xmit.c 68 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/dma-mapping.h>
  17. #include "ath9k.h"
  18. #include "ar9003_mac.h"
  19. #define BITS_PER_BYTE 8
  20. #define OFDM_PLCP_BITS 22
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define TIME_SYMBOLS(t) ((t) >> 2)
  31. #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
  32. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  33. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  34. static u16 bits_per_symbol[][2] = {
  35. /* 20MHz 40MHz */
  36. { 26, 54 }, /* 0: BPSK */
  37. { 52, 108 }, /* 1: QPSK 1/2 */
  38. { 78, 162 }, /* 2: QPSK 3/4 */
  39. { 104, 216 }, /* 3: 16-QAM 1/2 */
  40. { 156, 324 }, /* 4: 16-QAM 3/4 */
  41. { 208, 432 }, /* 5: 64-QAM 2/3 */
  42. { 234, 486 }, /* 6: 64-QAM 3/4 */
  43. { 260, 540 }, /* 7: 64-QAM 5/6 */
  44. };
  45. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  46. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  47. struct ath_atx_tid *tid, struct sk_buff *skb);
  48. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  49. int tx_flags, struct ath_txq *txq);
  50. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  51. struct ath_txq *txq, struct list_head *bf_q,
  52. struct ath_tx_status *ts, int txok);
  53. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  54. struct list_head *head, bool internal);
  55. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  56. struct ath_tx_status *ts, int nframes, int nbad,
  57. int txok);
  58. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  59. int seqno);
  60. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  61. struct ath_txq *txq,
  62. struct ath_atx_tid *tid,
  63. struct sk_buff *skb);
  64. enum {
  65. MCS_HT20,
  66. MCS_HT20_SGI,
  67. MCS_HT40,
  68. MCS_HT40_SGI,
  69. };
  70. /*********************/
  71. /* Aggregation logic */
  72. /*********************/
  73. void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
  74. __acquires(&txq->axq_lock)
  75. {
  76. spin_lock_bh(&txq->axq_lock);
  77. }
  78. void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
  79. __releases(&txq->axq_lock)
  80. {
  81. spin_unlock_bh(&txq->axq_lock);
  82. }
  83. void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
  84. __releases(&txq->axq_lock)
  85. {
  86. struct sk_buff_head q;
  87. struct sk_buff *skb;
  88. __skb_queue_head_init(&q);
  89. skb_queue_splice_init(&txq->complete_q, &q);
  90. spin_unlock_bh(&txq->axq_lock);
  91. while ((skb = __skb_dequeue(&q)))
  92. ieee80211_tx_status(sc->hw, skb);
  93. }
  94. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  95. {
  96. struct ath_atx_ac *ac = tid->ac;
  97. if (tid->paused)
  98. return;
  99. if (tid->sched)
  100. return;
  101. tid->sched = true;
  102. list_add_tail(&tid->list, &ac->tid_q);
  103. if (ac->sched)
  104. return;
  105. ac->sched = true;
  106. list_add_tail(&ac->list, &txq->axq_acq);
  107. }
  108. static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
  109. {
  110. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  111. BUILD_BUG_ON(sizeof(struct ath_frame_info) >
  112. sizeof(tx_info->rate_driver_data));
  113. return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
  114. }
  115. static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
  116. {
  117. ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
  118. seqno << IEEE80211_SEQ_SEQ_SHIFT);
  119. }
  120. static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
  121. struct ath_buf *bf)
  122. {
  123. ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
  124. ARRAY_SIZE(bf->rates));
  125. }
  126. static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
  127. struct sk_buff *skb)
  128. {
  129. int q;
  130. q = skb_get_queue_mapping(skb);
  131. if (txq == sc->tx.uapsdq)
  132. txq = sc->tx.txq_map[q];
  133. if (txq != sc->tx.txq_map[q])
  134. return;
  135. if (WARN_ON(--txq->pending_frames < 0))
  136. txq->pending_frames = 0;
  137. if (txq->stopped &&
  138. txq->pending_frames < sc->tx.txq_max_pending[q]) {
  139. ieee80211_wake_queue(sc->hw, q);
  140. txq->stopped = false;
  141. }
  142. }
  143. static struct ath_atx_tid *
  144. ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
  145. {
  146. struct ieee80211_hdr *hdr;
  147. u8 tidno = 0;
  148. hdr = (struct ieee80211_hdr *) skb->data;
  149. if (ieee80211_is_data_qos(hdr->frame_control))
  150. tidno = ieee80211_get_qos_ctl(hdr)[0];
  151. tidno &= IEEE80211_QOS_CTL_TID_MASK;
  152. return ATH_AN_2_TID(an, tidno);
  153. }
  154. static bool ath_tid_has_buffered(struct ath_atx_tid *tid)
  155. {
  156. return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q);
  157. }
  158. static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid)
  159. {
  160. struct sk_buff *skb;
  161. skb = __skb_dequeue(&tid->retry_q);
  162. if (!skb)
  163. skb = __skb_dequeue(&tid->buf_q);
  164. return skb;
  165. }
  166. /*
  167. * ath_tx_tid_change_state:
  168. * - clears a-mpdu flag of previous session
  169. * - force sequence number allocation to fix next BlockAck Window
  170. */
  171. static void
  172. ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid)
  173. {
  174. struct ath_txq *txq = tid->ac->txq;
  175. struct ieee80211_tx_info *tx_info;
  176. struct sk_buff *skb, *tskb;
  177. struct ath_buf *bf;
  178. struct ath_frame_info *fi;
  179. skb_queue_walk_safe(&tid->buf_q, skb, tskb) {
  180. fi = get_frame_info(skb);
  181. bf = fi->bf;
  182. tx_info = IEEE80211_SKB_CB(skb);
  183. tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
  184. if (bf)
  185. continue;
  186. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  187. if (!bf) {
  188. __skb_unlink(skb, &tid->buf_q);
  189. ath_txq_skb_done(sc, txq, skb);
  190. ieee80211_free_txskb(sc->hw, skb);
  191. continue;
  192. }
  193. }
  194. }
  195. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  196. {
  197. struct ath_txq *txq = tid->ac->txq;
  198. struct sk_buff *skb;
  199. struct ath_buf *bf;
  200. struct list_head bf_head;
  201. struct ath_tx_status ts;
  202. struct ath_frame_info *fi;
  203. bool sendbar = false;
  204. INIT_LIST_HEAD(&bf_head);
  205. memset(&ts, 0, sizeof(ts));
  206. while ((skb = __skb_dequeue(&tid->retry_q))) {
  207. fi = get_frame_info(skb);
  208. bf = fi->bf;
  209. if (!bf) {
  210. ath_txq_skb_done(sc, txq, skb);
  211. ieee80211_free_txskb(sc->hw, skb);
  212. continue;
  213. }
  214. if (fi->baw_tracked) {
  215. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  216. sendbar = true;
  217. }
  218. list_add_tail(&bf->list, &bf_head);
  219. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  220. }
  221. if (sendbar) {
  222. ath_txq_unlock(sc, txq);
  223. ath_send_bar(tid, tid->seq_start);
  224. ath_txq_lock(sc, txq);
  225. }
  226. }
  227. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  228. int seqno)
  229. {
  230. int index, cindex;
  231. index = ATH_BA_INDEX(tid->seq_start, seqno);
  232. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  233. __clear_bit(cindex, tid->tx_buf);
  234. while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
  235. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  236. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  237. if (tid->bar_index >= 0)
  238. tid->bar_index--;
  239. }
  240. }
  241. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  242. struct ath_buf *bf)
  243. {
  244. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  245. u16 seqno = bf->bf_state.seqno;
  246. int index, cindex;
  247. index = ATH_BA_INDEX(tid->seq_start, seqno);
  248. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  249. __set_bit(cindex, tid->tx_buf);
  250. fi->baw_tracked = 1;
  251. if (index >= ((tid->baw_tail - tid->baw_head) &
  252. (ATH_TID_MAX_BUFS - 1))) {
  253. tid->baw_tail = cindex;
  254. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  255. }
  256. }
  257. /*
  258. * TODO: For frame(s) that are in the retry state, we will reuse the
  259. * sequence number(s) without setting the retry bit. The
  260. * alternative is to give up on these and BAR the receiver's window
  261. * forward.
  262. */
  263. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  264. struct ath_atx_tid *tid)
  265. {
  266. struct sk_buff *skb;
  267. struct ath_buf *bf;
  268. struct list_head bf_head;
  269. struct ath_tx_status ts;
  270. struct ath_frame_info *fi;
  271. memset(&ts, 0, sizeof(ts));
  272. INIT_LIST_HEAD(&bf_head);
  273. while ((skb = ath_tid_dequeue(tid))) {
  274. fi = get_frame_info(skb);
  275. bf = fi->bf;
  276. if (!bf) {
  277. ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
  278. continue;
  279. }
  280. list_add_tail(&bf->list, &bf_head);
  281. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  282. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  283. }
  284. tid->seq_next = tid->seq_start;
  285. tid->baw_tail = tid->baw_head;
  286. tid->bar_index = -1;
  287. }
  288. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  289. struct sk_buff *skb, int count)
  290. {
  291. struct ath_frame_info *fi = get_frame_info(skb);
  292. struct ath_buf *bf = fi->bf;
  293. struct ieee80211_hdr *hdr;
  294. int prev = fi->retries;
  295. TX_STAT_INC(txq->axq_qnum, a_retries);
  296. fi->retries += count;
  297. if (prev > 0)
  298. return;
  299. hdr = (struct ieee80211_hdr *)skb->data;
  300. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  301. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  302. sizeof(*hdr), DMA_TO_DEVICE);
  303. }
  304. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  305. {
  306. struct ath_buf *bf = NULL;
  307. spin_lock_bh(&sc->tx.txbuflock);
  308. if (unlikely(list_empty(&sc->tx.txbuf))) {
  309. spin_unlock_bh(&sc->tx.txbuflock);
  310. return NULL;
  311. }
  312. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  313. list_del(&bf->list);
  314. spin_unlock_bh(&sc->tx.txbuflock);
  315. return bf;
  316. }
  317. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  318. {
  319. spin_lock_bh(&sc->tx.txbuflock);
  320. list_add_tail(&bf->list, &sc->tx.txbuf);
  321. spin_unlock_bh(&sc->tx.txbuflock);
  322. }
  323. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  324. {
  325. struct ath_buf *tbf;
  326. tbf = ath_tx_get_buffer(sc);
  327. if (WARN_ON(!tbf))
  328. return NULL;
  329. ATH_TXBUF_RESET(tbf);
  330. tbf->bf_mpdu = bf->bf_mpdu;
  331. tbf->bf_buf_addr = bf->bf_buf_addr;
  332. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  333. tbf->bf_state = bf->bf_state;
  334. return tbf;
  335. }
  336. static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
  337. struct ath_tx_status *ts, int txok,
  338. int *nframes, int *nbad)
  339. {
  340. struct ath_frame_info *fi;
  341. u16 seq_st = 0;
  342. u32 ba[WME_BA_BMP_SIZE >> 5];
  343. int ba_index;
  344. int isaggr = 0;
  345. *nbad = 0;
  346. *nframes = 0;
  347. isaggr = bf_isaggr(bf);
  348. if (isaggr) {
  349. seq_st = ts->ts_seqnum;
  350. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  351. }
  352. while (bf) {
  353. fi = get_frame_info(bf->bf_mpdu);
  354. ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
  355. (*nframes)++;
  356. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  357. (*nbad)++;
  358. bf = bf->bf_next;
  359. }
  360. }
  361. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  362. struct ath_buf *bf, struct list_head *bf_q,
  363. struct ath_tx_status *ts, int txok)
  364. {
  365. struct ath_node *an = NULL;
  366. struct sk_buff *skb;
  367. struct ieee80211_sta *sta;
  368. struct ieee80211_hw *hw = sc->hw;
  369. struct ieee80211_hdr *hdr;
  370. struct ieee80211_tx_info *tx_info;
  371. struct ath_atx_tid *tid = NULL;
  372. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  373. struct list_head bf_head;
  374. struct sk_buff_head bf_pending;
  375. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
  376. u32 ba[WME_BA_BMP_SIZE >> 5];
  377. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  378. bool rc_update = true, isba;
  379. struct ieee80211_tx_rate rates[4];
  380. struct ath_frame_info *fi;
  381. int nframes;
  382. bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  383. int i, retries;
  384. int bar_index = -1;
  385. skb = bf->bf_mpdu;
  386. hdr = (struct ieee80211_hdr *)skb->data;
  387. tx_info = IEEE80211_SKB_CB(skb);
  388. memcpy(rates, bf->rates, sizeof(rates));
  389. retries = ts->ts_longretry + 1;
  390. for (i = 0; i < ts->ts_rateindex; i++)
  391. retries += rates[i].count;
  392. rcu_read_lock();
  393. sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
  394. if (!sta) {
  395. rcu_read_unlock();
  396. INIT_LIST_HEAD(&bf_head);
  397. while (bf) {
  398. bf_next = bf->bf_next;
  399. if (!bf->bf_stale || bf_next != NULL)
  400. list_move_tail(&bf->list, &bf_head);
  401. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
  402. bf = bf_next;
  403. }
  404. return;
  405. }
  406. an = (struct ath_node *)sta->drv_priv;
  407. tid = ath_get_skb_tid(sc, an, skb);
  408. seq_first = tid->seq_start;
  409. isba = ts->ts_flags & ATH9K_TX_BA;
  410. /*
  411. * The hardware occasionally sends a tx status for the wrong TID.
  412. * In this case, the BA status cannot be considered valid and all
  413. * subframes need to be retransmitted
  414. *
  415. * Only BlockAcks have a TID and therefore normal Acks cannot be
  416. * checked
  417. */
  418. if (isba && tid->tidno != ts->tid)
  419. txok = false;
  420. isaggr = bf_isaggr(bf);
  421. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  422. if (isaggr && txok) {
  423. if (ts->ts_flags & ATH9K_TX_BA) {
  424. seq_st = ts->ts_seqnum;
  425. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  426. } else {
  427. /*
  428. * AR5416 can become deaf/mute when BA
  429. * issue happens. Chip needs to be reset.
  430. * But AP code may have sychronization issues
  431. * when perform internal reset in this routine.
  432. * Only enable reset in STA mode for now.
  433. */
  434. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  435. needreset = 1;
  436. }
  437. }
  438. __skb_queue_head_init(&bf_pending);
  439. ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
  440. while (bf) {
  441. u16 seqno = bf->bf_state.seqno;
  442. txfail = txpending = sendbar = 0;
  443. bf_next = bf->bf_next;
  444. skb = bf->bf_mpdu;
  445. tx_info = IEEE80211_SKB_CB(skb);
  446. fi = get_frame_info(skb);
  447. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
  448. !tid->active) {
  449. /*
  450. * Outside of the current BlockAck window,
  451. * maybe part of a previous session
  452. */
  453. txfail = 1;
  454. } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
  455. /* transmit completion, subframe is
  456. * acked by block ack */
  457. acked_cnt++;
  458. } else if (!isaggr && txok) {
  459. /* transmit completion */
  460. acked_cnt++;
  461. } else if (flush) {
  462. txpending = 1;
  463. } else if (fi->retries < ATH_MAX_SW_RETRIES) {
  464. if (txok || !an->sleeping)
  465. ath_tx_set_retry(sc, txq, bf->bf_mpdu,
  466. retries);
  467. txpending = 1;
  468. } else {
  469. txfail = 1;
  470. txfail_cnt++;
  471. bar_index = max_t(int, bar_index,
  472. ATH_BA_INDEX(seq_first, seqno));
  473. }
  474. /*
  475. * Make sure the last desc is reclaimed if it
  476. * not a holding desc.
  477. */
  478. INIT_LIST_HEAD(&bf_head);
  479. if (bf_next != NULL || !bf_last->bf_stale)
  480. list_move_tail(&bf->list, &bf_head);
  481. if (!txpending) {
  482. /*
  483. * complete the acked-ones/xretried ones; update
  484. * block-ack window
  485. */
  486. ath_tx_update_baw(sc, tid, seqno);
  487. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  488. memcpy(tx_info->control.rates, rates, sizeof(rates));
  489. ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
  490. rc_update = false;
  491. }
  492. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  493. !txfail);
  494. } else {
  495. if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
  496. tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
  497. ieee80211_sta_eosp(sta);
  498. }
  499. /* retry the un-acked ones */
  500. if (bf->bf_next == NULL && bf_last->bf_stale) {
  501. struct ath_buf *tbf;
  502. tbf = ath_clone_txbuf(sc, bf_last);
  503. /*
  504. * Update tx baw and complete the
  505. * frame with failed status if we
  506. * run out of tx buf.
  507. */
  508. if (!tbf) {
  509. ath_tx_update_baw(sc, tid, seqno);
  510. ath_tx_complete_buf(sc, bf, txq,
  511. &bf_head, ts, 0);
  512. bar_index = max_t(int, bar_index,
  513. ATH_BA_INDEX(seq_first, seqno));
  514. break;
  515. }
  516. fi->bf = tbf;
  517. }
  518. /*
  519. * Put this buffer to the temporary pending
  520. * queue to retain ordering
  521. */
  522. __skb_queue_tail(&bf_pending, skb);
  523. }
  524. bf = bf_next;
  525. }
  526. /* prepend un-acked frames to the beginning of the pending frame queue */
  527. if (!skb_queue_empty(&bf_pending)) {
  528. if (an->sleeping)
  529. ieee80211_sta_set_buffered(sta, tid->tidno, true);
  530. skb_queue_splice_tail(&bf_pending, &tid->retry_q);
  531. if (!an->sleeping) {
  532. ath_tx_queue_tid(txq, tid);
  533. if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
  534. tid->ac->clear_ps_filter = true;
  535. }
  536. }
  537. if (bar_index >= 0) {
  538. u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
  539. if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
  540. tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
  541. ath_txq_unlock(sc, txq);
  542. ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
  543. ath_txq_lock(sc, txq);
  544. }
  545. rcu_read_unlock();
  546. if (needreset)
  547. ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
  548. }
  549. static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
  550. {
  551. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
  552. return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
  553. }
  554. static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
  555. struct ath_tx_status *ts, struct ath_buf *bf,
  556. struct list_head *bf_head)
  557. {
  558. struct ieee80211_tx_info *info;
  559. bool txok, flush;
  560. txok = !(ts->ts_status & ATH9K_TXERR_MASK);
  561. flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  562. txq->axq_tx_inprogress = false;
  563. txq->axq_depth--;
  564. if (bf_is_ampdu_not_probing(bf))
  565. txq->axq_ampdu_depth--;
  566. if (!bf_isampdu(bf)) {
  567. if (!flush) {
  568. info = IEEE80211_SKB_CB(bf->bf_mpdu);
  569. memcpy(info->control.rates, bf->rates,
  570. sizeof(info->control.rates));
  571. ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
  572. }
  573. ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
  574. } else
  575. ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
  576. if (!flush)
  577. ath_txq_schedule(sc, txq);
  578. }
  579. static bool ath_lookup_legacy(struct ath_buf *bf)
  580. {
  581. struct sk_buff *skb;
  582. struct ieee80211_tx_info *tx_info;
  583. struct ieee80211_tx_rate *rates;
  584. int i;
  585. skb = bf->bf_mpdu;
  586. tx_info = IEEE80211_SKB_CB(skb);
  587. rates = tx_info->control.rates;
  588. for (i = 0; i < 4; i++) {
  589. if (!rates[i].count || rates[i].idx < 0)
  590. break;
  591. if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
  592. return true;
  593. }
  594. return false;
  595. }
  596. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  597. struct ath_atx_tid *tid)
  598. {
  599. struct sk_buff *skb;
  600. struct ieee80211_tx_info *tx_info;
  601. struct ieee80211_tx_rate *rates;
  602. u32 max_4ms_framelen, frmlen;
  603. u16 aggr_limit, bt_aggr_limit, legacy = 0;
  604. int q = tid->ac->txq->mac80211_qnum;
  605. int i;
  606. skb = bf->bf_mpdu;
  607. tx_info = IEEE80211_SKB_CB(skb);
  608. rates = bf->rates;
  609. /*
  610. * Find the lowest frame length among the rate series that will have a
  611. * 4ms (or TXOP limited) transmit duration.
  612. */
  613. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  614. for (i = 0; i < 4; i++) {
  615. int modeidx;
  616. if (!rates[i].count)
  617. continue;
  618. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  619. legacy = 1;
  620. break;
  621. }
  622. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  623. modeidx = MCS_HT40;
  624. else
  625. modeidx = MCS_HT20;
  626. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  627. modeidx++;
  628. frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
  629. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  630. }
  631. /*
  632. * limit aggregate size by the minimum rate if rate selected is
  633. * not a probe rate, if rate selected is a probe rate then
  634. * avoid aggregation of this packet.
  635. */
  636. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  637. return 0;
  638. aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
  639. /*
  640. * Override the default aggregation limit for BTCOEX.
  641. */
  642. bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
  643. if (bt_aggr_limit)
  644. aggr_limit = bt_aggr_limit;
  645. /*
  646. * h/w can accept aggregates up to 16 bit lengths (65535).
  647. * The IE, however can hold up to 65536, which shows up here
  648. * as zero. Ignore 65536 since we are constrained by hw.
  649. */
  650. if (tid->an->maxampdu)
  651. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  652. return aggr_limit;
  653. }
  654. /*
  655. * Returns the number of delimiters to be added to
  656. * meet the minimum required mpdudensity.
  657. */
  658. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  659. struct ath_buf *bf, u16 frmlen,
  660. bool first_subfrm)
  661. {
  662. #define FIRST_DESC_NDELIMS 60
  663. u32 nsymbits, nsymbols;
  664. u16 minlen;
  665. u8 flags, rix;
  666. int width, streams, half_gi, ndelim, mindelim;
  667. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  668. /* Select standard number of delimiters based on frame length alone */
  669. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  670. /*
  671. * If encryption enabled, hardware requires some more padding between
  672. * subframes.
  673. * TODO - this could be improved to be dependent on the rate.
  674. * The hardware can keep up at lower rates, but not higher rates
  675. */
  676. if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
  677. !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
  678. ndelim += ATH_AGGR_ENCRYPTDELIM;
  679. /*
  680. * Add delimiter when using RTS/CTS with aggregation
  681. * and non enterprise AR9003 card
  682. */
  683. if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
  684. (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
  685. ndelim = max(ndelim, FIRST_DESC_NDELIMS);
  686. /*
  687. * Convert desired mpdu density from microeconds to bytes based
  688. * on highest rate in rate series (i.e. first rate) to determine
  689. * required minimum length for subframe. Take into account
  690. * whether high rate is 20 or 40Mhz and half or full GI.
  691. *
  692. * If there is no mpdu density restriction, no further calculation
  693. * is needed.
  694. */
  695. if (tid->an->mpdudensity == 0)
  696. return ndelim;
  697. rix = bf->rates[0].idx;
  698. flags = bf->rates[0].flags;
  699. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  700. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  701. if (half_gi)
  702. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  703. else
  704. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  705. if (nsymbols == 0)
  706. nsymbols = 1;
  707. streams = HT_RC_2_STREAMS(rix);
  708. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  709. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  710. if (frmlen < minlen) {
  711. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  712. ndelim = max(mindelim, ndelim);
  713. }
  714. return ndelim;
  715. }
  716. static struct ath_buf *
  717. ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
  718. struct ath_atx_tid *tid, struct sk_buff_head **q)
  719. {
  720. struct ieee80211_tx_info *tx_info;
  721. struct ath_frame_info *fi;
  722. struct sk_buff *skb;
  723. struct ath_buf *bf;
  724. u16 seqno;
  725. while (1) {
  726. *q = &tid->retry_q;
  727. if (skb_queue_empty(*q))
  728. *q = &tid->buf_q;
  729. skb = skb_peek(*q);
  730. if (!skb)
  731. break;
  732. fi = get_frame_info(skb);
  733. bf = fi->bf;
  734. if (!fi->bf)
  735. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  736. if (!bf) {
  737. __skb_unlink(skb, *q);
  738. ath_txq_skb_done(sc, txq, skb);
  739. ieee80211_free_txskb(sc->hw, skb);
  740. continue;
  741. }
  742. bf->bf_next = NULL;
  743. bf->bf_lastbf = bf;
  744. tx_info = IEEE80211_SKB_CB(skb);
  745. tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
  746. if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
  747. bf->bf_state.bf_type = 0;
  748. return bf;
  749. }
  750. bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
  751. seqno = bf->bf_state.seqno;
  752. /* do not step over block-ack window */
  753. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno))
  754. break;
  755. if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
  756. struct ath_tx_status ts = {};
  757. struct list_head bf_head;
  758. INIT_LIST_HEAD(&bf_head);
  759. list_add(&bf->list, &bf_head);
  760. __skb_unlink(skb, *q);
  761. ath_tx_update_baw(sc, tid, seqno);
  762. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  763. continue;
  764. }
  765. return bf;
  766. }
  767. return NULL;
  768. }
  769. static bool
  770. ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
  771. struct ath_atx_tid *tid, struct list_head *bf_q,
  772. struct ath_buf *bf_first, struct sk_buff_head *tid_q,
  773. int *aggr_len)
  774. {
  775. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  776. struct ath_buf *bf = bf_first, *bf_prev = NULL;
  777. int nframes = 0, ndelim;
  778. u16 aggr_limit = 0, al = 0, bpad = 0,
  779. al_delta, h_baw = tid->baw_size / 2;
  780. struct ieee80211_tx_info *tx_info;
  781. struct ath_frame_info *fi;
  782. struct sk_buff *skb;
  783. bool closed = false;
  784. bf = bf_first;
  785. aggr_limit = ath_lookup_rate(sc, bf, tid);
  786. do {
  787. skb = bf->bf_mpdu;
  788. fi = get_frame_info(skb);
  789. /* do not exceed aggregation limit */
  790. al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
  791. if (nframes) {
  792. if (aggr_limit < al + bpad + al_delta ||
  793. ath_lookup_legacy(bf) || nframes >= h_baw)
  794. break;
  795. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  796. if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
  797. !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
  798. break;
  799. }
  800. /* add padding for previous frame to aggregation length */
  801. al += bpad + al_delta;
  802. /*
  803. * Get the delimiters needed to meet the MPDU
  804. * density for this node.
  805. */
  806. ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
  807. !nframes);
  808. bpad = PADBYTES(al_delta) + (ndelim << 2);
  809. nframes++;
  810. bf->bf_next = NULL;
  811. /* link buffers of this frame to the aggregate */
  812. if (!fi->baw_tracked)
  813. ath_tx_addto_baw(sc, tid, bf);
  814. bf->bf_state.ndelim = ndelim;
  815. __skb_unlink(skb, tid_q);
  816. list_add_tail(&bf->list, bf_q);
  817. if (bf_prev)
  818. bf_prev->bf_next = bf;
  819. bf_prev = bf;
  820. bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
  821. if (!bf) {
  822. closed = true;
  823. break;
  824. }
  825. } while (ath_tid_has_buffered(tid));
  826. bf = bf_first;
  827. bf->bf_lastbf = bf_prev;
  828. if (bf == bf_prev) {
  829. al = get_frame_info(bf->bf_mpdu)->framelen;
  830. bf->bf_state.bf_type = BUF_AMPDU;
  831. } else {
  832. TX_STAT_INC(txq->axq_qnum, a_aggr);
  833. }
  834. *aggr_len = al;
  835. return closed;
  836. #undef PADBYTES
  837. }
  838. /*
  839. * rix - rate index
  840. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  841. * width - 0 for 20 MHz, 1 for 40 MHz
  842. * half_gi - to use 4us v/s 3.6 us for symbol time
  843. */
  844. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
  845. int width, int half_gi, bool shortPreamble)
  846. {
  847. u32 nbits, nsymbits, duration, nsymbols;
  848. int streams;
  849. /* find number of symbols: PLCP + data */
  850. streams = HT_RC_2_STREAMS(rix);
  851. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  852. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  853. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  854. if (!half_gi)
  855. duration = SYMBOL_TIME(nsymbols);
  856. else
  857. duration = SYMBOL_TIME_HALFGI(nsymbols);
  858. /* addup duration for legacy/ht training and signal fields */
  859. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  860. return duration;
  861. }
  862. static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
  863. {
  864. int streams = HT_RC_2_STREAMS(mcs);
  865. int symbols, bits;
  866. int bytes = 0;
  867. symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
  868. bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
  869. bits -= OFDM_PLCP_BITS;
  870. bytes = bits / 8;
  871. bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  872. if (bytes > 65532)
  873. bytes = 65532;
  874. return bytes;
  875. }
  876. void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
  877. {
  878. u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
  879. int mcs;
  880. /* 4ms is the default (and maximum) duration */
  881. if (!txop || txop > 4096)
  882. txop = 4096;
  883. cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
  884. cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
  885. cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
  886. cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
  887. for (mcs = 0; mcs < 32; mcs++) {
  888. cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
  889. cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
  890. cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
  891. cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
  892. }
  893. }
  894. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
  895. struct ath_tx_info *info, int len, bool rts)
  896. {
  897. struct ath_hw *ah = sc->sc_ah;
  898. struct sk_buff *skb;
  899. struct ieee80211_tx_info *tx_info;
  900. struct ieee80211_tx_rate *rates;
  901. const struct ieee80211_rate *rate;
  902. struct ieee80211_hdr *hdr;
  903. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  904. u32 rts_thresh = sc->hw->wiphy->rts_threshold;
  905. int i;
  906. u8 rix = 0;
  907. skb = bf->bf_mpdu;
  908. tx_info = IEEE80211_SKB_CB(skb);
  909. rates = bf->rates;
  910. hdr = (struct ieee80211_hdr *)skb->data;
  911. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  912. info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
  913. info->rtscts_rate = fi->rtscts_rate;
  914. for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
  915. bool is_40, is_sgi, is_sp;
  916. int phy;
  917. if (!rates[i].count || (rates[i].idx < 0))
  918. continue;
  919. rix = rates[i].idx;
  920. info->rates[i].Tries = rates[i].count;
  921. /*
  922. * Handle RTS threshold for unaggregated HT frames.
  923. */
  924. if (bf_isampdu(bf) && !bf_isaggr(bf) &&
  925. (rates[i].flags & IEEE80211_TX_RC_MCS) &&
  926. unlikely(rts_thresh != (u32) -1)) {
  927. if (!rts_thresh || (len > rts_thresh))
  928. rts = true;
  929. }
  930. if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
  931. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  932. info->flags |= ATH9K_TXDESC_RTSENA;
  933. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  934. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  935. info->flags |= ATH9K_TXDESC_CTSENA;
  936. }
  937. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  938. info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
  939. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  940. info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  941. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  942. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  943. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  944. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  945. /* MCS rates */
  946. info->rates[i].Rate = rix | 0x80;
  947. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  948. ah->txchainmask, info->rates[i].Rate);
  949. info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
  950. is_40, is_sgi, is_sp);
  951. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  952. info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
  953. continue;
  954. }
  955. /* legacy rates */
  956. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  957. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  958. !(rate->flags & IEEE80211_RATE_ERP_G))
  959. phy = WLAN_RC_PHY_CCK;
  960. else
  961. phy = WLAN_RC_PHY_OFDM;
  962. info->rates[i].Rate = rate->hw_value;
  963. if (rate->hw_value_short) {
  964. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  965. info->rates[i].Rate |= rate->hw_value_short;
  966. } else {
  967. is_sp = false;
  968. }
  969. if (bf->bf_state.bfs_paprd)
  970. info->rates[i].ChSel = ah->txchainmask;
  971. else
  972. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  973. ah->txchainmask, info->rates[i].Rate);
  974. info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  975. phy, rate->bitrate * 100, len, rix, is_sp);
  976. }
  977. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  978. if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
  979. info->flags &= ~ATH9K_TXDESC_RTSENA;
  980. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  981. if (info->flags & ATH9K_TXDESC_RTSENA)
  982. info->flags &= ~ATH9K_TXDESC_CTSENA;
  983. }
  984. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  985. {
  986. struct ieee80211_hdr *hdr;
  987. enum ath9k_pkt_type htype;
  988. __le16 fc;
  989. hdr = (struct ieee80211_hdr *)skb->data;
  990. fc = hdr->frame_control;
  991. if (ieee80211_is_beacon(fc))
  992. htype = ATH9K_PKT_TYPE_BEACON;
  993. else if (ieee80211_is_probe_resp(fc))
  994. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  995. else if (ieee80211_is_atim(fc))
  996. htype = ATH9K_PKT_TYPE_ATIM;
  997. else if (ieee80211_is_pspoll(fc))
  998. htype = ATH9K_PKT_TYPE_PSPOLL;
  999. else
  1000. htype = ATH9K_PKT_TYPE_NORMAL;
  1001. return htype;
  1002. }
  1003. static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
  1004. struct ath_txq *txq, int len)
  1005. {
  1006. struct ath_hw *ah = sc->sc_ah;
  1007. struct ath_buf *bf_first = NULL;
  1008. struct ath_tx_info info;
  1009. u32 rts_thresh = sc->hw->wiphy->rts_threshold;
  1010. bool rts = false;
  1011. memset(&info, 0, sizeof(info));
  1012. info.is_first = true;
  1013. info.is_last = true;
  1014. info.txpower = MAX_RATE_POWER;
  1015. info.qcu = txq->axq_qnum;
  1016. while (bf) {
  1017. struct sk_buff *skb = bf->bf_mpdu;
  1018. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1019. struct ath_frame_info *fi = get_frame_info(skb);
  1020. bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
  1021. info.type = get_hw_packet_type(skb);
  1022. if (bf->bf_next)
  1023. info.link = bf->bf_next->bf_daddr;
  1024. else
  1025. info.link = 0;
  1026. if (!bf_first) {
  1027. bf_first = bf;
  1028. info.flags = ATH9K_TXDESC_INTREQ;
  1029. if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
  1030. txq == sc->tx.uapsdq)
  1031. info.flags |= ATH9K_TXDESC_CLRDMASK;
  1032. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  1033. info.flags |= ATH9K_TXDESC_NOACK;
  1034. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  1035. info.flags |= ATH9K_TXDESC_LDPC;
  1036. if (bf->bf_state.bfs_paprd)
  1037. info.flags |= (u32) bf->bf_state.bfs_paprd <<
  1038. ATH9K_TXDESC_PAPRD_S;
  1039. /*
  1040. * mac80211 doesn't handle RTS threshold for HT because
  1041. * the decision has to be taken based on AMPDU length
  1042. * and aggregation is done entirely inside ath9k.
  1043. * Set the RTS/CTS flag for the first subframe based
  1044. * on the threshold.
  1045. */
  1046. if (aggr && (bf == bf_first) &&
  1047. unlikely(rts_thresh != (u32) -1)) {
  1048. /*
  1049. * "len" is the size of the entire AMPDU.
  1050. */
  1051. if (!rts_thresh || (len > rts_thresh))
  1052. rts = true;
  1053. }
  1054. ath_buf_set_rate(sc, bf, &info, len, rts);
  1055. }
  1056. info.buf_addr[0] = bf->bf_buf_addr;
  1057. info.buf_len[0] = skb->len;
  1058. info.pkt_len = fi->framelen;
  1059. info.keyix = fi->keyix;
  1060. info.keytype = fi->keytype;
  1061. if (aggr) {
  1062. if (bf == bf_first)
  1063. info.aggr = AGGR_BUF_FIRST;
  1064. else if (bf == bf_first->bf_lastbf)
  1065. info.aggr = AGGR_BUF_LAST;
  1066. else
  1067. info.aggr = AGGR_BUF_MIDDLE;
  1068. info.ndelim = bf->bf_state.ndelim;
  1069. info.aggr_len = len;
  1070. }
  1071. if (bf == bf_first->bf_lastbf)
  1072. bf_first = NULL;
  1073. ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
  1074. bf = bf->bf_next;
  1075. }
  1076. }
  1077. static void
  1078. ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
  1079. struct ath_atx_tid *tid, struct list_head *bf_q,
  1080. struct ath_buf *bf_first, struct sk_buff_head *tid_q)
  1081. {
  1082. struct ath_buf *bf = bf_first, *bf_prev = NULL;
  1083. struct sk_buff *skb;
  1084. int nframes = 0;
  1085. do {
  1086. struct ieee80211_tx_info *tx_info;
  1087. skb = bf->bf_mpdu;
  1088. nframes++;
  1089. __skb_unlink(skb, tid_q);
  1090. list_add_tail(&bf->list, bf_q);
  1091. if (bf_prev)
  1092. bf_prev->bf_next = bf;
  1093. bf_prev = bf;
  1094. if (nframes >= 2)
  1095. break;
  1096. bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
  1097. if (!bf)
  1098. break;
  1099. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  1100. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU)
  1101. break;
  1102. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  1103. } while (1);
  1104. }
  1105. static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  1106. struct ath_atx_tid *tid)
  1107. {
  1108. struct ath_buf *bf;
  1109. struct ieee80211_tx_info *tx_info;
  1110. struct sk_buff_head *tid_q;
  1111. struct list_head bf_q;
  1112. int aggr_len = 0;
  1113. bool aggr, last = true;
  1114. do {
  1115. if (!ath_tid_has_buffered(tid))
  1116. return;
  1117. INIT_LIST_HEAD(&bf_q);
  1118. bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q);
  1119. if (!bf)
  1120. break;
  1121. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  1122. aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
  1123. if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
  1124. (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH))
  1125. break;
  1126. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  1127. if (aggr)
  1128. last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf,
  1129. tid_q, &aggr_len);
  1130. else
  1131. ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q);
  1132. if (list_empty(&bf_q))
  1133. return;
  1134. if (tid->ac->clear_ps_filter) {
  1135. tid->ac->clear_ps_filter = false;
  1136. tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1137. }
  1138. ath_tx_fill_desc(sc, bf, txq, aggr_len);
  1139. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  1140. } while (!last);
  1141. }
  1142. int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  1143. u16 tid, u16 *ssn)
  1144. {
  1145. struct ath_atx_tid *txtid;
  1146. struct ath_node *an;
  1147. u8 density;
  1148. an = (struct ath_node *)sta->drv_priv;
  1149. txtid = ATH_AN_2_TID(an, tid);
  1150. /* update ampdu factor/density, they may have changed. This may happen
  1151. * in HT IBSS when a beacon with HT-info is received after the station
  1152. * has already been added.
  1153. */
  1154. if (sta->ht_cap.ht_supported) {
  1155. an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
  1156. sta->ht_cap.ampdu_factor);
  1157. density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
  1158. an->mpdudensity = density;
  1159. }
  1160. /* force sequence number allocation for pending frames */
  1161. ath_tx_tid_change_state(sc, txtid);
  1162. txtid->active = true;
  1163. txtid->paused = true;
  1164. *ssn = txtid->seq_start = txtid->seq_next;
  1165. txtid->bar_index = -1;
  1166. memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
  1167. txtid->baw_head = txtid->baw_tail = 0;
  1168. return 0;
  1169. }
  1170. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  1171. {
  1172. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  1173. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  1174. struct ath_txq *txq = txtid->ac->txq;
  1175. ath_txq_lock(sc, txq);
  1176. txtid->active = false;
  1177. txtid->paused = false;
  1178. ath_tx_flush_tid(sc, txtid);
  1179. ath_tx_tid_change_state(sc, txtid);
  1180. ath_txq_unlock_complete(sc, txq);
  1181. }
  1182. void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
  1183. struct ath_node *an)
  1184. {
  1185. struct ath_atx_tid *tid;
  1186. struct ath_atx_ac *ac;
  1187. struct ath_txq *txq;
  1188. bool buffered;
  1189. int tidno;
  1190. for (tidno = 0, tid = &an->tid[tidno];
  1191. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  1192. if (!tid->sched)
  1193. continue;
  1194. ac = tid->ac;
  1195. txq = ac->txq;
  1196. ath_txq_lock(sc, txq);
  1197. buffered = ath_tid_has_buffered(tid);
  1198. tid->sched = false;
  1199. list_del(&tid->list);
  1200. if (ac->sched) {
  1201. ac->sched = false;
  1202. list_del(&ac->list);
  1203. }
  1204. ath_txq_unlock(sc, txq);
  1205. ieee80211_sta_set_buffered(sta, tidno, buffered);
  1206. }
  1207. }
  1208. void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
  1209. {
  1210. struct ath_atx_tid *tid;
  1211. struct ath_atx_ac *ac;
  1212. struct ath_txq *txq;
  1213. int tidno;
  1214. for (tidno = 0, tid = &an->tid[tidno];
  1215. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  1216. ac = tid->ac;
  1217. txq = ac->txq;
  1218. ath_txq_lock(sc, txq);
  1219. ac->clear_ps_filter = true;
  1220. if (!tid->paused && ath_tid_has_buffered(tid)) {
  1221. ath_tx_queue_tid(txq, tid);
  1222. ath_txq_schedule(sc, txq);
  1223. }
  1224. ath_txq_unlock_complete(sc, txq);
  1225. }
  1226. }
  1227. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
  1228. u16 tidno)
  1229. {
  1230. struct ath_atx_tid *tid;
  1231. struct ath_node *an;
  1232. struct ath_txq *txq;
  1233. an = (struct ath_node *)sta->drv_priv;
  1234. tid = ATH_AN_2_TID(an, tidno);
  1235. txq = tid->ac->txq;
  1236. ath_txq_lock(sc, txq);
  1237. tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  1238. tid->paused = false;
  1239. if (ath_tid_has_buffered(tid)) {
  1240. ath_tx_queue_tid(txq, tid);
  1241. ath_txq_schedule(sc, txq);
  1242. }
  1243. ath_txq_unlock_complete(sc, txq);
  1244. }
  1245. void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
  1246. struct ieee80211_sta *sta,
  1247. u16 tids, int nframes,
  1248. enum ieee80211_frame_release_type reason,
  1249. bool more_data)
  1250. {
  1251. struct ath_softc *sc = hw->priv;
  1252. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  1253. struct ath_txq *txq = sc->tx.uapsdq;
  1254. struct ieee80211_tx_info *info;
  1255. struct list_head bf_q;
  1256. struct ath_buf *bf_tail = NULL, *bf;
  1257. struct sk_buff_head *tid_q;
  1258. int sent = 0;
  1259. int i;
  1260. INIT_LIST_HEAD(&bf_q);
  1261. for (i = 0; tids && nframes; i++, tids >>= 1) {
  1262. struct ath_atx_tid *tid;
  1263. if (!(tids & 1))
  1264. continue;
  1265. tid = ATH_AN_2_TID(an, i);
  1266. if (tid->paused)
  1267. continue;
  1268. ath_txq_lock(sc, tid->ac->txq);
  1269. while (nframes > 0) {
  1270. bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q);
  1271. if (!bf)
  1272. break;
  1273. __skb_unlink(bf->bf_mpdu, tid_q);
  1274. list_add_tail(&bf->list, &bf_q);
  1275. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  1276. ath_tx_addto_baw(sc, tid, bf);
  1277. bf->bf_state.bf_type &= ~BUF_AGGR;
  1278. if (bf_tail)
  1279. bf_tail->bf_next = bf;
  1280. bf_tail = bf;
  1281. nframes--;
  1282. sent++;
  1283. TX_STAT_INC(txq->axq_qnum, a_queued_hw);
  1284. if (!ath_tid_has_buffered(tid))
  1285. ieee80211_sta_set_buffered(an->sta, i, false);
  1286. }
  1287. ath_txq_unlock_complete(sc, tid->ac->txq);
  1288. }
  1289. if (list_empty(&bf_q))
  1290. return;
  1291. info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
  1292. info->flags |= IEEE80211_TX_STATUS_EOSP;
  1293. bf = list_first_entry(&bf_q, struct ath_buf, list);
  1294. ath_txq_lock(sc, txq);
  1295. ath_tx_fill_desc(sc, bf, txq, 0);
  1296. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  1297. ath_txq_unlock(sc, txq);
  1298. }
  1299. /********************/
  1300. /* Queue Management */
  1301. /********************/
  1302. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  1303. {
  1304. struct ath_hw *ah = sc->sc_ah;
  1305. struct ath9k_tx_queue_info qi;
  1306. static const int subtype_txq_to_hwq[] = {
  1307. [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
  1308. [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
  1309. [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
  1310. [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
  1311. };
  1312. int axq_qnum, i;
  1313. memset(&qi, 0, sizeof(qi));
  1314. qi.tqi_subtype = subtype_txq_to_hwq[subtype];
  1315. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  1316. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  1317. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  1318. qi.tqi_physCompBuf = 0;
  1319. /*
  1320. * Enable interrupts only for EOL and DESC conditions.
  1321. * We mark tx descriptors to receive a DESC interrupt
  1322. * when a tx queue gets deep; otherwise waiting for the
  1323. * EOL to reap descriptors. Note that this is done to
  1324. * reduce interrupt load and this only defers reaping
  1325. * descriptors, never transmitting frames. Aside from
  1326. * reducing interrupts this also permits more concurrency.
  1327. * The only potential downside is if the tx queue backs
  1328. * up in which case the top half of the kernel may backup
  1329. * due to a lack of tx descriptors.
  1330. *
  1331. * The UAPSD queue is an exception, since we take a desc-
  1332. * based intr on the EOSP frames.
  1333. */
  1334. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1335. qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
  1336. } else {
  1337. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  1338. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  1339. else
  1340. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  1341. TXQ_FLAG_TXDESCINT_ENABLE;
  1342. }
  1343. axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  1344. if (axq_qnum == -1) {
  1345. /*
  1346. * NB: don't print a message, this happens
  1347. * normally on parts with too few tx queues
  1348. */
  1349. return NULL;
  1350. }
  1351. if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
  1352. struct ath_txq *txq = &sc->tx.txq[axq_qnum];
  1353. txq->axq_qnum = axq_qnum;
  1354. txq->mac80211_qnum = -1;
  1355. txq->axq_link = NULL;
  1356. __skb_queue_head_init(&txq->complete_q);
  1357. INIT_LIST_HEAD(&txq->axq_q);
  1358. INIT_LIST_HEAD(&txq->axq_acq);
  1359. spin_lock_init(&txq->axq_lock);
  1360. txq->axq_depth = 0;
  1361. txq->axq_ampdu_depth = 0;
  1362. txq->axq_tx_inprogress = false;
  1363. sc->tx.txqsetup |= 1<<axq_qnum;
  1364. txq->txq_headidx = txq->txq_tailidx = 0;
  1365. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  1366. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  1367. }
  1368. return &sc->tx.txq[axq_qnum];
  1369. }
  1370. int ath_txq_update(struct ath_softc *sc, int qnum,
  1371. struct ath9k_tx_queue_info *qinfo)
  1372. {
  1373. struct ath_hw *ah = sc->sc_ah;
  1374. int error = 0;
  1375. struct ath9k_tx_queue_info qi;
  1376. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  1377. ath9k_hw_get_txq_props(ah, qnum, &qi);
  1378. qi.tqi_aifs = qinfo->tqi_aifs;
  1379. qi.tqi_cwmin = qinfo->tqi_cwmin;
  1380. qi.tqi_cwmax = qinfo->tqi_cwmax;
  1381. qi.tqi_burstTime = qinfo->tqi_burstTime;
  1382. qi.tqi_readyTime = qinfo->tqi_readyTime;
  1383. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  1384. ath_err(ath9k_hw_common(sc->sc_ah),
  1385. "Unable to update hardware queue %u!\n", qnum);
  1386. error = -EIO;
  1387. } else {
  1388. ath9k_hw_resettxqueue(ah, qnum);
  1389. }
  1390. return error;
  1391. }
  1392. int ath_cabq_update(struct ath_softc *sc)
  1393. {
  1394. struct ath9k_tx_queue_info qi;
  1395. struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
  1396. int qnum = sc->beacon.cabq->axq_qnum;
  1397. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  1398. /*
  1399. * Ensure the readytime % is within the bounds.
  1400. */
  1401. if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
  1402. sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
  1403. else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
  1404. sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
  1405. qi.tqi_readyTime = (cur_conf->beacon_interval *
  1406. sc->config.cabqReadytime) / 100;
  1407. ath_txq_update(sc, qnum, &qi);
  1408. return 0;
  1409. }
  1410. static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
  1411. struct list_head *list)
  1412. {
  1413. struct ath_buf *bf, *lastbf;
  1414. struct list_head bf_head;
  1415. struct ath_tx_status ts;
  1416. memset(&ts, 0, sizeof(ts));
  1417. ts.ts_status = ATH9K_TX_FLUSH;
  1418. INIT_LIST_HEAD(&bf_head);
  1419. while (!list_empty(list)) {
  1420. bf = list_first_entry(list, struct ath_buf, list);
  1421. if (bf->bf_stale) {
  1422. list_del(&bf->list);
  1423. ath_tx_return_buffer(sc, bf);
  1424. continue;
  1425. }
  1426. lastbf = bf->bf_lastbf;
  1427. list_cut_position(&bf_head, list, &lastbf->list);
  1428. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1429. }
  1430. }
  1431. /*
  1432. * Drain a given TX queue (could be Beacon or Data)
  1433. *
  1434. * This assumes output has been stopped and
  1435. * we do not need to block ath_tx_tasklet.
  1436. */
  1437. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
  1438. {
  1439. ath_txq_lock(sc, txq);
  1440. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1441. int idx = txq->txq_tailidx;
  1442. while (!list_empty(&txq->txq_fifo[idx])) {
  1443. ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
  1444. INCR(idx, ATH_TXFIFO_DEPTH);
  1445. }
  1446. txq->txq_tailidx = idx;
  1447. }
  1448. txq->axq_link = NULL;
  1449. txq->axq_tx_inprogress = false;
  1450. ath_drain_txq_list(sc, txq, &txq->axq_q);
  1451. ath_txq_unlock_complete(sc, txq);
  1452. }
  1453. bool ath_drain_all_txq(struct ath_softc *sc)
  1454. {
  1455. struct ath_hw *ah = sc->sc_ah;
  1456. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1457. struct ath_txq *txq;
  1458. int i;
  1459. u32 npend = 0;
  1460. if (test_bit(SC_OP_INVALID, &sc->sc_flags))
  1461. return true;
  1462. ath9k_hw_abort_tx_dma(ah);
  1463. /* Check if any queue remains active */
  1464. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1465. if (!ATH_TXQ_SETUP(sc, i))
  1466. continue;
  1467. if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
  1468. npend |= BIT(i);
  1469. }
  1470. if (npend)
  1471. ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
  1472. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1473. if (!ATH_TXQ_SETUP(sc, i))
  1474. continue;
  1475. /*
  1476. * The caller will resume queues with ieee80211_wake_queues.
  1477. * Mark the queue as not stopped to prevent ath_tx_complete
  1478. * from waking the queue too early.
  1479. */
  1480. txq = &sc->tx.txq[i];
  1481. txq->stopped = false;
  1482. ath_draintxq(sc, txq);
  1483. }
  1484. return !npend;
  1485. }
  1486. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  1487. {
  1488. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  1489. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  1490. }
  1491. /* For each axq_acq entry, for each tid, try to schedule packets
  1492. * for transmit until ampdu_depth has reached min Q depth.
  1493. */
  1494. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  1495. {
  1496. struct ath_atx_ac *ac, *ac_tmp, *last_ac;
  1497. struct ath_atx_tid *tid, *last_tid;
  1498. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) ||
  1499. list_empty(&txq->axq_acq) ||
  1500. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1501. return;
  1502. rcu_read_lock();
  1503. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  1504. last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
  1505. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1506. last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
  1507. list_del(&ac->list);
  1508. ac->sched = false;
  1509. while (!list_empty(&ac->tid_q)) {
  1510. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
  1511. list);
  1512. list_del(&tid->list);
  1513. tid->sched = false;
  1514. if (tid->paused)
  1515. continue;
  1516. ath_tx_sched_aggr(sc, txq, tid);
  1517. /*
  1518. * add tid to round-robin queue if more frames
  1519. * are pending for the tid
  1520. */
  1521. if (ath_tid_has_buffered(tid))
  1522. ath_tx_queue_tid(txq, tid);
  1523. if (tid == last_tid ||
  1524. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1525. break;
  1526. }
  1527. if (!list_empty(&ac->tid_q) && !ac->sched) {
  1528. ac->sched = true;
  1529. list_add_tail(&ac->list, &txq->axq_acq);
  1530. }
  1531. if (ac == last_ac ||
  1532. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1533. break;
  1534. }
  1535. rcu_read_unlock();
  1536. }
  1537. /***********/
  1538. /* TX, DMA */
  1539. /***********/
  1540. /*
  1541. * Insert a chain of ath_buf (descriptors) on a txq and
  1542. * assume the descriptors are already chained together by caller.
  1543. */
  1544. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1545. struct list_head *head, bool internal)
  1546. {
  1547. struct ath_hw *ah = sc->sc_ah;
  1548. struct ath_common *common = ath9k_hw_common(ah);
  1549. struct ath_buf *bf, *bf_last;
  1550. bool puttxbuf = false;
  1551. bool edma;
  1552. /*
  1553. * Insert the frame on the outbound list and
  1554. * pass it on to the hardware.
  1555. */
  1556. if (list_empty(head))
  1557. return;
  1558. edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1559. bf = list_first_entry(head, struct ath_buf, list);
  1560. bf_last = list_entry(head->prev, struct ath_buf, list);
  1561. ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
  1562. txq->axq_qnum, txq->axq_depth);
  1563. if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
  1564. list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1565. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1566. puttxbuf = true;
  1567. } else {
  1568. list_splice_tail_init(head, &txq->axq_q);
  1569. if (txq->axq_link) {
  1570. ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
  1571. ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
  1572. txq->axq_qnum, txq->axq_link,
  1573. ito64(bf->bf_daddr), bf->bf_desc);
  1574. } else if (!edma)
  1575. puttxbuf = true;
  1576. txq->axq_link = bf_last->bf_desc;
  1577. }
  1578. if (puttxbuf) {
  1579. TX_STAT_INC(txq->axq_qnum, puttxbuf);
  1580. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1581. ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
  1582. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1583. }
  1584. if (!edma) {
  1585. TX_STAT_INC(txq->axq_qnum, txstart);
  1586. ath9k_hw_txstart(ah, txq->axq_qnum);
  1587. }
  1588. if (!internal) {
  1589. while (bf) {
  1590. txq->axq_depth++;
  1591. if (bf_is_ampdu_not_probing(bf))
  1592. txq->axq_ampdu_depth++;
  1593. bf = bf->bf_lastbf->bf_next;
  1594. }
  1595. }
  1596. }
  1597. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1598. struct ath_atx_tid *tid, struct sk_buff *skb)
  1599. {
  1600. struct ath_frame_info *fi = get_frame_info(skb);
  1601. struct list_head bf_head;
  1602. struct ath_buf *bf;
  1603. bf = fi->bf;
  1604. INIT_LIST_HEAD(&bf_head);
  1605. list_add_tail(&bf->list, &bf_head);
  1606. bf->bf_state.bf_type = 0;
  1607. bf->bf_next = NULL;
  1608. bf->bf_lastbf = bf;
  1609. ath_tx_fill_desc(sc, bf, txq, fi->framelen);
  1610. ath_tx_txqaddbuf(sc, txq, &bf_head, false);
  1611. TX_STAT_INC(txq->axq_qnum, queued);
  1612. }
  1613. static void setup_frame_info(struct ieee80211_hw *hw,
  1614. struct ieee80211_sta *sta,
  1615. struct sk_buff *skb,
  1616. int framelen)
  1617. {
  1618. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1619. struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
  1620. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1621. const struct ieee80211_rate *rate;
  1622. struct ath_frame_info *fi = get_frame_info(skb);
  1623. struct ath_node *an = NULL;
  1624. enum ath9k_key_type keytype;
  1625. bool short_preamble = false;
  1626. /*
  1627. * We check if Short Preamble is needed for the CTS rate by
  1628. * checking the BSS's global flag.
  1629. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  1630. */
  1631. if (tx_info->control.vif &&
  1632. tx_info->control.vif->bss_conf.use_short_preamble)
  1633. short_preamble = true;
  1634. rate = ieee80211_get_rts_cts_rate(hw, tx_info);
  1635. keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
  1636. if (sta)
  1637. an = (struct ath_node *) sta->drv_priv;
  1638. memset(fi, 0, sizeof(*fi));
  1639. if (hw_key)
  1640. fi->keyix = hw_key->hw_key_idx;
  1641. else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
  1642. fi->keyix = an->ps_key;
  1643. else
  1644. fi->keyix = ATH9K_TXKEYIX_INVALID;
  1645. fi->keytype = keytype;
  1646. fi->framelen = framelen;
  1647. fi->rtscts_rate = rate->hw_value;
  1648. if (short_preamble)
  1649. fi->rtscts_rate |= rate->hw_value_short;
  1650. }
  1651. u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
  1652. {
  1653. struct ath_hw *ah = sc->sc_ah;
  1654. struct ath9k_channel *curchan = ah->curchan;
  1655. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
  1656. (curchan->channelFlags & CHANNEL_5GHZ) &&
  1657. (chainmask == 0x7) && (rate < 0x90))
  1658. return 0x3;
  1659. else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
  1660. IS_CCK_RATE(rate))
  1661. return 0x2;
  1662. else
  1663. return chainmask;
  1664. }
  1665. /*
  1666. * Assign a descriptor (and sequence number if necessary,
  1667. * and map buffer for DMA. Frees skb on error
  1668. */
  1669. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  1670. struct ath_txq *txq,
  1671. struct ath_atx_tid *tid,
  1672. struct sk_buff *skb)
  1673. {
  1674. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1675. struct ath_frame_info *fi = get_frame_info(skb);
  1676. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1677. struct ath_buf *bf;
  1678. int fragno;
  1679. u16 seqno;
  1680. bf = ath_tx_get_buffer(sc);
  1681. if (!bf) {
  1682. ath_dbg(common, XMIT, "TX buffers are full\n");
  1683. return NULL;
  1684. }
  1685. ATH_TXBUF_RESET(bf);
  1686. if (tid) {
  1687. fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
  1688. seqno = tid->seq_next;
  1689. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1690. if (fragno)
  1691. hdr->seq_ctrl |= cpu_to_le16(fragno);
  1692. if (!ieee80211_has_morefrags(hdr->frame_control))
  1693. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1694. bf->bf_state.seqno = seqno;
  1695. }
  1696. bf->bf_mpdu = skb;
  1697. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  1698. skb->len, DMA_TO_DEVICE);
  1699. if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
  1700. bf->bf_mpdu = NULL;
  1701. bf->bf_buf_addr = 0;
  1702. ath_err(ath9k_hw_common(sc->sc_ah),
  1703. "dma_mapping_error() on TX\n");
  1704. ath_tx_return_buffer(sc, bf);
  1705. return NULL;
  1706. }
  1707. fi->bf = bf;
  1708. return bf;
  1709. }
  1710. static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
  1711. struct ath_tx_control *txctl)
  1712. {
  1713. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1714. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1715. struct ieee80211_sta *sta = txctl->sta;
  1716. struct ieee80211_vif *vif = info->control.vif;
  1717. struct ath_softc *sc = hw->priv;
  1718. int frmlen = skb->len + FCS_LEN;
  1719. int padpos, padsize;
  1720. /* NOTE: sta can be NULL according to net/mac80211.h */
  1721. if (sta)
  1722. txctl->an = (struct ath_node *)sta->drv_priv;
  1723. if (info->control.hw_key)
  1724. frmlen += info->control.hw_key->icv_len;
  1725. /*
  1726. * As a temporary workaround, assign seq# here; this will likely need
  1727. * to be cleaned up to work better with Beacon transmission and virtual
  1728. * BSSes.
  1729. */
  1730. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1731. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1732. sc->tx.seq_no += 0x10;
  1733. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1734. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1735. }
  1736. if ((vif && vif->type != NL80211_IFTYPE_AP &&
  1737. vif->type != NL80211_IFTYPE_AP_VLAN) ||
  1738. !ieee80211_is_data(hdr->frame_control))
  1739. info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1740. /* Add the padding after the header if this is not already done */
  1741. padpos = ieee80211_hdrlen(hdr->frame_control);
  1742. padsize = padpos & 3;
  1743. if (padsize && skb->len > padpos) {
  1744. if (skb_headroom(skb) < padsize)
  1745. return -ENOMEM;
  1746. skb_push(skb, padsize);
  1747. memmove(skb->data, skb->data + padsize, padpos);
  1748. }
  1749. setup_frame_info(hw, sta, skb, frmlen);
  1750. return 0;
  1751. }
  1752. /* Upon failure caller should free skb */
  1753. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1754. struct ath_tx_control *txctl)
  1755. {
  1756. struct ieee80211_hdr *hdr;
  1757. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1758. struct ieee80211_sta *sta = txctl->sta;
  1759. struct ieee80211_vif *vif = info->control.vif;
  1760. struct ath_softc *sc = hw->priv;
  1761. struct ath_txq *txq = txctl->txq;
  1762. struct ath_atx_tid *tid = NULL;
  1763. struct ath_buf *bf;
  1764. int q;
  1765. int ret;
  1766. ret = ath_tx_prepare(hw, skb, txctl);
  1767. if (ret)
  1768. return ret;
  1769. hdr = (struct ieee80211_hdr *) skb->data;
  1770. /*
  1771. * At this point, the vif, hw_key and sta pointers in the tx control
  1772. * info are no longer valid (overwritten by the ath_frame_info data.
  1773. */
  1774. q = skb_get_queue_mapping(skb);
  1775. ath_txq_lock(sc, txq);
  1776. if (txq == sc->tx.txq_map[q] &&
  1777. ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
  1778. !txq->stopped) {
  1779. ieee80211_stop_queue(sc->hw, q);
  1780. txq->stopped = true;
  1781. }
  1782. if (info->flags & IEEE80211_TX_CTL_PS_RESPONSE) {
  1783. ath_txq_unlock(sc, txq);
  1784. txq = sc->tx.uapsdq;
  1785. ath_txq_lock(sc, txq);
  1786. } else if (txctl->an &&
  1787. ieee80211_is_data_present(hdr->frame_control)) {
  1788. tid = ath_get_skb_tid(sc, txctl->an, skb);
  1789. WARN_ON(tid->ac->txq != txctl->txq);
  1790. if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
  1791. tid->ac->clear_ps_filter = true;
  1792. /*
  1793. * Add this frame to software queue for scheduling later
  1794. * for aggregation.
  1795. */
  1796. TX_STAT_INC(txq->axq_qnum, a_queued_sw);
  1797. __skb_queue_tail(&tid->buf_q, skb);
  1798. if (!txctl->an->sleeping)
  1799. ath_tx_queue_tid(txq, tid);
  1800. ath_txq_schedule(sc, txq);
  1801. goto out;
  1802. }
  1803. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  1804. if (!bf) {
  1805. ath_txq_skb_done(sc, txq, skb);
  1806. if (txctl->paprd)
  1807. dev_kfree_skb_any(skb);
  1808. else
  1809. ieee80211_free_txskb(sc->hw, skb);
  1810. goto out;
  1811. }
  1812. bf->bf_state.bfs_paprd = txctl->paprd;
  1813. if (txctl->paprd)
  1814. bf->bf_state.bfs_paprd_timestamp = jiffies;
  1815. ath_set_rates(vif, sta, bf);
  1816. ath_tx_send_normal(sc, txq, tid, skb);
  1817. out:
  1818. ath_txq_unlock(sc, txq);
  1819. return 0;
  1820. }
  1821. void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
  1822. struct sk_buff *skb)
  1823. {
  1824. struct ath_softc *sc = hw->priv;
  1825. struct ath_tx_control txctl = {
  1826. .txq = sc->beacon.cabq
  1827. };
  1828. struct ath_tx_info info = {};
  1829. struct ieee80211_hdr *hdr;
  1830. struct ath_buf *bf_tail = NULL;
  1831. struct ath_buf *bf;
  1832. LIST_HEAD(bf_q);
  1833. int duration = 0;
  1834. int max_duration;
  1835. max_duration =
  1836. sc->cur_beacon_conf.beacon_interval * 1000 *
  1837. sc->cur_beacon_conf.dtim_period / ATH_BCBUF;
  1838. do {
  1839. struct ath_frame_info *fi = get_frame_info(skb);
  1840. if (ath_tx_prepare(hw, skb, &txctl))
  1841. break;
  1842. bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
  1843. if (!bf)
  1844. break;
  1845. bf->bf_lastbf = bf;
  1846. ath_set_rates(vif, NULL, bf);
  1847. ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
  1848. duration += info.rates[0].PktDuration;
  1849. if (bf_tail)
  1850. bf_tail->bf_next = bf;
  1851. list_add_tail(&bf->list, &bf_q);
  1852. bf_tail = bf;
  1853. skb = NULL;
  1854. if (duration > max_duration)
  1855. break;
  1856. skb = ieee80211_get_buffered_bc(hw, vif);
  1857. } while(skb);
  1858. if (skb)
  1859. ieee80211_free_txskb(hw, skb);
  1860. if (list_empty(&bf_q))
  1861. return;
  1862. bf = list_first_entry(&bf_q, struct ath_buf, list);
  1863. hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
  1864. if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) {
  1865. hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA;
  1866. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  1867. sizeof(*hdr), DMA_TO_DEVICE);
  1868. }
  1869. ath_txq_lock(sc, txctl.txq);
  1870. ath_tx_fill_desc(sc, bf, txctl.txq, 0);
  1871. ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
  1872. TX_STAT_INC(txctl.txq->axq_qnum, queued);
  1873. ath_txq_unlock(sc, txctl.txq);
  1874. }
  1875. /*****************/
  1876. /* TX Completion */
  1877. /*****************/
  1878. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1879. int tx_flags, struct ath_txq *txq)
  1880. {
  1881. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1882. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1883. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1884. int padpos, padsize;
  1885. unsigned long flags;
  1886. ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
  1887. if (sc->sc_ah->caldata)
  1888. sc->sc_ah->caldata->paprd_packet_sent = true;
  1889. if (!(tx_flags & ATH_TX_ERROR))
  1890. /* Frame was ACKed */
  1891. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1892. padpos = ieee80211_hdrlen(hdr->frame_control);
  1893. padsize = padpos & 3;
  1894. if (padsize && skb->len>padpos+padsize) {
  1895. /*
  1896. * Remove MAC header padding before giving the frame back to
  1897. * mac80211.
  1898. */
  1899. memmove(skb->data + padsize, skb->data, padpos);
  1900. skb_pull(skb, padsize);
  1901. }
  1902. spin_lock_irqsave(&sc->sc_pm_lock, flags);
  1903. if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
  1904. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1905. ath_dbg(common, PS,
  1906. "Going back to sleep after having received TX status (0x%lx)\n",
  1907. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1908. PS_WAIT_FOR_CAB |
  1909. PS_WAIT_FOR_PSPOLL_DATA |
  1910. PS_WAIT_FOR_TX_ACK));
  1911. }
  1912. spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
  1913. __skb_queue_tail(&txq->complete_q, skb);
  1914. ath_txq_skb_done(sc, txq, skb);
  1915. }
  1916. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1917. struct ath_txq *txq, struct list_head *bf_q,
  1918. struct ath_tx_status *ts, int txok)
  1919. {
  1920. struct sk_buff *skb = bf->bf_mpdu;
  1921. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1922. unsigned long flags;
  1923. int tx_flags = 0;
  1924. if (!txok)
  1925. tx_flags |= ATH_TX_ERROR;
  1926. if (ts->ts_status & ATH9K_TXERR_FILT)
  1927. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1928. dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
  1929. bf->bf_buf_addr = 0;
  1930. if (bf->bf_state.bfs_paprd) {
  1931. if (time_after(jiffies,
  1932. bf->bf_state.bfs_paprd_timestamp +
  1933. msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
  1934. dev_kfree_skb_any(skb);
  1935. else
  1936. complete(&sc->paprd_complete);
  1937. } else {
  1938. ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
  1939. ath_tx_complete(sc, skb, tx_flags, txq);
  1940. }
  1941. /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
  1942. * accidentally reference it later.
  1943. */
  1944. bf->bf_mpdu = NULL;
  1945. /*
  1946. * Return the list of ath_buf of this mpdu to free queue
  1947. */
  1948. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1949. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1950. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1951. }
  1952. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  1953. struct ath_tx_status *ts, int nframes, int nbad,
  1954. int txok)
  1955. {
  1956. struct sk_buff *skb = bf->bf_mpdu;
  1957. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1958. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1959. struct ieee80211_hw *hw = sc->hw;
  1960. struct ath_hw *ah = sc->sc_ah;
  1961. u8 i, tx_rateindex;
  1962. if (txok)
  1963. tx_info->status.ack_signal = ts->ts_rssi;
  1964. tx_rateindex = ts->ts_rateindex;
  1965. WARN_ON(tx_rateindex >= hw->max_rates);
  1966. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  1967. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1968. BUG_ON(nbad > nframes);
  1969. }
  1970. tx_info->status.ampdu_len = nframes;
  1971. tx_info->status.ampdu_ack_len = nframes - nbad;
  1972. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1973. (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
  1974. /*
  1975. * If an underrun error is seen assume it as an excessive
  1976. * retry only if max frame trigger level has been reached
  1977. * (2 KB for single stream, and 4 KB for dual stream).
  1978. * Adjust the long retry as if the frame was tried
  1979. * hw->max_rate_tries times to affect how rate control updates
  1980. * PER for the failed rate.
  1981. * In case of congestion on the bus penalizing this type of
  1982. * underruns should help hardware actually transmit new frames
  1983. * successfully by eventually preferring slower rates.
  1984. * This itself should also alleviate congestion on the bus.
  1985. */
  1986. if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
  1987. ATH9K_TX_DELIM_UNDERRUN)) &&
  1988. ieee80211_is_data(hdr->frame_control) &&
  1989. ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
  1990. tx_info->status.rates[tx_rateindex].count =
  1991. hw->max_rate_tries;
  1992. }
  1993. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  1994. tx_info->status.rates[i].count = 0;
  1995. tx_info->status.rates[i].idx = -1;
  1996. }
  1997. tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
  1998. }
  1999. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  2000. {
  2001. struct ath_hw *ah = sc->sc_ah;
  2002. struct ath_common *common = ath9k_hw_common(ah);
  2003. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  2004. struct list_head bf_head;
  2005. struct ath_desc *ds;
  2006. struct ath_tx_status ts;
  2007. int status;
  2008. ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
  2009. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  2010. txq->axq_link);
  2011. ath_txq_lock(sc, txq);
  2012. for (;;) {
  2013. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
  2014. break;
  2015. if (list_empty(&txq->axq_q)) {
  2016. txq->axq_link = NULL;
  2017. ath_txq_schedule(sc, txq);
  2018. break;
  2019. }
  2020. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  2021. /*
  2022. * There is a race condition that a BH gets scheduled
  2023. * after sw writes TxE and before hw re-load the last
  2024. * descriptor to get the newly chained one.
  2025. * Software must keep the last DONE descriptor as a
  2026. * holding descriptor - software does so by marking
  2027. * it with the STALE flag.
  2028. */
  2029. bf_held = NULL;
  2030. if (bf->bf_stale) {
  2031. bf_held = bf;
  2032. if (list_is_last(&bf_held->list, &txq->axq_q))
  2033. break;
  2034. bf = list_entry(bf_held->list.next, struct ath_buf,
  2035. list);
  2036. }
  2037. lastbf = bf->bf_lastbf;
  2038. ds = lastbf->bf_desc;
  2039. memset(&ts, 0, sizeof(ts));
  2040. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  2041. if (status == -EINPROGRESS)
  2042. break;
  2043. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  2044. /*
  2045. * Remove ath_buf's of the same transmit unit from txq,
  2046. * however leave the last descriptor back as the holding
  2047. * descriptor for hw.
  2048. */
  2049. lastbf->bf_stale = true;
  2050. INIT_LIST_HEAD(&bf_head);
  2051. if (!list_is_singular(&lastbf->list))
  2052. list_cut_position(&bf_head,
  2053. &txq->axq_q, lastbf->list.prev);
  2054. if (bf_held) {
  2055. list_del(&bf_held->list);
  2056. ath_tx_return_buffer(sc, bf_held);
  2057. }
  2058. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  2059. }
  2060. ath_txq_unlock_complete(sc, txq);
  2061. }
  2062. void ath_tx_tasklet(struct ath_softc *sc)
  2063. {
  2064. struct ath_hw *ah = sc->sc_ah;
  2065. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
  2066. int i;
  2067. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  2068. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  2069. ath_tx_processq(sc, &sc->tx.txq[i]);
  2070. }
  2071. }
  2072. void ath_tx_edma_tasklet(struct ath_softc *sc)
  2073. {
  2074. struct ath_tx_status ts;
  2075. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  2076. struct ath_hw *ah = sc->sc_ah;
  2077. struct ath_txq *txq;
  2078. struct ath_buf *bf, *lastbf;
  2079. struct list_head bf_head;
  2080. struct list_head *fifo_list;
  2081. int status;
  2082. for (;;) {
  2083. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
  2084. break;
  2085. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
  2086. if (status == -EINPROGRESS)
  2087. break;
  2088. if (status == -EIO) {
  2089. ath_dbg(common, XMIT, "Error processing tx status\n");
  2090. break;
  2091. }
  2092. /* Process beacon completions separately */
  2093. if (ts.qid == sc->beacon.beaconq) {
  2094. sc->beacon.tx_processed = true;
  2095. sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
  2096. continue;
  2097. }
  2098. txq = &sc->tx.txq[ts.qid];
  2099. ath_txq_lock(sc, txq);
  2100. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  2101. fifo_list = &txq->txq_fifo[txq->txq_tailidx];
  2102. if (list_empty(fifo_list)) {
  2103. ath_txq_unlock(sc, txq);
  2104. return;
  2105. }
  2106. bf = list_first_entry(fifo_list, struct ath_buf, list);
  2107. if (bf->bf_stale) {
  2108. list_del(&bf->list);
  2109. ath_tx_return_buffer(sc, bf);
  2110. bf = list_first_entry(fifo_list, struct ath_buf, list);
  2111. }
  2112. lastbf = bf->bf_lastbf;
  2113. INIT_LIST_HEAD(&bf_head);
  2114. if (list_is_last(&lastbf->list, fifo_list)) {
  2115. list_splice_tail_init(fifo_list, &bf_head);
  2116. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  2117. if (!list_empty(&txq->axq_q)) {
  2118. struct list_head bf_q;
  2119. INIT_LIST_HEAD(&bf_q);
  2120. txq->axq_link = NULL;
  2121. list_splice_tail_init(&txq->axq_q, &bf_q);
  2122. ath_tx_txqaddbuf(sc, txq, &bf_q, true);
  2123. }
  2124. } else {
  2125. lastbf->bf_stale = true;
  2126. if (bf != lastbf)
  2127. list_cut_position(&bf_head, fifo_list,
  2128. lastbf->list.prev);
  2129. }
  2130. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  2131. ath_txq_unlock_complete(sc, txq);
  2132. }
  2133. }
  2134. /*****************/
  2135. /* Init, Cleanup */
  2136. /*****************/
  2137. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  2138. {
  2139. struct ath_descdma *dd = &sc->txsdma;
  2140. u8 txs_len = sc->sc_ah->caps.txs_len;
  2141. dd->dd_desc_len = size * txs_len;
  2142. dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
  2143. &dd->dd_desc_paddr, GFP_KERNEL);
  2144. if (!dd->dd_desc)
  2145. return -ENOMEM;
  2146. return 0;
  2147. }
  2148. static int ath_tx_edma_init(struct ath_softc *sc)
  2149. {
  2150. int err;
  2151. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  2152. if (!err)
  2153. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  2154. sc->txsdma.dd_desc_paddr,
  2155. ATH_TXSTATUS_RING_SIZE);
  2156. return err;
  2157. }
  2158. int ath_tx_init(struct ath_softc *sc, int nbufs)
  2159. {
  2160. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  2161. int error = 0;
  2162. spin_lock_init(&sc->tx.txbuflock);
  2163. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  2164. "tx", nbufs, 1, 1);
  2165. if (error != 0) {
  2166. ath_err(common,
  2167. "Failed to allocate tx descriptors: %d\n", error);
  2168. return error;
  2169. }
  2170. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  2171. "beacon", ATH_BCBUF, 1, 1);
  2172. if (error != 0) {
  2173. ath_err(common,
  2174. "Failed to allocate beacon descriptors: %d\n", error);
  2175. return error;
  2176. }
  2177. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  2178. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  2179. error = ath_tx_edma_init(sc);
  2180. return error;
  2181. }
  2182. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  2183. {
  2184. struct ath_atx_tid *tid;
  2185. struct ath_atx_ac *ac;
  2186. int tidno, acno;
  2187. for (tidno = 0, tid = &an->tid[tidno];
  2188. tidno < IEEE80211_NUM_TIDS;
  2189. tidno++, tid++) {
  2190. tid->an = an;
  2191. tid->tidno = tidno;
  2192. tid->seq_start = tid->seq_next = 0;
  2193. tid->baw_size = WME_MAX_BA;
  2194. tid->baw_head = tid->baw_tail = 0;
  2195. tid->sched = false;
  2196. tid->paused = false;
  2197. tid->active = false;
  2198. __skb_queue_head_init(&tid->buf_q);
  2199. __skb_queue_head_init(&tid->retry_q);
  2200. acno = TID_TO_WME_AC(tidno);
  2201. tid->ac = &an->ac[acno];
  2202. }
  2203. for (acno = 0, ac = &an->ac[acno];
  2204. acno < IEEE80211_NUM_ACS; acno++, ac++) {
  2205. ac->sched = false;
  2206. ac->clear_ps_filter = true;
  2207. ac->txq = sc->tx.txq_map[acno];
  2208. INIT_LIST_HEAD(&ac->tid_q);
  2209. }
  2210. }
  2211. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  2212. {
  2213. struct ath_atx_ac *ac;
  2214. struct ath_atx_tid *tid;
  2215. struct ath_txq *txq;
  2216. int tidno;
  2217. for (tidno = 0, tid = &an->tid[tidno];
  2218. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  2219. ac = tid->ac;
  2220. txq = ac->txq;
  2221. ath_txq_lock(sc, txq);
  2222. if (tid->sched) {
  2223. list_del(&tid->list);
  2224. tid->sched = false;
  2225. }
  2226. if (ac->sched) {
  2227. list_del(&ac->list);
  2228. tid->ac->sched = false;
  2229. }
  2230. ath_tid_drain(sc, txq, tid);
  2231. tid->active = false;
  2232. ath_txq_unlock(sc, txq);
  2233. }
  2234. }