slub.c 101 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/module.h>
  12. #include <linux/bit_spinlock.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/bitops.h>
  15. #include <linux/slab.h>
  16. #include <linux/seq_file.h>
  17. #include <linux/cpu.h>
  18. #include <linux/cpuset.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/ctype.h>
  21. #include <linux/kallsyms.h>
  22. #include <linux/memory.h>
  23. /*
  24. * Lock order:
  25. * 1. slab_lock(page)
  26. * 2. slab->list_lock
  27. *
  28. * The slab_lock protects operations on the object of a particular
  29. * slab and its metadata in the page struct. If the slab lock
  30. * has been taken then no allocations nor frees can be performed
  31. * on the objects in the slab nor can the slab be added or removed
  32. * from the partial or full lists since this would mean modifying
  33. * the page_struct of the slab.
  34. *
  35. * The list_lock protects the partial and full list on each node and
  36. * the partial slab counter. If taken then no new slabs may be added or
  37. * removed from the lists nor make the number of partial slabs be modified.
  38. * (Note that the total number of slabs is an atomic value that may be
  39. * modified without taking the list lock).
  40. *
  41. * The list_lock is a centralized lock and thus we avoid taking it as
  42. * much as possible. As long as SLUB does not have to handle partial
  43. * slabs, operations can continue without any centralized lock. F.e.
  44. * allocating a long series of objects that fill up slabs does not require
  45. * the list lock.
  46. *
  47. * The lock order is sometimes inverted when we are trying to get a slab
  48. * off a list. We take the list_lock and then look for a page on the list
  49. * to use. While we do that objects in the slabs may be freed. We can
  50. * only operate on the slab if we have also taken the slab_lock. So we use
  51. * a slab_trylock() on the slab. If trylock was successful then no frees
  52. * can occur anymore and we can use the slab for allocations etc. If the
  53. * slab_trylock() does not succeed then frees are in progress in the slab and
  54. * we must stay away from it for a while since we may cause a bouncing
  55. * cacheline if we try to acquire the lock. So go onto the next slab.
  56. * If all pages are busy then we may allocate a new slab instead of reusing
  57. * a partial slab. A new slab has noone operating on it and thus there is
  58. * no danger of cacheline contention.
  59. *
  60. * Interrupts are disabled during allocation and deallocation in order to
  61. * make the slab allocator safe to use in the context of an irq. In addition
  62. * interrupts are disabled to ensure that the processor does not change
  63. * while handling per_cpu slabs, due to kernel preemption.
  64. *
  65. * SLUB assigns one slab for allocation to each processor.
  66. * Allocations only occur from these slabs called cpu slabs.
  67. *
  68. * Slabs with free elements are kept on a partial list and during regular
  69. * operations no list for full slabs is used. If an object in a full slab is
  70. * freed then the slab will show up again on the partial lists.
  71. * We track full slabs for debugging purposes though because otherwise we
  72. * cannot scan all objects.
  73. *
  74. * Slabs are freed when they become empty. Teardown and setup is
  75. * minimal so we rely on the page allocators per cpu caches for
  76. * fast frees and allocs.
  77. *
  78. * Overloading of page flags that are otherwise used for LRU management.
  79. *
  80. * PageActive The slab is frozen and exempt from list processing.
  81. * This means that the slab is dedicated to a purpose
  82. * such as satisfying allocations for a specific
  83. * processor. Objects may be freed in the slab while
  84. * it is frozen but slab_free will then skip the usual
  85. * list operations. It is up to the processor holding
  86. * the slab to integrate the slab into the slab lists
  87. * when the slab is no longer needed.
  88. *
  89. * One use of this flag is to mark slabs that are
  90. * used for allocations. Then such a slab becomes a cpu
  91. * slab. The cpu slab may be equipped with an additional
  92. * freelist that allows lockless access to
  93. * free objects in addition to the regular freelist
  94. * that requires the slab lock.
  95. *
  96. * PageError Slab requires special handling due to debug
  97. * options set. This moves slab handling out of
  98. * the fast path and disables lockless freelists.
  99. */
  100. #define FROZEN (1 << PG_active)
  101. #ifdef CONFIG_SLUB_DEBUG
  102. #define SLABDEBUG (1 << PG_error)
  103. #else
  104. #define SLABDEBUG 0
  105. #endif
  106. static inline int SlabFrozen(struct page *page)
  107. {
  108. return page->flags & FROZEN;
  109. }
  110. static inline void SetSlabFrozen(struct page *page)
  111. {
  112. page->flags |= FROZEN;
  113. }
  114. static inline void ClearSlabFrozen(struct page *page)
  115. {
  116. page->flags &= ~FROZEN;
  117. }
  118. static inline int SlabDebug(struct page *page)
  119. {
  120. return page->flags & SLABDEBUG;
  121. }
  122. static inline void SetSlabDebug(struct page *page)
  123. {
  124. page->flags |= SLABDEBUG;
  125. }
  126. static inline void ClearSlabDebug(struct page *page)
  127. {
  128. page->flags &= ~SLABDEBUG;
  129. }
  130. /*
  131. * Issues still to be resolved:
  132. *
  133. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  134. *
  135. * - Variable sizing of the per node arrays
  136. */
  137. /* Enable to test recovery from slab corruption on boot */
  138. #undef SLUB_RESILIENCY_TEST
  139. #if PAGE_SHIFT <= 12
  140. /*
  141. * Small page size. Make sure that we do not fragment memory
  142. */
  143. #define DEFAULT_MAX_ORDER 1
  144. #define DEFAULT_MIN_OBJECTS 4
  145. #else
  146. /*
  147. * Large page machines are customarily able to handle larger
  148. * page orders.
  149. */
  150. #define DEFAULT_MAX_ORDER 2
  151. #define DEFAULT_MIN_OBJECTS 8
  152. #endif
  153. /*
  154. * Mininum number of partial slabs. These will be left on the partial
  155. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  156. */
  157. #define MIN_PARTIAL 5
  158. /*
  159. * Maximum number of desirable partial slabs.
  160. * The existence of more partial slabs makes kmem_cache_shrink
  161. * sort the partial list by the number of objects in the.
  162. */
  163. #define MAX_PARTIAL 10
  164. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  165. SLAB_POISON | SLAB_STORE_USER)
  166. /*
  167. * Set of flags that will prevent slab merging
  168. */
  169. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  170. SLAB_TRACE | SLAB_DESTROY_BY_RCU)
  171. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  172. SLAB_CACHE_DMA)
  173. #ifndef ARCH_KMALLOC_MINALIGN
  174. #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  175. #endif
  176. #ifndef ARCH_SLAB_MINALIGN
  177. #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  178. #endif
  179. /* Internal SLUB flags */
  180. #define __OBJECT_POISON 0x80000000 /* Poison object */
  181. #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
  182. #define __KMALLOC_CACHE 0x20000000 /* objects freed using kfree */
  183. #define __PAGE_ALLOC_FALLBACK 0x10000000 /* Allow fallback to page alloc */
  184. /* Not all arches define cache_line_size */
  185. #ifndef cache_line_size
  186. #define cache_line_size() L1_CACHE_BYTES
  187. #endif
  188. static int kmem_size = sizeof(struct kmem_cache);
  189. #ifdef CONFIG_SMP
  190. static struct notifier_block slab_notifier;
  191. #endif
  192. static enum {
  193. DOWN, /* No slab functionality available */
  194. PARTIAL, /* kmem_cache_open() works but kmalloc does not */
  195. UP, /* Everything works but does not show up in sysfs */
  196. SYSFS /* Sysfs up */
  197. } slab_state = DOWN;
  198. /* A list of all slab caches on the system */
  199. static DECLARE_RWSEM(slub_lock);
  200. static LIST_HEAD(slab_caches);
  201. /*
  202. * Tracking user of a slab.
  203. */
  204. struct track {
  205. void *addr; /* Called from address */
  206. int cpu; /* Was running on cpu */
  207. int pid; /* Pid context */
  208. unsigned long when; /* When did the operation occur */
  209. };
  210. enum track_item { TRACK_ALLOC, TRACK_FREE };
  211. #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
  212. static int sysfs_slab_add(struct kmem_cache *);
  213. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  214. static void sysfs_slab_remove(struct kmem_cache *);
  215. #else
  216. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  217. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  218. { return 0; }
  219. static inline void sysfs_slab_remove(struct kmem_cache *s)
  220. {
  221. kfree(s);
  222. }
  223. #endif
  224. static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
  225. {
  226. #ifdef CONFIG_SLUB_STATS
  227. c->stat[si]++;
  228. #endif
  229. }
  230. /********************************************************************
  231. * Core slab cache functions
  232. *******************************************************************/
  233. int slab_is_available(void)
  234. {
  235. return slab_state >= UP;
  236. }
  237. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  238. {
  239. #ifdef CONFIG_NUMA
  240. return s->node[node];
  241. #else
  242. return &s->local_node;
  243. #endif
  244. }
  245. static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
  246. {
  247. #ifdef CONFIG_SMP
  248. return s->cpu_slab[cpu];
  249. #else
  250. return &s->cpu_slab;
  251. #endif
  252. }
  253. static inline int check_valid_pointer(struct kmem_cache *s,
  254. struct page *page, const void *object)
  255. {
  256. void *base;
  257. if (!object)
  258. return 1;
  259. base = page_address(page);
  260. if (object < base || object >= base + s->objects * s->size ||
  261. (object - base) % s->size) {
  262. return 0;
  263. }
  264. return 1;
  265. }
  266. /*
  267. * Slow version of get and set free pointer.
  268. *
  269. * This version requires touching the cache lines of kmem_cache which
  270. * we avoid to do in the fast alloc free paths. There we obtain the offset
  271. * from the page struct.
  272. */
  273. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  274. {
  275. return *(void **)(object + s->offset);
  276. }
  277. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  278. {
  279. *(void **)(object + s->offset) = fp;
  280. }
  281. /* Loop over all objects in a slab */
  282. #define for_each_object(__p, __s, __addr) \
  283. for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
  284. __p += (__s)->size)
  285. /* Scan freelist */
  286. #define for_each_free_object(__p, __s, __free) \
  287. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  288. /* Determine object index from a given position */
  289. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  290. {
  291. return (p - addr) / s->size;
  292. }
  293. #ifdef CONFIG_SLUB_DEBUG
  294. /*
  295. * Debug settings:
  296. */
  297. #ifdef CONFIG_SLUB_DEBUG_ON
  298. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  299. #else
  300. static int slub_debug;
  301. #endif
  302. static char *slub_debug_slabs;
  303. /*
  304. * Object debugging
  305. */
  306. static void print_section(char *text, u8 *addr, unsigned int length)
  307. {
  308. int i, offset;
  309. int newline = 1;
  310. char ascii[17];
  311. ascii[16] = 0;
  312. for (i = 0; i < length; i++) {
  313. if (newline) {
  314. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  315. newline = 0;
  316. }
  317. printk(KERN_CONT " %02x", addr[i]);
  318. offset = i % 16;
  319. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  320. if (offset == 15) {
  321. printk(KERN_CONT " %s\n", ascii);
  322. newline = 1;
  323. }
  324. }
  325. if (!newline) {
  326. i %= 16;
  327. while (i < 16) {
  328. printk(KERN_CONT " ");
  329. ascii[i] = ' ';
  330. i++;
  331. }
  332. printk(KERN_CONT " %s\n", ascii);
  333. }
  334. }
  335. static struct track *get_track(struct kmem_cache *s, void *object,
  336. enum track_item alloc)
  337. {
  338. struct track *p;
  339. if (s->offset)
  340. p = object + s->offset + sizeof(void *);
  341. else
  342. p = object + s->inuse;
  343. return p + alloc;
  344. }
  345. static void set_track(struct kmem_cache *s, void *object,
  346. enum track_item alloc, void *addr)
  347. {
  348. struct track *p;
  349. if (s->offset)
  350. p = object + s->offset + sizeof(void *);
  351. else
  352. p = object + s->inuse;
  353. p += alloc;
  354. if (addr) {
  355. p->addr = addr;
  356. p->cpu = smp_processor_id();
  357. p->pid = current ? current->pid : -1;
  358. p->when = jiffies;
  359. } else
  360. memset(p, 0, sizeof(struct track));
  361. }
  362. static void init_tracking(struct kmem_cache *s, void *object)
  363. {
  364. if (!(s->flags & SLAB_STORE_USER))
  365. return;
  366. set_track(s, object, TRACK_FREE, NULL);
  367. set_track(s, object, TRACK_ALLOC, NULL);
  368. }
  369. static void print_track(const char *s, struct track *t)
  370. {
  371. if (!t->addr)
  372. return;
  373. printk(KERN_ERR "INFO: %s in ", s);
  374. __print_symbol("%s", (unsigned long)t->addr);
  375. printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
  376. }
  377. static void print_tracking(struct kmem_cache *s, void *object)
  378. {
  379. if (!(s->flags & SLAB_STORE_USER))
  380. return;
  381. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  382. print_track("Freed", get_track(s, object, TRACK_FREE));
  383. }
  384. static void print_page_info(struct page *page)
  385. {
  386. printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
  387. page, page->inuse, page->freelist, page->flags);
  388. }
  389. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  390. {
  391. va_list args;
  392. char buf[100];
  393. va_start(args, fmt);
  394. vsnprintf(buf, sizeof(buf), fmt, args);
  395. va_end(args);
  396. printk(KERN_ERR "========================================"
  397. "=====================================\n");
  398. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  399. printk(KERN_ERR "----------------------------------------"
  400. "-------------------------------------\n\n");
  401. }
  402. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  403. {
  404. va_list args;
  405. char buf[100];
  406. va_start(args, fmt);
  407. vsnprintf(buf, sizeof(buf), fmt, args);
  408. va_end(args);
  409. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  410. }
  411. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  412. {
  413. unsigned int off; /* Offset of last byte */
  414. u8 *addr = page_address(page);
  415. print_tracking(s, p);
  416. print_page_info(page);
  417. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  418. p, p - addr, get_freepointer(s, p));
  419. if (p > addr + 16)
  420. print_section("Bytes b4", p - 16, 16);
  421. print_section("Object", p, min(s->objsize, 128));
  422. if (s->flags & SLAB_RED_ZONE)
  423. print_section("Redzone", p + s->objsize,
  424. s->inuse - s->objsize);
  425. if (s->offset)
  426. off = s->offset + sizeof(void *);
  427. else
  428. off = s->inuse;
  429. if (s->flags & SLAB_STORE_USER)
  430. off += 2 * sizeof(struct track);
  431. if (off != s->size)
  432. /* Beginning of the filler is the free pointer */
  433. print_section("Padding", p + off, s->size - off);
  434. dump_stack();
  435. }
  436. static void object_err(struct kmem_cache *s, struct page *page,
  437. u8 *object, char *reason)
  438. {
  439. slab_bug(s, reason);
  440. print_trailer(s, page, object);
  441. }
  442. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  443. {
  444. va_list args;
  445. char buf[100];
  446. va_start(args, fmt);
  447. vsnprintf(buf, sizeof(buf), fmt, args);
  448. va_end(args);
  449. slab_bug(s, fmt);
  450. print_page_info(page);
  451. dump_stack();
  452. }
  453. static void init_object(struct kmem_cache *s, void *object, int active)
  454. {
  455. u8 *p = object;
  456. if (s->flags & __OBJECT_POISON) {
  457. memset(p, POISON_FREE, s->objsize - 1);
  458. p[s->objsize - 1] = POISON_END;
  459. }
  460. if (s->flags & SLAB_RED_ZONE)
  461. memset(p + s->objsize,
  462. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  463. s->inuse - s->objsize);
  464. }
  465. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  466. {
  467. while (bytes) {
  468. if (*start != (u8)value)
  469. return start;
  470. start++;
  471. bytes--;
  472. }
  473. return NULL;
  474. }
  475. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  476. void *from, void *to)
  477. {
  478. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  479. memset(from, data, to - from);
  480. }
  481. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  482. u8 *object, char *what,
  483. u8 *start, unsigned int value, unsigned int bytes)
  484. {
  485. u8 *fault;
  486. u8 *end;
  487. fault = check_bytes(start, value, bytes);
  488. if (!fault)
  489. return 1;
  490. end = start + bytes;
  491. while (end > fault && end[-1] == value)
  492. end--;
  493. slab_bug(s, "%s overwritten", what);
  494. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  495. fault, end - 1, fault[0], value);
  496. print_trailer(s, page, object);
  497. restore_bytes(s, what, value, fault, end);
  498. return 0;
  499. }
  500. /*
  501. * Object layout:
  502. *
  503. * object address
  504. * Bytes of the object to be managed.
  505. * If the freepointer may overlay the object then the free
  506. * pointer is the first word of the object.
  507. *
  508. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  509. * 0xa5 (POISON_END)
  510. *
  511. * object + s->objsize
  512. * Padding to reach word boundary. This is also used for Redzoning.
  513. * Padding is extended by another word if Redzoning is enabled and
  514. * objsize == inuse.
  515. *
  516. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  517. * 0xcc (RED_ACTIVE) for objects in use.
  518. *
  519. * object + s->inuse
  520. * Meta data starts here.
  521. *
  522. * A. Free pointer (if we cannot overwrite object on free)
  523. * B. Tracking data for SLAB_STORE_USER
  524. * C. Padding to reach required alignment boundary or at mininum
  525. * one word if debuggin is on to be able to detect writes
  526. * before the word boundary.
  527. *
  528. * Padding is done using 0x5a (POISON_INUSE)
  529. *
  530. * object + s->size
  531. * Nothing is used beyond s->size.
  532. *
  533. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  534. * ignored. And therefore no slab options that rely on these boundaries
  535. * may be used with merged slabcaches.
  536. */
  537. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  538. {
  539. unsigned long off = s->inuse; /* The end of info */
  540. if (s->offset)
  541. /* Freepointer is placed after the object. */
  542. off += sizeof(void *);
  543. if (s->flags & SLAB_STORE_USER)
  544. /* We also have user information there */
  545. off += 2 * sizeof(struct track);
  546. if (s->size == off)
  547. return 1;
  548. return check_bytes_and_report(s, page, p, "Object padding",
  549. p + off, POISON_INUSE, s->size - off);
  550. }
  551. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  552. {
  553. u8 *start;
  554. u8 *fault;
  555. u8 *end;
  556. int length;
  557. int remainder;
  558. if (!(s->flags & SLAB_POISON))
  559. return 1;
  560. start = page_address(page);
  561. end = start + (PAGE_SIZE << s->order);
  562. length = s->objects * s->size;
  563. remainder = end - (start + length);
  564. if (!remainder)
  565. return 1;
  566. fault = check_bytes(start + length, POISON_INUSE, remainder);
  567. if (!fault)
  568. return 1;
  569. while (end > fault && end[-1] == POISON_INUSE)
  570. end--;
  571. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  572. print_section("Padding", start, length);
  573. restore_bytes(s, "slab padding", POISON_INUSE, start, end);
  574. return 0;
  575. }
  576. static int check_object(struct kmem_cache *s, struct page *page,
  577. void *object, int active)
  578. {
  579. u8 *p = object;
  580. u8 *endobject = object + s->objsize;
  581. if (s->flags & SLAB_RED_ZONE) {
  582. unsigned int red =
  583. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  584. if (!check_bytes_and_report(s, page, object, "Redzone",
  585. endobject, red, s->inuse - s->objsize))
  586. return 0;
  587. } else {
  588. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  589. check_bytes_and_report(s, page, p, "Alignment padding",
  590. endobject, POISON_INUSE, s->inuse - s->objsize);
  591. }
  592. }
  593. if (s->flags & SLAB_POISON) {
  594. if (!active && (s->flags & __OBJECT_POISON) &&
  595. (!check_bytes_and_report(s, page, p, "Poison", p,
  596. POISON_FREE, s->objsize - 1) ||
  597. !check_bytes_and_report(s, page, p, "Poison",
  598. p + s->objsize - 1, POISON_END, 1)))
  599. return 0;
  600. /*
  601. * check_pad_bytes cleans up on its own.
  602. */
  603. check_pad_bytes(s, page, p);
  604. }
  605. if (!s->offset && active)
  606. /*
  607. * Object and freepointer overlap. Cannot check
  608. * freepointer while object is allocated.
  609. */
  610. return 1;
  611. /* Check free pointer validity */
  612. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  613. object_err(s, page, p, "Freepointer corrupt");
  614. /*
  615. * No choice but to zap it and thus loose the remainder
  616. * of the free objects in this slab. May cause
  617. * another error because the object count is now wrong.
  618. */
  619. set_freepointer(s, p, NULL);
  620. return 0;
  621. }
  622. return 1;
  623. }
  624. static int check_slab(struct kmem_cache *s, struct page *page)
  625. {
  626. VM_BUG_ON(!irqs_disabled());
  627. if (!PageSlab(page)) {
  628. slab_err(s, page, "Not a valid slab page");
  629. return 0;
  630. }
  631. if (page->inuse > s->objects) {
  632. slab_err(s, page, "inuse %u > max %u",
  633. s->name, page->inuse, s->objects);
  634. return 0;
  635. }
  636. /* Slab_pad_check fixes things up after itself */
  637. slab_pad_check(s, page);
  638. return 1;
  639. }
  640. /*
  641. * Determine if a certain object on a page is on the freelist. Must hold the
  642. * slab lock to guarantee that the chains are in a consistent state.
  643. */
  644. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  645. {
  646. int nr = 0;
  647. void *fp = page->freelist;
  648. void *object = NULL;
  649. while (fp && nr <= s->objects) {
  650. if (fp == search)
  651. return 1;
  652. if (!check_valid_pointer(s, page, fp)) {
  653. if (object) {
  654. object_err(s, page, object,
  655. "Freechain corrupt");
  656. set_freepointer(s, object, NULL);
  657. break;
  658. } else {
  659. slab_err(s, page, "Freepointer corrupt");
  660. page->freelist = NULL;
  661. page->inuse = s->objects;
  662. slab_fix(s, "Freelist cleared");
  663. return 0;
  664. }
  665. break;
  666. }
  667. object = fp;
  668. fp = get_freepointer(s, object);
  669. nr++;
  670. }
  671. if (page->inuse != s->objects - nr) {
  672. slab_err(s, page, "Wrong object count. Counter is %d but "
  673. "counted were %d", page->inuse, s->objects - nr);
  674. page->inuse = s->objects - nr;
  675. slab_fix(s, "Object count adjusted.");
  676. }
  677. return search == NULL;
  678. }
  679. static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
  680. {
  681. if (s->flags & SLAB_TRACE) {
  682. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  683. s->name,
  684. alloc ? "alloc" : "free",
  685. object, page->inuse,
  686. page->freelist);
  687. if (!alloc)
  688. print_section("Object", (void *)object, s->objsize);
  689. dump_stack();
  690. }
  691. }
  692. /*
  693. * Tracking of fully allocated slabs for debugging purposes.
  694. */
  695. static void add_full(struct kmem_cache_node *n, struct page *page)
  696. {
  697. spin_lock(&n->list_lock);
  698. list_add(&page->lru, &n->full);
  699. spin_unlock(&n->list_lock);
  700. }
  701. static void remove_full(struct kmem_cache *s, struct page *page)
  702. {
  703. struct kmem_cache_node *n;
  704. if (!(s->flags & SLAB_STORE_USER))
  705. return;
  706. n = get_node(s, page_to_nid(page));
  707. spin_lock(&n->list_lock);
  708. list_del(&page->lru);
  709. spin_unlock(&n->list_lock);
  710. }
  711. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  712. void *object)
  713. {
  714. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  715. return;
  716. init_object(s, object, 0);
  717. init_tracking(s, object);
  718. }
  719. static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  720. void *object, void *addr)
  721. {
  722. if (!check_slab(s, page))
  723. goto bad;
  724. if (!on_freelist(s, page, object)) {
  725. object_err(s, page, object, "Object already allocated");
  726. goto bad;
  727. }
  728. if (!check_valid_pointer(s, page, object)) {
  729. object_err(s, page, object, "Freelist Pointer check fails");
  730. goto bad;
  731. }
  732. if (!check_object(s, page, object, 0))
  733. goto bad;
  734. /* Success perform special debug activities for allocs */
  735. if (s->flags & SLAB_STORE_USER)
  736. set_track(s, object, TRACK_ALLOC, addr);
  737. trace(s, page, object, 1);
  738. init_object(s, object, 1);
  739. return 1;
  740. bad:
  741. if (PageSlab(page)) {
  742. /*
  743. * If this is a slab page then lets do the best we can
  744. * to avoid issues in the future. Marking all objects
  745. * as used avoids touching the remaining objects.
  746. */
  747. slab_fix(s, "Marking all objects used");
  748. page->inuse = s->objects;
  749. page->freelist = NULL;
  750. }
  751. return 0;
  752. }
  753. static int free_debug_processing(struct kmem_cache *s, struct page *page,
  754. void *object, void *addr)
  755. {
  756. if (!check_slab(s, page))
  757. goto fail;
  758. if (!check_valid_pointer(s, page, object)) {
  759. slab_err(s, page, "Invalid object pointer 0x%p", object);
  760. goto fail;
  761. }
  762. if (on_freelist(s, page, object)) {
  763. object_err(s, page, object, "Object already free");
  764. goto fail;
  765. }
  766. if (!check_object(s, page, object, 1))
  767. return 0;
  768. if (unlikely(s != page->slab)) {
  769. if (!PageSlab(page)) {
  770. slab_err(s, page, "Attempt to free object(0x%p) "
  771. "outside of slab", object);
  772. } else if (!page->slab) {
  773. printk(KERN_ERR
  774. "SLUB <none>: no slab for object 0x%p.\n",
  775. object);
  776. dump_stack();
  777. } else
  778. object_err(s, page, object,
  779. "page slab pointer corrupt.");
  780. goto fail;
  781. }
  782. /* Special debug activities for freeing objects */
  783. if (!SlabFrozen(page) && !page->freelist)
  784. remove_full(s, page);
  785. if (s->flags & SLAB_STORE_USER)
  786. set_track(s, object, TRACK_FREE, addr);
  787. trace(s, page, object, 0);
  788. init_object(s, object, 0);
  789. return 1;
  790. fail:
  791. slab_fix(s, "Object at 0x%p not freed", object);
  792. return 0;
  793. }
  794. static int __init setup_slub_debug(char *str)
  795. {
  796. slub_debug = DEBUG_DEFAULT_FLAGS;
  797. if (*str++ != '=' || !*str)
  798. /*
  799. * No options specified. Switch on full debugging.
  800. */
  801. goto out;
  802. if (*str == ',')
  803. /*
  804. * No options but restriction on slabs. This means full
  805. * debugging for slabs matching a pattern.
  806. */
  807. goto check_slabs;
  808. slub_debug = 0;
  809. if (*str == '-')
  810. /*
  811. * Switch off all debugging measures.
  812. */
  813. goto out;
  814. /*
  815. * Determine which debug features should be switched on
  816. */
  817. for (; *str && *str != ','; str++) {
  818. switch (tolower(*str)) {
  819. case 'f':
  820. slub_debug |= SLAB_DEBUG_FREE;
  821. break;
  822. case 'z':
  823. slub_debug |= SLAB_RED_ZONE;
  824. break;
  825. case 'p':
  826. slub_debug |= SLAB_POISON;
  827. break;
  828. case 'u':
  829. slub_debug |= SLAB_STORE_USER;
  830. break;
  831. case 't':
  832. slub_debug |= SLAB_TRACE;
  833. break;
  834. default:
  835. printk(KERN_ERR "slub_debug option '%c' "
  836. "unknown. skipped\n", *str);
  837. }
  838. }
  839. check_slabs:
  840. if (*str == ',')
  841. slub_debug_slabs = str + 1;
  842. out:
  843. return 1;
  844. }
  845. __setup("slub_debug", setup_slub_debug);
  846. static unsigned long kmem_cache_flags(unsigned long objsize,
  847. unsigned long flags, const char *name,
  848. void (*ctor)(struct kmem_cache *, void *))
  849. {
  850. /*
  851. * Enable debugging if selected on the kernel commandline.
  852. */
  853. if (slub_debug && (!slub_debug_slabs ||
  854. strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
  855. flags |= slub_debug;
  856. return flags;
  857. }
  858. #else
  859. static inline void setup_object_debug(struct kmem_cache *s,
  860. struct page *page, void *object) {}
  861. static inline int alloc_debug_processing(struct kmem_cache *s,
  862. struct page *page, void *object, void *addr) { return 0; }
  863. static inline int free_debug_processing(struct kmem_cache *s,
  864. struct page *page, void *object, void *addr) { return 0; }
  865. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  866. { return 1; }
  867. static inline int check_object(struct kmem_cache *s, struct page *page,
  868. void *object, int active) { return 1; }
  869. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  870. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  871. unsigned long flags, const char *name,
  872. void (*ctor)(struct kmem_cache *, void *))
  873. {
  874. return flags;
  875. }
  876. #define slub_debug 0
  877. #endif
  878. /*
  879. * Slab allocation and freeing
  880. */
  881. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  882. {
  883. struct page *page;
  884. int pages = 1 << s->order;
  885. flags |= s->allocflags;
  886. if (node == -1)
  887. page = alloc_pages(flags, s->order);
  888. else
  889. page = alloc_pages_node(node, flags, s->order);
  890. if (!page)
  891. return NULL;
  892. mod_zone_page_state(page_zone(page),
  893. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  894. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  895. pages);
  896. return page;
  897. }
  898. static void setup_object(struct kmem_cache *s, struct page *page,
  899. void *object)
  900. {
  901. setup_object_debug(s, page, object);
  902. if (unlikely(s->ctor))
  903. s->ctor(s, object);
  904. }
  905. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  906. {
  907. struct page *page;
  908. struct kmem_cache_node *n;
  909. void *start;
  910. void *last;
  911. void *p;
  912. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  913. page = allocate_slab(s,
  914. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  915. if (!page)
  916. goto out;
  917. n = get_node(s, page_to_nid(page));
  918. if (n)
  919. atomic_long_inc(&n->nr_slabs);
  920. page->slab = s;
  921. page->flags |= 1 << PG_slab;
  922. if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
  923. SLAB_STORE_USER | SLAB_TRACE))
  924. SetSlabDebug(page);
  925. start = page_address(page);
  926. if (unlikely(s->flags & SLAB_POISON))
  927. memset(start, POISON_INUSE, PAGE_SIZE << s->order);
  928. last = start;
  929. for_each_object(p, s, start) {
  930. setup_object(s, page, last);
  931. set_freepointer(s, last, p);
  932. last = p;
  933. }
  934. setup_object(s, page, last);
  935. set_freepointer(s, last, NULL);
  936. page->freelist = start;
  937. page->inuse = 0;
  938. out:
  939. return page;
  940. }
  941. static void __free_slab(struct kmem_cache *s, struct page *page)
  942. {
  943. int pages = 1 << s->order;
  944. if (unlikely(SlabDebug(page))) {
  945. void *p;
  946. slab_pad_check(s, page);
  947. for_each_object(p, s, page_address(page))
  948. check_object(s, page, p, 0);
  949. ClearSlabDebug(page);
  950. }
  951. mod_zone_page_state(page_zone(page),
  952. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  953. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  954. -pages);
  955. __free_pages(page, s->order);
  956. }
  957. static void rcu_free_slab(struct rcu_head *h)
  958. {
  959. struct page *page;
  960. page = container_of((struct list_head *)h, struct page, lru);
  961. __free_slab(page->slab, page);
  962. }
  963. static void free_slab(struct kmem_cache *s, struct page *page)
  964. {
  965. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  966. /*
  967. * RCU free overloads the RCU head over the LRU
  968. */
  969. struct rcu_head *head = (void *)&page->lru;
  970. call_rcu(head, rcu_free_slab);
  971. } else
  972. __free_slab(s, page);
  973. }
  974. static void discard_slab(struct kmem_cache *s, struct page *page)
  975. {
  976. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  977. atomic_long_dec(&n->nr_slabs);
  978. reset_page_mapcount(page);
  979. __ClearPageSlab(page);
  980. free_slab(s, page);
  981. }
  982. /*
  983. * Per slab locking using the pagelock
  984. */
  985. static __always_inline void slab_lock(struct page *page)
  986. {
  987. bit_spin_lock(PG_locked, &page->flags);
  988. }
  989. static __always_inline void slab_unlock(struct page *page)
  990. {
  991. __bit_spin_unlock(PG_locked, &page->flags);
  992. }
  993. static __always_inline int slab_trylock(struct page *page)
  994. {
  995. int rc = 1;
  996. rc = bit_spin_trylock(PG_locked, &page->flags);
  997. return rc;
  998. }
  999. /*
  1000. * Management of partially allocated slabs
  1001. */
  1002. static void add_partial(struct kmem_cache_node *n,
  1003. struct page *page, int tail)
  1004. {
  1005. spin_lock(&n->list_lock);
  1006. n->nr_partial++;
  1007. if (tail)
  1008. list_add_tail(&page->lru, &n->partial);
  1009. else
  1010. list_add(&page->lru, &n->partial);
  1011. spin_unlock(&n->list_lock);
  1012. }
  1013. static void remove_partial(struct kmem_cache *s,
  1014. struct page *page)
  1015. {
  1016. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1017. spin_lock(&n->list_lock);
  1018. list_del(&page->lru);
  1019. n->nr_partial--;
  1020. spin_unlock(&n->list_lock);
  1021. }
  1022. /*
  1023. * Lock slab and remove from the partial list.
  1024. *
  1025. * Must hold list_lock.
  1026. */
  1027. static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
  1028. {
  1029. if (slab_trylock(page)) {
  1030. list_del(&page->lru);
  1031. n->nr_partial--;
  1032. SetSlabFrozen(page);
  1033. return 1;
  1034. }
  1035. return 0;
  1036. }
  1037. /*
  1038. * Try to allocate a partial slab from a specific node.
  1039. */
  1040. static struct page *get_partial_node(struct kmem_cache_node *n)
  1041. {
  1042. struct page *page;
  1043. /*
  1044. * Racy check. If we mistakenly see no partial slabs then we
  1045. * just allocate an empty slab. If we mistakenly try to get a
  1046. * partial slab and there is none available then get_partials()
  1047. * will return NULL.
  1048. */
  1049. if (!n || !n->nr_partial)
  1050. return NULL;
  1051. spin_lock(&n->list_lock);
  1052. list_for_each_entry(page, &n->partial, lru)
  1053. if (lock_and_freeze_slab(n, page))
  1054. goto out;
  1055. page = NULL;
  1056. out:
  1057. spin_unlock(&n->list_lock);
  1058. return page;
  1059. }
  1060. /*
  1061. * Get a page from somewhere. Search in increasing NUMA distances.
  1062. */
  1063. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1064. {
  1065. #ifdef CONFIG_NUMA
  1066. struct zonelist *zonelist;
  1067. struct zone **z;
  1068. struct page *page;
  1069. /*
  1070. * The defrag ratio allows a configuration of the tradeoffs between
  1071. * inter node defragmentation and node local allocations. A lower
  1072. * defrag_ratio increases the tendency to do local allocations
  1073. * instead of attempting to obtain partial slabs from other nodes.
  1074. *
  1075. * If the defrag_ratio is set to 0 then kmalloc() always
  1076. * returns node local objects. If the ratio is higher then kmalloc()
  1077. * may return off node objects because partial slabs are obtained
  1078. * from other nodes and filled up.
  1079. *
  1080. * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
  1081. * defrag_ratio = 1000) then every (well almost) allocation will
  1082. * first attempt to defrag slab caches on other nodes. This means
  1083. * scanning over all nodes to look for partial slabs which may be
  1084. * expensive if we do it every time we are trying to find a slab
  1085. * with available objects.
  1086. */
  1087. if (!s->remote_node_defrag_ratio ||
  1088. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1089. return NULL;
  1090. zonelist = &NODE_DATA(
  1091. slab_node(current->mempolicy))->node_zonelists[gfp_zone(flags)];
  1092. for (z = zonelist->zones; *z; z++) {
  1093. struct kmem_cache_node *n;
  1094. n = get_node(s, zone_to_nid(*z));
  1095. if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
  1096. n->nr_partial > MIN_PARTIAL) {
  1097. page = get_partial_node(n);
  1098. if (page)
  1099. return page;
  1100. }
  1101. }
  1102. #endif
  1103. return NULL;
  1104. }
  1105. /*
  1106. * Get a partial page, lock it and return it.
  1107. */
  1108. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1109. {
  1110. struct page *page;
  1111. int searchnode = (node == -1) ? numa_node_id() : node;
  1112. page = get_partial_node(get_node(s, searchnode));
  1113. if (page || (flags & __GFP_THISNODE))
  1114. return page;
  1115. return get_any_partial(s, flags);
  1116. }
  1117. /*
  1118. * Move a page back to the lists.
  1119. *
  1120. * Must be called with the slab lock held.
  1121. *
  1122. * On exit the slab lock will have been dropped.
  1123. */
  1124. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1125. {
  1126. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1127. struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
  1128. ClearSlabFrozen(page);
  1129. if (page->inuse) {
  1130. if (page->freelist) {
  1131. add_partial(n, page, tail);
  1132. stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1133. } else {
  1134. stat(c, DEACTIVATE_FULL);
  1135. if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
  1136. add_full(n, page);
  1137. }
  1138. slab_unlock(page);
  1139. } else {
  1140. stat(c, DEACTIVATE_EMPTY);
  1141. if (n->nr_partial < MIN_PARTIAL) {
  1142. /*
  1143. * Adding an empty slab to the partial slabs in order
  1144. * to avoid page allocator overhead. This slab needs
  1145. * to come after the other slabs with objects in
  1146. * order to fill them up. That way the size of the
  1147. * partial list stays small. kmem_cache_shrink can
  1148. * reclaim empty slabs from the partial list.
  1149. */
  1150. add_partial(n, page, 1);
  1151. slab_unlock(page);
  1152. } else {
  1153. slab_unlock(page);
  1154. stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
  1155. discard_slab(s, page);
  1156. }
  1157. }
  1158. }
  1159. /*
  1160. * Remove the cpu slab
  1161. */
  1162. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1163. {
  1164. struct page *page = c->page;
  1165. int tail = 1;
  1166. if (c->freelist)
  1167. stat(c, DEACTIVATE_REMOTE_FREES);
  1168. /*
  1169. * Merge cpu freelist into freelist. Typically we get here
  1170. * because both freelists are empty. So this is unlikely
  1171. * to occur.
  1172. */
  1173. while (unlikely(c->freelist)) {
  1174. void **object;
  1175. tail = 0; /* Hot objects. Put the slab first */
  1176. /* Retrieve object from cpu_freelist */
  1177. object = c->freelist;
  1178. c->freelist = c->freelist[c->offset];
  1179. /* And put onto the regular freelist */
  1180. object[c->offset] = page->freelist;
  1181. page->freelist = object;
  1182. page->inuse--;
  1183. }
  1184. c->page = NULL;
  1185. unfreeze_slab(s, page, tail);
  1186. }
  1187. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1188. {
  1189. stat(c, CPUSLAB_FLUSH);
  1190. slab_lock(c->page);
  1191. deactivate_slab(s, c);
  1192. }
  1193. /*
  1194. * Flush cpu slab.
  1195. * Called from IPI handler with interrupts disabled.
  1196. */
  1197. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1198. {
  1199. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1200. if (likely(c && c->page))
  1201. flush_slab(s, c);
  1202. }
  1203. static void flush_cpu_slab(void *d)
  1204. {
  1205. struct kmem_cache *s = d;
  1206. __flush_cpu_slab(s, smp_processor_id());
  1207. }
  1208. static void flush_all(struct kmem_cache *s)
  1209. {
  1210. #ifdef CONFIG_SMP
  1211. on_each_cpu(flush_cpu_slab, s, 1, 1);
  1212. #else
  1213. unsigned long flags;
  1214. local_irq_save(flags);
  1215. flush_cpu_slab(s);
  1216. local_irq_restore(flags);
  1217. #endif
  1218. }
  1219. /*
  1220. * Check if the objects in a per cpu structure fit numa
  1221. * locality expectations.
  1222. */
  1223. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1224. {
  1225. #ifdef CONFIG_NUMA
  1226. if (node != -1 && c->node != node)
  1227. return 0;
  1228. #endif
  1229. return 1;
  1230. }
  1231. /*
  1232. * Slow path. The lockless freelist is empty or we need to perform
  1233. * debugging duties.
  1234. *
  1235. * Interrupts are disabled.
  1236. *
  1237. * Processing is still very fast if new objects have been freed to the
  1238. * regular freelist. In that case we simply take over the regular freelist
  1239. * as the lockless freelist and zap the regular freelist.
  1240. *
  1241. * If that is not working then we fall back to the partial lists. We take the
  1242. * first element of the freelist as the object to allocate now and move the
  1243. * rest of the freelist to the lockless freelist.
  1244. *
  1245. * And if we were unable to get a new slab from the partial slab lists then
  1246. * we need to allocate a new slab. This is slowest path since we may sleep.
  1247. */
  1248. static void *__slab_alloc(struct kmem_cache *s,
  1249. gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
  1250. {
  1251. void **object;
  1252. struct page *new;
  1253. if (!c->page)
  1254. goto new_slab;
  1255. slab_lock(c->page);
  1256. if (unlikely(!node_match(c, node)))
  1257. goto another_slab;
  1258. stat(c, ALLOC_REFILL);
  1259. load_freelist:
  1260. object = c->page->freelist;
  1261. if (unlikely(!object))
  1262. goto another_slab;
  1263. if (unlikely(SlabDebug(c->page)))
  1264. goto debug;
  1265. object = c->page->freelist;
  1266. c->freelist = object[c->offset];
  1267. c->page->inuse = s->objects;
  1268. c->page->freelist = NULL;
  1269. c->node = page_to_nid(c->page);
  1270. unlock_out:
  1271. slab_unlock(c->page);
  1272. stat(c, ALLOC_SLOWPATH);
  1273. return object;
  1274. another_slab:
  1275. deactivate_slab(s, c);
  1276. new_slab:
  1277. new = get_partial(s, gfpflags, node);
  1278. if (new) {
  1279. c->page = new;
  1280. stat(c, ALLOC_FROM_PARTIAL);
  1281. goto load_freelist;
  1282. }
  1283. if (gfpflags & __GFP_WAIT)
  1284. local_irq_enable();
  1285. new = new_slab(s, gfpflags, node);
  1286. if (gfpflags & __GFP_WAIT)
  1287. local_irq_disable();
  1288. if (new) {
  1289. c = get_cpu_slab(s, smp_processor_id());
  1290. stat(c, ALLOC_SLAB);
  1291. if (c->page)
  1292. flush_slab(s, c);
  1293. slab_lock(new);
  1294. SetSlabFrozen(new);
  1295. c->page = new;
  1296. goto load_freelist;
  1297. }
  1298. /*
  1299. * No memory available.
  1300. *
  1301. * If the slab uses higher order allocs but the object is
  1302. * smaller than a page size then we can fallback in emergencies
  1303. * to the page allocator via kmalloc_large. The page allocator may
  1304. * have failed to obtain a higher order page and we can try to
  1305. * allocate a single page if the object fits into a single page.
  1306. * That is only possible if certain conditions are met that are being
  1307. * checked when a slab is created.
  1308. */
  1309. if (!(gfpflags & __GFP_NORETRY) && (s->flags & __PAGE_ALLOC_FALLBACK))
  1310. return kmalloc_large(s->objsize, gfpflags);
  1311. return NULL;
  1312. debug:
  1313. object = c->page->freelist;
  1314. if (!alloc_debug_processing(s, c->page, object, addr))
  1315. goto another_slab;
  1316. c->page->inuse++;
  1317. c->page->freelist = object[c->offset];
  1318. c->node = -1;
  1319. goto unlock_out;
  1320. }
  1321. /*
  1322. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1323. * have the fastpath folded into their functions. So no function call
  1324. * overhead for requests that can be satisfied on the fastpath.
  1325. *
  1326. * The fastpath works by first checking if the lockless freelist can be used.
  1327. * If not then __slab_alloc is called for slow processing.
  1328. *
  1329. * Otherwise we can simply pick the next object from the lockless free list.
  1330. */
  1331. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1332. gfp_t gfpflags, int node, void *addr)
  1333. {
  1334. void **object;
  1335. struct kmem_cache_cpu *c;
  1336. unsigned long flags;
  1337. local_irq_save(flags);
  1338. c = get_cpu_slab(s, smp_processor_id());
  1339. if (unlikely(!c->freelist || !node_match(c, node)))
  1340. object = __slab_alloc(s, gfpflags, node, addr, c);
  1341. else {
  1342. object = c->freelist;
  1343. c->freelist = object[c->offset];
  1344. stat(c, ALLOC_FASTPATH);
  1345. }
  1346. local_irq_restore(flags);
  1347. if (unlikely((gfpflags & __GFP_ZERO) && object))
  1348. memset(object, 0, c->objsize);
  1349. return object;
  1350. }
  1351. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1352. {
  1353. return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
  1354. }
  1355. EXPORT_SYMBOL(kmem_cache_alloc);
  1356. #ifdef CONFIG_NUMA
  1357. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1358. {
  1359. return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
  1360. }
  1361. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1362. #endif
  1363. /*
  1364. * Slow patch handling. This may still be called frequently since objects
  1365. * have a longer lifetime than the cpu slabs in most processing loads.
  1366. *
  1367. * So we still attempt to reduce cache line usage. Just take the slab
  1368. * lock and free the item. If there is no additional partial page
  1369. * handling required then we can return immediately.
  1370. */
  1371. static void __slab_free(struct kmem_cache *s, struct page *page,
  1372. void *x, void *addr, unsigned int offset)
  1373. {
  1374. void *prior;
  1375. void **object = (void *)x;
  1376. struct kmem_cache_cpu *c;
  1377. c = get_cpu_slab(s, raw_smp_processor_id());
  1378. stat(c, FREE_SLOWPATH);
  1379. slab_lock(page);
  1380. if (unlikely(SlabDebug(page)))
  1381. goto debug;
  1382. checks_ok:
  1383. prior = object[offset] = page->freelist;
  1384. page->freelist = object;
  1385. page->inuse--;
  1386. if (unlikely(SlabFrozen(page))) {
  1387. stat(c, FREE_FROZEN);
  1388. goto out_unlock;
  1389. }
  1390. if (unlikely(!page->inuse))
  1391. goto slab_empty;
  1392. /*
  1393. * Objects left in the slab. If it
  1394. * was not on the partial list before
  1395. * then add it.
  1396. */
  1397. if (unlikely(!prior)) {
  1398. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1399. stat(c, FREE_ADD_PARTIAL);
  1400. }
  1401. out_unlock:
  1402. slab_unlock(page);
  1403. return;
  1404. slab_empty:
  1405. if (prior) {
  1406. /*
  1407. * Slab still on the partial list.
  1408. */
  1409. remove_partial(s, page);
  1410. stat(c, FREE_REMOVE_PARTIAL);
  1411. }
  1412. slab_unlock(page);
  1413. stat(c, FREE_SLAB);
  1414. discard_slab(s, page);
  1415. return;
  1416. debug:
  1417. if (!free_debug_processing(s, page, x, addr))
  1418. goto out_unlock;
  1419. goto checks_ok;
  1420. }
  1421. /*
  1422. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1423. * can perform fastpath freeing without additional function calls.
  1424. *
  1425. * The fastpath is only possible if we are freeing to the current cpu slab
  1426. * of this processor. This typically the case if we have just allocated
  1427. * the item before.
  1428. *
  1429. * If fastpath is not possible then fall back to __slab_free where we deal
  1430. * with all sorts of special processing.
  1431. */
  1432. static __always_inline void slab_free(struct kmem_cache *s,
  1433. struct page *page, void *x, void *addr)
  1434. {
  1435. void **object = (void *)x;
  1436. struct kmem_cache_cpu *c;
  1437. unsigned long flags;
  1438. local_irq_save(flags);
  1439. c = get_cpu_slab(s, smp_processor_id());
  1440. debug_check_no_locks_freed(object, c->objsize);
  1441. if (likely(page == c->page && c->node >= 0)) {
  1442. object[c->offset] = c->freelist;
  1443. c->freelist = object;
  1444. stat(c, FREE_FASTPATH);
  1445. } else
  1446. __slab_free(s, page, x, addr, c->offset);
  1447. local_irq_restore(flags);
  1448. }
  1449. void kmem_cache_free(struct kmem_cache *s, void *x)
  1450. {
  1451. struct page *page;
  1452. page = virt_to_head_page(x);
  1453. slab_free(s, page, x, __builtin_return_address(0));
  1454. }
  1455. EXPORT_SYMBOL(kmem_cache_free);
  1456. /* Figure out on which slab object the object resides */
  1457. static struct page *get_object_page(const void *x)
  1458. {
  1459. struct page *page = virt_to_head_page(x);
  1460. if (!PageSlab(page))
  1461. return NULL;
  1462. return page;
  1463. }
  1464. /*
  1465. * Object placement in a slab is made very easy because we always start at
  1466. * offset 0. If we tune the size of the object to the alignment then we can
  1467. * get the required alignment by putting one properly sized object after
  1468. * another.
  1469. *
  1470. * Notice that the allocation order determines the sizes of the per cpu
  1471. * caches. Each processor has always one slab available for allocations.
  1472. * Increasing the allocation order reduces the number of times that slabs
  1473. * must be moved on and off the partial lists and is therefore a factor in
  1474. * locking overhead.
  1475. */
  1476. /*
  1477. * Mininum / Maximum order of slab pages. This influences locking overhead
  1478. * and slab fragmentation. A higher order reduces the number of partial slabs
  1479. * and increases the number of allocations possible without having to
  1480. * take the list_lock.
  1481. */
  1482. static int slub_min_order;
  1483. static int slub_max_order = DEFAULT_MAX_ORDER;
  1484. static int slub_min_objects = DEFAULT_MIN_OBJECTS;
  1485. /*
  1486. * Merge control. If this is set then no merging of slab caches will occur.
  1487. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1488. */
  1489. static int slub_nomerge;
  1490. /*
  1491. * Calculate the order of allocation given an slab object size.
  1492. *
  1493. * The order of allocation has significant impact on performance and other
  1494. * system components. Generally order 0 allocations should be preferred since
  1495. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1496. * be problematic to put into order 0 slabs because there may be too much
  1497. * unused space left. We go to a higher order if more than 1/8th of the slab
  1498. * would be wasted.
  1499. *
  1500. * In order to reach satisfactory performance we must ensure that a minimum
  1501. * number of objects is in one slab. Otherwise we may generate too much
  1502. * activity on the partial lists which requires taking the list_lock. This is
  1503. * less a concern for large slabs though which are rarely used.
  1504. *
  1505. * slub_max_order specifies the order where we begin to stop considering the
  1506. * number of objects in a slab as critical. If we reach slub_max_order then
  1507. * we try to keep the page order as low as possible. So we accept more waste
  1508. * of space in favor of a small page order.
  1509. *
  1510. * Higher order allocations also allow the placement of more objects in a
  1511. * slab and thereby reduce object handling overhead. If the user has
  1512. * requested a higher mininum order then we start with that one instead of
  1513. * the smallest order which will fit the object.
  1514. */
  1515. static inline int slab_order(int size, int min_objects,
  1516. int max_order, int fract_leftover)
  1517. {
  1518. int order;
  1519. int rem;
  1520. int min_order = slub_min_order;
  1521. for (order = max(min_order,
  1522. fls(min_objects * size - 1) - PAGE_SHIFT);
  1523. order <= max_order; order++) {
  1524. unsigned long slab_size = PAGE_SIZE << order;
  1525. if (slab_size < min_objects * size)
  1526. continue;
  1527. rem = slab_size % size;
  1528. if (rem <= slab_size / fract_leftover)
  1529. break;
  1530. }
  1531. return order;
  1532. }
  1533. static inline int calculate_order(int size)
  1534. {
  1535. int order;
  1536. int min_objects;
  1537. int fraction;
  1538. /*
  1539. * Attempt to find best configuration for a slab. This
  1540. * works by first attempting to generate a layout with
  1541. * the best configuration and backing off gradually.
  1542. *
  1543. * First we reduce the acceptable waste in a slab. Then
  1544. * we reduce the minimum objects required in a slab.
  1545. */
  1546. min_objects = slub_min_objects;
  1547. while (min_objects > 1) {
  1548. fraction = 8;
  1549. while (fraction >= 4) {
  1550. order = slab_order(size, min_objects,
  1551. slub_max_order, fraction);
  1552. if (order <= slub_max_order)
  1553. return order;
  1554. fraction /= 2;
  1555. }
  1556. min_objects /= 2;
  1557. }
  1558. /*
  1559. * We were unable to place multiple objects in a slab. Now
  1560. * lets see if we can place a single object there.
  1561. */
  1562. order = slab_order(size, 1, slub_max_order, 1);
  1563. if (order <= slub_max_order)
  1564. return order;
  1565. /*
  1566. * Doh this slab cannot be placed using slub_max_order.
  1567. */
  1568. order = slab_order(size, 1, MAX_ORDER, 1);
  1569. if (order <= MAX_ORDER)
  1570. return order;
  1571. return -ENOSYS;
  1572. }
  1573. /*
  1574. * Figure out what the alignment of the objects will be.
  1575. */
  1576. static unsigned long calculate_alignment(unsigned long flags,
  1577. unsigned long align, unsigned long size)
  1578. {
  1579. /*
  1580. * If the user wants hardware cache aligned objects then
  1581. * follow that suggestion if the object is sufficiently
  1582. * large.
  1583. *
  1584. * The hardware cache alignment cannot override the
  1585. * specified alignment though. If that is greater
  1586. * then use it.
  1587. */
  1588. if ((flags & SLAB_HWCACHE_ALIGN) &&
  1589. size > cache_line_size() / 2)
  1590. return max_t(unsigned long, align, cache_line_size());
  1591. if (align < ARCH_SLAB_MINALIGN)
  1592. return ARCH_SLAB_MINALIGN;
  1593. return ALIGN(align, sizeof(void *));
  1594. }
  1595. static void init_kmem_cache_cpu(struct kmem_cache *s,
  1596. struct kmem_cache_cpu *c)
  1597. {
  1598. c->page = NULL;
  1599. c->freelist = NULL;
  1600. c->node = 0;
  1601. c->offset = s->offset / sizeof(void *);
  1602. c->objsize = s->objsize;
  1603. }
  1604. static void init_kmem_cache_node(struct kmem_cache_node *n)
  1605. {
  1606. n->nr_partial = 0;
  1607. atomic_long_set(&n->nr_slabs, 0);
  1608. spin_lock_init(&n->list_lock);
  1609. INIT_LIST_HEAD(&n->partial);
  1610. #ifdef CONFIG_SLUB_DEBUG
  1611. INIT_LIST_HEAD(&n->full);
  1612. #endif
  1613. }
  1614. #ifdef CONFIG_SMP
  1615. /*
  1616. * Per cpu array for per cpu structures.
  1617. *
  1618. * The per cpu array places all kmem_cache_cpu structures from one processor
  1619. * close together meaning that it becomes possible that multiple per cpu
  1620. * structures are contained in one cacheline. This may be particularly
  1621. * beneficial for the kmalloc caches.
  1622. *
  1623. * A desktop system typically has around 60-80 slabs. With 100 here we are
  1624. * likely able to get per cpu structures for all caches from the array defined
  1625. * here. We must be able to cover all kmalloc caches during bootstrap.
  1626. *
  1627. * If the per cpu array is exhausted then fall back to kmalloc
  1628. * of individual cachelines. No sharing is possible then.
  1629. */
  1630. #define NR_KMEM_CACHE_CPU 100
  1631. static DEFINE_PER_CPU(struct kmem_cache_cpu,
  1632. kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
  1633. static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
  1634. static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
  1635. static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
  1636. int cpu, gfp_t flags)
  1637. {
  1638. struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
  1639. if (c)
  1640. per_cpu(kmem_cache_cpu_free, cpu) =
  1641. (void *)c->freelist;
  1642. else {
  1643. /* Table overflow: So allocate ourselves */
  1644. c = kmalloc_node(
  1645. ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
  1646. flags, cpu_to_node(cpu));
  1647. if (!c)
  1648. return NULL;
  1649. }
  1650. init_kmem_cache_cpu(s, c);
  1651. return c;
  1652. }
  1653. static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
  1654. {
  1655. if (c < per_cpu(kmem_cache_cpu, cpu) ||
  1656. c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
  1657. kfree(c);
  1658. return;
  1659. }
  1660. c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
  1661. per_cpu(kmem_cache_cpu_free, cpu) = c;
  1662. }
  1663. static void free_kmem_cache_cpus(struct kmem_cache *s)
  1664. {
  1665. int cpu;
  1666. for_each_online_cpu(cpu) {
  1667. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1668. if (c) {
  1669. s->cpu_slab[cpu] = NULL;
  1670. free_kmem_cache_cpu(c, cpu);
  1671. }
  1672. }
  1673. }
  1674. static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1675. {
  1676. int cpu;
  1677. for_each_online_cpu(cpu) {
  1678. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  1679. if (c)
  1680. continue;
  1681. c = alloc_kmem_cache_cpu(s, cpu, flags);
  1682. if (!c) {
  1683. free_kmem_cache_cpus(s);
  1684. return 0;
  1685. }
  1686. s->cpu_slab[cpu] = c;
  1687. }
  1688. return 1;
  1689. }
  1690. /*
  1691. * Initialize the per cpu array.
  1692. */
  1693. static void init_alloc_cpu_cpu(int cpu)
  1694. {
  1695. int i;
  1696. if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
  1697. return;
  1698. for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
  1699. free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
  1700. cpu_set(cpu, kmem_cach_cpu_free_init_once);
  1701. }
  1702. static void __init init_alloc_cpu(void)
  1703. {
  1704. int cpu;
  1705. for_each_online_cpu(cpu)
  1706. init_alloc_cpu_cpu(cpu);
  1707. }
  1708. #else
  1709. static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
  1710. static inline void init_alloc_cpu(void) {}
  1711. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
  1712. {
  1713. init_kmem_cache_cpu(s, &s->cpu_slab);
  1714. return 1;
  1715. }
  1716. #endif
  1717. #ifdef CONFIG_NUMA
  1718. /*
  1719. * No kmalloc_node yet so do it by hand. We know that this is the first
  1720. * slab on the node for this slabcache. There are no concurrent accesses
  1721. * possible.
  1722. *
  1723. * Note that this function only works on the kmalloc_node_cache
  1724. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1725. * memory on a fresh node that has no slab structures yet.
  1726. */
  1727. static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
  1728. int node)
  1729. {
  1730. struct page *page;
  1731. struct kmem_cache_node *n;
  1732. unsigned long flags;
  1733. BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
  1734. page = new_slab(kmalloc_caches, gfpflags, node);
  1735. BUG_ON(!page);
  1736. if (page_to_nid(page) != node) {
  1737. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1738. "node %d\n", node);
  1739. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1740. "in order to be able to continue\n");
  1741. }
  1742. n = page->freelist;
  1743. BUG_ON(!n);
  1744. page->freelist = get_freepointer(kmalloc_caches, n);
  1745. page->inuse++;
  1746. kmalloc_caches->node[node] = n;
  1747. #ifdef CONFIG_SLUB_DEBUG
  1748. init_object(kmalloc_caches, n, 1);
  1749. init_tracking(kmalloc_caches, n);
  1750. #endif
  1751. init_kmem_cache_node(n);
  1752. atomic_long_inc(&n->nr_slabs);
  1753. /*
  1754. * lockdep requires consistent irq usage for each lock
  1755. * so even though there cannot be a race this early in
  1756. * the boot sequence, we still disable irqs.
  1757. */
  1758. local_irq_save(flags);
  1759. add_partial(n, page, 0);
  1760. local_irq_restore(flags);
  1761. return n;
  1762. }
  1763. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1764. {
  1765. int node;
  1766. for_each_node_state(node, N_NORMAL_MEMORY) {
  1767. struct kmem_cache_node *n = s->node[node];
  1768. if (n && n != &s->local_node)
  1769. kmem_cache_free(kmalloc_caches, n);
  1770. s->node[node] = NULL;
  1771. }
  1772. }
  1773. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1774. {
  1775. int node;
  1776. int local_node;
  1777. if (slab_state >= UP)
  1778. local_node = page_to_nid(virt_to_page(s));
  1779. else
  1780. local_node = 0;
  1781. for_each_node_state(node, N_NORMAL_MEMORY) {
  1782. struct kmem_cache_node *n;
  1783. if (local_node == node)
  1784. n = &s->local_node;
  1785. else {
  1786. if (slab_state == DOWN) {
  1787. n = early_kmem_cache_node_alloc(gfpflags,
  1788. node);
  1789. continue;
  1790. }
  1791. n = kmem_cache_alloc_node(kmalloc_caches,
  1792. gfpflags, node);
  1793. if (!n) {
  1794. free_kmem_cache_nodes(s);
  1795. return 0;
  1796. }
  1797. }
  1798. s->node[node] = n;
  1799. init_kmem_cache_node(n);
  1800. }
  1801. return 1;
  1802. }
  1803. #else
  1804. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1805. {
  1806. }
  1807. static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
  1808. {
  1809. init_kmem_cache_node(&s->local_node);
  1810. return 1;
  1811. }
  1812. #endif
  1813. /*
  1814. * calculate_sizes() determines the order and the distribution of data within
  1815. * a slab object.
  1816. */
  1817. static int calculate_sizes(struct kmem_cache *s)
  1818. {
  1819. unsigned long flags = s->flags;
  1820. unsigned long size = s->objsize;
  1821. unsigned long align = s->align;
  1822. /*
  1823. * Determine if we can poison the object itself. If the user of
  1824. * the slab may touch the object after free or before allocation
  1825. * then we should never poison the object itself.
  1826. */
  1827. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1828. !s->ctor)
  1829. s->flags |= __OBJECT_POISON;
  1830. else
  1831. s->flags &= ~__OBJECT_POISON;
  1832. /*
  1833. * Round up object size to the next word boundary. We can only
  1834. * place the free pointer at word boundaries and this determines
  1835. * the possible location of the free pointer.
  1836. */
  1837. size = ALIGN(size, sizeof(void *));
  1838. #ifdef CONFIG_SLUB_DEBUG
  1839. /*
  1840. * If we are Redzoning then check if there is some space between the
  1841. * end of the object and the free pointer. If not then add an
  1842. * additional word to have some bytes to store Redzone information.
  1843. */
  1844. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  1845. size += sizeof(void *);
  1846. #endif
  1847. /*
  1848. * With that we have determined the number of bytes in actual use
  1849. * by the object. This is the potential offset to the free pointer.
  1850. */
  1851. s->inuse = size;
  1852. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  1853. s->ctor)) {
  1854. /*
  1855. * Relocate free pointer after the object if it is not
  1856. * permitted to overwrite the first word of the object on
  1857. * kmem_cache_free.
  1858. *
  1859. * This is the case if we do RCU, have a constructor or
  1860. * destructor or are poisoning the objects.
  1861. */
  1862. s->offset = size;
  1863. size += sizeof(void *);
  1864. }
  1865. #ifdef CONFIG_SLUB_DEBUG
  1866. if (flags & SLAB_STORE_USER)
  1867. /*
  1868. * Need to store information about allocs and frees after
  1869. * the object.
  1870. */
  1871. size += 2 * sizeof(struct track);
  1872. if (flags & SLAB_RED_ZONE)
  1873. /*
  1874. * Add some empty padding so that we can catch
  1875. * overwrites from earlier objects rather than let
  1876. * tracking information or the free pointer be
  1877. * corrupted if an user writes before the start
  1878. * of the object.
  1879. */
  1880. size += sizeof(void *);
  1881. #endif
  1882. /*
  1883. * Determine the alignment based on various parameters that the
  1884. * user specified and the dynamic determination of cache line size
  1885. * on bootup.
  1886. */
  1887. align = calculate_alignment(flags, align, s->objsize);
  1888. /*
  1889. * SLUB stores one object immediately after another beginning from
  1890. * offset 0. In order to align the objects we have to simply size
  1891. * each object to conform to the alignment.
  1892. */
  1893. size = ALIGN(size, align);
  1894. s->size = size;
  1895. if ((flags & __KMALLOC_CACHE) &&
  1896. PAGE_SIZE / size < slub_min_objects) {
  1897. /*
  1898. * Kmalloc cache that would not have enough objects in
  1899. * an order 0 page. Kmalloc slabs can fallback to
  1900. * page allocator order 0 allocs so take a reasonably large
  1901. * order that will allows us a good number of objects.
  1902. */
  1903. s->order = max(slub_max_order, PAGE_ALLOC_COSTLY_ORDER);
  1904. s->flags |= __PAGE_ALLOC_FALLBACK;
  1905. s->allocflags |= __GFP_NOWARN;
  1906. } else
  1907. s->order = calculate_order(size);
  1908. if (s->order < 0)
  1909. return 0;
  1910. s->allocflags = 0;
  1911. if (s->order)
  1912. s->allocflags |= __GFP_COMP;
  1913. if (s->flags & SLAB_CACHE_DMA)
  1914. s->allocflags |= SLUB_DMA;
  1915. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  1916. s->allocflags |= __GFP_RECLAIMABLE;
  1917. /*
  1918. * Determine the number of objects per slab
  1919. */
  1920. s->objects = (PAGE_SIZE << s->order) / size;
  1921. return !!s->objects;
  1922. }
  1923. static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
  1924. const char *name, size_t size,
  1925. size_t align, unsigned long flags,
  1926. void (*ctor)(struct kmem_cache *, void *))
  1927. {
  1928. memset(s, 0, kmem_size);
  1929. s->name = name;
  1930. s->ctor = ctor;
  1931. s->objsize = size;
  1932. s->align = align;
  1933. s->flags = kmem_cache_flags(size, flags, name, ctor);
  1934. if (!calculate_sizes(s))
  1935. goto error;
  1936. s->refcount = 1;
  1937. #ifdef CONFIG_NUMA
  1938. s->remote_node_defrag_ratio = 100;
  1939. #endif
  1940. if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
  1941. goto error;
  1942. if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
  1943. return 1;
  1944. free_kmem_cache_nodes(s);
  1945. error:
  1946. if (flags & SLAB_PANIC)
  1947. panic("Cannot create slab %s size=%lu realsize=%u "
  1948. "order=%u offset=%u flags=%lx\n",
  1949. s->name, (unsigned long)size, s->size, s->order,
  1950. s->offset, flags);
  1951. return 0;
  1952. }
  1953. /*
  1954. * Check if a given pointer is valid
  1955. */
  1956. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  1957. {
  1958. struct page *page;
  1959. page = get_object_page(object);
  1960. if (!page || s != page->slab)
  1961. /* No slab or wrong slab */
  1962. return 0;
  1963. if (!check_valid_pointer(s, page, object))
  1964. return 0;
  1965. /*
  1966. * We could also check if the object is on the slabs freelist.
  1967. * But this would be too expensive and it seems that the main
  1968. * purpose of kmem_ptr_valid is to check if the object belongs
  1969. * to a certain slab.
  1970. */
  1971. return 1;
  1972. }
  1973. EXPORT_SYMBOL(kmem_ptr_validate);
  1974. /*
  1975. * Determine the size of a slab object
  1976. */
  1977. unsigned int kmem_cache_size(struct kmem_cache *s)
  1978. {
  1979. return s->objsize;
  1980. }
  1981. EXPORT_SYMBOL(kmem_cache_size);
  1982. const char *kmem_cache_name(struct kmem_cache *s)
  1983. {
  1984. return s->name;
  1985. }
  1986. EXPORT_SYMBOL(kmem_cache_name);
  1987. /*
  1988. * Attempt to free all slabs on a node. Return the number of slabs we
  1989. * were unable to free.
  1990. */
  1991. static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
  1992. struct list_head *list)
  1993. {
  1994. int slabs_inuse = 0;
  1995. unsigned long flags;
  1996. struct page *page, *h;
  1997. spin_lock_irqsave(&n->list_lock, flags);
  1998. list_for_each_entry_safe(page, h, list, lru)
  1999. if (!page->inuse) {
  2000. list_del(&page->lru);
  2001. discard_slab(s, page);
  2002. } else
  2003. slabs_inuse++;
  2004. spin_unlock_irqrestore(&n->list_lock, flags);
  2005. return slabs_inuse;
  2006. }
  2007. /*
  2008. * Release all resources used by a slab cache.
  2009. */
  2010. static inline int kmem_cache_close(struct kmem_cache *s)
  2011. {
  2012. int node;
  2013. flush_all(s);
  2014. /* Attempt to free all objects */
  2015. free_kmem_cache_cpus(s);
  2016. for_each_node_state(node, N_NORMAL_MEMORY) {
  2017. struct kmem_cache_node *n = get_node(s, node);
  2018. n->nr_partial -= free_list(s, n, &n->partial);
  2019. if (atomic_long_read(&n->nr_slabs))
  2020. return 1;
  2021. }
  2022. free_kmem_cache_nodes(s);
  2023. return 0;
  2024. }
  2025. /*
  2026. * Close a cache and release the kmem_cache structure
  2027. * (must be used for caches created using kmem_cache_create)
  2028. */
  2029. void kmem_cache_destroy(struct kmem_cache *s)
  2030. {
  2031. down_write(&slub_lock);
  2032. s->refcount--;
  2033. if (!s->refcount) {
  2034. list_del(&s->list);
  2035. up_write(&slub_lock);
  2036. if (kmem_cache_close(s))
  2037. WARN_ON(1);
  2038. sysfs_slab_remove(s);
  2039. } else
  2040. up_write(&slub_lock);
  2041. }
  2042. EXPORT_SYMBOL(kmem_cache_destroy);
  2043. /********************************************************************
  2044. * Kmalloc subsystem
  2045. *******************************************************************/
  2046. struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
  2047. EXPORT_SYMBOL(kmalloc_caches);
  2048. #ifdef CONFIG_ZONE_DMA
  2049. static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
  2050. #endif
  2051. static int __init setup_slub_min_order(char *str)
  2052. {
  2053. get_option(&str, &slub_min_order);
  2054. return 1;
  2055. }
  2056. __setup("slub_min_order=", setup_slub_min_order);
  2057. static int __init setup_slub_max_order(char *str)
  2058. {
  2059. get_option(&str, &slub_max_order);
  2060. return 1;
  2061. }
  2062. __setup("slub_max_order=", setup_slub_max_order);
  2063. static int __init setup_slub_min_objects(char *str)
  2064. {
  2065. get_option(&str, &slub_min_objects);
  2066. return 1;
  2067. }
  2068. __setup("slub_min_objects=", setup_slub_min_objects);
  2069. static int __init setup_slub_nomerge(char *str)
  2070. {
  2071. slub_nomerge = 1;
  2072. return 1;
  2073. }
  2074. __setup("slub_nomerge", setup_slub_nomerge);
  2075. static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
  2076. const char *name, int size, gfp_t gfp_flags)
  2077. {
  2078. unsigned int flags = 0;
  2079. if (gfp_flags & SLUB_DMA)
  2080. flags = SLAB_CACHE_DMA;
  2081. down_write(&slub_lock);
  2082. if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
  2083. flags | __KMALLOC_CACHE, NULL))
  2084. goto panic;
  2085. list_add(&s->list, &slab_caches);
  2086. up_write(&slub_lock);
  2087. if (sysfs_slab_add(s))
  2088. goto panic;
  2089. return s;
  2090. panic:
  2091. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2092. }
  2093. #ifdef CONFIG_ZONE_DMA
  2094. static void sysfs_add_func(struct work_struct *w)
  2095. {
  2096. struct kmem_cache *s;
  2097. down_write(&slub_lock);
  2098. list_for_each_entry(s, &slab_caches, list) {
  2099. if (s->flags & __SYSFS_ADD_DEFERRED) {
  2100. s->flags &= ~__SYSFS_ADD_DEFERRED;
  2101. sysfs_slab_add(s);
  2102. }
  2103. }
  2104. up_write(&slub_lock);
  2105. }
  2106. static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
  2107. static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
  2108. {
  2109. struct kmem_cache *s;
  2110. char *text;
  2111. size_t realsize;
  2112. s = kmalloc_caches_dma[index];
  2113. if (s)
  2114. return s;
  2115. /* Dynamically create dma cache */
  2116. if (flags & __GFP_WAIT)
  2117. down_write(&slub_lock);
  2118. else {
  2119. if (!down_write_trylock(&slub_lock))
  2120. goto out;
  2121. }
  2122. if (kmalloc_caches_dma[index])
  2123. goto unlock_out;
  2124. realsize = kmalloc_caches[index].objsize;
  2125. text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
  2126. (unsigned int)realsize);
  2127. s = kmalloc(kmem_size, flags & ~SLUB_DMA);
  2128. if (!s || !text || !kmem_cache_open(s, flags, text,
  2129. realsize, ARCH_KMALLOC_MINALIGN,
  2130. SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
  2131. kfree(s);
  2132. kfree(text);
  2133. goto unlock_out;
  2134. }
  2135. list_add(&s->list, &slab_caches);
  2136. kmalloc_caches_dma[index] = s;
  2137. schedule_work(&sysfs_add_work);
  2138. unlock_out:
  2139. up_write(&slub_lock);
  2140. out:
  2141. return kmalloc_caches_dma[index];
  2142. }
  2143. #endif
  2144. /*
  2145. * Conversion table for small slabs sizes / 8 to the index in the
  2146. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2147. * of two cache sizes there. The size of larger slabs can be determined using
  2148. * fls.
  2149. */
  2150. static s8 size_index[24] = {
  2151. 3, /* 8 */
  2152. 4, /* 16 */
  2153. 5, /* 24 */
  2154. 5, /* 32 */
  2155. 6, /* 40 */
  2156. 6, /* 48 */
  2157. 6, /* 56 */
  2158. 6, /* 64 */
  2159. 1, /* 72 */
  2160. 1, /* 80 */
  2161. 1, /* 88 */
  2162. 1, /* 96 */
  2163. 7, /* 104 */
  2164. 7, /* 112 */
  2165. 7, /* 120 */
  2166. 7, /* 128 */
  2167. 2, /* 136 */
  2168. 2, /* 144 */
  2169. 2, /* 152 */
  2170. 2, /* 160 */
  2171. 2, /* 168 */
  2172. 2, /* 176 */
  2173. 2, /* 184 */
  2174. 2 /* 192 */
  2175. };
  2176. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2177. {
  2178. int index;
  2179. if (size <= 192) {
  2180. if (!size)
  2181. return ZERO_SIZE_PTR;
  2182. index = size_index[(size - 1) / 8];
  2183. } else
  2184. index = fls(size - 1);
  2185. #ifdef CONFIG_ZONE_DMA
  2186. if (unlikely((flags & SLUB_DMA)))
  2187. return dma_kmalloc_cache(index, flags);
  2188. #endif
  2189. return &kmalloc_caches[index];
  2190. }
  2191. void *__kmalloc(size_t size, gfp_t flags)
  2192. {
  2193. struct kmem_cache *s;
  2194. if (unlikely(size > PAGE_SIZE))
  2195. return kmalloc_large(size, flags);
  2196. s = get_slab(size, flags);
  2197. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2198. return s;
  2199. return slab_alloc(s, flags, -1, __builtin_return_address(0));
  2200. }
  2201. EXPORT_SYMBOL(__kmalloc);
  2202. #ifdef CONFIG_NUMA
  2203. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2204. {
  2205. struct kmem_cache *s;
  2206. if (unlikely(size > PAGE_SIZE))
  2207. return kmalloc_large(size, flags);
  2208. s = get_slab(size, flags);
  2209. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2210. return s;
  2211. return slab_alloc(s, flags, node, __builtin_return_address(0));
  2212. }
  2213. EXPORT_SYMBOL(__kmalloc_node);
  2214. #endif
  2215. size_t ksize(const void *object)
  2216. {
  2217. struct page *page;
  2218. struct kmem_cache *s;
  2219. BUG_ON(!object);
  2220. if (unlikely(object == ZERO_SIZE_PTR))
  2221. return 0;
  2222. page = virt_to_head_page(object);
  2223. BUG_ON(!page);
  2224. if (unlikely(!PageSlab(page)))
  2225. return PAGE_SIZE << compound_order(page);
  2226. s = page->slab;
  2227. BUG_ON(!s);
  2228. /*
  2229. * Debugging requires use of the padding between object
  2230. * and whatever may come after it.
  2231. */
  2232. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2233. return s->objsize;
  2234. /*
  2235. * If we have the need to store the freelist pointer
  2236. * back there or track user information then we can
  2237. * only use the space before that information.
  2238. */
  2239. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2240. return s->inuse;
  2241. /*
  2242. * Else we can use all the padding etc for the allocation
  2243. */
  2244. return s->size;
  2245. }
  2246. EXPORT_SYMBOL(ksize);
  2247. void kfree(const void *x)
  2248. {
  2249. struct page *page;
  2250. void *object = (void *)x;
  2251. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2252. return;
  2253. page = virt_to_head_page(x);
  2254. if (unlikely(!PageSlab(page))) {
  2255. put_page(page);
  2256. return;
  2257. }
  2258. slab_free(page->slab, page, object, __builtin_return_address(0));
  2259. }
  2260. EXPORT_SYMBOL(kfree);
  2261. static unsigned long count_partial(struct kmem_cache_node *n)
  2262. {
  2263. unsigned long flags;
  2264. unsigned long x = 0;
  2265. struct page *page;
  2266. spin_lock_irqsave(&n->list_lock, flags);
  2267. list_for_each_entry(page, &n->partial, lru)
  2268. x += page->inuse;
  2269. spin_unlock_irqrestore(&n->list_lock, flags);
  2270. return x;
  2271. }
  2272. /*
  2273. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2274. * the remaining slabs by the number of items in use. The slabs with the
  2275. * most items in use come first. New allocations will then fill those up
  2276. * and thus they can be removed from the partial lists.
  2277. *
  2278. * The slabs with the least items are placed last. This results in them
  2279. * being allocated from last increasing the chance that the last objects
  2280. * are freed in them.
  2281. */
  2282. int kmem_cache_shrink(struct kmem_cache *s)
  2283. {
  2284. int node;
  2285. int i;
  2286. struct kmem_cache_node *n;
  2287. struct page *page;
  2288. struct page *t;
  2289. struct list_head *slabs_by_inuse =
  2290. kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
  2291. unsigned long flags;
  2292. if (!slabs_by_inuse)
  2293. return -ENOMEM;
  2294. flush_all(s);
  2295. for_each_node_state(node, N_NORMAL_MEMORY) {
  2296. n = get_node(s, node);
  2297. if (!n->nr_partial)
  2298. continue;
  2299. for (i = 0; i < s->objects; i++)
  2300. INIT_LIST_HEAD(slabs_by_inuse + i);
  2301. spin_lock_irqsave(&n->list_lock, flags);
  2302. /*
  2303. * Build lists indexed by the items in use in each slab.
  2304. *
  2305. * Note that concurrent frees may occur while we hold the
  2306. * list_lock. page->inuse here is the upper limit.
  2307. */
  2308. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2309. if (!page->inuse && slab_trylock(page)) {
  2310. /*
  2311. * Must hold slab lock here because slab_free
  2312. * may have freed the last object and be
  2313. * waiting to release the slab.
  2314. */
  2315. list_del(&page->lru);
  2316. n->nr_partial--;
  2317. slab_unlock(page);
  2318. discard_slab(s, page);
  2319. } else {
  2320. list_move(&page->lru,
  2321. slabs_by_inuse + page->inuse);
  2322. }
  2323. }
  2324. /*
  2325. * Rebuild the partial list with the slabs filled up most
  2326. * first and the least used slabs at the end.
  2327. */
  2328. for (i = s->objects - 1; i >= 0; i--)
  2329. list_splice(slabs_by_inuse + i, n->partial.prev);
  2330. spin_unlock_irqrestore(&n->list_lock, flags);
  2331. }
  2332. kfree(slabs_by_inuse);
  2333. return 0;
  2334. }
  2335. EXPORT_SYMBOL(kmem_cache_shrink);
  2336. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  2337. static int slab_mem_going_offline_callback(void *arg)
  2338. {
  2339. struct kmem_cache *s;
  2340. down_read(&slub_lock);
  2341. list_for_each_entry(s, &slab_caches, list)
  2342. kmem_cache_shrink(s);
  2343. up_read(&slub_lock);
  2344. return 0;
  2345. }
  2346. static void slab_mem_offline_callback(void *arg)
  2347. {
  2348. struct kmem_cache_node *n;
  2349. struct kmem_cache *s;
  2350. struct memory_notify *marg = arg;
  2351. int offline_node;
  2352. offline_node = marg->status_change_nid;
  2353. /*
  2354. * If the node still has available memory. we need kmem_cache_node
  2355. * for it yet.
  2356. */
  2357. if (offline_node < 0)
  2358. return;
  2359. down_read(&slub_lock);
  2360. list_for_each_entry(s, &slab_caches, list) {
  2361. n = get_node(s, offline_node);
  2362. if (n) {
  2363. /*
  2364. * if n->nr_slabs > 0, slabs still exist on the node
  2365. * that is going down. We were unable to free them,
  2366. * and offline_pages() function shoudn't call this
  2367. * callback. So, we must fail.
  2368. */
  2369. BUG_ON(atomic_long_read(&n->nr_slabs));
  2370. s->node[offline_node] = NULL;
  2371. kmem_cache_free(kmalloc_caches, n);
  2372. }
  2373. }
  2374. up_read(&slub_lock);
  2375. }
  2376. static int slab_mem_going_online_callback(void *arg)
  2377. {
  2378. struct kmem_cache_node *n;
  2379. struct kmem_cache *s;
  2380. struct memory_notify *marg = arg;
  2381. int nid = marg->status_change_nid;
  2382. int ret = 0;
  2383. /*
  2384. * If the node's memory is already available, then kmem_cache_node is
  2385. * already created. Nothing to do.
  2386. */
  2387. if (nid < 0)
  2388. return 0;
  2389. /*
  2390. * We are bringing a node online. No memory is availabe yet. We must
  2391. * allocate a kmem_cache_node structure in order to bring the node
  2392. * online.
  2393. */
  2394. down_read(&slub_lock);
  2395. list_for_each_entry(s, &slab_caches, list) {
  2396. /*
  2397. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2398. * since memory is not yet available from the node that
  2399. * is brought up.
  2400. */
  2401. n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
  2402. if (!n) {
  2403. ret = -ENOMEM;
  2404. goto out;
  2405. }
  2406. init_kmem_cache_node(n);
  2407. s->node[nid] = n;
  2408. }
  2409. out:
  2410. up_read(&slub_lock);
  2411. return ret;
  2412. }
  2413. static int slab_memory_callback(struct notifier_block *self,
  2414. unsigned long action, void *arg)
  2415. {
  2416. int ret = 0;
  2417. switch (action) {
  2418. case MEM_GOING_ONLINE:
  2419. ret = slab_mem_going_online_callback(arg);
  2420. break;
  2421. case MEM_GOING_OFFLINE:
  2422. ret = slab_mem_going_offline_callback(arg);
  2423. break;
  2424. case MEM_OFFLINE:
  2425. case MEM_CANCEL_ONLINE:
  2426. slab_mem_offline_callback(arg);
  2427. break;
  2428. case MEM_ONLINE:
  2429. case MEM_CANCEL_OFFLINE:
  2430. break;
  2431. }
  2432. ret = notifier_from_errno(ret);
  2433. return ret;
  2434. }
  2435. #endif /* CONFIG_MEMORY_HOTPLUG */
  2436. /********************************************************************
  2437. * Basic setup of slabs
  2438. *******************************************************************/
  2439. void __init kmem_cache_init(void)
  2440. {
  2441. int i;
  2442. int caches = 0;
  2443. init_alloc_cpu();
  2444. #ifdef CONFIG_NUMA
  2445. /*
  2446. * Must first have the slab cache available for the allocations of the
  2447. * struct kmem_cache_node's. There is special bootstrap code in
  2448. * kmem_cache_open for slab_state == DOWN.
  2449. */
  2450. create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
  2451. sizeof(struct kmem_cache_node), GFP_KERNEL);
  2452. kmalloc_caches[0].refcount = -1;
  2453. caches++;
  2454. hotplug_memory_notifier(slab_memory_callback, 1);
  2455. #endif
  2456. /* Able to allocate the per node structures */
  2457. slab_state = PARTIAL;
  2458. /* Caches that are not of the two-to-the-power-of size */
  2459. if (KMALLOC_MIN_SIZE <= 64) {
  2460. create_kmalloc_cache(&kmalloc_caches[1],
  2461. "kmalloc-96", 96, GFP_KERNEL);
  2462. caches++;
  2463. }
  2464. if (KMALLOC_MIN_SIZE <= 128) {
  2465. create_kmalloc_cache(&kmalloc_caches[2],
  2466. "kmalloc-192", 192, GFP_KERNEL);
  2467. caches++;
  2468. }
  2469. for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
  2470. create_kmalloc_cache(&kmalloc_caches[i],
  2471. "kmalloc", 1 << i, GFP_KERNEL);
  2472. caches++;
  2473. }
  2474. /*
  2475. * Patch up the size_index table if we have strange large alignment
  2476. * requirements for the kmalloc array. This is only the case for
  2477. * mips it seems. The standard arches will not generate any code here.
  2478. *
  2479. * Largest permitted alignment is 256 bytes due to the way we
  2480. * handle the index determination for the smaller caches.
  2481. *
  2482. * Make sure that nothing crazy happens if someone starts tinkering
  2483. * around with ARCH_KMALLOC_MINALIGN
  2484. */
  2485. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2486. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2487. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
  2488. size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
  2489. slab_state = UP;
  2490. /* Provide the correct kmalloc names now that the caches are up */
  2491. for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
  2492. kmalloc_caches[i]. name =
  2493. kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
  2494. #ifdef CONFIG_SMP
  2495. register_cpu_notifier(&slab_notifier);
  2496. kmem_size = offsetof(struct kmem_cache, cpu_slab) +
  2497. nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
  2498. #else
  2499. kmem_size = sizeof(struct kmem_cache);
  2500. #endif
  2501. printk(KERN_INFO
  2502. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2503. " CPUs=%d, Nodes=%d\n",
  2504. caches, cache_line_size(),
  2505. slub_min_order, slub_max_order, slub_min_objects,
  2506. nr_cpu_ids, nr_node_ids);
  2507. }
  2508. /*
  2509. * Find a mergeable slab cache
  2510. */
  2511. static int slab_unmergeable(struct kmem_cache *s)
  2512. {
  2513. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2514. return 1;
  2515. if ((s->flags & __PAGE_ALLOC_FALLBACK))
  2516. return 1;
  2517. if (s->ctor)
  2518. return 1;
  2519. /*
  2520. * We may have set a slab to be unmergeable during bootstrap.
  2521. */
  2522. if (s->refcount < 0)
  2523. return 1;
  2524. return 0;
  2525. }
  2526. static struct kmem_cache *find_mergeable(size_t size,
  2527. size_t align, unsigned long flags, const char *name,
  2528. void (*ctor)(struct kmem_cache *, void *))
  2529. {
  2530. struct kmem_cache *s;
  2531. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2532. return NULL;
  2533. if (ctor)
  2534. return NULL;
  2535. size = ALIGN(size, sizeof(void *));
  2536. align = calculate_alignment(flags, align, size);
  2537. size = ALIGN(size, align);
  2538. flags = kmem_cache_flags(size, flags, name, NULL);
  2539. list_for_each_entry(s, &slab_caches, list) {
  2540. if (slab_unmergeable(s))
  2541. continue;
  2542. if (size > s->size)
  2543. continue;
  2544. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2545. continue;
  2546. /*
  2547. * Check if alignment is compatible.
  2548. * Courtesy of Adrian Drzewiecki
  2549. */
  2550. if ((s->size & ~(align - 1)) != s->size)
  2551. continue;
  2552. if (s->size - size >= sizeof(void *))
  2553. continue;
  2554. return s;
  2555. }
  2556. return NULL;
  2557. }
  2558. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2559. size_t align, unsigned long flags,
  2560. void (*ctor)(struct kmem_cache *, void *))
  2561. {
  2562. struct kmem_cache *s;
  2563. down_write(&slub_lock);
  2564. s = find_mergeable(size, align, flags, name, ctor);
  2565. if (s) {
  2566. int cpu;
  2567. s->refcount++;
  2568. /*
  2569. * Adjust the object sizes so that we clear
  2570. * the complete object on kzalloc.
  2571. */
  2572. s->objsize = max(s->objsize, (int)size);
  2573. /*
  2574. * And then we need to update the object size in the
  2575. * per cpu structures
  2576. */
  2577. for_each_online_cpu(cpu)
  2578. get_cpu_slab(s, cpu)->objsize = s->objsize;
  2579. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2580. up_write(&slub_lock);
  2581. if (sysfs_slab_alias(s, name))
  2582. goto err;
  2583. return s;
  2584. }
  2585. s = kmalloc(kmem_size, GFP_KERNEL);
  2586. if (s) {
  2587. if (kmem_cache_open(s, GFP_KERNEL, name,
  2588. size, align, flags, ctor)) {
  2589. list_add(&s->list, &slab_caches);
  2590. up_write(&slub_lock);
  2591. if (sysfs_slab_add(s))
  2592. goto err;
  2593. return s;
  2594. }
  2595. kfree(s);
  2596. }
  2597. up_write(&slub_lock);
  2598. err:
  2599. if (flags & SLAB_PANIC)
  2600. panic("Cannot create slabcache %s\n", name);
  2601. else
  2602. s = NULL;
  2603. return s;
  2604. }
  2605. EXPORT_SYMBOL(kmem_cache_create);
  2606. #ifdef CONFIG_SMP
  2607. /*
  2608. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2609. * necessary.
  2610. */
  2611. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2612. unsigned long action, void *hcpu)
  2613. {
  2614. long cpu = (long)hcpu;
  2615. struct kmem_cache *s;
  2616. unsigned long flags;
  2617. switch (action) {
  2618. case CPU_UP_PREPARE:
  2619. case CPU_UP_PREPARE_FROZEN:
  2620. init_alloc_cpu_cpu(cpu);
  2621. down_read(&slub_lock);
  2622. list_for_each_entry(s, &slab_caches, list)
  2623. s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
  2624. GFP_KERNEL);
  2625. up_read(&slub_lock);
  2626. break;
  2627. case CPU_UP_CANCELED:
  2628. case CPU_UP_CANCELED_FROZEN:
  2629. case CPU_DEAD:
  2630. case CPU_DEAD_FROZEN:
  2631. down_read(&slub_lock);
  2632. list_for_each_entry(s, &slab_caches, list) {
  2633. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  2634. local_irq_save(flags);
  2635. __flush_cpu_slab(s, cpu);
  2636. local_irq_restore(flags);
  2637. free_kmem_cache_cpu(c, cpu);
  2638. s->cpu_slab[cpu] = NULL;
  2639. }
  2640. up_read(&slub_lock);
  2641. break;
  2642. default:
  2643. break;
  2644. }
  2645. return NOTIFY_OK;
  2646. }
  2647. static struct notifier_block __cpuinitdata slab_notifier = {
  2648. .notifier_call = slab_cpuup_callback
  2649. };
  2650. #endif
  2651. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
  2652. {
  2653. struct kmem_cache *s;
  2654. if (unlikely(size > PAGE_SIZE))
  2655. return kmalloc_large(size, gfpflags);
  2656. s = get_slab(size, gfpflags);
  2657. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2658. return s;
  2659. return slab_alloc(s, gfpflags, -1, caller);
  2660. }
  2661. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2662. int node, void *caller)
  2663. {
  2664. struct kmem_cache *s;
  2665. if (unlikely(size > PAGE_SIZE))
  2666. return kmalloc_large(size, gfpflags);
  2667. s = get_slab(size, gfpflags);
  2668. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2669. return s;
  2670. return slab_alloc(s, gfpflags, node, caller);
  2671. }
  2672. #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
  2673. static int validate_slab(struct kmem_cache *s, struct page *page,
  2674. unsigned long *map)
  2675. {
  2676. void *p;
  2677. void *addr = page_address(page);
  2678. if (!check_slab(s, page) ||
  2679. !on_freelist(s, page, NULL))
  2680. return 0;
  2681. /* Now we know that a valid freelist exists */
  2682. bitmap_zero(map, s->objects);
  2683. for_each_free_object(p, s, page->freelist) {
  2684. set_bit(slab_index(p, s, addr), map);
  2685. if (!check_object(s, page, p, 0))
  2686. return 0;
  2687. }
  2688. for_each_object(p, s, addr)
  2689. if (!test_bit(slab_index(p, s, addr), map))
  2690. if (!check_object(s, page, p, 1))
  2691. return 0;
  2692. return 1;
  2693. }
  2694. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2695. unsigned long *map)
  2696. {
  2697. if (slab_trylock(page)) {
  2698. validate_slab(s, page, map);
  2699. slab_unlock(page);
  2700. } else
  2701. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2702. s->name, page);
  2703. if (s->flags & DEBUG_DEFAULT_FLAGS) {
  2704. if (!SlabDebug(page))
  2705. printk(KERN_ERR "SLUB %s: SlabDebug not set "
  2706. "on slab 0x%p\n", s->name, page);
  2707. } else {
  2708. if (SlabDebug(page))
  2709. printk(KERN_ERR "SLUB %s: SlabDebug set on "
  2710. "slab 0x%p\n", s->name, page);
  2711. }
  2712. }
  2713. static int validate_slab_node(struct kmem_cache *s,
  2714. struct kmem_cache_node *n, unsigned long *map)
  2715. {
  2716. unsigned long count = 0;
  2717. struct page *page;
  2718. unsigned long flags;
  2719. spin_lock_irqsave(&n->list_lock, flags);
  2720. list_for_each_entry(page, &n->partial, lru) {
  2721. validate_slab_slab(s, page, map);
  2722. count++;
  2723. }
  2724. if (count != n->nr_partial)
  2725. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2726. "counter=%ld\n", s->name, count, n->nr_partial);
  2727. if (!(s->flags & SLAB_STORE_USER))
  2728. goto out;
  2729. list_for_each_entry(page, &n->full, lru) {
  2730. validate_slab_slab(s, page, map);
  2731. count++;
  2732. }
  2733. if (count != atomic_long_read(&n->nr_slabs))
  2734. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2735. "counter=%ld\n", s->name, count,
  2736. atomic_long_read(&n->nr_slabs));
  2737. out:
  2738. spin_unlock_irqrestore(&n->list_lock, flags);
  2739. return count;
  2740. }
  2741. static long validate_slab_cache(struct kmem_cache *s)
  2742. {
  2743. int node;
  2744. unsigned long count = 0;
  2745. unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
  2746. sizeof(unsigned long), GFP_KERNEL);
  2747. if (!map)
  2748. return -ENOMEM;
  2749. flush_all(s);
  2750. for_each_node_state(node, N_NORMAL_MEMORY) {
  2751. struct kmem_cache_node *n = get_node(s, node);
  2752. count += validate_slab_node(s, n, map);
  2753. }
  2754. kfree(map);
  2755. return count;
  2756. }
  2757. #ifdef SLUB_RESILIENCY_TEST
  2758. static void resiliency_test(void)
  2759. {
  2760. u8 *p;
  2761. printk(KERN_ERR "SLUB resiliency testing\n");
  2762. printk(KERN_ERR "-----------------------\n");
  2763. printk(KERN_ERR "A. Corruption after allocation\n");
  2764. p = kzalloc(16, GFP_KERNEL);
  2765. p[16] = 0x12;
  2766. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  2767. " 0x12->0x%p\n\n", p + 16);
  2768. validate_slab_cache(kmalloc_caches + 4);
  2769. /* Hmmm... The next two are dangerous */
  2770. p = kzalloc(32, GFP_KERNEL);
  2771. p[32 + sizeof(void *)] = 0x34;
  2772. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  2773. " 0x34 -> -0x%p\n", p);
  2774. printk(KERN_ERR
  2775. "If allocated object is overwritten then not detectable\n\n");
  2776. validate_slab_cache(kmalloc_caches + 5);
  2777. p = kzalloc(64, GFP_KERNEL);
  2778. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  2779. *p = 0x56;
  2780. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  2781. p);
  2782. printk(KERN_ERR
  2783. "If allocated object is overwritten then not detectable\n\n");
  2784. validate_slab_cache(kmalloc_caches + 6);
  2785. printk(KERN_ERR "\nB. Corruption after free\n");
  2786. p = kzalloc(128, GFP_KERNEL);
  2787. kfree(p);
  2788. *p = 0x78;
  2789. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  2790. validate_slab_cache(kmalloc_caches + 7);
  2791. p = kzalloc(256, GFP_KERNEL);
  2792. kfree(p);
  2793. p[50] = 0x9a;
  2794. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  2795. p);
  2796. validate_slab_cache(kmalloc_caches + 8);
  2797. p = kzalloc(512, GFP_KERNEL);
  2798. kfree(p);
  2799. p[512] = 0xab;
  2800. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  2801. validate_slab_cache(kmalloc_caches + 9);
  2802. }
  2803. #else
  2804. static void resiliency_test(void) {};
  2805. #endif
  2806. /*
  2807. * Generate lists of code addresses where slabcache objects are allocated
  2808. * and freed.
  2809. */
  2810. struct location {
  2811. unsigned long count;
  2812. void *addr;
  2813. long long sum_time;
  2814. long min_time;
  2815. long max_time;
  2816. long min_pid;
  2817. long max_pid;
  2818. cpumask_t cpus;
  2819. nodemask_t nodes;
  2820. };
  2821. struct loc_track {
  2822. unsigned long max;
  2823. unsigned long count;
  2824. struct location *loc;
  2825. };
  2826. static void free_loc_track(struct loc_track *t)
  2827. {
  2828. if (t->max)
  2829. free_pages((unsigned long)t->loc,
  2830. get_order(sizeof(struct location) * t->max));
  2831. }
  2832. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  2833. {
  2834. struct location *l;
  2835. int order;
  2836. order = get_order(sizeof(struct location) * max);
  2837. l = (void *)__get_free_pages(flags, order);
  2838. if (!l)
  2839. return 0;
  2840. if (t->count) {
  2841. memcpy(l, t->loc, sizeof(struct location) * t->count);
  2842. free_loc_track(t);
  2843. }
  2844. t->max = max;
  2845. t->loc = l;
  2846. return 1;
  2847. }
  2848. static int add_location(struct loc_track *t, struct kmem_cache *s,
  2849. const struct track *track)
  2850. {
  2851. long start, end, pos;
  2852. struct location *l;
  2853. void *caddr;
  2854. unsigned long age = jiffies - track->when;
  2855. start = -1;
  2856. end = t->count;
  2857. for ( ; ; ) {
  2858. pos = start + (end - start + 1) / 2;
  2859. /*
  2860. * There is nothing at "end". If we end up there
  2861. * we need to add something to before end.
  2862. */
  2863. if (pos == end)
  2864. break;
  2865. caddr = t->loc[pos].addr;
  2866. if (track->addr == caddr) {
  2867. l = &t->loc[pos];
  2868. l->count++;
  2869. if (track->when) {
  2870. l->sum_time += age;
  2871. if (age < l->min_time)
  2872. l->min_time = age;
  2873. if (age > l->max_time)
  2874. l->max_time = age;
  2875. if (track->pid < l->min_pid)
  2876. l->min_pid = track->pid;
  2877. if (track->pid > l->max_pid)
  2878. l->max_pid = track->pid;
  2879. cpu_set(track->cpu, l->cpus);
  2880. }
  2881. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  2882. return 1;
  2883. }
  2884. if (track->addr < caddr)
  2885. end = pos;
  2886. else
  2887. start = pos;
  2888. }
  2889. /*
  2890. * Not found. Insert new tracking element.
  2891. */
  2892. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  2893. return 0;
  2894. l = t->loc + pos;
  2895. if (pos < t->count)
  2896. memmove(l + 1, l,
  2897. (t->count - pos) * sizeof(struct location));
  2898. t->count++;
  2899. l->count = 1;
  2900. l->addr = track->addr;
  2901. l->sum_time = age;
  2902. l->min_time = age;
  2903. l->max_time = age;
  2904. l->min_pid = track->pid;
  2905. l->max_pid = track->pid;
  2906. cpus_clear(l->cpus);
  2907. cpu_set(track->cpu, l->cpus);
  2908. nodes_clear(l->nodes);
  2909. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  2910. return 1;
  2911. }
  2912. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  2913. struct page *page, enum track_item alloc)
  2914. {
  2915. void *addr = page_address(page);
  2916. DECLARE_BITMAP(map, s->objects);
  2917. void *p;
  2918. bitmap_zero(map, s->objects);
  2919. for_each_free_object(p, s, page->freelist)
  2920. set_bit(slab_index(p, s, addr), map);
  2921. for_each_object(p, s, addr)
  2922. if (!test_bit(slab_index(p, s, addr), map))
  2923. add_location(t, s, get_track(s, p, alloc));
  2924. }
  2925. static int list_locations(struct kmem_cache *s, char *buf,
  2926. enum track_item alloc)
  2927. {
  2928. int len = 0;
  2929. unsigned long i;
  2930. struct loc_track t = { 0, 0, NULL };
  2931. int node;
  2932. if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  2933. GFP_TEMPORARY))
  2934. return sprintf(buf, "Out of memory\n");
  2935. /* Push back cpu slabs */
  2936. flush_all(s);
  2937. for_each_node_state(node, N_NORMAL_MEMORY) {
  2938. struct kmem_cache_node *n = get_node(s, node);
  2939. unsigned long flags;
  2940. struct page *page;
  2941. if (!atomic_long_read(&n->nr_slabs))
  2942. continue;
  2943. spin_lock_irqsave(&n->list_lock, flags);
  2944. list_for_each_entry(page, &n->partial, lru)
  2945. process_slab(&t, s, page, alloc);
  2946. list_for_each_entry(page, &n->full, lru)
  2947. process_slab(&t, s, page, alloc);
  2948. spin_unlock_irqrestore(&n->list_lock, flags);
  2949. }
  2950. for (i = 0; i < t.count; i++) {
  2951. struct location *l = &t.loc[i];
  2952. if (len > PAGE_SIZE - 100)
  2953. break;
  2954. len += sprintf(buf + len, "%7ld ", l->count);
  2955. if (l->addr)
  2956. len += sprint_symbol(buf + len, (unsigned long)l->addr);
  2957. else
  2958. len += sprintf(buf + len, "<not-available>");
  2959. if (l->sum_time != l->min_time) {
  2960. unsigned long remainder;
  2961. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  2962. l->min_time,
  2963. div_long_long_rem(l->sum_time, l->count, &remainder),
  2964. l->max_time);
  2965. } else
  2966. len += sprintf(buf + len, " age=%ld",
  2967. l->min_time);
  2968. if (l->min_pid != l->max_pid)
  2969. len += sprintf(buf + len, " pid=%ld-%ld",
  2970. l->min_pid, l->max_pid);
  2971. else
  2972. len += sprintf(buf + len, " pid=%ld",
  2973. l->min_pid);
  2974. if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
  2975. len < PAGE_SIZE - 60) {
  2976. len += sprintf(buf + len, " cpus=");
  2977. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  2978. l->cpus);
  2979. }
  2980. if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
  2981. len < PAGE_SIZE - 60) {
  2982. len += sprintf(buf + len, " nodes=");
  2983. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  2984. l->nodes);
  2985. }
  2986. len += sprintf(buf + len, "\n");
  2987. }
  2988. free_loc_track(&t);
  2989. if (!t.count)
  2990. len += sprintf(buf, "No data\n");
  2991. return len;
  2992. }
  2993. enum slab_stat_type {
  2994. SL_FULL,
  2995. SL_PARTIAL,
  2996. SL_CPU,
  2997. SL_OBJECTS
  2998. };
  2999. #define SO_FULL (1 << SL_FULL)
  3000. #define SO_PARTIAL (1 << SL_PARTIAL)
  3001. #define SO_CPU (1 << SL_CPU)
  3002. #define SO_OBJECTS (1 << SL_OBJECTS)
  3003. static unsigned long show_slab_objects(struct kmem_cache *s,
  3004. char *buf, unsigned long flags)
  3005. {
  3006. unsigned long total = 0;
  3007. int cpu;
  3008. int node;
  3009. int x;
  3010. unsigned long *nodes;
  3011. unsigned long *per_cpu;
  3012. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3013. per_cpu = nodes + nr_node_ids;
  3014. for_each_possible_cpu(cpu) {
  3015. struct page *page;
  3016. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  3017. if (!c)
  3018. continue;
  3019. page = c->page;
  3020. node = c->node;
  3021. if (node < 0)
  3022. continue;
  3023. if (page) {
  3024. if (flags & SO_CPU) {
  3025. if (flags & SO_OBJECTS)
  3026. x = page->inuse;
  3027. else
  3028. x = 1;
  3029. total += x;
  3030. nodes[node] += x;
  3031. }
  3032. per_cpu[node]++;
  3033. }
  3034. }
  3035. for_each_node_state(node, N_NORMAL_MEMORY) {
  3036. struct kmem_cache_node *n = get_node(s, node);
  3037. if (flags & SO_PARTIAL) {
  3038. if (flags & SO_OBJECTS)
  3039. x = count_partial(n);
  3040. else
  3041. x = n->nr_partial;
  3042. total += x;
  3043. nodes[node] += x;
  3044. }
  3045. if (flags & SO_FULL) {
  3046. int full_slabs = atomic_long_read(&n->nr_slabs)
  3047. - per_cpu[node]
  3048. - n->nr_partial;
  3049. if (flags & SO_OBJECTS)
  3050. x = full_slabs * s->objects;
  3051. else
  3052. x = full_slabs;
  3053. total += x;
  3054. nodes[node] += x;
  3055. }
  3056. }
  3057. x = sprintf(buf, "%lu", total);
  3058. #ifdef CONFIG_NUMA
  3059. for_each_node_state(node, N_NORMAL_MEMORY)
  3060. if (nodes[node])
  3061. x += sprintf(buf + x, " N%d=%lu",
  3062. node, nodes[node]);
  3063. #endif
  3064. kfree(nodes);
  3065. return x + sprintf(buf + x, "\n");
  3066. }
  3067. static int any_slab_objects(struct kmem_cache *s)
  3068. {
  3069. int node;
  3070. int cpu;
  3071. for_each_possible_cpu(cpu) {
  3072. struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
  3073. if (c && c->page)
  3074. return 1;
  3075. }
  3076. for_each_online_node(node) {
  3077. struct kmem_cache_node *n = get_node(s, node);
  3078. if (!n)
  3079. continue;
  3080. if (n->nr_partial || atomic_long_read(&n->nr_slabs))
  3081. return 1;
  3082. }
  3083. return 0;
  3084. }
  3085. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3086. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3087. struct slab_attribute {
  3088. struct attribute attr;
  3089. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3090. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3091. };
  3092. #define SLAB_ATTR_RO(_name) \
  3093. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3094. #define SLAB_ATTR(_name) \
  3095. static struct slab_attribute _name##_attr = \
  3096. __ATTR(_name, 0644, _name##_show, _name##_store)
  3097. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3098. {
  3099. return sprintf(buf, "%d\n", s->size);
  3100. }
  3101. SLAB_ATTR_RO(slab_size);
  3102. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3103. {
  3104. return sprintf(buf, "%d\n", s->align);
  3105. }
  3106. SLAB_ATTR_RO(align);
  3107. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3108. {
  3109. return sprintf(buf, "%d\n", s->objsize);
  3110. }
  3111. SLAB_ATTR_RO(object_size);
  3112. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3113. {
  3114. return sprintf(buf, "%d\n", s->objects);
  3115. }
  3116. SLAB_ATTR_RO(objs_per_slab);
  3117. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3118. {
  3119. return sprintf(buf, "%d\n", s->order);
  3120. }
  3121. SLAB_ATTR_RO(order);
  3122. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3123. {
  3124. if (s->ctor) {
  3125. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  3126. return n + sprintf(buf + n, "\n");
  3127. }
  3128. return 0;
  3129. }
  3130. SLAB_ATTR_RO(ctor);
  3131. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3132. {
  3133. return sprintf(buf, "%d\n", s->refcount - 1);
  3134. }
  3135. SLAB_ATTR_RO(aliases);
  3136. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3137. {
  3138. return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
  3139. }
  3140. SLAB_ATTR_RO(slabs);
  3141. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3142. {
  3143. return show_slab_objects(s, buf, SO_PARTIAL);
  3144. }
  3145. SLAB_ATTR_RO(partial);
  3146. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3147. {
  3148. return show_slab_objects(s, buf, SO_CPU);
  3149. }
  3150. SLAB_ATTR_RO(cpu_slabs);
  3151. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3152. {
  3153. return show_slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
  3154. }
  3155. SLAB_ATTR_RO(objects);
  3156. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3157. {
  3158. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3159. }
  3160. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3161. const char *buf, size_t length)
  3162. {
  3163. s->flags &= ~SLAB_DEBUG_FREE;
  3164. if (buf[0] == '1')
  3165. s->flags |= SLAB_DEBUG_FREE;
  3166. return length;
  3167. }
  3168. SLAB_ATTR(sanity_checks);
  3169. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3170. {
  3171. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3172. }
  3173. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3174. size_t length)
  3175. {
  3176. s->flags &= ~SLAB_TRACE;
  3177. if (buf[0] == '1')
  3178. s->flags |= SLAB_TRACE;
  3179. return length;
  3180. }
  3181. SLAB_ATTR(trace);
  3182. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3183. {
  3184. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3185. }
  3186. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3187. const char *buf, size_t length)
  3188. {
  3189. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3190. if (buf[0] == '1')
  3191. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3192. return length;
  3193. }
  3194. SLAB_ATTR(reclaim_account);
  3195. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3196. {
  3197. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3198. }
  3199. SLAB_ATTR_RO(hwcache_align);
  3200. #ifdef CONFIG_ZONE_DMA
  3201. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3202. {
  3203. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3204. }
  3205. SLAB_ATTR_RO(cache_dma);
  3206. #endif
  3207. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3208. {
  3209. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3210. }
  3211. SLAB_ATTR_RO(destroy_by_rcu);
  3212. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3213. {
  3214. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3215. }
  3216. static ssize_t red_zone_store(struct kmem_cache *s,
  3217. const char *buf, size_t length)
  3218. {
  3219. if (any_slab_objects(s))
  3220. return -EBUSY;
  3221. s->flags &= ~SLAB_RED_ZONE;
  3222. if (buf[0] == '1')
  3223. s->flags |= SLAB_RED_ZONE;
  3224. calculate_sizes(s);
  3225. return length;
  3226. }
  3227. SLAB_ATTR(red_zone);
  3228. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3229. {
  3230. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3231. }
  3232. static ssize_t poison_store(struct kmem_cache *s,
  3233. const char *buf, size_t length)
  3234. {
  3235. if (any_slab_objects(s))
  3236. return -EBUSY;
  3237. s->flags &= ~SLAB_POISON;
  3238. if (buf[0] == '1')
  3239. s->flags |= SLAB_POISON;
  3240. calculate_sizes(s);
  3241. return length;
  3242. }
  3243. SLAB_ATTR(poison);
  3244. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3245. {
  3246. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3247. }
  3248. static ssize_t store_user_store(struct kmem_cache *s,
  3249. const char *buf, size_t length)
  3250. {
  3251. if (any_slab_objects(s))
  3252. return -EBUSY;
  3253. s->flags &= ~SLAB_STORE_USER;
  3254. if (buf[0] == '1')
  3255. s->flags |= SLAB_STORE_USER;
  3256. calculate_sizes(s);
  3257. return length;
  3258. }
  3259. SLAB_ATTR(store_user);
  3260. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3261. {
  3262. return 0;
  3263. }
  3264. static ssize_t validate_store(struct kmem_cache *s,
  3265. const char *buf, size_t length)
  3266. {
  3267. int ret = -EINVAL;
  3268. if (buf[0] == '1') {
  3269. ret = validate_slab_cache(s);
  3270. if (ret >= 0)
  3271. ret = length;
  3272. }
  3273. return ret;
  3274. }
  3275. SLAB_ATTR(validate);
  3276. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3277. {
  3278. return 0;
  3279. }
  3280. static ssize_t shrink_store(struct kmem_cache *s,
  3281. const char *buf, size_t length)
  3282. {
  3283. if (buf[0] == '1') {
  3284. int rc = kmem_cache_shrink(s);
  3285. if (rc)
  3286. return rc;
  3287. } else
  3288. return -EINVAL;
  3289. return length;
  3290. }
  3291. SLAB_ATTR(shrink);
  3292. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3293. {
  3294. if (!(s->flags & SLAB_STORE_USER))
  3295. return -ENOSYS;
  3296. return list_locations(s, buf, TRACK_ALLOC);
  3297. }
  3298. SLAB_ATTR_RO(alloc_calls);
  3299. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3300. {
  3301. if (!(s->flags & SLAB_STORE_USER))
  3302. return -ENOSYS;
  3303. return list_locations(s, buf, TRACK_FREE);
  3304. }
  3305. SLAB_ATTR_RO(free_calls);
  3306. #ifdef CONFIG_NUMA
  3307. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3308. {
  3309. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3310. }
  3311. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3312. const char *buf, size_t length)
  3313. {
  3314. int n = simple_strtoul(buf, NULL, 10);
  3315. if (n < 100)
  3316. s->remote_node_defrag_ratio = n * 10;
  3317. return length;
  3318. }
  3319. SLAB_ATTR(remote_node_defrag_ratio);
  3320. #endif
  3321. #ifdef CONFIG_SLUB_STATS
  3322. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3323. {
  3324. unsigned long sum = 0;
  3325. int cpu;
  3326. int len;
  3327. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3328. if (!data)
  3329. return -ENOMEM;
  3330. for_each_online_cpu(cpu) {
  3331. unsigned x = get_cpu_slab(s, cpu)->stat[si];
  3332. data[cpu] = x;
  3333. sum += x;
  3334. }
  3335. len = sprintf(buf, "%lu", sum);
  3336. for_each_online_cpu(cpu) {
  3337. if (data[cpu] && len < PAGE_SIZE - 20)
  3338. len += sprintf(buf + len, " c%d=%u", cpu, data[cpu]);
  3339. }
  3340. kfree(data);
  3341. return len + sprintf(buf + len, "\n");
  3342. }
  3343. #define STAT_ATTR(si, text) \
  3344. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  3345. { \
  3346. return show_stat(s, buf, si); \
  3347. } \
  3348. SLAB_ATTR_RO(text); \
  3349. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  3350. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  3351. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  3352. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  3353. STAT_ATTR(FREE_FROZEN, free_frozen);
  3354. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  3355. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  3356. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  3357. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  3358. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  3359. STAT_ATTR(FREE_SLAB, free_slab);
  3360. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  3361. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  3362. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  3363. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  3364. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  3365. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  3366. #endif
  3367. static struct attribute *slab_attrs[] = {
  3368. &slab_size_attr.attr,
  3369. &object_size_attr.attr,
  3370. &objs_per_slab_attr.attr,
  3371. &order_attr.attr,
  3372. &objects_attr.attr,
  3373. &slabs_attr.attr,
  3374. &partial_attr.attr,
  3375. &cpu_slabs_attr.attr,
  3376. &ctor_attr.attr,
  3377. &aliases_attr.attr,
  3378. &align_attr.attr,
  3379. &sanity_checks_attr.attr,
  3380. &trace_attr.attr,
  3381. &hwcache_align_attr.attr,
  3382. &reclaim_account_attr.attr,
  3383. &destroy_by_rcu_attr.attr,
  3384. &red_zone_attr.attr,
  3385. &poison_attr.attr,
  3386. &store_user_attr.attr,
  3387. &validate_attr.attr,
  3388. &shrink_attr.attr,
  3389. &alloc_calls_attr.attr,
  3390. &free_calls_attr.attr,
  3391. #ifdef CONFIG_ZONE_DMA
  3392. &cache_dma_attr.attr,
  3393. #endif
  3394. #ifdef CONFIG_NUMA
  3395. &remote_node_defrag_ratio_attr.attr,
  3396. #endif
  3397. #ifdef CONFIG_SLUB_STATS
  3398. &alloc_fastpath_attr.attr,
  3399. &alloc_slowpath_attr.attr,
  3400. &free_fastpath_attr.attr,
  3401. &free_slowpath_attr.attr,
  3402. &free_frozen_attr.attr,
  3403. &free_add_partial_attr.attr,
  3404. &free_remove_partial_attr.attr,
  3405. &alloc_from_partial_attr.attr,
  3406. &alloc_slab_attr.attr,
  3407. &alloc_refill_attr.attr,
  3408. &free_slab_attr.attr,
  3409. &cpuslab_flush_attr.attr,
  3410. &deactivate_full_attr.attr,
  3411. &deactivate_empty_attr.attr,
  3412. &deactivate_to_head_attr.attr,
  3413. &deactivate_to_tail_attr.attr,
  3414. &deactivate_remote_frees_attr.attr,
  3415. #endif
  3416. NULL
  3417. };
  3418. static struct attribute_group slab_attr_group = {
  3419. .attrs = slab_attrs,
  3420. };
  3421. static ssize_t slab_attr_show(struct kobject *kobj,
  3422. struct attribute *attr,
  3423. char *buf)
  3424. {
  3425. struct slab_attribute *attribute;
  3426. struct kmem_cache *s;
  3427. int err;
  3428. attribute = to_slab_attr(attr);
  3429. s = to_slab(kobj);
  3430. if (!attribute->show)
  3431. return -EIO;
  3432. err = attribute->show(s, buf);
  3433. return err;
  3434. }
  3435. static ssize_t slab_attr_store(struct kobject *kobj,
  3436. struct attribute *attr,
  3437. const char *buf, size_t len)
  3438. {
  3439. struct slab_attribute *attribute;
  3440. struct kmem_cache *s;
  3441. int err;
  3442. attribute = to_slab_attr(attr);
  3443. s = to_slab(kobj);
  3444. if (!attribute->store)
  3445. return -EIO;
  3446. err = attribute->store(s, buf, len);
  3447. return err;
  3448. }
  3449. static void kmem_cache_release(struct kobject *kobj)
  3450. {
  3451. struct kmem_cache *s = to_slab(kobj);
  3452. kfree(s);
  3453. }
  3454. static struct sysfs_ops slab_sysfs_ops = {
  3455. .show = slab_attr_show,
  3456. .store = slab_attr_store,
  3457. };
  3458. static struct kobj_type slab_ktype = {
  3459. .sysfs_ops = &slab_sysfs_ops,
  3460. .release = kmem_cache_release
  3461. };
  3462. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3463. {
  3464. struct kobj_type *ktype = get_ktype(kobj);
  3465. if (ktype == &slab_ktype)
  3466. return 1;
  3467. return 0;
  3468. }
  3469. static struct kset_uevent_ops slab_uevent_ops = {
  3470. .filter = uevent_filter,
  3471. };
  3472. static struct kset *slab_kset;
  3473. #define ID_STR_LENGTH 64
  3474. /* Create a unique string id for a slab cache:
  3475. * format
  3476. * :[flags-]size:[memory address of kmemcache]
  3477. */
  3478. static char *create_unique_id(struct kmem_cache *s)
  3479. {
  3480. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3481. char *p = name;
  3482. BUG_ON(!name);
  3483. *p++ = ':';
  3484. /*
  3485. * First flags affecting slabcache operations. We will only
  3486. * get here for aliasable slabs so we do not need to support
  3487. * too many flags. The flags here must cover all flags that
  3488. * are matched during merging to guarantee that the id is
  3489. * unique.
  3490. */
  3491. if (s->flags & SLAB_CACHE_DMA)
  3492. *p++ = 'd';
  3493. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3494. *p++ = 'a';
  3495. if (s->flags & SLAB_DEBUG_FREE)
  3496. *p++ = 'F';
  3497. if (p != name + 1)
  3498. *p++ = '-';
  3499. p += sprintf(p, "%07d", s->size);
  3500. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3501. return name;
  3502. }
  3503. static int sysfs_slab_add(struct kmem_cache *s)
  3504. {
  3505. int err;
  3506. const char *name;
  3507. int unmergeable;
  3508. if (slab_state < SYSFS)
  3509. /* Defer until later */
  3510. return 0;
  3511. unmergeable = slab_unmergeable(s);
  3512. if (unmergeable) {
  3513. /*
  3514. * Slabcache can never be merged so we can use the name proper.
  3515. * This is typically the case for debug situations. In that
  3516. * case we can catch duplicate names easily.
  3517. */
  3518. sysfs_remove_link(&slab_kset->kobj, s->name);
  3519. name = s->name;
  3520. } else {
  3521. /*
  3522. * Create a unique name for the slab as a target
  3523. * for the symlinks.
  3524. */
  3525. name = create_unique_id(s);
  3526. }
  3527. s->kobj.kset = slab_kset;
  3528. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3529. if (err) {
  3530. kobject_put(&s->kobj);
  3531. return err;
  3532. }
  3533. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3534. if (err)
  3535. return err;
  3536. kobject_uevent(&s->kobj, KOBJ_ADD);
  3537. if (!unmergeable) {
  3538. /* Setup first alias */
  3539. sysfs_slab_alias(s, s->name);
  3540. kfree(name);
  3541. }
  3542. return 0;
  3543. }
  3544. static void sysfs_slab_remove(struct kmem_cache *s)
  3545. {
  3546. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3547. kobject_del(&s->kobj);
  3548. kobject_put(&s->kobj);
  3549. }
  3550. /*
  3551. * Need to buffer aliases during bootup until sysfs becomes
  3552. * available lest we loose that information.
  3553. */
  3554. struct saved_alias {
  3555. struct kmem_cache *s;
  3556. const char *name;
  3557. struct saved_alias *next;
  3558. };
  3559. static struct saved_alias *alias_list;
  3560. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3561. {
  3562. struct saved_alias *al;
  3563. if (slab_state == SYSFS) {
  3564. /*
  3565. * If we have a leftover link then remove it.
  3566. */
  3567. sysfs_remove_link(&slab_kset->kobj, name);
  3568. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3569. }
  3570. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3571. if (!al)
  3572. return -ENOMEM;
  3573. al->s = s;
  3574. al->name = name;
  3575. al->next = alias_list;
  3576. alias_list = al;
  3577. return 0;
  3578. }
  3579. static int __init slab_sysfs_init(void)
  3580. {
  3581. struct kmem_cache *s;
  3582. int err;
  3583. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3584. if (!slab_kset) {
  3585. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3586. return -ENOSYS;
  3587. }
  3588. slab_state = SYSFS;
  3589. list_for_each_entry(s, &slab_caches, list) {
  3590. err = sysfs_slab_add(s);
  3591. if (err)
  3592. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3593. " to sysfs\n", s->name);
  3594. }
  3595. while (alias_list) {
  3596. struct saved_alias *al = alias_list;
  3597. alias_list = alias_list->next;
  3598. err = sysfs_slab_alias(al->s, al->name);
  3599. if (err)
  3600. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3601. " %s to sysfs\n", s->name);
  3602. kfree(al);
  3603. }
  3604. resiliency_test();
  3605. return 0;
  3606. }
  3607. __initcall(slab_sysfs_init);
  3608. #endif
  3609. /*
  3610. * The /proc/slabinfo ABI
  3611. */
  3612. #ifdef CONFIG_SLABINFO
  3613. ssize_t slabinfo_write(struct file *file, const char __user * buffer,
  3614. size_t count, loff_t *ppos)
  3615. {
  3616. return -EINVAL;
  3617. }
  3618. static void print_slabinfo_header(struct seq_file *m)
  3619. {
  3620. seq_puts(m, "slabinfo - version: 2.1\n");
  3621. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3622. "<objperslab> <pagesperslab>");
  3623. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3624. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3625. seq_putc(m, '\n');
  3626. }
  3627. static void *s_start(struct seq_file *m, loff_t *pos)
  3628. {
  3629. loff_t n = *pos;
  3630. down_read(&slub_lock);
  3631. if (!n)
  3632. print_slabinfo_header(m);
  3633. return seq_list_start(&slab_caches, *pos);
  3634. }
  3635. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3636. {
  3637. return seq_list_next(p, &slab_caches, pos);
  3638. }
  3639. static void s_stop(struct seq_file *m, void *p)
  3640. {
  3641. up_read(&slub_lock);
  3642. }
  3643. static int s_show(struct seq_file *m, void *p)
  3644. {
  3645. unsigned long nr_partials = 0;
  3646. unsigned long nr_slabs = 0;
  3647. unsigned long nr_inuse = 0;
  3648. unsigned long nr_objs;
  3649. struct kmem_cache *s;
  3650. int node;
  3651. s = list_entry(p, struct kmem_cache, list);
  3652. for_each_online_node(node) {
  3653. struct kmem_cache_node *n = get_node(s, node);
  3654. if (!n)
  3655. continue;
  3656. nr_partials += n->nr_partial;
  3657. nr_slabs += atomic_long_read(&n->nr_slabs);
  3658. nr_inuse += count_partial(n);
  3659. }
  3660. nr_objs = nr_slabs * s->objects;
  3661. nr_inuse += (nr_slabs - nr_partials) * s->objects;
  3662. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  3663. nr_objs, s->size, s->objects, (1 << s->order));
  3664. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  3665. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  3666. 0UL);
  3667. seq_putc(m, '\n');
  3668. return 0;
  3669. }
  3670. const struct seq_operations slabinfo_op = {
  3671. .start = s_start,
  3672. .next = s_next,
  3673. .stop = s_stop,
  3674. .show = s_show,
  3675. };
  3676. #endif /* CONFIG_SLABINFO */