("md5", 0, 0);
  646. if (IS_ERR(server->secmech.md5)) {
  647. cERROR(1, "could not allocate crypto md5\n");
  648. rc = PTR_ERR(server->secmech.md5);
  649. goto crypto_allocate_md5_fail;
  650. }
  651. size = sizeof(struct shash_desc) +
  652. crypto_shash_descsize(server->secmech.hmacmd5);
  653. server->secmech.sdeschmacmd5 = kmalloc(size, GFP_KERNEL);
  654. if (!server->secmech.sdeschmacmd5) {
  655. cERROR(1, "cifs_crypto_shash_allocate: can't alloc hmacmd5\n");
  656. rc = -ENOMEM;
  657. goto crypto_allocate_hmacmd5_sdesc_fail;
  658. }
  659. server->secmech.sdeschmacmd5->shash.tfm = server->secmech.hmacmd5;
  660. server->secmech.sdeschmacmd5->shash.flags = 0x0;
  661. size = sizeof(struct shash_desc) +
  662. crypto_shash_descsize(server->secmech.md5);
  663. server->secmech.sdescmd5 = kmalloc(size, GFP_KERNEL);
  664. if (!server->secmech.sdescmd5) {
  665. cERROR(1, "cifs_crypto_shash_allocate: can't alloc md5\n");
  666. rc = -ENOMEM;
  667. goto crypto_allocate_md5_sdesc_fail;
  668. }
  669. server->secmech.sdescmd5->shash.tfm = server->secmech.md5;
  670. server->secmech.sdescmd5->shash.flags = 0x0;
  671. return 0;
  672. crypto_allocate_md5_sdesc_fail:
  673. kfree(server->secmech.sdeschmacmd5);
  674. crypto_allocate_hmacmd5_sdesc_fail:
  675. crypto_free_shash(server->secmech.md5);
  676. crypto_allocate_md5_fail:
  677. crypto_free_shash(server->secmech.hmacmd5);
  678. return rc;
  679. }