cfq-iosched.c 107 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "blk.h"
  18. #include "cfq.h"
  19. /*
  20. * tunables
  21. */
  22. /* max queue in one round of service */
  23. static const int cfq_quantum = 8;
  24. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  25. /* maximum backwards seek, in KiB */
  26. static const int cfq_back_max = 16 * 1024;
  27. /* penalty of a backwards seek */
  28. static const int cfq_back_penalty = 2;
  29. static const int cfq_slice_sync = HZ / 10;
  30. static int cfq_slice_async = HZ / 25;
  31. static const int cfq_slice_async_rq = 2;
  32. static int cfq_slice_idle = HZ / 125;
  33. static int cfq_group_idle = HZ / 125;
  34. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  35. static const int cfq_hist_divisor = 4;
  36. /*
  37. * offset from end of service tree
  38. */
  39. #define CFQ_IDLE_DELAY (HZ / 5)
  40. /*
  41. * below this threshold, we consider thinktime immediate
  42. */
  43. #define CFQ_MIN_TT (2)
  44. #define CFQ_SLICE_SCALE (5)
  45. #define CFQ_HW_QUEUE_MIN (5)
  46. #define CFQ_SERVICE_SHIFT 12
  47. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  48. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  49. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  50. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  51. #define RQ_CIC(rq) \
  52. ((struct cfq_io_context *) (rq)->elevator_private[0])
  53. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
  54. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
  55. static struct kmem_cache *cfq_pool;
  56. static struct kmem_cache *cfq_ioc_pool;
  57. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  58. static struct completion *ioc_gone;
  59. static DEFINE_SPINLOCK(ioc_gone_lock);
  60. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  61. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  62. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  63. #define sample_valid(samples) ((samples) > 80)
  64. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  65. /*
  66. * Most of our rbtree usage is for sorting with min extraction, so
  67. * if we cache the leftmost node we don't have to walk down the tree
  68. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  69. * move this into the elevator for the rq sorting as well.
  70. */
  71. struct cfq_rb_root {
  72. struct rb_root rb;
  73. struct rb_node *left;
  74. unsigned count;
  75. unsigned total_weight;
  76. u64 min_vdisktime;
  77. struct cfq_ttime ttime;
  78. };
  79. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
  80. .ttime = {.last_end_request = jiffies,},}
  81. /*
  82. * Per process-grouping structure
  83. */
  84. struct cfq_queue {
  85. /* reference count */
  86. int ref;
  87. /* various state flags, see below */
  88. unsigned int flags;
  89. /* parent cfq_data */
  90. struct cfq_data *cfqd;
  91. /* service_tree member */
  92. struct rb_node rb_node;
  93. /* service_tree key */
  94. unsigned long rb_key;
  95. /* prio tree member */
  96. struct rb_node p_node;
  97. /* prio tree root we belong to, if any */
  98. struct rb_root *p_root;
  99. /* sorted list of pending requests */
  100. struct rb_root sort_list;
  101. /* if fifo isn't expired, next request to serve */
  102. struct request *next_rq;
  103. /* requests queued in sort_list */
  104. int queued[2];
  105. /* currently allocated requests */
  106. int allocated[2];
  107. /* fifo list of requests in sort_list */
  108. struct list_head fifo;
  109. /* time when queue got scheduled in to dispatch first request. */
  110. unsigned long dispatch_start;
  111. unsigned int allocated_slice;
  112. unsigned int slice_dispatch;
  113. /* time when first request from queue completed and slice started. */
  114. unsigned long slice_start;
  115. unsigned long slice_end;
  116. long slice_resid;
  117. /* pending priority requests */
  118. int prio_pending;
  119. /* number of requests that are on the dispatch list or inside driver */
  120. int dispatched;
  121. /* io prio of this group */
  122. unsigned short ioprio, org_ioprio;
  123. unsigned short ioprio_class;
  124. pid_t pid;
  125. u32 seek_history;
  126. sector_t last_request_pos;
  127. struct cfq_rb_root *service_tree;
  128. struct cfq_queue *new_cfqq;
  129. struct cfq_group *cfqg;
  130. /* Number of sectors dispatched from queue in single dispatch round */
  131. unsigned long nr_sectors;
  132. };
  133. /*
  134. * First index in the service_trees.
  135. * IDLE is handled separately, so it has negative index
  136. */
  137. enum wl_prio_t {
  138. BE_WORKLOAD = 0,
  139. RT_WORKLOAD = 1,
  140. IDLE_WORKLOAD = 2,
  141. CFQ_PRIO_NR,
  142. };
  143. /*
  144. * Second index in the service_trees.
  145. */
  146. enum wl_type_t {
  147. ASYNC_WORKLOAD = 0,
  148. SYNC_NOIDLE_WORKLOAD = 1,
  149. SYNC_WORKLOAD = 2
  150. };
  151. /* This is per cgroup per device grouping structure */
  152. struct cfq_group {
  153. /* group service_tree member */
  154. struct rb_node rb_node;
  155. /* group service_tree key */
  156. u64 vdisktime;
  157. unsigned int weight;
  158. unsigned int new_weight;
  159. bool needs_update;
  160. /* number of cfqq currently on this group */
  161. int nr_cfqq;
  162. /*
  163. * Per group busy queues average. Useful for workload slice calc. We
  164. * create the array for each prio class but at run time it is used
  165. * only for RT and BE class and slot for IDLE class remains unused.
  166. * This is primarily done to avoid confusion and a gcc warning.
  167. */
  168. unsigned int busy_queues_avg[CFQ_PRIO_NR];
  169. /*
  170. * rr lists of queues with requests. We maintain service trees for
  171. * RT and BE classes. These trees are subdivided in subclasses
  172. * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
  173. * class there is no subclassification and all the cfq queues go on
  174. * a single tree service_tree_idle.
  175. * Counts are embedded in the cfq_rb_root
  176. */
  177. struct cfq_rb_root service_trees[2][3];
  178. struct cfq_rb_root service_tree_idle;
  179. unsigned long saved_workload_slice;
  180. enum wl_type_t saved_workload;
  181. enum wl_prio_t saved_serving_prio;
  182. struct blkio_group blkg;
  183. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  184. struct hlist_node cfqd_node;
  185. int ref;
  186. #endif
  187. /* number of requests that are on the dispatch list or inside driver */
  188. int dispatched;
  189. struct cfq_ttime ttime;
  190. };
  191. /*
  192. * Per block device queue structure
  193. */
  194. struct cfq_data {
  195. struct request_queue *queue;
  196. /* Root service tree for cfq_groups */
  197. struct cfq_rb_root grp_service_tree;
  198. struct cfq_group root_group;
  199. /*
  200. * The priority currently being served
  201. */
  202. enum wl_prio_t serving_prio;
  203. enum wl_type_t serving_type;
  204. unsigned long workload_expires;
  205. struct cfq_group *serving_group;
  206. /*
  207. * Each priority tree is sorted by next_request position. These
  208. * trees are used when determining if two or more queues are
  209. * interleaving requests (see cfq_close_cooperator).
  210. */
  211. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  212. unsigned int busy_queues;
  213. unsigned int busy_sync_queues;
  214. int rq_in_driver;
  215. int rq_in_flight[2];
  216. /*
  217. * queue-depth detection
  218. */
  219. int rq_queued;
  220. int hw_tag;
  221. /*
  222. * hw_tag can be
  223. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  224. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  225. * 0 => no NCQ
  226. */
  227. int hw_tag_est_depth;
  228. unsigned int hw_tag_samples;
  229. /*
  230. * idle window management
  231. */
  232. struct timer_list idle_slice_timer;
  233. struct work_struct unplug_work;
  234. struct cfq_queue *active_queue;
  235. struct cfq_io_context *active_cic;
  236. /*
  237. * async queue for each priority case
  238. */
  239. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  240. struct cfq_queue *async_idle_cfqq;
  241. sector_t last_position;
  242. /*
  243. * tunables, see top of file
  244. */
  245. unsigned int cfq_quantum;
  246. unsigned int cfq_fifo_expire[2];
  247. unsigned int cfq_back_penalty;
  248. unsigned int cfq_back_max;
  249. unsigned int cfq_slice[2];
  250. unsigned int cfq_slice_async_rq;
  251. unsigned int cfq_slice_idle;
  252. unsigned int cfq_group_idle;
  253. unsigned int cfq_latency;
  254. struct list_head cic_list;
  255. /*
  256. * Fallback dummy cfqq for extreme OOM conditions
  257. */
  258. struct cfq_queue oom_cfqq;
  259. unsigned long last_delayed_sync;
  260. /* List of cfq groups being managed on this device*/
  261. struct hlist_head cfqg_list;
  262. /* Number of groups which are on blkcg->blkg_list */
  263. unsigned int nr_blkcg_linked_grps;
  264. };
  265. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  266. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  267. enum wl_prio_t prio,
  268. enum wl_type_t type)
  269. {
  270. if (!cfqg)
  271. return NULL;
  272. if (prio == IDLE_WORKLOAD)
  273. return &cfqg->service_tree_idle;
  274. return &cfqg->service_trees[prio][type];
  275. }
  276. enum cfqq_state_flags {
  277. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  278. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  279. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  280. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  281. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  282. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  283. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  284. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  285. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  286. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  287. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  288. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  289. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  290. };
  291. #define CFQ_CFQQ_FNS(name) \
  292. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  293. { \
  294. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  295. } \
  296. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  297. { \
  298. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  299. } \
  300. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  301. { \
  302. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  303. }
  304. CFQ_CFQQ_FNS(on_rr);
  305. CFQ_CFQQ_FNS(wait_request);
  306. CFQ_CFQQ_FNS(must_dispatch);
  307. CFQ_CFQQ_FNS(must_alloc_slice);
  308. CFQ_CFQQ_FNS(fifo_expire);
  309. CFQ_CFQQ_FNS(idle_window);
  310. CFQ_CFQQ_FNS(prio_changed);
  311. CFQ_CFQQ_FNS(slice_new);
  312. CFQ_CFQQ_FNS(sync);
  313. CFQ_CFQQ_FNS(coop);
  314. CFQ_CFQQ_FNS(split_coop);
  315. CFQ_CFQQ_FNS(deep);
  316. CFQ_CFQQ_FNS(wait_busy);
  317. #undef CFQ_CFQQ_FNS
  318. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  319. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  320. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  321. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  322. blkg_path(&(cfqq)->cfqg->blkg), ##args)
  323. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  324. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  325. blkg_path(&(cfqg)->blkg), ##args) \
  326. #else
  327. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  328. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  329. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
  330. #endif
  331. #define cfq_log(cfqd, fmt, args...) \
  332. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  333. /* Traverses through cfq group service trees */
  334. #define for_each_cfqg_st(cfqg, i, j, st) \
  335. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  336. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  337. : &cfqg->service_tree_idle; \
  338. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  339. (i == IDLE_WORKLOAD && j == 0); \
  340. j++, st = i < IDLE_WORKLOAD ? \
  341. &cfqg->service_trees[i][j]: NULL) \
  342. static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
  343. struct cfq_ttime *ttime, bool group_idle)
  344. {
  345. unsigned long slice;
  346. if (!sample_valid(ttime->ttime_samples))
  347. return false;
  348. if (group_idle)
  349. slice = cfqd->cfq_group_idle;
  350. else
  351. slice = cfqd->cfq_slice_idle;
  352. return ttime->ttime_mean > slice;
  353. }
  354. static inline bool iops_mode(struct cfq_data *cfqd)
  355. {
  356. /*
  357. * If we are not idling on queues and it is a NCQ drive, parallel
  358. * execution of requests is on and measuring time is not possible
  359. * in most of the cases until and unless we drive shallower queue
  360. * depths and that becomes a performance bottleneck. In such cases
  361. * switch to start providing fairness in terms of number of IOs.
  362. */
  363. if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  364. return true;
  365. else
  366. return false;
  367. }
  368. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  369. {
  370. if (cfq_class_idle(cfqq))
  371. return IDLE_WORKLOAD;
  372. if (cfq_class_rt(cfqq))
  373. return RT_WORKLOAD;
  374. return BE_WORKLOAD;
  375. }
  376. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  377. {
  378. if (!cfq_cfqq_sync(cfqq))
  379. return ASYNC_WORKLOAD;
  380. if (!cfq_cfqq_idle_window(cfqq))
  381. return SYNC_NOIDLE_WORKLOAD;
  382. return SYNC_WORKLOAD;
  383. }
  384. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  385. struct cfq_data *cfqd,
  386. struct cfq_group *cfqg)
  387. {
  388. if (wl == IDLE_WORKLOAD)
  389. return cfqg->service_tree_idle.count;
  390. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  391. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  392. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  393. }
  394. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  395. struct cfq_group *cfqg)
  396. {
  397. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  398. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  399. }
  400. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  401. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  402. struct io_context *, gfp_t);
  403. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  404. struct io_context *);
  405. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  406. bool is_sync)
  407. {
  408. return cic->cfqq[is_sync];
  409. }
  410. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  411. struct cfq_queue *cfqq, bool is_sync)
  412. {
  413. cic->cfqq[is_sync] = cfqq;
  414. }
  415. #define CIC_DEAD_KEY 1ul
  416. #define CIC_DEAD_INDEX_SHIFT 1
  417. static inline void *cfqd_dead_key(struct cfq_data *cfqd)
  418. {
  419. return (void *)(cfqd->queue->id << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
  420. }
  421. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
  422. {
  423. struct cfq_data *cfqd = cic->key;
  424. if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
  425. return NULL;
  426. return cfqd;
  427. }
  428. /*
  429. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  430. * set (in which case it could also be direct WRITE).
  431. */
  432. static inline bool cfq_bio_sync(struct bio *bio)
  433. {
  434. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  435. }
  436. /*
  437. * scheduler run of queue, if there are requests pending and no one in the
  438. * driver that will restart queueing
  439. */
  440. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  441. {
  442. if (cfqd->busy_queues) {
  443. cfq_log(cfqd, "schedule dispatch");
  444. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  445. }
  446. }
  447. /*
  448. * Scale schedule slice based on io priority. Use the sync time slice only
  449. * if a queue is marked sync and has sync io queued. A sync queue with async
  450. * io only, should not get full sync slice length.
  451. */
  452. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  453. unsigned short prio)
  454. {
  455. const int base_slice = cfqd->cfq_slice[sync];
  456. WARN_ON(prio >= IOPRIO_BE_NR);
  457. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  458. }
  459. static inline int
  460. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  461. {
  462. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  463. }
  464. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  465. {
  466. u64 d = delta << CFQ_SERVICE_SHIFT;
  467. d = d * BLKIO_WEIGHT_DEFAULT;
  468. do_div(d, cfqg->weight);
  469. return d;
  470. }
  471. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  472. {
  473. s64 delta = (s64)(vdisktime - min_vdisktime);
  474. if (delta > 0)
  475. min_vdisktime = vdisktime;
  476. return min_vdisktime;
  477. }
  478. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  479. {
  480. s64 delta = (s64)(vdisktime - min_vdisktime);
  481. if (delta < 0)
  482. min_vdisktime = vdisktime;
  483. return min_vdisktime;
  484. }
  485. static void update_min_vdisktime(struct cfq_rb_root *st)
  486. {
  487. struct cfq_group *cfqg;
  488. if (st->left) {
  489. cfqg = rb_entry_cfqg(st->left);
  490. st->min_vdisktime = max_vdisktime(st->min_vdisktime,
  491. cfqg->vdisktime);
  492. }
  493. }
  494. /*
  495. * get averaged number of queues of RT/BE priority.
  496. * average is updated, with a formula that gives more weight to higher numbers,
  497. * to quickly follows sudden increases and decrease slowly
  498. */
  499. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  500. struct cfq_group *cfqg, bool rt)
  501. {
  502. unsigned min_q, max_q;
  503. unsigned mult = cfq_hist_divisor - 1;
  504. unsigned round = cfq_hist_divisor / 2;
  505. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  506. min_q = min(cfqg->busy_queues_avg[rt], busy);
  507. max_q = max(cfqg->busy_queues_avg[rt], busy);
  508. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  509. cfq_hist_divisor;
  510. return cfqg->busy_queues_avg[rt];
  511. }
  512. static inline unsigned
  513. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  514. {
  515. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  516. return cfq_target_latency * cfqg->weight / st->total_weight;
  517. }
  518. static inline unsigned
  519. cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  520. {
  521. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  522. if (cfqd->cfq_latency) {
  523. /*
  524. * interested queues (we consider only the ones with the same
  525. * priority class in the cfq group)
  526. */
  527. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  528. cfq_class_rt(cfqq));
  529. unsigned sync_slice = cfqd->cfq_slice[1];
  530. unsigned expect_latency = sync_slice * iq;
  531. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  532. if (expect_latency > group_slice) {
  533. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  534. /* scale low_slice according to IO priority
  535. * and sync vs async */
  536. unsigned low_slice =
  537. min(slice, base_low_slice * slice / sync_slice);
  538. /* the adapted slice value is scaled to fit all iqs
  539. * into the target latency */
  540. slice = max(slice * group_slice / expect_latency,
  541. low_slice);
  542. }
  543. }
  544. return slice;
  545. }
  546. static inline void
  547. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  548. {
  549. unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
  550. cfqq->slice_start = jiffies;
  551. cfqq->slice_end = jiffies + slice;
  552. cfqq->allocated_slice = slice;
  553. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  554. }
  555. /*
  556. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  557. * isn't valid until the first request from the dispatch is activated
  558. * and the slice time set.
  559. */
  560. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  561. {
  562. if (cfq_cfqq_slice_new(cfqq))
  563. return false;
  564. if (time_before(jiffies, cfqq->slice_end))
  565. return false;
  566. return true;
  567. }
  568. /*
  569. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  570. * We choose the request that is closest to the head right now. Distance
  571. * behind the head is penalized and only allowed to a certain extent.
  572. */
  573. static struct request *
  574. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  575. {
  576. sector_t s1, s2, d1 = 0, d2 = 0;
  577. unsigned long back_max;
  578. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  579. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  580. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  581. if (rq1 == NULL || rq1 == rq2)
  582. return rq2;
  583. if (rq2 == NULL)
  584. return rq1;
  585. if (rq_is_sync(rq1) != rq_is_sync(rq2))
  586. return rq_is_sync(rq1) ? rq1 : rq2;
  587. if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
  588. return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
  589. s1 = blk_rq_pos(rq1);
  590. s2 = blk_rq_pos(rq2);
  591. /*
  592. * by definition, 1KiB is 2 sectors
  593. */
  594. back_max = cfqd->cfq_back_max * 2;
  595. /*
  596. * Strict one way elevator _except_ in the case where we allow
  597. * short backward seeks which are biased as twice the cost of a
  598. * similar forward seek.
  599. */
  600. if (s1 >= last)
  601. d1 = s1 - last;
  602. else if (s1 + back_max >= last)
  603. d1 = (last - s1) * cfqd->cfq_back_penalty;
  604. else
  605. wrap |= CFQ_RQ1_WRAP;
  606. if (s2 >= last)
  607. d2 = s2 - last;
  608. else if (s2 + back_max >= last)
  609. d2 = (last - s2) * cfqd->cfq_back_penalty;
  610. else
  611. wrap |= CFQ_RQ2_WRAP;
  612. /* Found required data */
  613. /*
  614. * By doing switch() on the bit mask "wrap" we avoid having to
  615. * check two variables for all permutations: --> faster!
  616. */
  617. switch (wrap) {
  618. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  619. if (d1 < d2)
  620. return rq1;
  621. else if (d2 < d1)
  622. return rq2;
  623. else {
  624. if (s1 >= s2)
  625. return rq1;
  626. else
  627. return rq2;
  628. }
  629. case CFQ_RQ2_WRAP:
  630. return rq1;
  631. case CFQ_RQ1_WRAP:
  632. return rq2;
  633. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  634. default:
  635. /*
  636. * Since both rqs are wrapped,
  637. * start with the one that's further behind head
  638. * (--> only *one* back seek required),
  639. * since back seek takes more time than forward.
  640. */
  641. if (s1 <= s2)
  642. return rq1;
  643. else
  644. return rq2;
  645. }
  646. }
  647. /*
  648. * The below is leftmost cache rbtree addon
  649. */
  650. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  651. {
  652. /* Service tree is empty */
  653. if (!root->count)
  654. return NULL;
  655. if (!root->left)
  656. root->left = rb_first(&root->rb);
  657. if (root->left)
  658. return rb_entry(root->left, struct cfq_queue, rb_node);
  659. return NULL;
  660. }
  661. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  662. {
  663. if (!root->left)
  664. root->left = rb_first(&root->rb);
  665. if (root->left)
  666. return rb_entry_cfqg(root->left);
  667. return NULL;
  668. }
  669. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  670. {
  671. rb_erase(n, root);
  672. RB_CLEAR_NODE(n);
  673. }
  674. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  675. {
  676. if (root->left == n)
  677. root->left = NULL;
  678. rb_erase_init(n, &root->rb);
  679. --root->count;
  680. }
  681. /*
  682. * would be nice to take fifo expire time into account as well
  683. */
  684. static struct request *
  685. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  686. struct request *last)
  687. {
  688. struct rb_node *rbnext = rb_next(&last->rb_node);
  689. struct rb_node *rbprev = rb_prev(&last->rb_node);
  690. struct request *next = NULL, *prev = NULL;
  691. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  692. if (rbprev)
  693. prev = rb_entry_rq(rbprev);
  694. if (rbnext)
  695. next = rb_entry_rq(rbnext);
  696. else {
  697. rbnext = rb_first(&cfqq->sort_list);
  698. if (rbnext && rbnext != &last->rb_node)
  699. next = rb_entry_rq(rbnext);
  700. }
  701. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  702. }
  703. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  704. struct cfq_queue *cfqq)
  705. {
  706. /*
  707. * just an approximation, should be ok.
  708. */
  709. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  710. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  711. }
  712. static inline s64
  713. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  714. {
  715. return cfqg->vdisktime - st->min_vdisktime;
  716. }
  717. static void
  718. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  719. {
  720. struct rb_node **node = &st->rb.rb_node;
  721. struct rb_node *parent = NULL;
  722. struct cfq_group *__cfqg;
  723. s64 key = cfqg_key(st, cfqg);
  724. int left = 1;
  725. while (*node != NULL) {
  726. parent = *node;
  727. __cfqg = rb_entry_cfqg(parent);
  728. if (key < cfqg_key(st, __cfqg))
  729. node = &parent->rb_left;
  730. else {
  731. node = &parent->rb_right;
  732. left = 0;
  733. }
  734. }
  735. if (left)
  736. st->left = &cfqg->rb_node;
  737. rb_link_node(&cfqg->rb_node, parent, node);
  738. rb_insert_color(&cfqg->rb_node, &st->rb);
  739. }
  740. static void
  741. cfq_update_group_weight(struct cfq_group *cfqg)
  742. {
  743. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  744. if (cfqg->needs_update) {
  745. cfqg->weight = cfqg->new_weight;
  746. cfqg->needs_update = false;
  747. }
  748. }
  749. static void
  750. cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  751. {
  752. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  753. cfq_update_group_weight(cfqg);
  754. __cfq_group_service_tree_add(st, cfqg);
  755. st->total_weight += cfqg->weight;
  756. }
  757. static void
  758. cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  759. {
  760. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  761. struct cfq_group *__cfqg;
  762. struct rb_node *n;
  763. cfqg->nr_cfqq++;
  764. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  765. return;
  766. /*
  767. * Currently put the group at the end. Later implement something
  768. * so that groups get lesser vtime based on their weights, so that
  769. * if group does not loose all if it was not continuously backlogged.
  770. */
  771. n = rb_last(&st->rb);
  772. if (n) {
  773. __cfqg = rb_entry_cfqg(n);
  774. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  775. } else
  776. cfqg->vdisktime = st->min_vdisktime;
  777. cfq_group_service_tree_add(st, cfqg);
  778. }
  779. static void
  780. cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
  781. {
  782. st->total_weight -= cfqg->weight;
  783. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  784. cfq_rb_erase(&cfqg->rb_node, st);
  785. }
  786. static void
  787. cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  788. {
  789. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  790. BUG_ON(cfqg->nr_cfqq < 1);
  791. cfqg->nr_cfqq--;
  792. /* If there are other cfq queues under this group, don't delete it */
  793. if (cfqg->nr_cfqq)
  794. return;
  795. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  796. cfq_group_service_tree_del(st, cfqg);
  797. cfqg->saved_workload_slice = 0;
  798. cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
  799. }
  800. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
  801. unsigned int *unaccounted_time)
  802. {
  803. unsigned int slice_used;
  804. /*
  805. * Queue got expired before even a single request completed or
  806. * got expired immediately after first request completion.
  807. */
  808. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  809. /*
  810. * Also charge the seek time incurred to the group, otherwise
  811. * if there are mutiple queues in the group, each can dispatch
  812. * a single request on seeky media and cause lots of seek time
  813. * and group will never know it.
  814. */
  815. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  816. 1);
  817. } else {
  818. slice_used = jiffies - cfqq->slice_start;
  819. if (slice_used > cfqq->allocated_slice) {
  820. *unaccounted_time = slice_used - cfqq->allocated_slice;
  821. slice_used = cfqq->allocated_slice;
  822. }
  823. if (time_after(cfqq->slice_start, cfqq->dispatch_start))
  824. *unaccounted_time += cfqq->slice_start -
  825. cfqq->dispatch_start;
  826. }
  827. return slice_used;
  828. }
  829. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  830. struct cfq_queue *cfqq)
  831. {
  832. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  833. unsigned int used_sl, charge, unaccounted_sl = 0;
  834. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  835. - cfqg->service_tree_idle.count;
  836. BUG_ON(nr_sync < 0);
  837. used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
  838. if (iops_mode(cfqd))
  839. charge = cfqq->slice_dispatch;
  840. else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  841. charge = cfqq->allocated_slice;
  842. /* Can't update vdisktime while group is on service tree */
  843. cfq_group_service_tree_del(st, cfqg);
  844. cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
  845. /* If a new weight was requested, update now, off tree */
  846. cfq_group_service_tree_add(st, cfqg);
  847. /* This group is being expired. Save the context */
  848. if (time_after(cfqd->workload_expires, jiffies)) {
  849. cfqg->saved_workload_slice = cfqd->workload_expires
  850. - jiffies;
  851. cfqg->saved_workload = cfqd->serving_type;
  852. cfqg->saved_serving_prio = cfqd->serving_prio;
  853. } else
  854. cfqg->saved_workload_slice = 0;
  855. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  856. st->min_vdisktime);
  857. cfq_log_cfqq(cfqq->cfqd, cfqq,
  858. "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
  859. used_sl, cfqq->slice_dispatch, charge,
  860. iops_mode(cfqd), cfqq->nr_sectors);
  861. cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
  862. unaccounted_sl);
  863. cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
  864. }
  865. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  866. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  867. {
  868. if (blkg)
  869. return container_of(blkg, struct cfq_group, blkg);
  870. return NULL;
  871. }
  872. static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
  873. unsigned int weight)
  874. {
  875. struct cfq_group *cfqg = cfqg_of_blkg(blkg);
  876. cfqg->new_weight = weight;
  877. cfqg->needs_update = true;
  878. }
  879. static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
  880. struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
  881. {
  882. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  883. unsigned int major, minor;
  884. /*
  885. * Add group onto cgroup list. It might happen that bdi->dev is
  886. * not initialized yet. Initialize this new group without major
  887. * and minor info and this info will be filled in once a new thread
  888. * comes for IO.
  889. */
  890. if (bdi->dev) {
  891. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  892. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
  893. (void *)cfqd, MKDEV(major, minor));
  894. } else
  895. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
  896. (void *)cfqd, 0);
  897. cfqd->nr_blkcg_linked_grps++;
  898. cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
  899. /* Add group on cfqd list */
  900. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  901. }
  902. /*
  903. * Should be called from sleepable context. No request queue lock as per
  904. * cpu stats are allocated dynamically and alloc_percpu needs to be called
  905. * from sleepable context.
  906. */
  907. static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
  908. {
  909. struct cfq_group *cfqg = NULL;
  910. int i, j, ret;
  911. struct cfq_rb_root *st;
  912. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  913. if (!cfqg)
  914. return NULL;
  915. for_each_cfqg_st(cfqg, i, j, st)
  916. *st = CFQ_RB_ROOT;
  917. RB_CLEAR_NODE(&cfqg->rb_node);
  918. cfqg->ttime.last_end_request = jiffies;
  919. /*
  920. * Take the initial reference that will be released on destroy
  921. * This can be thought of a joint reference by cgroup and
  922. * elevator which will be dropped by either elevator exit
  923. * or cgroup deletion path depending on who is exiting first.
  924. */
  925. cfqg->ref = 1;
  926. ret = blkio_alloc_blkg_stats(&cfqg->blkg);
  927. if (ret) {
  928. kfree(cfqg);
  929. return NULL;
  930. }
  931. return cfqg;
  932. }
  933. static struct cfq_group *
  934. cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
  935. {
  936. struct cfq_group *cfqg = NULL;
  937. void *key = cfqd;
  938. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  939. unsigned int major, minor;
  940. /*
  941. * This is the common case when there are no blkio cgroups.
  942. * Avoid lookup in this case
  943. */
  944. if (blkcg == &blkio_root_cgroup)
  945. cfqg = &cfqd->root_group;
  946. else
  947. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  948. if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
  949. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  950. cfqg->blkg.dev = MKDEV(major, minor);
  951. }
  952. return cfqg;
  953. }
  954. /*
  955. * Search for the cfq group current task belongs to. request_queue lock must
  956. * be held.
  957. */
  958. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
  959. {
  960. struct blkio_cgroup *blkcg;
  961. struct cfq_group *cfqg = NULL, *__cfqg = NULL;
  962. struct request_queue *q = cfqd->queue;
  963. rcu_read_lock();
  964. blkcg = task_blkio_cgroup(current);
  965. cfqg = cfq_find_cfqg(cfqd, blkcg);
  966. if (cfqg) {
  967. rcu_read_unlock();
  968. return cfqg;
  969. }
  970. /*
  971. * Need to allocate a group. Allocation of group also needs allocation
  972. * of per cpu stats which in-turn takes a mutex() and can block. Hence
  973. * we need to drop rcu lock and queue_lock before we call alloc.
  974. *
  975. * Not taking any queue reference here and assuming that queue is
  976. * around by the time we return. CFQ queue allocation code does
  977. * the same. It might be racy though.
  978. */
  979. rcu_read_unlock();
  980. spin_unlock_irq(q->queue_lock);
  981. cfqg = cfq_alloc_cfqg(cfqd);
  982. spin_lock_irq(q->queue_lock);
  983. rcu_read_lock();
  984. blkcg = task_blkio_cgroup(current);
  985. /*
  986. * If some other thread already allocated the group while we were
  987. * not holding queue lock, free up the group
  988. */
  989. __cfqg = cfq_find_cfqg(cfqd, blkcg);
  990. if (__cfqg) {
  991. kfree(cfqg);
  992. rcu_read_unlock();
  993. return __cfqg;
  994. }
  995. if (!cfqg)
  996. cfqg = &cfqd->root_group;
  997. cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
  998. rcu_read_unlock();
  999. return cfqg;
  1000. }
  1001. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  1002. {
  1003. cfqg->ref++;
  1004. return cfqg;
  1005. }
  1006. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  1007. {
  1008. /* Currently, all async queues are mapped to root group */
  1009. if (!cfq_cfqq_sync(cfqq))
  1010. cfqg = &cfqq->cfqd->root_group;
  1011. cfqq->cfqg = cfqg;
  1012. /* cfqq reference on cfqg */
  1013. cfqq->cfqg->ref++;
  1014. }
  1015. static void cfq_put_cfqg(struct cfq_group *cfqg)
  1016. {
  1017. struct cfq_rb_root *st;
  1018. int i, j;
  1019. BUG_ON(cfqg->ref <= 0);
  1020. cfqg->ref--;
  1021. if (cfqg->ref)
  1022. return;
  1023. for_each_cfqg_st(cfqg, i, j, st)
  1024. BUG_ON(!RB_EMPTY_ROOT(&st->rb));
  1025. free_percpu(cfqg->blkg.stats_cpu);
  1026. kfree(cfqg);
  1027. }
  1028. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1029. {
  1030. /* Something wrong if we are trying to remove same group twice */
  1031. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  1032. hlist_del_init(&cfqg->cfqd_node);
  1033. BUG_ON(cfqd->nr_blkcg_linked_grps <= 0);
  1034. cfqd->nr_blkcg_linked_grps--;
  1035. /*
  1036. * Put the reference taken at the time of creation so that when all
  1037. * queues are gone, group can be destroyed.
  1038. */
  1039. cfq_put_cfqg(cfqg);
  1040. }
  1041. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  1042. {
  1043. struct hlist_node *pos, *n;
  1044. struct cfq_group *cfqg;
  1045. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  1046. /*
  1047. * If cgroup removal path got to blk_group first and removed
  1048. * it from cgroup list, then it will take care of destroying
  1049. * cfqg also.
  1050. */
  1051. if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
  1052. cfq_destroy_cfqg(cfqd, cfqg);
  1053. }
  1054. }
  1055. /*
  1056. * Blk cgroup controller notification saying that blkio_group object is being
  1057. * delinked as associated cgroup object is going away. That also means that
  1058. * no new IO will come in this group. So get rid of this group as soon as
  1059. * any pending IO in the group is finished.
  1060. *
  1061. * This function is called under rcu_read_lock(). key is the rcu protected
  1062. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  1063. * read lock.
  1064. *
  1065. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  1066. * it should not be NULL as even if elevator was exiting, cgroup deltion
  1067. * path got to it first.
  1068. */
  1069. static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  1070. {
  1071. unsigned long flags;
  1072. struct cfq_data *cfqd = key;
  1073. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  1074. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  1075. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  1076. }
  1077. #else /* GROUP_IOSCHED */
  1078. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
  1079. {
  1080. return &cfqd->root_group;
  1081. }
  1082. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  1083. {
  1084. return cfqg;
  1085. }
  1086. static inline void
  1087. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  1088. cfqq->cfqg = cfqg;
  1089. }
  1090. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  1091. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  1092. #endif /* GROUP_IOSCHED */
  1093. /*
  1094. * The cfqd->service_trees holds all pending cfq_queue's that have
  1095. * requests waiting to be processed. It is sorted in the order that
  1096. * we will service the queues.
  1097. */
  1098. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1099. bool add_front)
  1100. {
  1101. struct rb_node **p, *parent;
  1102. struct cfq_queue *__cfqq;
  1103. unsigned long rb_key;
  1104. struct cfq_rb_root *service_tree;
  1105. int left;
  1106. int new_cfqq = 1;
  1107. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  1108. cfqq_type(cfqq));
  1109. if (cfq_class_idle(cfqq)) {
  1110. rb_key = CFQ_IDLE_DELAY;
  1111. parent = rb_last(&service_tree->rb);
  1112. if (parent && parent != &cfqq->rb_node) {
  1113. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1114. rb_key += __cfqq->rb_key;
  1115. } else
  1116. rb_key += jiffies;
  1117. } else if (!add_front) {
  1118. /*
  1119. * Get our rb key offset. Subtract any residual slice
  1120. * value carried from last service. A negative resid
  1121. * count indicates slice overrun, and this should position
  1122. * the next service time further away in the tree.
  1123. */
  1124. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  1125. rb_key -= cfqq->slice_resid;
  1126. cfqq->slice_resid = 0;
  1127. } else {
  1128. rb_key = -HZ;
  1129. __cfqq = cfq_rb_first(service_tree);
  1130. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1131. }
  1132. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1133. new_cfqq = 0;
  1134. /*
  1135. * same position, nothing more to do
  1136. */
  1137. if (rb_key == cfqq->rb_key &&
  1138. cfqq->service_tree == service_tree)
  1139. return;
  1140. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1141. cfqq->service_tree = NULL;
  1142. }
  1143. left = 1;
  1144. parent = NULL;
  1145. cfqq->service_tree = service_tree;
  1146. p = &service_tree->rb.rb_node;
  1147. while (*p) {
  1148. struct rb_node **n;
  1149. parent = *p;
  1150. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1151. /*
  1152. * sort by key, that represents service time.
  1153. */
  1154. if (time_before(rb_key, __cfqq->rb_key))
  1155. n = &(*p)->rb_left;
  1156. else {
  1157. n = &(*p)->rb_right;
  1158. left = 0;
  1159. }
  1160. p = n;
  1161. }
  1162. if (left)
  1163. service_tree->left = &cfqq->rb_node;
  1164. cfqq->rb_key = rb_key;
  1165. rb_link_node(&cfqq->rb_node, parent, p);
  1166. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1167. service_tree->count++;
  1168. if (add_front || !new_cfqq)
  1169. return;
  1170. cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
  1171. }
  1172. static struct cfq_queue *
  1173. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1174. sector_t sector, struct rb_node **ret_parent,
  1175. struct rb_node ***rb_link)
  1176. {
  1177. struct rb_node **p, *parent;
  1178. struct cfq_queue *cfqq = NULL;
  1179. parent = NULL;
  1180. p = &root->rb_node;
  1181. while (*p) {
  1182. struct rb_node **n;
  1183. parent = *p;
  1184. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1185. /*
  1186. * Sort strictly based on sector. Smallest to the left,
  1187. * largest to the right.
  1188. */
  1189. if (sector > blk_rq_pos(cfqq->next_rq))
  1190. n = &(*p)->rb_right;
  1191. else if (sector < blk_rq_pos(cfqq->next_rq))
  1192. n = &(*p)->rb_left;
  1193. else
  1194. break;
  1195. p = n;
  1196. cfqq = NULL;
  1197. }
  1198. *ret_parent = parent;
  1199. if (rb_link)
  1200. *rb_link = p;
  1201. return cfqq;
  1202. }
  1203. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1204. {
  1205. struct rb_node **p, *parent;
  1206. struct cfq_queue *__cfqq;
  1207. if (cfqq->p_root) {
  1208. rb_erase(&cfqq->p_node, cfqq->p_root);
  1209. cfqq->p_root = NULL;
  1210. }
  1211. if (cfq_class_idle(cfqq))
  1212. return;
  1213. if (!cfqq->next_rq)
  1214. return;
  1215. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1216. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1217. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1218. if (!__cfqq) {
  1219. rb_link_node(&cfqq->p_node, parent, p);
  1220. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1221. } else
  1222. cfqq->p_root = NULL;
  1223. }
  1224. /*
  1225. * Update cfqq's position in the service tree.
  1226. */
  1227. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1228. {
  1229. /*
  1230. * Resorting requires the cfqq to be on the RR list already.
  1231. */
  1232. if (cfq_cfqq_on_rr(cfqq)) {
  1233. cfq_service_tree_add(cfqd, cfqq, 0);
  1234. cfq_prio_tree_add(cfqd, cfqq);
  1235. }
  1236. }
  1237. /*
  1238. * add to busy list of queues for service, trying to be fair in ordering
  1239. * the pending list according to last request service
  1240. */
  1241. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1242. {
  1243. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1244. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1245. cfq_mark_cfqq_on_rr(cfqq);
  1246. cfqd->busy_queues++;
  1247. if (cfq_cfqq_sync(cfqq))
  1248. cfqd->busy_sync_queues++;
  1249. cfq_resort_rr_list(cfqd, cfqq);
  1250. }
  1251. /*
  1252. * Called when the cfqq no longer has requests pending, remove it from
  1253. * the service tree.
  1254. */
  1255. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1256. {
  1257. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1258. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1259. cfq_clear_cfqq_on_rr(cfqq);
  1260. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1261. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1262. cfqq->service_tree = NULL;
  1263. }
  1264. if (cfqq->p_root) {
  1265. rb_erase(&cfqq->p_node, cfqq->p_root);
  1266. cfqq->p_root = NULL;
  1267. }
  1268. cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
  1269. BUG_ON(!cfqd->busy_queues);
  1270. cfqd->busy_queues--;
  1271. if (cfq_cfqq_sync(cfqq))
  1272. cfqd->busy_sync_queues--;
  1273. }
  1274. /*
  1275. * rb tree support functions
  1276. */
  1277. static void cfq_del_rq_rb(struct request *rq)
  1278. {
  1279. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1280. const int sync = rq_is_sync(rq);
  1281. BUG_ON(!cfqq->queued[sync]);
  1282. cfqq->queued[sync]--;
  1283. elv_rb_del(&cfqq->sort_list, rq);
  1284. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1285. /*
  1286. * Queue will be deleted from service tree when we actually
  1287. * expire it later. Right now just remove it from prio tree
  1288. * as it is empty.
  1289. */
  1290. if (cfqq->p_root) {
  1291. rb_erase(&cfqq->p_node, cfqq->p_root);
  1292. cfqq->p_root = NULL;
  1293. }
  1294. }
  1295. }
  1296. static void cfq_add_rq_rb(struct request *rq)
  1297. {
  1298. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1299. struct cfq_data *cfqd = cfqq->cfqd;
  1300. struct request *prev;
  1301. cfqq->queued[rq_is_sync(rq)]++;
  1302. elv_rb_add(&cfqq->sort_list, rq);
  1303. if (!cfq_cfqq_on_rr(cfqq))
  1304. cfq_add_cfqq_rr(cfqd, cfqq);
  1305. /*
  1306. * check if this request is a better next-serve candidate
  1307. */
  1308. prev = cfqq->next_rq;
  1309. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1310. /*
  1311. * adjust priority tree position, if ->next_rq changes
  1312. */
  1313. if (prev != cfqq->next_rq)
  1314. cfq_prio_tree_add(cfqd, cfqq);
  1315. BUG_ON(!cfqq->next_rq);
  1316. }
  1317. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1318. {
  1319. elv_rb_del(&cfqq->sort_list, rq);
  1320. cfqq->queued[rq_is_sync(rq)]--;
  1321. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1322. rq_data_dir(rq), rq_is_sync(rq));
  1323. cfq_add_rq_rb(rq);
  1324. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  1325. &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
  1326. rq_is_sync(rq));
  1327. }
  1328. static struct request *
  1329. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1330. {
  1331. struct task_struct *tsk = current;
  1332. struct cfq_io_context *cic;
  1333. struct cfq_queue *cfqq;
  1334. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1335. if (!cic)
  1336. return NULL;
  1337. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1338. if (cfqq) {
  1339. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1340. return elv_rb_find(&cfqq->sort_list, sector);
  1341. }
  1342. return NULL;
  1343. }
  1344. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1345. {
  1346. struct cfq_data *cfqd = q->elevator->elevator_data;
  1347. cfqd->rq_in_driver++;
  1348. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1349. cfqd->rq_in_driver);
  1350. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1351. }
  1352. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1353. {
  1354. struct cfq_data *cfqd = q->elevator->elevator_data;
  1355. WARN_ON(!cfqd->rq_in_driver);
  1356. cfqd->rq_in_driver--;
  1357. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1358. cfqd->rq_in_driver);
  1359. }
  1360. static void cfq_remove_request(struct request *rq)
  1361. {
  1362. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1363. if (cfqq->next_rq == rq)
  1364. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1365. list_del_init(&rq->queuelist);
  1366. cfq_del_rq_rb(rq);
  1367. cfqq->cfqd->rq_queued--;
  1368. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1369. rq_data_dir(rq), rq_is_sync(rq));
  1370. if (rq->cmd_flags & REQ_PRIO) {
  1371. WARN_ON(!cfqq->prio_pending);
  1372. cfqq->prio_pending--;
  1373. }
  1374. }
  1375. static int cfq_merge(struct request_queue *q, struct request **req,
  1376. struct bio *bio)
  1377. {
  1378. struct cfq_data *cfqd = q->elevator->elevator_data;
  1379. struct request *__rq;
  1380. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1381. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1382. *req = __rq;
  1383. return ELEVATOR_FRONT_MERGE;
  1384. }
  1385. return ELEVATOR_NO_MERGE;
  1386. }
  1387. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1388. int type)
  1389. {
  1390. if (type == ELEVATOR_FRONT_MERGE) {
  1391. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1392. cfq_reposition_rq_rb(cfqq, req);
  1393. }
  1394. }
  1395. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1396. struct bio *bio)
  1397. {
  1398. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
  1399. bio_data_dir(bio), cfq_bio_sync(bio));
  1400. }
  1401. static void
  1402. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1403. struct request *next)
  1404. {
  1405. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1406. /*
  1407. * reposition in fifo if next is older than rq
  1408. */
  1409. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1410. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1411. list_move(&rq->queuelist, &next->queuelist);
  1412. rq_set_fifo_time(rq, rq_fifo_time(next));
  1413. }
  1414. if (cfqq->next_rq == next)
  1415. cfqq->next_rq = rq;
  1416. cfq_remove_request(next);
  1417. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
  1418. rq_data_dir(next), rq_is_sync(next));
  1419. }
  1420. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1421. struct bio *bio)
  1422. {
  1423. struct cfq_data *cfqd = q->elevator->elevator_data;
  1424. struct cfq_io_context *cic;
  1425. struct cfq_queue *cfqq;
  1426. /*
  1427. * Disallow merge of a sync bio into an async request.
  1428. */
  1429. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1430. return false;
  1431. /*
  1432. * Lookup the cfqq that this bio will be queued with. Allow
  1433. * merge only if rq is queued there.
  1434. */
  1435. cic = cfq_cic_lookup(cfqd, current->io_context);
  1436. if (!cic)
  1437. return false;
  1438. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1439. return cfqq == RQ_CFQQ(rq);
  1440. }
  1441. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1442. {
  1443. del_timer(&cfqd->idle_slice_timer);
  1444. cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
  1445. }
  1446. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1447. struct cfq_queue *cfqq)
  1448. {
  1449. if (cfqq) {
  1450. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1451. cfqd->serving_prio, cfqd->serving_type);
  1452. cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
  1453. cfqq->slice_start = 0;
  1454. cfqq->dispatch_start = jiffies;
  1455. cfqq->allocated_slice = 0;
  1456. cfqq->slice_end = 0;
  1457. cfqq->slice_dispatch = 0;
  1458. cfqq->nr_sectors = 0;
  1459. cfq_clear_cfqq_wait_request(cfqq);
  1460. cfq_clear_cfqq_must_dispatch(cfqq);
  1461. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1462. cfq_clear_cfqq_fifo_expire(cfqq);
  1463. cfq_mark_cfqq_slice_new(cfqq);
  1464. cfq_del_timer(cfqd, cfqq);
  1465. }
  1466. cfqd->active_queue = cfqq;
  1467. }
  1468. /*
  1469. * current cfqq expired its slice (or was too idle), select new one
  1470. */
  1471. static void
  1472. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1473. bool timed_out)
  1474. {
  1475. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1476. if (cfq_cfqq_wait_request(cfqq))
  1477. cfq_del_timer(cfqd, cfqq);
  1478. cfq_clear_cfqq_wait_request(cfqq);
  1479. cfq_clear_cfqq_wait_busy(cfqq);
  1480. /*
  1481. * If this cfqq is shared between multiple processes, check to
  1482. * make sure that those processes are still issuing I/Os within
  1483. * the mean seek distance. If not, it may be time to break the
  1484. * queues apart again.
  1485. */
  1486. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1487. cfq_mark_cfqq_split_coop(cfqq);
  1488. /*
  1489. * store what was left of this slice, if the queue idled/timed out
  1490. */
  1491. if (timed_out) {
  1492. if (cfq_cfqq_slice_new(cfqq))
  1493. cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
  1494. else
  1495. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1496. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1497. }
  1498. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1499. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1500. cfq_del_cfqq_rr(cfqd, cfqq);
  1501. cfq_resort_rr_list(cfqd, cfqq);
  1502. if (cfqq == cfqd->active_queue)
  1503. cfqd->active_queue = NULL;
  1504. if (cfqd->active_cic) {
  1505. put_io_context(cfqd->active_cic->ioc);
  1506. cfqd->active_cic = NULL;
  1507. }
  1508. }
  1509. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1510. {
  1511. struct cfq_queue *cfqq = cfqd->active_queue;
  1512. if (cfqq)
  1513. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1514. }
  1515. /*
  1516. * Get next queue for service. Unless we have a queue preemption,
  1517. * we'll simply select the first cfqq in the service tree.
  1518. */
  1519. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1520. {
  1521. struct cfq_rb_root *service_tree =
  1522. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1523. cfqd->serving_type);
  1524. if (!cfqd->rq_queued)
  1525. return NULL;
  1526. /* There is nothing to dispatch */
  1527. if (!service_tree)
  1528. return NULL;
  1529. if (RB_EMPTY_ROOT(&service_tree->rb))
  1530. return NULL;
  1531. return cfq_rb_first(service_tree);
  1532. }
  1533. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1534. {
  1535. struct cfq_group *cfqg;
  1536. struct cfq_queue *cfqq;
  1537. int i, j;
  1538. struct cfq_rb_root *st;
  1539. if (!cfqd->rq_queued)
  1540. return NULL;
  1541. cfqg = cfq_get_next_cfqg(cfqd);
  1542. if (!cfqg)
  1543. return NULL;
  1544. for_each_cfqg_st(cfqg, i, j, st)
  1545. if ((cfqq = cfq_rb_first(st)) != NULL)
  1546. return cfqq;
  1547. return NULL;
  1548. }
  1549. /*
  1550. * Get and set a new active queue for service.
  1551. */
  1552. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1553. struct cfq_queue *cfqq)
  1554. {
  1555. if (!cfqq)
  1556. cfqq = cfq_get_next_queue(cfqd);
  1557. __cfq_set_active_queue(cfqd, cfqq);
  1558. return cfqq;
  1559. }
  1560. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1561. struct request *rq)
  1562. {
  1563. if (blk_rq_pos(rq) >= cfqd->last_position)
  1564. return blk_rq_pos(rq) - cfqd->last_position;
  1565. else
  1566. return cfqd->last_position - blk_rq_pos(rq);
  1567. }
  1568. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1569. struct request *rq)
  1570. {
  1571. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1572. }
  1573. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1574. struct cfq_queue *cur_cfqq)
  1575. {
  1576. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1577. struct rb_node *parent, *node;
  1578. struct cfq_queue *__cfqq;
  1579. sector_t sector = cfqd->last_position;
  1580. if (RB_EMPTY_ROOT(root))
  1581. return NULL;
  1582. /*
  1583. * First, if we find a request starting at the end of the last
  1584. * request, choose it.
  1585. */
  1586. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1587. if (__cfqq)
  1588. return __cfqq;
  1589. /*
  1590. * If the exact sector wasn't found, the parent of the NULL leaf
  1591. * will contain the closest sector.
  1592. */
  1593. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1594. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1595. return __cfqq;
  1596. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1597. node = rb_next(&__cfqq->p_node);
  1598. else
  1599. node = rb_prev(&__cfqq->p_node);
  1600. if (!node)
  1601. return NULL;
  1602. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1603. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1604. return __cfqq;
  1605. return NULL;
  1606. }
  1607. /*
  1608. * cfqd - obvious
  1609. * cur_cfqq - passed in so that we don't decide that the current queue is
  1610. * closely cooperating with itself.
  1611. *
  1612. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1613. * one request, and that cfqd->last_position reflects a position on the disk
  1614. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1615. * assumption.
  1616. */
  1617. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1618. struct cfq_queue *cur_cfqq)
  1619. {
  1620. struct cfq_queue *cfqq;
  1621. if (cfq_class_idle(cur_cfqq))
  1622. return NULL;
  1623. if (!cfq_cfqq_sync(cur_cfqq))
  1624. return NULL;
  1625. if (CFQQ_SEEKY(cur_cfqq))
  1626. return NULL;
  1627. /*
  1628. * Don't search priority tree if it's the only queue in the group.
  1629. */
  1630. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1631. return NULL;
  1632. /*
  1633. * We should notice if some of the queues are cooperating, eg
  1634. * working closely on the same area of the disk. In that case,
  1635. * we can group them together and don't waste time idling.
  1636. */
  1637. cfqq = cfqq_close(cfqd, cur_cfqq);
  1638. if (!cfqq)
  1639. return NULL;
  1640. /* If new queue belongs to different cfq_group, don't choose it */
  1641. if (cur_cfqq->cfqg != cfqq->cfqg)
  1642. return NULL;
  1643. /*
  1644. * It only makes sense to merge sync queues.
  1645. */
  1646. if (!cfq_cfqq_sync(cfqq))
  1647. return NULL;
  1648. if (CFQQ_SEEKY(cfqq))
  1649. return NULL;
  1650. /*
  1651. * Do not merge queues of different priority classes
  1652. */
  1653. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1654. return NULL;
  1655. return cfqq;
  1656. }
  1657. /*
  1658. * Determine whether we should enforce idle window for this queue.
  1659. */
  1660. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1661. {
  1662. enum wl_prio_t prio = cfqq_prio(cfqq);
  1663. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1664. BUG_ON(!service_tree);
  1665. BUG_ON(!service_tree->count);
  1666. if (!cfqd->cfq_slice_idle)
  1667. return false;
  1668. /* We never do for idle class queues. */
  1669. if (prio == IDLE_WORKLOAD)
  1670. return false;
  1671. /* We do for queues that were marked with idle window flag. */
  1672. if (cfq_cfqq_idle_window(cfqq) &&
  1673. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1674. return true;
  1675. /*
  1676. * Otherwise, we do only if they are the last ones
  1677. * in their service tree.
  1678. */
  1679. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
  1680. !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
  1681. return true;
  1682. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1683. service_tree->count);
  1684. return false;
  1685. }
  1686. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1687. {
  1688. struct cfq_queue *cfqq = cfqd->active_queue;
  1689. struct cfq_io_context *cic;
  1690. unsigned long sl, group_idle = 0;
  1691. /*
  1692. * SSD device without seek penalty, disable idling. But only do so
  1693. * for devices that support queuing, otherwise we still have a problem
  1694. * with sync vs async workloads.
  1695. */
  1696. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1697. return;
  1698. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1699. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1700. /*
  1701. * idle is disabled, either manually or by past process history
  1702. */
  1703. if (!cfq_should_idle(cfqd, cfqq)) {
  1704. /* no queue idling. Check for group idling */
  1705. if (cfqd->cfq_group_idle)
  1706. group_idle = cfqd->cfq_group_idle;
  1707. else
  1708. return;
  1709. }
  1710. /*
  1711. * still active requests from this queue, don't idle
  1712. */
  1713. if (cfqq->dispatched)
  1714. return;
  1715. /*
  1716. * task has exited, don't wait
  1717. */
  1718. cic = cfqd->active_cic;
  1719. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1720. return;
  1721. /*
  1722. * If our average think time is larger than the remaining time
  1723. * slice, then don't idle. This avoids overrunning the allotted
  1724. * time slice.
  1725. */
  1726. if (sample_valid(cic->ttime.ttime_samples) &&
  1727. (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
  1728. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
  1729. cic->ttime.ttime_mean);
  1730. return;
  1731. }
  1732. /* There are other queues in the group, don't do group idle */
  1733. if (group_idle && cfqq->cfqg->nr_cfqq > 1)
  1734. return;
  1735. cfq_mark_cfqq_wait_request(cfqq);
  1736. if (group_idle)
  1737. sl = cfqd->cfq_group_idle;
  1738. else
  1739. sl = cfqd->cfq_slice_idle;
  1740. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1741. cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
  1742. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
  1743. group_idle ? 1 : 0);
  1744. }
  1745. /*
  1746. * Move request from internal lists to the request queue dispatch list.
  1747. */
  1748. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1749. {
  1750. struct cfq_data *cfqd = q->elevator->elevator_data;
  1751. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1752. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1753. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1754. cfq_remove_request(rq);
  1755. cfqq->dispatched++;
  1756. (RQ_CFQG(rq))->dispatched++;
  1757. elv_dispatch_sort(q, rq);
  1758. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1759. cfqq->nr_sectors += blk_rq_sectors(rq);
  1760. cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
  1761. rq_data_dir(rq), rq_is_sync(rq));
  1762. }
  1763. /*
  1764. * return expired entry, or NULL to just start from scratch in rbtree
  1765. */
  1766. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1767. {
  1768. struct request *rq = NULL;
  1769. if (cfq_cfqq_fifo_expire(cfqq))
  1770. return NULL;
  1771. cfq_mark_cfqq_fifo_expire(cfqq);
  1772. if (list_empty(&cfqq->fifo))
  1773. return NULL;
  1774. rq = rq_entry_fifo(cfqq->fifo.next);
  1775. if (time_before(jiffies, rq_fifo_time(rq)))
  1776. rq = NULL;
  1777. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1778. return rq;
  1779. }
  1780. static inline int
  1781. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1782. {
  1783. const int base_rq = cfqd->cfq_slice_async_rq;
  1784. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1785. return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
  1786. }
  1787. /*
  1788. * Must be called with the queue_lock held.
  1789. */
  1790. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1791. {
  1792. int process_refs, io_refs;
  1793. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1794. process_refs = cfqq->ref - io_refs;
  1795. BUG_ON(process_refs < 0);
  1796. return process_refs;
  1797. }
  1798. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1799. {
  1800. int process_refs, new_process_refs;
  1801. struct cfq_queue *__cfqq;
  1802. /*
  1803. * If there are no process references on the new_cfqq, then it is
  1804. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  1805. * chain may have dropped their last reference (not just their
  1806. * last process reference).
  1807. */
  1808. if (!cfqq_process_refs(new_cfqq))
  1809. return;
  1810. /* Avoid a circular list and skip interim queue merges */
  1811. while ((__cfqq = new_cfqq->new_cfqq)) {
  1812. if (__cfqq == cfqq)
  1813. return;
  1814. new_cfqq = __cfqq;
  1815. }
  1816. process_refs = cfqq_process_refs(cfqq);
  1817. new_process_refs = cfqq_process_refs(new_cfqq);
  1818. /*
  1819. * If the process for the cfqq has gone away, there is no
  1820. * sense in merging the queues.
  1821. */
  1822. if (process_refs == 0 || new_process_refs == 0)
  1823. return;
  1824. /*
  1825. * Merge in the direction of the lesser amount of work.
  1826. */
  1827. if (new_process_refs >= process_refs) {
  1828. cfqq->new_cfqq = new_cfqq;
  1829. new_cfqq->ref += process_refs;
  1830. } else {
  1831. new_cfqq->new_cfqq = cfqq;
  1832. cfqq->ref += new_process_refs;
  1833. }
  1834. }
  1835. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1836. struct cfq_group *cfqg, enum wl_prio_t prio)
  1837. {
  1838. struct cfq_queue *queue;
  1839. int i;
  1840. bool key_valid = false;
  1841. unsigned long lowest_key = 0;
  1842. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1843. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1844. /* select the one with lowest rb_key */
  1845. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1846. if (queue &&
  1847. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1848. lowest_key = queue->rb_key;
  1849. cur_best = i;
  1850. key_valid = true;
  1851. }
  1852. }
  1853. return cur_best;
  1854. }
  1855. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1856. {
  1857. unsigned slice;
  1858. unsigned count;
  1859. struct cfq_rb_root *st;
  1860. unsigned group_slice;
  1861. enum wl_prio_t original_prio = cfqd->serving_prio;
  1862. /* Choose next priority. RT > BE > IDLE */
  1863. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1864. cfqd->serving_prio = RT_WORKLOAD;
  1865. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1866. cfqd->serving_prio = BE_WORKLOAD;
  1867. else {
  1868. cfqd->serving_prio = IDLE_WORKLOAD;
  1869. cfqd->workload_expires = jiffies + 1;
  1870. return;
  1871. }
  1872. if (original_prio != cfqd->serving_prio)
  1873. goto new_workload;
  1874. /*
  1875. * For RT and BE, we have to choose also the type
  1876. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1877. * expiration time
  1878. */
  1879. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1880. count = st->count;
  1881. /*
  1882. * check workload expiration, and that we still have other queues ready
  1883. */
  1884. if (count && !time_after(jiffies, cfqd->workload_expires))
  1885. return;
  1886. new_workload:
  1887. /* otherwise select new workload type */
  1888. cfqd->serving_type =
  1889. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1890. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1891. count = st->count;
  1892. /*
  1893. * the workload slice is computed as a fraction of target latency
  1894. * proportional to the number of queues in that workload, over
  1895. * all the queues in the same priority class
  1896. */
  1897. group_slice = cfq_group_slice(cfqd, cfqg);
  1898. slice = group_slice * count /
  1899. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1900. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1901. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1902. unsigned int tmp;
  1903. /*
  1904. * Async queues are currently system wide. Just taking
  1905. * proportion of queues with-in same group will lead to higher
  1906. * async ratio system wide as generally root group is going
  1907. * to have higher weight. A more accurate thing would be to
  1908. * calculate system wide asnc/sync ratio.
  1909. */
  1910. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1911. tmp = tmp/cfqd->busy_queues;
  1912. slice = min_t(unsigned, slice, tmp);
  1913. /* async workload slice is scaled down according to
  1914. * the sync/async slice ratio. */
  1915. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1916. } else
  1917. /* sync workload slice is at least 2 * cfq_slice_idle */
  1918. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1919. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1920. cfq_log(cfqd, "workload slice:%d", slice);
  1921. cfqd->workload_expires = jiffies + slice;
  1922. }
  1923. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1924. {
  1925. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1926. struct cfq_group *cfqg;
  1927. if (RB_EMPTY_ROOT(&st->rb))
  1928. return NULL;
  1929. cfqg = cfq_rb_first_group(st);
  1930. update_min_vdisktime(st);
  1931. return cfqg;
  1932. }
  1933. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1934. {
  1935. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1936. cfqd->serving_group = cfqg;
  1937. /* Restore the workload type data */
  1938. if (cfqg->saved_workload_slice) {
  1939. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1940. cfqd->serving_type = cfqg->saved_workload;
  1941. cfqd->serving_prio = cfqg->saved_serving_prio;
  1942. } else
  1943. cfqd->workload_expires = jiffies - 1;
  1944. choose_service_tree(cfqd, cfqg);
  1945. }
  1946. /*
  1947. * Select a queue for service. If we have a current active queue,
  1948. * check whether to continue servicing it, or retrieve and set a new one.
  1949. */
  1950. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1951. {
  1952. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1953. cfqq = cfqd->active_queue;
  1954. if (!cfqq)
  1955. goto new_queue;
  1956. if (!cfqd->rq_queued)
  1957. return NULL;
  1958. /*
  1959. * We were waiting for group to get backlogged. Expire the queue
  1960. */
  1961. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1962. goto expire;
  1963. /*
  1964. * The active queue has run out of time, expire it and select new.
  1965. */
  1966. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1967. /*
  1968. * If slice had not expired at the completion of last request
  1969. * we might not have turned on wait_busy flag. Don't expire
  1970. * the queue yet. Allow the group to get backlogged.
  1971. *
  1972. * The very fact that we have used the slice, that means we
  1973. * have been idling all along on this queue and it should be
  1974. * ok to wait for this request to complete.
  1975. */
  1976. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1977. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1978. cfqq = NULL;
  1979. goto keep_queue;
  1980. } else
  1981. goto check_group_idle;
  1982. }
  1983. /*
  1984. * The active queue has requests and isn't expired, allow it to
  1985. * dispatch.
  1986. */
  1987. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1988. goto keep_queue;
  1989. /*
  1990. * If another queue has a request waiting within our mean seek
  1991. * distance, let it run. The expire code will check for close
  1992. * cooperators and put the close queue at the front of the service
  1993. * tree. If possible, merge the expiring queue with the new cfqq.
  1994. */
  1995. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1996. if (new_cfqq) {
  1997. if (!cfqq->new_cfqq)
  1998. cfq_setup_merge(cfqq, new_cfqq);
  1999. goto expire;
  2000. }
  2001. /*
  2002. * No requests pending. If the active queue still has requests in
  2003. * flight or is idling for a new request, allow either of these
  2004. * conditions to happen (or time out) before selecting a new queue.
  2005. */
  2006. if (timer_pending(&cfqd->idle_slice_timer)) {
  2007. cfqq = NULL;
  2008. goto keep_queue;
  2009. }
  2010. /*
  2011. * This is a deep seek queue, but the device is much faster than
  2012. * the queue can deliver, don't idle
  2013. **/
  2014. if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
  2015. (cfq_cfqq_slice_new(cfqq) ||
  2016. (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
  2017. cfq_clear_cfqq_deep(cfqq);
  2018. cfq_clear_cfqq_idle_window(cfqq);
  2019. }
  2020. if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  2021. cfqq = NULL;
  2022. goto keep_queue;
  2023. }
  2024. /*
  2025. * If group idle is enabled and there are requests dispatched from
  2026. * this group, wait for requests to complete.
  2027. */
  2028. check_group_idle:
  2029. if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
  2030. cfqq->cfqg->dispatched &&
  2031. !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
  2032. cfqq = NULL;
  2033. goto keep_queue;
  2034. }
  2035. expire:
  2036. cfq_slice_expired(cfqd, 0);
  2037. new_queue:
  2038. /*
  2039. * Current queue expired. Check if we have to switch to a new
  2040. * service tree
  2041. */
  2042. if (!new_cfqq)
  2043. cfq_choose_cfqg(cfqd);
  2044. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  2045. keep_queue:
  2046. return cfqq;
  2047. }
  2048. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  2049. {
  2050. int dispatched = 0;
  2051. while (cfqq->next_rq) {
  2052. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  2053. dispatched++;
  2054. }
  2055. BUG_ON(!list_empty(&cfqq->fifo));
  2056. /* By default cfqq is not expired if it is empty. Do it explicitly */
  2057. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  2058. return dispatched;
  2059. }
  2060. /*
  2061. * Drain our current requests. Used for barriers and when switching
  2062. * io schedulers on-the-fly.
  2063. */
  2064. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  2065. {
  2066. struct cfq_queue *cfqq;
  2067. int dispatched = 0;
  2068. /* Expire the timeslice of the current active queue first */
  2069. cfq_slice_expired(cfqd, 0);
  2070. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  2071. __cfq_set_active_queue(cfqd, cfqq);
  2072. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  2073. }
  2074. BUG_ON(cfqd->busy_queues);
  2075. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  2076. return dispatched;
  2077. }
  2078. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  2079. struct cfq_queue *cfqq)
  2080. {
  2081. /* the queue hasn't finished any request, can't estimate */
  2082. if (cfq_cfqq_slice_new(cfqq))
  2083. return true;
  2084. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  2085. cfqq->slice_end))
  2086. return true;
  2087. return false;
  2088. }
  2089. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2090. {
  2091. unsigned int max_dispatch;
  2092. /*
  2093. * Drain async requests before we start sync IO
  2094. */
  2095. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  2096. return false;
  2097. /*
  2098. * If this is an async queue and we have sync IO in flight, let it wait
  2099. */
  2100. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  2101. return false;
  2102. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  2103. if (cfq_class_idle(cfqq))
  2104. max_dispatch = 1;
  2105. /*
  2106. * Does this cfqq already have too much IO in flight?
  2107. */
  2108. if (cfqq->dispatched >= max_dispatch) {
  2109. bool promote_sync = false;
  2110. /*
  2111. * idle queue must always only have a single IO in flight
  2112. */
  2113. if (cfq_class_idle(cfqq))
  2114. return false;
  2115. /*
  2116. * If there is only one sync queue
  2117. * we can ignore async queue here and give the sync
  2118. * queue no dispatch limit. The reason is a sync queue can
  2119. * preempt async queue, limiting the sync queue doesn't make
  2120. * sense. This is useful for aiostress test.
  2121. */
  2122. if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
  2123. promote_sync = true;
  2124. /*
  2125. * We have other queues, don't allow more IO from this one
  2126. */
  2127. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
  2128. !promote_sync)
  2129. return false;
  2130. /*
  2131. * Sole queue user, no limit
  2132. */
  2133. if (cfqd->busy_queues == 1 || promote_sync)
  2134. max_dispatch = -1;
  2135. else
  2136. /*
  2137. * Normally we start throttling cfqq when cfq_quantum/2
  2138. * requests have been dispatched. But we can drive
  2139. * deeper queue depths at the beginning of slice
  2140. * subjected to upper limit of cfq_quantum.
  2141. * */
  2142. max_dispatch = cfqd->cfq_quantum;
  2143. }
  2144. /*
  2145. * Async queues must wait a bit before being allowed dispatch.
  2146. * We also ramp up the dispatch depth gradually for async IO,
  2147. * based on the last sync IO we serviced
  2148. */
  2149. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  2150. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  2151. unsigned int depth;
  2152. depth = last_sync / cfqd->cfq_slice[1];
  2153. if (!depth && !cfqq->dispatched)
  2154. depth = 1;
  2155. if (depth < max_dispatch)
  2156. max_dispatch = depth;
  2157. }
  2158. /*
  2159. * If we're below the current max, allow a dispatch
  2160. */
  2161. return cfqq->dispatched < max_dispatch;
  2162. }
  2163. /*
  2164. * Dispatch a request from cfqq, moving them to the request queue
  2165. * dispatch list.
  2166. */
  2167. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2168. {
  2169. struct request *rq;
  2170. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2171. if (!cfq_may_dispatch(cfqd, cfqq))
  2172. return false;
  2173. /*
  2174. * follow expired path, else get first next available
  2175. */
  2176. rq = cfq_check_fifo(cfqq);
  2177. if (!rq)
  2178. rq = cfqq->next_rq;
  2179. /*
  2180. * insert request into driver dispatch list
  2181. */
  2182. cfq_dispatch_insert(cfqd->queue, rq);
  2183. if (!cfqd->active_cic) {
  2184. struct cfq_io_context *cic = RQ_CIC(rq);
  2185. atomic_long_inc(&cic->ioc->refcount);
  2186. cfqd->active_cic = cic;
  2187. }
  2188. return true;
  2189. }
  2190. /*
  2191. * Find the cfqq that we need to service and move a request from that to the
  2192. * dispatch list
  2193. */
  2194. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2195. {
  2196. struct cfq_data *cfqd = q->elevator->elevator_data;
  2197. struct cfq_queue *cfqq;
  2198. if (!cfqd->busy_queues)
  2199. return 0;
  2200. if (unlikely(force))
  2201. return cfq_forced_dispatch(cfqd);
  2202. cfqq = cfq_select_queue(cfqd);
  2203. if (!cfqq)
  2204. return 0;
  2205. /*
  2206. * Dispatch a request from this cfqq, if it is allowed
  2207. */
  2208. if (!cfq_dispatch_request(cfqd, cfqq))
  2209. return 0;
  2210. cfqq->slice_dispatch++;
  2211. cfq_clear_cfqq_must_dispatch(cfqq);
  2212. /*
  2213. * expire an async queue immediately if it has used up its slice. idle
  2214. * queue always expire after 1 dispatch round.
  2215. */
  2216. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2217. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2218. cfq_class_idle(cfqq))) {
  2219. cfqq->slice_end = jiffies + 1;
  2220. cfq_slice_expired(cfqd, 0);
  2221. }
  2222. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2223. return 1;
  2224. }
  2225. /*
  2226. * task holds one reference to the queue, dropped when task exits. each rq
  2227. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2228. *
  2229. * Each cfq queue took a reference on the parent group. Drop it now.
  2230. * queue lock must be held here.
  2231. */
  2232. static void cfq_put_queue(struct cfq_queue *cfqq)
  2233. {
  2234. struct cfq_data *cfqd = cfqq->cfqd;
  2235. struct cfq_group *cfqg;
  2236. BUG_ON(cfqq->ref <= 0);
  2237. cfqq->ref--;
  2238. if (cfqq->ref)
  2239. return;
  2240. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2241. BUG_ON(rb_first(&cfqq->sort_list));
  2242. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2243. cfqg = cfqq->cfqg;
  2244. if (unlikely(cfqd->active_queue == cfqq)) {
  2245. __cfq_slice_expired(cfqd, cfqq, 0);
  2246. cfq_schedule_dispatch(cfqd);
  2247. }
  2248. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2249. kmem_cache_free(cfq_pool, cfqq);
  2250. cfq_put_cfqg(cfqg);
  2251. }
  2252. /*
  2253. * Call func for each cic attached to this ioc.
  2254. */
  2255. static void
  2256. call_for_each_cic(struct io_context *ioc,
  2257. void (*func)(struct io_context *, struct cfq_io_context *))
  2258. {
  2259. struct cfq_io_context *cic;
  2260. struct hlist_node *n;
  2261. rcu_read_lock();
  2262. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  2263. func(ioc, cic);
  2264. rcu_read_unlock();
  2265. }
  2266. static void cfq_cic_free_rcu(struct rcu_head *head)
  2267. {
  2268. struct cfq_io_context *cic;
  2269. cic = container_of(head, struct cfq_io_context, rcu_head);
  2270. kmem_cache_free(cfq_ioc_pool, cic);
  2271. elv_ioc_count_dec(cfq_ioc_count);
  2272. if (ioc_gone) {
  2273. /*
  2274. * CFQ scheduler is exiting, grab exit lock and check
  2275. * the pending io context count. If it hits zero,
  2276. * complete ioc_gone and set it back to NULL
  2277. */
  2278. spin_lock(&ioc_gone_lock);
  2279. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  2280. complete(ioc_gone);
  2281. ioc_gone = NULL;
  2282. }
  2283. spin_unlock(&ioc_gone_lock);
  2284. }
  2285. }
  2286. static void cfq_cic_free(struct cfq_io_context *cic)
  2287. {
  2288. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  2289. }
  2290. static void cfq_release_cic(struct cfq_io_context *cic)
  2291. {
  2292. struct io_context *ioc = cic->ioc;
  2293. unsigned long dead_key = (unsigned long) cic->key;
  2294. BUG_ON(!(dead_key & CIC_DEAD_KEY));
  2295. radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
  2296. hlist_del_rcu(&cic->cic_list);
  2297. cfq_cic_free(cic);
  2298. }
  2299. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  2300. {
  2301. unsigned long flags;
  2302. spin_lock_irqsave(&ioc->lock, flags);
  2303. cfq_release_cic(cic);
  2304. spin_unlock_irqrestore(&ioc->lock, flags);
  2305. }
  2306. /*
  2307. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  2308. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  2309. * and ->trim() which is called with the task lock held
  2310. */
  2311. static void cfq_free_io_context(struct io_context *ioc)
  2312. {
  2313. /*
  2314. * ioc->refcount is zero here, or we are called from elv_unregister(),
  2315. * so no more cic's are allowed to be linked into this ioc. So it
  2316. * should be ok to iterate over the known list, we will see all cic's
  2317. * since no new ones are added.
  2318. */
  2319. call_for_each_cic(ioc, cic_free_func);
  2320. }
  2321. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2322. {
  2323. struct cfq_queue *__cfqq, *next;
  2324. /*
  2325. * If this queue was scheduled to merge with another queue, be
  2326. * sure to drop the reference taken on that queue (and others in
  2327. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2328. */
  2329. __cfqq = cfqq->new_cfqq;
  2330. while (__cfqq) {
  2331. if (__cfqq == cfqq) {
  2332. WARN(1, "cfqq->new_cfqq loop detected\n");
  2333. break;
  2334. }
  2335. next = __cfqq->new_cfqq;
  2336. cfq_put_queue(__cfqq);
  2337. __cfqq = next;
  2338. }
  2339. }
  2340. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2341. {
  2342. if (unlikely(cfqq == cfqd->active_queue)) {
  2343. __cfq_slice_expired(cfqd, cfqq, 0);
  2344. cfq_schedule_dispatch(cfqd);
  2345. }
  2346. cfq_put_cooperator(cfqq);
  2347. cfq_put_queue(cfqq);
  2348. }
  2349. static void cfq_exit_cic(struct cfq_io_context *cic)
  2350. {
  2351. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2352. struct io_context *ioc = cic->ioc;
  2353. list_del_init(&cic->queue_list);
  2354. /*
  2355. * Make sure dead mark is seen for dead queues
  2356. */
  2357. smp_wmb();
  2358. cic->key = cfqd_dead_key(cfqd);
  2359. rcu_read_lock();
  2360. if (rcu_dereference(ioc->ioc_data) == cic) {
  2361. rcu_read_unlock();
  2362. spin_lock(&ioc->lock);
  2363. rcu_assign_pointer(ioc->ioc_data, NULL);
  2364. spin_unlock(&ioc->lock);
  2365. } else
  2366. rcu_read_unlock();
  2367. if (cic->cfqq[BLK_RW_ASYNC]) {
  2368. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2369. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2370. }
  2371. if (cic->cfqq[BLK_RW_SYNC]) {
  2372. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2373. cic->cfqq[BLK_RW_SYNC] = NULL;
  2374. }
  2375. }
  2376. static void cfq_exit_single_io_context(struct io_context *ioc,
  2377. struct cfq_io_context *cic)
  2378. {
  2379. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2380. if (cfqd) {
  2381. struct request_queue *q = cfqd->queue;
  2382. unsigned long flags;
  2383. spin_lock_irqsave(q->queue_lock, flags);
  2384. /*
  2385. * Ensure we get a fresh copy of the ->key to prevent
  2386. * race between exiting task and queue
  2387. */
  2388. smp_read_barrier_depends();
  2389. if (cic->key == cfqd)
  2390. cfq_exit_cic(cic);
  2391. spin_unlock_irqrestore(q->queue_lock, flags);
  2392. }
  2393. }
  2394. /*
  2395. * The process that ioc belongs to has exited, we need to clean up
  2396. * and put the internal structures we have that belongs to that process.
  2397. */
  2398. static void cfq_exit_io_context(struct io_context *ioc)
  2399. {
  2400. call_for_each_cic(ioc, cfq_exit_single_io_context);
  2401. }
  2402. static struct cfq_io_context *
  2403. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2404. {
  2405. struct cfq_io_context *cic;
  2406. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  2407. cfqd->queue->node);
  2408. if (cic) {
  2409. cic->ttime.last_end_request = jiffies;
  2410. INIT_LIST_HEAD(&cic->queue_list);
  2411. INIT_HLIST_NODE(&cic->cic_list);
  2412. cic->dtor = cfq_free_io_context;
  2413. cic->exit = cfq_exit_io_context;
  2414. elv_ioc_count_inc(cfq_ioc_count);
  2415. }
  2416. return cic;
  2417. }
  2418. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2419. {
  2420. struct task_struct *tsk = current;
  2421. int ioprio_class;
  2422. if (!cfq_cfqq_prio_changed(cfqq))
  2423. return;
  2424. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2425. switch (ioprio_class) {
  2426. default:
  2427. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2428. case IOPRIO_CLASS_NONE:
  2429. /*
  2430. * no prio set, inherit CPU scheduling settings
  2431. */
  2432. cfqq->ioprio = task_nice_ioprio(tsk);
  2433. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2434. break;
  2435. case IOPRIO_CLASS_RT:
  2436. cfqq->ioprio = task_ioprio(ioc);
  2437. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2438. break;
  2439. case IOPRIO_CLASS_BE:
  2440. cfqq->ioprio = task_ioprio(ioc);
  2441. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2442. break;
  2443. case IOPRIO_CLASS_IDLE:
  2444. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2445. cfqq->ioprio = 7;
  2446. cfq_clear_cfqq_idle_window(cfqq);
  2447. break;
  2448. }
  2449. /*
  2450. * keep track of original prio settings in case we have to temporarily
  2451. * elevate the priority of this queue
  2452. */
  2453. cfqq->org_ioprio = cfqq->ioprio;
  2454. cfq_clear_cfqq_prio_changed(cfqq);
  2455. }
  2456. static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
  2457. {
  2458. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2459. struct cfq_queue *cfqq;
  2460. unsigned long flags;
  2461. if (unlikely(!cfqd))
  2462. return;
  2463. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2464. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2465. if (cfqq) {
  2466. struct cfq_queue *new_cfqq;
  2467. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  2468. GFP_ATOMIC);
  2469. if (new_cfqq) {
  2470. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2471. cfq_put_queue(cfqq);
  2472. }
  2473. }
  2474. cfqq = cic->cfqq[BLK_RW_SYNC];
  2475. if (cfqq)
  2476. cfq_mark_cfqq_prio_changed(cfqq);
  2477. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2478. }
  2479. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  2480. {
  2481. call_for_each_cic(ioc, changed_ioprio);
  2482. ioc->ioprio_changed = 0;
  2483. }
  2484. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2485. pid_t pid, bool is_sync)
  2486. {
  2487. RB_CLEAR_NODE(&cfqq->rb_node);
  2488. RB_CLEAR_NODE(&cfqq->p_node);
  2489. INIT_LIST_HEAD(&cfqq->fifo);
  2490. cfqq->ref = 0;
  2491. cfqq->cfqd = cfqd;
  2492. cfq_mark_cfqq_prio_changed(cfqq);
  2493. if (is_sync) {
  2494. if (!cfq_class_idle(cfqq))
  2495. cfq_mark_cfqq_idle_window(cfqq);
  2496. cfq_mark_cfqq_sync(cfqq);
  2497. }
  2498. cfqq->pid = pid;
  2499. }
  2500. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2501. static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
  2502. {
  2503. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2504. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2505. unsigned long flags;
  2506. struct request_queue *q;
  2507. if (unlikely(!cfqd))
  2508. return;
  2509. q = cfqd->queue;
  2510. spin_lock_irqsave(q->queue_lock, flags);
  2511. if (sync_cfqq) {
  2512. /*
  2513. * Drop reference to sync queue. A new sync queue will be
  2514. * assigned in new group upon arrival of a fresh request.
  2515. */
  2516. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2517. cic_set_cfqq(cic, NULL, 1);
  2518. cfq_put_queue(sync_cfqq);
  2519. }
  2520. spin_unlock_irqrestore(q->queue_lock, flags);
  2521. }
  2522. static void cfq_ioc_set_cgroup(struct io_context *ioc)
  2523. {
  2524. call_for_each_cic(ioc, changed_cgroup);
  2525. ioc->cgroup_changed = 0;
  2526. }
  2527. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2528. static struct cfq_queue *
  2529. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2530. struct io_context *ioc, gfp_t gfp_mask)
  2531. {
  2532. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2533. struct cfq_io_context *cic;
  2534. struct cfq_group *cfqg;
  2535. retry:
  2536. cfqg = cfq_get_cfqg(cfqd);
  2537. cic = cfq_cic_lookup(cfqd, ioc);
  2538. /* cic always exists here */
  2539. cfqq = cic_to_cfqq(cic, is_sync);
  2540. /*
  2541. * Always try a new alloc if we fell back to the OOM cfqq
  2542. * originally, since it should just be a temporary situation.
  2543. */
  2544. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2545. cfqq = NULL;
  2546. if (new_cfqq) {
  2547. cfqq = new_cfqq;
  2548. new_cfqq = NULL;
  2549. } else if (gfp_mask & __GFP_WAIT) {
  2550. spin_unlock_irq(cfqd->queue->queue_lock);
  2551. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2552. gfp_mask | __GFP_ZERO,
  2553. cfqd->queue->node);
  2554. spin_lock_irq(cfqd->queue->queue_lock);
  2555. if (new_cfqq)
  2556. goto retry;
  2557. } else {
  2558. cfqq = kmem_cache_alloc_node(cfq_pool,
  2559. gfp_mask | __GFP_ZERO,
  2560. cfqd->queue->node);
  2561. }
  2562. if (cfqq) {
  2563. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2564. cfq_init_prio_data(cfqq, ioc);
  2565. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2566. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2567. } else
  2568. cfqq = &cfqd->oom_cfqq;
  2569. }
  2570. if (new_cfqq)
  2571. kmem_cache_free(cfq_pool, new_cfqq);
  2572. return cfqq;
  2573. }
  2574. static struct cfq_queue **
  2575. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2576. {
  2577. switch (ioprio_class) {
  2578. case IOPRIO_CLASS_RT:
  2579. return &cfqd->async_cfqq[0][ioprio];
  2580. case IOPRIO_CLASS_BE:
  2581. return &cfqd->async_cfqq[1][ioprio];
  2582. case IOPRIO_CLASS_IDLE:
  2583. return &cfqd->async_idle_cfqq;
  2584. default:
  2585. BUG();
  2586. }
  2587. }
  2588. static struct cfq_queue *
  2589. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2590. gfp_t gfp_mask)
  2591. {
  2592. const int ioprio = task_ioprio(ioc);
  2593. const int ioprio_class = task_ioprio_class(ioc);
  2594. struct cfq_queue **async_cfqq = NULL;
  2595. struct cfq_queue *cfqq = NULL;
  2596. if (!is_sync) {
  2597. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2598. cfqq = *async_cfqq;
  2599. }
  2600. if (!cfqq)
  2601. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2602. /*
  2603. * pin the queue now that it's allocated, scheduler exit will prune it
  2604. */
  2605. if (!is_sync && !(*async_cfqq)) {
  2606. cfqq->ref++;
  2607. *async_cfqq = cfqq;
  2608. }
  2609. cfqq->ref++;
  2610. return cfqq;
  2611. }
  2612. /*
  2613. * We drop cfq io contexts lazily, so we may find a dead one.
  2614. */
  2615. static void
  2616. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  2617. struct cfq_io_context *cic)
  2618. {
  2619. unsigned long flags;
  2620. WARN_ON(!list_empty(&cic->queue_list));
  2621. BUG_ON(cic->key != cfqd_dead_key(cfqd));
  2622. spin_lock_irqsave(&ioc->lock, flags);
  2623. BUG_ON(rcu_dereference_check(ioc->ioc_data,
  2624. lockdep_is_held(&ioc->lock)) == cic);
  2625. radix_tree_delete(&ioc->radix_root, cfqd->queue->id);
  2626. hlist_del_rcu(&cic->cic_list);
  2627. spin_unlock_irqrestore(&ioc->lock, flags);
  2628. cfq_cic_free(cic);
  2629. }
  2630. static struct cfq_io_context *
  2631. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  2632. {
  2633. struct cfq_io_context *cic;
  2634. unsigned long flags;
  2635. if (unlikely(!ioc))
  2636. return NULL;
  2637. rcu_read_lock();
  2638. /*
  2639. * we maintain a last-hit cache, to avoid browsing over the tree
  2640. */
  2641. cic = rcu_dereference(ioc->ioc_data);
  2642. if (cic && cic->key == cfqd) {
  2643. rcu_read_unlock();
  2644. return cic;
  2645. }
  2646. do {
  2647. cic = radix_tree_lookup(&ioc->radix_root, cfqd->queue->id);
  2648. rcu_read_unlock();
  2649. if (!cic)
  2650. break;
  2651. if (unlikely(cic->key != cfqd)) {
  2652. cfq_drop_dead_cic(cfqd, ioc, cic);
  2653. rcu_read_lock();
  2654. continue;
  2655. }
  2656. spin_lock_irqsave(&ioc->lock, flags);
  2657. rcu_assign_pointer(ioc->ioc_data, cic);
  2658. spin_unlock_irqrestore(&ioc->lock, flags);
  2659. break;
  2660. } while (1);
  2661. return cic;
  2662. }
  2663. /*
  2664. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  2665. * the process specific cfq io context when entered from the block layer.
  2666. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  2667. */
  2668. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  2669. struct cfq_io_context *cic, gfp_t gfp_mask)
  2670. {
  2671. unsigned long flags;
  2672. int ret;
  2673. ret = radix_tree_preload(gfp_mask);
  2674. if (ret)
  2675. goto out;
  2676. cic->ioc = ioc;
  2677. cic->key = cfqd;
  2678. cic->q = cfqd->queue;
  2679. spin_lock_irqsave(&ioc->lock, flags);
  2680. ret = radix_tree_insert(&ioc->radix_root, cfqd->queue->id, cic);
  2681. if (!ret)
  2682. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  2683. spin_unlock_irqrestore(&ioc->lock, flags);
  2684. radix_tree_preload_end();
  2685. if (!ret) {
  2686. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2687. list_add(&cic->queue_list, &cfqd->cic_list);
  2688. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2689. }
  2690. out:
  2691. if (ret)
  2692. printk(KERN_ERR "cfq: cic link failed!\n");
  2693. return ret;
  2694. }
  2695. /*
  2696. * Setup general io context and cfq io context. There can be several cfq
  2697. * io contexts per general io context, if this process is doing io to more
  2698. * than one device managed by cfq.
  2699. */
  2700. static struct cfq_io_context *
  2701. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2702. {
  2703. struct io_context *ioc = NULL;
  2704. struct cfq_io_context *cic = NULL;
  2705. might_sleep_if(gfp_mask & __GFP_WAIT);
  2706. ioc = current_io_context(gfp_mask, cfqd->queue->node);
  2707. if (!ioc)
  2708. goto err;
  2709. cic = cfq_cic_lookup(cfqd, ioc);
  2710. if (cic)
  2711. goto out;
  2712. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  2713. if (cic == NULL)
  2714. goto err;
  2715. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  2716. goto err;
  2717. out:
  2718. get_io_context(ioc);
  2719. if (unlikely(ioc->ioprio_changed))
  2720. cfq_ioc_set_ioprio(ioc);
  2721. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2722. if (unlikely(ioc->cgroup_changed))
  2723. cfq_ioc_set_cgroup(ioc);
  2724. #endif
  2725. return cic;
  2726. err:
  2727. if (cic)
  2728. cfq_cic_free(cic);
  2729. return NULL;
  2730. }
  2731. static void
  2732. __cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
  2733. {
  2734. unsigned long elapsed = jiffies - ttime->last_end_request;
  2735. elapsed = min(elapsed, 2UL * slice_idle);
  2736. ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
  2737. ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
  2738. ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
  2739. }
  2740. static void
  2741. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2742. struct cfq_io_context *cic)
  2743. {
  2744. if (cfq_cfqq_sync(cfqq)) {
  2745. __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
  2746. __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
  2747. cfqd->cfq_slice_idle);
  2748. }
  2749. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2750. __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
  2751. #endif
  2752. }
  2753. static void
  2754. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2755. struct request *rq)
  2756. {
  2757. sector_t sdist = 0;
  2758. sector_t n_sec = blk_rq_sectors(rq);
  2759. if (cfqq->last_request_pos) {
  2760. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2761. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2762. else
  2763. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2764. }
  2765. cfqq->seek_history <<= 1;
  2766. if (blk_queue_nonrot(cfqd->queue))
  2767. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2768. else
  2769. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2770. }
  2771. /*
  2772. * Disable idle window if the process thinks too long or seeks so much that
  2773. * it doesn't matter
  2774. */
  2775. static void
  2776. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2777. struct cfq_io_context *cic)
  2778. {
  2779. int old_idle, enable_idle;
  2780. /*
  2781. * Don't idle for async or idle io prio class
  2782. */
  2783. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2784. return;
  2785. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2786. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2787. cfq_mark_cfqq_deep(cfqq);
  2788. if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
  2789. enable_idle = 0;
  2790. else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  2791. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2792. enable_idle = 0;
  2793. else if (sample_valid(cic->ttime.ttime_samples)) {
  2794. if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
  2795. enable_idle = 0;
  2796. else
  2797. enable_idle = 1;
  2798. }
  2799. if (old_idle != enable_idle) {
  2800. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2801. if (enable_idle)
  2802. cfq_mark_cfqq_idle_window(cfqq);
  2803. else
  2804. cfq_clear_cfqq_idle_window(cfqq);
  2805. }
  2806. }
  2807. /*
  2808. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2809. * no or if we aren't sure, a 1 will cause a preempt.
  2810. */
  2811. static bool
  2812. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2813. struct request *rq)
  2814. {
  2815. struct cfq_queue *cfqq;
  2816. cfqq = cfqd->active_queue;
  2817. if (!cfqq)
  2818. return false;
  2819. if (cfq_class_idle(new_cfqq))
  2820. return false;
  2821. if (cfq_class_idle(cfqq))
  2822. return true;
  2823. /*
  2824. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2825. */
  2826. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2827. return false;
  2828. /*
  2829. * if the new request is sync, but the currently running queue is
  2830. * not, let the sync request have priority.
  2831. */
  2832. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2833. return true;
  2834. if (new_cfqq->cfqg != cfqq->cfqg)
  2835. return false;
  2836. if (cfq_slice_used(cfqq))
  2837. return true;
  2838. /* Allow preemption only if we are idling on sync-noidle tree */
  2839. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2840. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2841. new_cfqq->service_tree->count == 2 &&
  2842. RB_EMPTY_ROOT(&cfqq->sort_list))
  2843. return true;
  2844. /*
  2845. * So both queues are sync. Let the new request get disk time if
  2846. * it's a metadata request and the current queue is doing regular IO.
  2847. */
  2848. if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
  2849. return true;
  2850. /*
  2851. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2852. */
  2853. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2854. return true;
  2855. /* An idle queue should not be idle now for some reason */
  2856. if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
  2857. return true;
  2858. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2859. return false;
  2860. /*
  2861. * if this request is as-good as one we would expect from the
  2862. * current cfqq, let it preempt
  2863. */
  2864. if (cfq_rq_close(cfqd, cfqq, rq))
  2865. return true;
  2866. return false;
  2867. }
  2868. /*
  2869. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2870. * let it have half of its nominal slice.
  2871. */
  2872. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2873. {
  2874. struct cfq_queue *old_cfqq = cfqd->active_queue;
  2875. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2876. cfq_slice_expired(cfqd, 1);
  2877. /*
  2878. * workload type is changed, don't save slice, otherwise preempt
  2879. * doesn't happen
  2880. */
  2881. if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
  2882. cfqq->cfqg->saved_workload_slice = 0;
  2883. /*
  2884. * Put the new queue at the front of the of the current list,
  2885. * so we know that it will be selected next.
  2886. */
  2887. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2888. cfq_service_tree_add(cfqd, cfqq, 1);
  2889. cfqq->slice_end = 0;
  2890. cfq_mark_cfqq_slice_new(cfqq);
  2891. }
  2892. /*
  2893. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2894. * something we should do about it
  2895. */
  2896. static void
  2897. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2898. struct request *rq)
  2899. {
  2900. struct cfq_io_context *cic = RQ_CIC(rq);
  2901. cfqd->rq_queued++;
  2902. if (rq->cmd_flags & REQ_PRIO)
  2903. cfqq->prio_pending++;
  2904. cfq_update_io_thinktime(cfqd, cfqq, cic);
  2905. cfq_update_io_seektime(cfqd, cfqq, rq);
  2906. cfq_update_idle_window(cfqd, cfqq, cic);
  2907. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2908. if (cfqq == cfqd->active_queue) {
  2909. /*
  2910. * Remember that we saw a request from this process, but
  2911. * don't start queuing just yet. Otherwise we risk seeing lots
  2912. * of tiny requests, because we disrupt the normal plugging
  2913. * and merging. If the request is already larger than a single
  2914. * page, let it rip immediately. For that case we assume that
  2915. * merging is already done. Ditto for a busy system that
  2916. * has other work pending, don't risk delaying until the
  2917. * idle timer unplug to continue working.
  2918. */
  2919. if (cfq_cfqq_wait_request(cfqq)) {
  2920. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2921. cfqd->busy_queues > 1) {
  2922. cfq_del_timer(cfqd, cfqq);
  2923. cfq_clear_cfqq_wait_request(cfqq);
  2924. __blk_run_queue(cfqd->queue);
  2925. } else {
  2926. cfq_blkiocg_update_idle_time_stats(
  2927. &cfqq->cfqg->blkg);
  2928. cfq_mark_cfqq_must_dispatch(cfqq);
  2929. }
  2930. }
  2931. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2932. /*
  2933. * not the active queue - expire current slice if it is
  2934. * idle and has expired it's mean thinktime or this new queue
  2935. * has some old slice time left and is of higher priority or
  2936. * this new queue is RT and the current one is BE
  2937. */
  2938. cfq_preempt_queue(cfqd, cfqq);
  2939. __blk_run_queue(cfqd->queue);
  2940. }
  2941. }
  2942. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2943. {
  2944. struct cfq_data *cfqd = q->elevator->elevator_data;
  2945. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2946. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2947. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2948. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2949. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2950. cfq_add_rq_rb(rq);
  2951. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  2952. &cfqd->serving_group->blkg, rq_data_dir(rq),
  2953. rq_is_sync(rq));
  2954. cfq_rq_enqueued(cfqd, cfqq, rq);
  2955. }
  2956. /*
  2957. * Update hw_tag based on peak queue depth over 50 samples under
  2958. * sufficient load.
  2959. */
  2960. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2961. {
  2962. struct cfq_queue *cfqq = cfqd->active_queue;
  2963. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2964. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2965. if (cfqd->hw_tag == 1)
  2966. return;
  2967. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2968. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2969. return;
  2970. /*
  2971. * If active queue hasn't enough requests and can idle, cfq might not
  2972. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2973. * case
  2974. */
  2975. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2976. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2977. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2978. return;
  2979. if (cfqd->hw_tag_samples++ < 50)
  2980. return;
  2981. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2982. cfqd->hw_tag = 1;
  2983. else
  2984. cfqd->hw_tag = 0;
  2985. }
  2986. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2987. {
  2988. struct cfq_io_context *cic = cfqd->active_cic;
  2989. /* If the queue already has requests, don't wait */
  2990. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2991. return false;
  2992. /* If there are other queues in the group, don't wait */
  2993. if (cfqq->cfqg->nr_cfqq > 1)
  2994. return false;
  2995. /* the only queue in the group, but think time is big */
  2996. if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
  2997. return false;
  2998. if (cfq_slice_used(cfqq))
  2999. return true;
  3000. /* if slice left is less than think time, wait busy */
  3001. if (cic && sample_valid(cic->ttime.ttime_samples)
  3002. && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
  3003. return true;
  3004. /*
  3005. * If think times is less than a jiffy than ttime_mean=0 and above
  3006. * will not be true. It might happen that slice has not expired yet
  3007. * but will expire soon (4-5 ns) during select_queue(). To cover the
  3008. * case where think time is less than a jiffy, mark the queue wait
  3009. * busy if only 1 jiffy is left in the slice.
  3010. */
  3011. if (cfqq->slice_end - jiffies == 1)
  3012. return true;
  3013. return false;
  3014. }
  3015. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  3016. {
  3017. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  3018. struct cfq_data *cfqd = cfqq->cfqd;
  3019. const int sync = rq_is_sync(rq);
  3020. unsigned long now;
  3021. now = jiffies;
  3022. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  3023. !!(rq->cmd_flags & REQ_NOIDLE));
  3024. cfq_update_hw_tag(cfqd);
  3025. WARN_ON(!cfqd->rq_in_driver);
  3026. WARN_ON(!cfqq->dispatched);
  3027. cfqd->rq_in_driver--;
  3028. cfqq->dispatched--;
  3029. (RQ_CFQG(rq))->dispatched--;
  3030. cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
  3031. rq_start_time_ns(rq), rq_io_start_time_ns(rq),
  3032. rq_data_dir(rq), rq_is_sync(rq));
  3033. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  3034. if (sync) {
  3035. struct cfq_rb_root *service_tree;
  3036. RQ_CIC(rq)->ttime.last_end_request = now;
  3037. if (cfq_cfqq_on_rr(cfqq))
  3038. service_tree = cfqq->service_tree;
  3039. else
  3040. service_tree = service_tree_for(cfqq->cfqg,
  3041. cfqq_prio(cfqq), cfqq_type(cfqq));
  3042. service_tree->ttime.last_end_request = now;
  3043. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  3044. cfqd->last_delayed_sync = now;
  3045. }
  3046. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3047. cfqq->cfqg->ttime.last_end_request = now;
  3048. #endif
  3049. /*
  3050. * If this is the active queue, check if it needs to be expired,
  3051. * or if we want to idle in case it has no pending requests.
  3052. */
  3053. if (cfqd->active_queue == cfqq) {
  3054. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  3055. if (cfq_cfqq_slice_new(cfqq)) {
  3056. cfq_set_prio_slice(cfqd, cfqq);
  3057. cfq_clear_cfqq_slice_new(cfqq);
  3058. }
  3059. /*
  3060. * Should we wait for next request to come in before we expire
  3061. * the queue.
  3062. */
  3063. if (cfq_should_wait_busy(cfqd, cfqq)) {
  3064. unsigned long extend_sl = cfqd->cfq_slice_idle;
  3065. if (!cfqd->cfq_slice_idle)
  3066. extend_sl = cfqd->cfq_group_idle;
  3067. cfqq->slice_end = jiffies + extend_sl;
  3068. cfq_mark_cfqq_wait_busy(cfqq);
  3069. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  3070. }
  3071. /*
  3072. * Idling is not enabled on:
  3073. * - expired queues
  3074. * - idle-priority queues
  3075. * - async queues
  3076. * - queues with still some requests queued
  3077. * - when there is a close cooperator
  3078. */
  3079. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  3080. cfq_slice_expired(cfqd, 1);
  3081. else if (sync && cfqq_empty &&
  3082. !cfq_close_cooperator(cfqd, cfqq)) {
  3083. cfq_arm_slice_timer(cfqd);
  3084. }
  3085. }
  3086. if (!cfqd->rq_in_driver)
  3087. cfq_schedule_dispatch(cfqd);
  3088. }
  3089. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  3090. {
  3091. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  3092. cfq_mark_cfqq_must_alloc_slice(cfqq);
  3093. return ELV_MQUEUE_MUST;
  3094. }
  3095. return ELV_MQUEUE_MAY;
  3096. }
  3097. static int cfq_may_queue(struct request_queue *q, int rw)
  3098. {
  3099. struct cfq_data *cfqd = q->elevator->elevator_data;
  3100. struct task_struct *tsk = current;
  3101. struct cfq_io_context *cic;
  3102. struct cfq_queue *cfqq;
  3103. /*
  3104. * don't force setup of a queue from here, as a call to may_queue
  3105. * does not necessarily imply that a request actually will be queued.
  3106. * so just lookup a possibly existing queue, or return 'may queue'
  3107. * if that fails
  3108. */
  3109. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  3110. if (!cic)
  3111. return ELV_MQUEUE_MAY;
  3112. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  3113. if (cfqq) {
  3114. cfq_init_prio_data(cfqq, cic->ioc);
  3115. return __cfq_may_queue(cfqq);
  3116. }
  3117. return ELV_MQUEUE_MAY;
  3118. }
  3119. /*
  3120. * queue lock held here
  3121. */
  3122. static void cfq_put_request(struct request *rq)
  3123. {
  3124. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  3125. if (cfqq) {
  3126. const int rw = rq_data_dir(rq);
  3127. BUG_ON(!cfqq->allocated[rw]);
  3128. cfqq->allocated[rw]--;
  3129. put_io_context(RQ_CIC(rq)->ioc);
  3130. rq->elevator_private[0] = NULL;
  3131. rq->elevator_private[1] = NULL;
  3132. /* Put down rq reference on cfqg */
  3133. cfq_put_cfqg(RQ_CFQG(rq));
  3134. rq->elevator_private[2] = NULL;
  3135. cfq_put_queue(cfqq);
  3136. }
  3137. }
  3138. static struct cfq_queue *
  3139. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  3140. struct cfq_queue *cfqq)
  3141. {
  3142. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  3143. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  3144. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  3145. cfq_put_queue(cfqq);
  3146. return cic_to_cfqq(cic, 1);
  3147. }
  3148. /*
  3149. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  3150. * was the last process referring to said cfqq.
  3151. */
  3152. static struct cfq_queue *
  3153. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  3154. {
  3155. if (cfqq_process_refs(cfqq) == 1) {
  3156. cfqq->pid = current->pid;
  3157. cfq_clear_cfqq_coop(cfqq);
  3158. cfq_clear_cfqq_split_coop(cfqq);
  3159. return cfqq;
  3160. }
  3161. cic_set_cfqq(cic, NULL, 1);
  3162. cfq_put_cooperator(cfqq);
  3163. cfq_put_queue(cfqq);
  3164. return NULL;
  3165. }
  3166. /*
  3167. * Allocate cfq data structures associated with this request.
  3168. */
  3169. static int
  3170. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  3171. {
  3172. struct cfq_data *cfqd = q->elevator->elevator_data;
  3173. struct cfq_io_context *cic;
  3174. const int rw = rq_data_dir(rq);
  3175. const bool is_sync = rq_is_sync(rq);
  3176. struct cfq_queue *cfqq;
  3177. unsigned long flags;
  3178. might_sleep_if(gfp_mask & __GFP_WAIT);
  3179. cic = cfq_get_io_context(cfqd, gfp_mask);
  3180. spin_lock_irqsave(q->queue_lock, flags);
  3181. if (!cic)
  3182. goto queue_fail;
  3183. new_queue:
  3184. cfqq = cic_to_cfqq(cic, is_sync);
  3185. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  3186. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  3187. cic_set_cfqq(cic, cfqq, is_sync);
  3188. } else {
  3189. /*
  3190. * If the queue was seeky for too long, break it apart.
  3191. */
  3192. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  3193. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  3194. cfqq = split_cfqq(cic, cfqq);
  3195. if (!cfqq)
  3196. goto new_queue;
  3197. }
  3198. /*
  3199. * Check to see if this queue is scheduled to merge with
  3200. * another, closely cooperating queue. The merging of
  3201. * queues happens here as it must be done in process context.
  3202. * The reference on new_cfqq was taken in merge_cfqqs.
  3203. */
  3204. if (cfqq->new_cfqq)
  3205. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  3206. }
  3207. cfqq->allocated[rw]++;
  3208. cfqq->ref++;
  3209. rq->elevator_private[0] = cic;
  3210. rq->elevator_private[1] = cfqq;
  3211. rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
  3212. spin_unlock_irqrestore(q->queue_lock, flags);
  3213. return 0;
  3214. queue_fail:
  3215. cfq_schedule_dispatch(cfqd);
  3216. spin_unlock_irqrestore(q->queue_lock, flags);
  3217. cfq_log(cfqd, "set_request fail");
  3218. return 1;
  3219. }
  3220. static void cfq_kick_queue(struct work_struct *work)
  3221. {
  3222. struct cfq_data *cfqd =
  3223. container_of(work, struct cfq_data, unplug_work);
  3224. struct request_queue *q = cfqd->queue;
  3225. spin_lock_irq(q->queue_lock);
  3226. __blk_run_queue(cfqd->queue);
  3227. spin_unlock_irq(q->queue_lock);
  3228. }
  3229. /*
  3230. * Timer running if the active_queue is currently idling inside its time slice
  3231. */
  3232. static void cfq_idle_slice_timer(unsigned long data)
  3233. {
  3234. struct cfq_data *cfqd = (struct cfq_data *) data;
  3235. struct cfq_queue *cfqq;
  3236. unsigned long flags;
  3237. int timed_out = 1;
  3238. cfq_log(cfqd, "idle timer fired");
  3239. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  3240. cfqq = cfqd->active_queue;
  3241. if (cfqq) {
  3242. timed_out = 0;
  3243. /*
  3244. * We saw a request before the queue expired, let it through
  3245. */
  3246. if (cfq_cfqq_must_dispatch(cfqq))
  3247. goto out_kick;
  3248. /*
  3249. * expired
  3250. */
  3251. if (cfq_slice_used(cfqq))
  3252. goto expire;
  3253. /*
  3254. * only expire and reinvoke request handler, if there are
  3255. * other queues with pending requests
  3256. */
  3257. if (!cfqd->busy_queues)
  3258. goto out_cont;
  3259. /*
  3260. * not expired and it has a request pending, let it dispatch
  3261. */
  3262. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3263. goto out_kick;
  3264. /*
  3265. * Queue depth flag is reset only when the idle didn't succeed
  3266. */
  3267. cfq_clear_cfqq_deep(cfqq);
  3268. }
  3269. expire:
  3270. cfq_slice_expired(cfqd, timed_out);
  3271. out_kick:
  3272. cfq_schedule_dispatch(cfqd);
  3273. out_cont:
  3274. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3275. }
  3276. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3277. {
  3278. del_timer_sync(&cfqd->idle_slice_timer);
  3279. cancel_work_sync(&cfqd->unplug_work);
  3280. }
  3281. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3282. {
  3283. int i;
  3284. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3285. if (cfqd->async_cfqq[0][i])
  3286. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3287. if (cfqd->async_cfqq[1][i])
  3288. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3289. }
  3290. if (cfqd->async_idle_cfqq)
  3291. cfq_put_queue(cfqd->async_idle_cfqq);
  3292. }
  3293. static void cfq_exit_queue(struct elevator_queue *e)
  3294. {
  3295. struct cfq_data *cfqd = e->elevator_data;
  3296. struct request_queue *q = cfqd->queue;
  3297. bool wait = false;
  3298. cfq_shutdown_timer_wq(cfqd);
  3299. spin_lock_irq(q->queue_lock);
  3300. if (cfqd->active_queue)
  3301. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3302. while (!list_empty(&cfqd->cic_list)) {
  3303. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  3304. struct cfq_io_context,
  3305. queue_list);
  3306. cfq_exit_cic(cic);
  3307. }
  3308. cfq_put_async_queues(cfqd);
  3309. cfq_release_cfq_groups(cfqd);
  3310. /*
  3311. * If there are groups which we could not unlink from blkcg list,
  3312. * wait for a rcu period for them to be freed.
  3313. */
  3314. if (cfqd->nr_blkcg_linked_grps)
  3315. wait = true;
  3316. spin_unlock_irq(q->queue_lock);
  3317. cfq_shutdown_timer_wq(cfqd);
  3318. /*
  3319. * Wait for cfqg->blkg->key accessors to exit their grace periods.
  3320. * Do this wait only if there are other unlinked groups out
  3321. * there. This can happen if cgroup deletion path claimed the
  3322. * responsibility of cleaning up a group before queue cleanup code
  3323. * get to the group.
  3324. *
  3325. * Do not call synchronize_rcu() unconditionally as there are drivers
  3326. * which create/delete request queue hundreds of times during scan/boot
  3327. * and synchronize_rcu() can take significant time and slow down boot.
  3328. */
  3329. if (wait)
  3330. synchronize_rcu();
  3331. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3332. /* Free up per cpu stats for root group */
  3333. free_percpu(cfqd->root_group.blkg.stats_cpu);
  3334. #endif
  3335. kfree(cfqd);
  3336. }
  3337. static void *cfq_init_queue(struct request_queue *q)
  3338. {
  3339. struct cfq_data *cfqd;
  3340. int i, j;
  3341. struct cfq_group *cfqg;
  3342. struct cfq_rb_root *st;
  3343. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3344. if (!cfqd)
  3345. return NULL;
  3346. /* Init root service tree */
  3347. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3348. /* Init root group */
  3349. cfqg = &cfqd->root_group;
  3350. for_each_cfqg_st(cfqg, i, j, st)
  3351. *st = CFQ_RB_ROOT;
  3352. RB_CLEAR_NODE(&cfqg->rb_node);
  3353. /* Give preference to root group over other groups */
  3354. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3355. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3356. /*
  3357. * Set root group reference to 2. One reference will be dropped when
  3358. * all groups on cfqd->cfqg_list are being deleted during queue exit.
  3359. * Other reference will remain there as we don't want to delete this
  3360. * group as it is statically allocated and gets destroyed when
  3361. * throtl_data goes away.
  3362. */
  3363. cfqg->ref = 2;
  3364. if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
  3365. kfree(cfqg);
  3366. kfree(cfqd);
  3367. return NULL;
  3368. }
  3369. rcu_read_lock();
  3370. cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
  3371. (void *)cfqd, 0);
  3372. rcu_read_unlock();
  3373. cfqd->nr_blkcg_linked_grps++;
  3374. /* Add group on cfqd->cfqg_list */
  3375. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  3376. #endif
  3377. /*
  3378. * Not strictly needed (since RB_ROOT just clears the node and we
  3379. * zeroed cfqd on alloc), but better be safe in case someone decides
  3380. * to add magic to the rb code
  3381. */
  3382. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3383. cfqd->prio_trees[i] = RB_ROOT;
  3384. /*
  3385. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3386. * Grab a permanent reference to it, so that the normal code flow
  3387. * will not attempt to free it.
  3388. */
  3389. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3390. cfqd->oom_cfqq.ref++;
  3391. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3392. INIT_LIST_HEAD(&cfqd->cic_list);
  3393. cfqd->queue = q;
  3394. init_timer(&cfqd->idle_slice_timer);
  3395. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3396. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3397. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3398. cfqd->cfq_quantum = cfq_quantum;
  3399. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3400. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3401. cfqd->cfq_back_max = cfq_back_max;
  3402. cfqd->cfq_back_penalty = cfq_back_penalty;
  3403. cfqd->cfq_slice[0] = cfq_slice_async;
  3404. cfqd->cfq_slice[1] = cfq_slice_sync;
  3405. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3406. cfqd->cfq_slice_idle = cfq_slice_idle;
  3407. cfqd->cfq_group_idle = cfq_group_idle;
  3408. cfqd->cfq_latency = 1;
  3409. cfqd->hw_tag = -1;
  3410. /*
  3411. * we optimistically start assuming sync ops weren't delayed in last
  3412. * second, in order to have larger depth for async operations.
  3413. */
  3414. cfqd->last_delayed_sync = jiffies - HZ;
  3415. return cfqd;
  3416. }
  3417. static void cfq_slab_kill(void)
  3418. {
  3419. /*
  3420. * Caller already ensured that pending RCU callbacks are completed,
  3421. * so we should have no busy allocations at this point.
  3422. */
  3423. if (cfq_pool)
  3424. kmem_cache_destroy(cfq_pool);
  3425. if (cfq_ioc_pool)
  3426. kmem_cache_destroy(cfq_ioc_pool);
  3427. }
  3428. static int __init cfq_slab_setup(void)
  3429. {
  3430. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3431. if (!cfq_pool)
  3432. goto fail;
  3433. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  3434. if (!cfq_ioc_pool)
  3435. goto fail;
  3436. return 0;
  3437. fail:
  3438. cfq_slab_kill();
  3439. return -ENOMEM;
  3440. }
  3441. /*
  3442. * sysfs parts below -->
  3443. */
  3444. static ssize_t
  3445. cfq_var_show(unsigned int var, char *page)
  3446. {
  3447. return sprintf(page, "%d\n", var);
  3448. }
  3449. static ssize_t
  3450. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3451. {
  3452. char *p = (char *) page;
  3453. *var = simple_strtoul(p, &p, 10);
  3454. return count;
  3455. }
  3456. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3457. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3458. { \
  3459. struct cfq_data *cfqd = e->elevator_data; \
  3460. unsigned int __data = __VAR; \
  3461. if (__CONV) \
  3462. __data = jiffies_to_msecs(__data); \
  3463. return cfq_var_show(__data, (page)); \
  3464. }
  3465. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3466. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3467. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3468. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3469. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3470. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3471. SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
  3472. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3473. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3474. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3475. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3476. #undef SHOW_FUNCTION
  3477. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3478. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3479. { \
  3480. struct cfq_data *cfqd = e->elevator_data; \
  3481. unsigned int __data; \
  3482. int ret = cfq_var_store(&__data, (page), count); \
  3483. if (__data < (MIN)) \
  3484. __data = (MIN); \
  3485. else if (__data > (MAX)) \
  3486. __data = (MAX); \
  3487. if (__CONV) \
  3488. *(__PTR) = msecs_to_jiffies(__data); \
  3489. else \
  3490. *(__PTR) = __data; \
  3491. return ret; \
  3492. }
  3493. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3494. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3495. UINT_MAX, 1);
  3496. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3497. UINT_MAX, 1);
  3498. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3499. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3500. UINT_MAX, 0);
  3501. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3502. STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
  3503. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3504. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3505. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3506. UINT_MAX, 0);
  3507. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3508. #undef STORE_FUNCTION
  3509. #define CFQ_ATTR(name) \
  3510. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3511. static struct elv_fs_entry cfq_attrs[] = {
  3512. CFQ_ATTR(quantum),
  3513. CFQ_ATTR(fifo_expire_sync),
  3514. CFQ_ATTR(fifo_expire_async),
  3515. CFQ_ATTR(back_seek_max),
  3516. CFQ_ATTR(back_seek_penalty),
  3517. CFQ_ATTR(slice_sync),
  3518. CFQ_ATTR(slice_async),
  3519. CFQ_ATTR(slice_async_rq),
  3520. CFQ_ATTR(slice_idle),
  3521. CFQ_ATTR(group_idle),
  3522. CFQ_ATTR(low_latency),
  3523. __ATTR_NULL
  3524. };
  3525. static struct elevator_type iosched_cfq = {
  3526. .ops = {
  3527. .elevator_merge_fn = cfq_merge,
  3528. .elevator_merged_fn = cfq_merged_request,
  3529. .elevator_merge_req_fn = cfq_merged_requests,
  3530. .elevator_allow_merge_fn = cfq_allow_merge,
  3531. .elevator_bio_merged_fn = cfq_bio_merged,
  3532. .elevator_dispatch_fn = cfq_dispatch_requests,
  3533. .elevator_add_req_fn = cfq_insert_request,
  3534. .elevator_activate_req_fn = cfq_activate_request,
  3535. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3536. .elevator_completed_req_fn = cfq_completed_request,
  3537. .elevator_former_req_fn = elv_rb_former_request,
  3538. .elevator_latter_req_fn = elv_rb_latter_request,
  3539. .elevator_set_req_fn = cfq_set_request,
  3540. .elevator_put_req_fn = cfq_put_request,
  3541. .elevator_may_queue_fn = cfq_may_queue,
  3542. .elevator_init_fn = cfq_init_queue,
  3543. .elevator_exit_fn = cfq_exit_queue,
  3544. .trim = cfq_free_io_context,
  3545. },
  3546. .elevator_attrs = cfq_attrs,
  3547. .elevator_name = "cfq",
  3548. .elevator_owner = THIS_MODULE,
  3549. };
  3550. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3551. static struct blkio_policy_type blkio_policy_cfq = {
  3552. .ops = {
  3553. .blkio_unlink_group_fn = cfq_unlink_blkio_group,
  3554. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3555. },
  3556. .plid = BLKIO_POLICY_PROP,
  3557. };
  3558. #else
  3559. static struct blkio_policy_type blkio_policy_cfq;
  3560. #endif
  3561. static int __init cfq_init(void)
  3562. {
  3563. /*
  3564. * could be 0 on HZ < 1000 setups
  3565. */
  3566. if (!cfq_slice_async)
  3567. cfq_slice_async = 1;
  3568. if (!cfq_slice_idle)
  3569. cfq_slice_idle = 1;
  3570. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3571. if (!cfq_group_idle)
  3572. cfq_group_idle = 1;
  3573. #else
  3574. cfq_group_idle = 0;
  3575. #endif
  3576. if (cfq_slab_setup())
  3577. return -ENOMEM;
  3578. elv_register(&iosched_cfq);
  3579. blkio_policy_register(&blkio_policy_cfq);
  3580. return 0;
  3581. }
  3582. static void __exit cfq_exit(void)
  3583. {
  3584. DECLARE_COMPLETION_ONSTACK(all_gone);
  3585. blkio_policy_unregister(&blkio_policy_cfq);
  3586. elv_unregister(&iosched_cfq);
  3587. ioc_gone = &all_gone;
  3588. /* ioc_gone's update must be visible before reading ioc_count */
  3589. smp_wmb();
  3590. /*
  3591. * this also protects us from entering cfq_slab_kill() with
  3592. * pending RCU callbacks
  3593. */
  3594. if (elv_ioc_count_read(cfq_ioc_count))
  3595. wait_for_completion(&all_gone);
  3596. cfq_slab_kill();
  3597. }
  3598. module_init(cfq_init);
  3599. module_exit(cfq_exit);
  3600. MODULE_AUTHOR("Jens Axboe");
  3601. MODULE_LICENSE("GPL");
  3602. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");