x86.c 164 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10. *
  11. * Authors:
  12. * Avi Kivity <avi@qumranet.com>
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Amit Shah <amit.shah@qumranet.com>
  15. * Ben-Ami Yassour <benami@il.ibm.com>
  16. *
  17. * This work is licensed under the terms of the GNU GPL, version 2. See
  18. * the COPYING file in the top-level directory.
  19. *
  20. */
  21. #include <linux/kvm_host.h>
  22. #include "irq.h"
  23. #include "mmu.h"
  24. #include "i8254.h"
  25. #include "tss.h"
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <linux/clocksource.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/kvm.h>
  31. #include <linux/fs.h>
  32. #include <linux/vmalloc.h>
  33. #include <linux/module.h>
  34. #include <linux/mman.h>
  35. #include <linux/highmem.h>
  36. #include <linux/iommu.h>
  37. #include <linux/intel-iommu.h>
  38. #include <linux/cpufreq.h>
  39. #include <linux/user-return-notifier.h>
  40. #include <linux/srcu.h>
  41. #include <linux/slab.h>
  42. #include <linux/perf_event.h>
  43. #include <linux/uaccess.h>
  44. #include <linux/hash.h>
  45. #include <trace/events/kvm.h>
  46. #define CREATE_TRACE_POINTS
  47. #include "trace.h"
  48. #include <asm/debugreg.h>
  49. #include <asm/msr.h>
  50. #include <asm/desc.h>
  51. #include <asm/mtrr.h>
  52. #include <asm/mce.h>
  53. #include <asm/i387.h>
  54. #include <asm/xcr.h>
  55. #include <asm/pvclock.h>
  56. #include <asm/div64.h>
  57. #define MAX_IO_MSRS 256
  58. #define KVM_MAX_MCE_BANKS 32
  59. #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
  60. #define emul_to_vcpu(ctxt) \
  61. container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
  62. /* EFER defaults:
  63. * - enable syscall per default because its emulated by KVM
  64. * - enable LME and LMA per default on 64 bit KVM
  65. */
  66. #ifdef CONFIG_X86_64
  67. static
  68. u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
  69. #else
  70. static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
  71. #endif
  72. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  73. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  74. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  75. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  76. struct kvm_cpuid_entry2 __user *entries);
  77. struct kvm_x86_ops *kvm_x86_ops;
  78. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  79. int ignore_msrs = 0;
  80. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  81. bool kvm_has_tsc_control;
  82. EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
  83. u32 kvm_max_guest_tsc_khz;
  84. EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
  85. #define KVM_NR_SHARED_MSRS 16
  86. struct kvm_shared_msrs_global {
  87. int nr;
  88. u32 msrs[KVM_NR_SHARED_MSRS];
  89. };
  90. struct kvm_shared_msrs {
  91. struct user_return_notifier urn;
  92. bool registered;
  93. struct kvm_shared_msr_values {
  94. u64 host;
  95. u64 curr;
  96. } values[KVM_NR_SHARED_MSRS];
  97. };
  98. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  99. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  100. struct kvm_stats_debugfs_item debugfs_entries[] = {
  101. { "pf_fixed", VCPU_STAT(pf_fixed) },
  102. { "pf_guest", VCPU_STAT(pf_guest) },
  103. { "tlb_flush", VCPU_STAT(tlb_flush) },
  104. { "invlpg", VCPU_STAT(invlpg) },
  105. { "exits", VCPU_STAT(exits) },
  106. { "io_exits", VCPU_STAT(io_exits) },
  107. { "mmio_exits", VCPU_STAT(mmio_exits) },
  108. { "signal_exits", VCPU_STAT(signal_exits) },
  109. { "irq_window", VCPU_STAT(irq_window_exits) },
  110. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  111. { "halt_exits", VCPU_STAT(halt_exits) },
  112. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  113. { "hypercalls", VCPU_STAT(hypercalls) },
  114. { "request_irq", VCPU_STAT(request_irq_exits) },
  115. { "irq_exits", VCPU_STAT(irq_exits) },
  116. { "host_state_reload", VCPU_STAT(host_state_reload) },
  117. { "efer_reload", VCPU_STAT(efer_reload) },
  118. { "fpu_reload", VCPU_STAT(fpu_reload) },
  119. { "insn_emulation", VCPU_STAT(insn_emulation) },
  120. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  121. { "irq_injections", VCPU_STAT(irq_injections) },
  122. { "nmi_injections", VCPU_STAT(nmi_injections) },
  123. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  124. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  125. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  126. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  127. { "mmu_flooded", VM_STAT(mmu_flooded) },
  128. { "mmu_recycled", VM_STAT(mmu_recycled) },
  129. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  130. { "mmu_unsync", VM_STAT(mmu_unsync) },
  131. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  132. { "largepages", VM_STAT(lpages) },
  133. { NULL }
  134. };
  135. u64 __read_mostly host_xcr0;
  136. int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
  137. static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
  138. {
  139. int i;
  140. for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
  141. vcpu->arch.apf.gfns[i] = ~0;
  142. }
  143. static void kvm_on_user_return(struct user_return_notifier *urn)
  144. {
  145. unsigned slot;
  146. struct kvm_shared_msrs *locals
  147. = container_of(urn, struct kvm_shared_msrs, urn);
  148. struct kvm_shared_msr_values *values;
  149. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  150. values = &locals->values[slot];
  151. if (values->host != values->curr) {
  152. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  153. values->curr = values->host;
  154. }
  155. }
  156. locals->registered = false;
  157. user_return_notifier_unregister(urn);
  158. }
  159. static void shared_msr_update(unsigned slot, u32 msr)
  160. {
  161. struct kvm_shared_msrs *smsr;
  162. u64 value;
  163. smsr = &__get_cpu_var(shared_msrs);
  164. /* only read, and nobody should modify it at this time,
  165. * so don't need lock */
  166. if (slot >= shared_msrs_global.nr) {
  167. printk(KERN_ERR "kvm: invalid MSR slot!");
  168. return;
  169. }
  170. rdmsrl_safe(msr, &value);
  171. smsr->values[slot].host = value;
  172. smsr->values[slot].curr = value;
  173. }
  174. void kvm_define_shared_msr(unsigned slot, u32 msr)
  175. {
  176. if (slot >= shared_msrs_global.nr)
  177. shared_msrs_global.nr = slot + 1;
  178. shared_msrs_global.msrs[slot] = msr;
  179. /* we need ensured the shared_msr_global have been updated */
  180. smp_wmb();
  181. }
  182. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  183. static void kvm_shared_msr_cpu_online(void)
  184. {
  185. unsigned i;
  186. for (i = 0; i < shared_msrs_global.nr; ++i)
  187. shared_msr_update(i, shared_msrs_global.msrs[i]);
  188. }
  189. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  190. {
  191. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  192. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  193. return;
  194. smsr->values[slot].curr = value;
  195. wrmsrl(shared_msrs_global.msrs[slot], value);
  196. if (!smsr->registered) {
  197. smsr->urn.on_user_return = kvm_on_user_return;
  198. user_return_notifier_register(&smsr->urn);
  199. smsr->registered = true;
  200. }
  201. }
  202. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  203. static void drop_user_return_notifiers(void *ignore)
  204. {
  205. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  206. if (smsr->registered)
  207. kvm_on_user_return(&smsr->urn);
  208. }
  209. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  210. {
  211. if (irqchip_in_kernel(vcpu->kvm))
  212. return vcpu->arch.apic_base;
  213. else
  214. return vcpu->arch.apic_base;
  215. }
  216. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  217. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  218. {
  219. /* TODO: reserve bits check */
  220. if (irqchip_in_kernel(vcpu->kvm))
  221. kvm_lapic_set_base(vcpu, data);
  222. else
  223. vcpu->arch.apic_base = data;
  224. }
  225. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  226. #define EXCPT_BENIGN 0
  227. #define EXCPT_CONTRIBUTORY 1
  228. #define EXCPT_PF 2
  229. static int exception_class(int vector)
  230. {
  231. switch (vector) {
  232. case PF_VECTOR:
  233. return EXCPT_PF;
  234. case DE_VECTOR:
  235. case TS_VECTOR:
  236. case NP_VECTOR:
  237. case SS_VECTOR:
  238. case GP_VECTOR:
  239. return EXCPT_CONTRIBUTORY;
  240. default:
  241. break;
  242. }
  243. return EXCPT_BENIGN;
  244. }
  245. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  246. unsigned nr, bool has_error, u32 error_code,
  247. bool reinject)
  248. {
  249. u32 prev_nr;
  250. int class1, class2;
  251. kvm_make_request(KVM_REQ_EVENT, vcpu);
  252. if (!vcpu->arch.exception.pending) {
  253. queue:
  254. vcpu->arch.exception.pending = true;
  255. vcpu->arch.exception.has_error_code = has_error;
  256. vcpu->arch.exception.nr = nr;
  257. vcpu->arch.exception.error_code = error_code;
  258. vcpu->arch.exception.reinject = reinject;
  259. return;
  260. }
  261. /* to check exception */
  262. prev_nr = vcpu->arch.exception.nr;
  263. if (prev_nr == DF_VECTOR) {
  264. /* triple fault -> shutdown */
  265. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  266. return;
  267. }
  268. class1 = exception_class(prev_nr);
  269. class2 = exception_class(nr);
  270. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  271. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  272. /* generate double fault per SDM Table 5-5 */
  273. vcpu->arch.exception.pending = true;
  274. vcpu->arch.exception.has_error_code = true;
  275. vcpu->arch.exception.nr = DF_VECTOR;
  276. vcpu->arch.exception.error_code = 0;
  277. } else
  278. /* replace previous exception with a new one in a hope
  279. that instruction re-execution will regenerate lost
  280. exception */
  281. goto queue;
  282. }
  283. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  284. {
  285. kvm_multiple_exception(vcpu, nr, false, 0, false);
  286. }
  287. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  288. void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  289. {
  290. kvm_multiple_exception(vcpu, nr, false, 0, true);
  291. }
  292. EXPORT_SYMBOL_GPL(kvm_requeue_exception);
  293. void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
  294. {
  295. if (err)
  296. kvm_inject_gp(vcpu, 0);
  297. else
  298. kvm_x86_ops->skip_emulated_instruction(vcpu);
  299. }
  300. EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
  301. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
  302. {
  303. ++vcpu->stat.pf_guest;
  304. vcpu->arch.cr2 = fault->address;
  305. kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
  306. }
  307. EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
  308. void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
  309. {
  310. if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
  311. vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
  312. else
  313. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  314. }
  315. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  316. {
  317. kvm_make_request(KVM_REQ_EVENT, vcpu);
  318. vcpu->arch.nmi_pending = 1;
  319. }
  320. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  321. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  322. {
  323. kvm_multiple_exception(vcpu, nr, true, error_code, false);
  324. }
  325. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  326. void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  327. {
  328. kvm_multiple_exception(vcpu, nr, true, error_code, true);
  329. }
  330. EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
  331. /*
  332. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  333. * a #GP and return false.
  334. */
  335. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  336. {
  337. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  338. return true;
  339. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  340. return false;
  341. }
  342. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  343. /*
  344. * This function will be used to read from the physical memory of the currently
  345. * running guest. The difference to kvm_read_guest_page is that this function
  346. * can read from guest physical or from the guest's guest physical memory.
  347. */
  348. int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  349. gfn_t ngfn, void *data, int offset, int len,
  350. u32 access)
  351. {
  352. gfn_t real_gfn;
  353. gpa_t ngpa;
  354. ngpa = gfn_to_gpa(ngfn);
  355. real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
  356. if (real_gfn == UNMAPPED_GVA)
  357. return -EFAULT;
  358. real_gfn = gpa_to_gfn(real_gfn);
  359. return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
  360. }
  361. EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
  362. int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
  363. void *data, int offset, int len, u32 access)
  364. {
  365. return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
  366. data, offset, len, access);
  367. }
  368. /*
  369. * Load the pae pdptrs. Return true is they are all valid.
  370. */
  371. int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
  372. {
  373. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  374. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  375. int i;
  376. int ret;
  377. u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
  378. ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
  379. offset * sizeof(u64), sizeof(pdpte),
  380. PFERR_USER_MASK|PFERR_WRITE_MASK);
  381. if (ret < 0) {
  382. ret = 0;
  383. goto out;
  384. }
  385. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  386. if (is_present_gpte(pdpte[i]) &&
  387. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  388. ret = 0;
  389. goto out;
  390. }
  391. }
  392. ret = 1;
  393. memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
  394. __set_bit(VCPU_EXREG_PDPTR,
  395. (unsigned long *)&vcpu->arch.regs_avail);
  396. __set_bit(VCPU_EXREG_PDPTR,
  397. (unsigned long *)&vcpu->arch.regs_dirty);
  398. out:
  399. return ret;
  400. }
  401. EXPORT_SYMBOL_GPL(load_pdptrs);
  402. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  403. {
  404. u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
  405. bool changed = true;
  406. int offset;
  407. gfn_t gfn;
  408. int r;
  409. if (is_long_mode(vcpu) || !is_pae(vcpu))
  410. return false;
  411. if (!test_bit(VCPU_EXREG_PDPTR,
  412. (unsigned long *)&vcpu->arch.regs_avail))
  413. return true;
  414. gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
  415. offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
  416. r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
  417. PFERR_USER_MASK | PFERR_WRITE_MASK);
  418. if (r < 0)
  419. goto out;
  420. changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
  421. out:
  422. return changed;
  423. }
  424. int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  425. {
  426. unsigned long old_cr0 = kvm_read_cr0(vcpu);
  427. unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
  428. X86_CR0_CD | X86_CR0_NW;
  429. cr0 |= X86_CR0_ET;
  430. #ifdef CONFIG_X86_64
  431. if (cr0 & 0xffffffff00000000UL)
  432. return 1;
  433. #endif
  434. cr0 &= ~CR0_RESERVED_BITS;
  435. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
  436. return 1;
  437. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
  438. return 1;
  439. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  440. #ifdef CONFIG_X86_64
  441. if ((vcpu->arch.efer & EFER_LME)) {
  442. int cs_db, cs_l;
  443. if (!is_pae(vcpu))
  444. return 1;
  445. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  446. if (cs_l)
  447. return 1;
  448. } else
  449. #endif
  450. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
  451. kvm_read_cr3(vcpu)))
  452. return 1;
  453. }
  454. kvm_x86_ops->set_cr0(vcpu, cr0);
  455. if ((cr0 ^ old_cr0) & X86_CR0_PG) {
  456. kvm_clear_async_pf_completion_queue(vcpu);
  457. kvm_async_pf_hash_reset(vcpu);
  458. }
  459. if ((cr0 ^ old_cr0) & update_bits)
  460. kvm_mmu_reset_context(vcpu);
  461. return 0;
  462. }
  463. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  464. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  465. {
  466. (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
  467. }
  468. EXPORT_SYMBOL_GPL(kvm_lmsw);
  469. int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  470. {
  471. u64 xcr0;
  472. /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
  473. if (index != XCR_XFEATURE_ENABLED_MASK)
  474. return 1;
  475. xcr0 = xcr;
  476. if (kvm_x86_ops->get_cpl(vcpu) != 0)
  477. return 1;
  478. if (!(xcr0 & XSTATE_FP))
  479. return 1;
  480. if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
  481. return 1;
  482. if (xcr0 & ~host_xcr0)
  483. return 1;
  484. vcpu->arch.xcr0 = xcr0;
  485. vcpu->guest_xcr0_loaded = 0;
  486. return 0;
  487. }
  488. int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  489. {
  490. if (__kvm_set_xcr(vcpu, index, xcr)) {
  491. kvm_inject_gp(vcpu, 0);
  492. return 1;
  493. }
  494. return 0;
  495. }
  496. EXPORT_SYMBOL_GPL(kvm_set_xcr);
  497. static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
  498. {
  499. struct kvm_cpuid_entry2 *best;
  500. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  501. return best && (best->ecx & bit(X86_FEATURE_XSAVE));
  502. }
  503. static void update_cpuid(struct kvm_vcpu *vcpu)
  504. {
  505. struct kvm_cpuid_entry2 *best;
  506. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  507. if (!best)
  508. return;
  509. /* Update OSXSAVE bit */
  510. if (cpu_has_xsave && best->function == 0x1) {
  511. best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
  512. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
  513. best->ecx |= bit(X86_FEATURE_OSXSAVE);
  514. }
  515. }
  516. int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  517. {
  518. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  519. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  520. if (cr4 & CR4_RESERVED_BITS)
  521. return 1;
  522. if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
  523. return 1;
  524. if (is_long_mode(vcpu)) {
  525. if (!(cr4 & X86_CR4_PAE))
  526. return 1;
  527. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  528. && ((cr4 ^ old_cr4) & pdptr_bits)
  529. && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
  530. kvm_read_cr3(vcpu)))
  531. return 1;
  532. if (kvm_x86_ops->set_cr4(vcpu, cr4))
  533. return 1;
  534. if ((cr4 ^ old_cr4) & pdptr_bits)
  535. kvm_mmu_reset_context(vcpu);
  536. if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
  537. update_cpuid(vcpu);
  538. return 0;
  539. }
  540. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  541. int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  542. {
  543. if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
  544. kvm_mmu_sync_roots(vcpu);
  545. kvm_mmu_flush_tlb(vcpu);
  546. return 0;
  547. }
  548. if (is_long_mode(vcpu)) {
  549. if (cr3 & CR3_L_MODE_RESERVED_BITS)
  550. return 1;
  551. } else {
  552. if (is_pae(vcpu)) {
  553. if (cr3 & CR3_PAE_RESERVED_BITS)
  554. return 1;
  555. if (is_paging(vcpu) &&
  556. !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
  557. return 1;
  558. }
  559. /*
  560. * We don't check reserved bits in nonpae mode, because
  561. * this isn't enforced, and VMware depends on this.
  562. */
  563. }
  564. /*
  565. * Does the new cr3 value map to physical memory? (Note, we
  566. * catch an invalid cr3 even in real-mode, because it would
  567. * cause trouble later on when we turn on paging anyway.)
  568. *
  569. * A real CPU would silently accept an invalid cr3 and would
  570. * attempt to use it - with largely undefined (and often hard
  571. * to debug) behavior on the guest side.
  572. */
  573. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  574. return 1;
  575. vcpu->arch.cr3 = cr3;
  576. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  577. vcpu->arch.mmu.new_cr3(vcpu);
  578. return 0;
  579. }
  580. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  581. int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  582. {
  583. if (cr8 & CR8_RESERVED_BITS)
  584. return 1;
  585. if (irqchip_in_kernel(vcpu->kvm))
  586. kvm_lapic_set_tpr(vcpu, cr8);
  587. else
  588. vcpu->arch.cr8 = cr8;
  589. return 0;
  590. }
  591. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  592. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  593. {
  594. if (irqchip_in_kernel(vcpu->kvm))
  595. return kvm_lapic_get_cr8(vcpu);
  596. else
  597. return vcpu->arch.cr8;
  598. }
  599. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  600. static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  601. {
  602. switch (dr) {
  603. case 0 ... 3:
  604. vcpu->arch.db[dr] = val;
  605. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  606. vcpu->arch.eff_db[dr] = val;
  607. break;
  608. case 4:
  609. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  610. return 1; /* #UD */
  611. /* fall through */
  612. case 6:
  613. if (val & 0xffffffff00000000ULL)
  614. return -1; /* #GP */
  615. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  616. break;
  617. case 5:
  618. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  619. return 1; /* #UD */
  620. /* fall through */
  621. default: /* 7 */
  622. if (val & 0xffffffff00000000ULL)
  623. return -1; /* #GP */
  624. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  625. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  626. kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
  627. vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
  628. }
  629. break;
  630. }
  631. return 0;
  632. }
  633. int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  634. {
  635. int res;
  636. res = __kvm_set_dr(vcpu, dr, val);
  637. if (res > 0)
  638. kvm_queue_exception(vcpu, UD_VECTOR);
  639. else if (res < 0)
  640. kvm_inject_gp(vcpu, 0);
  641. return res;
  642. }
  643. EXPORT_SYMBOL_GPL(kvm_set_dr);
  644. static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  645. {
  646. switch (dr) {
  647. case 0 ... 3:
  648. *val = vcpu->arch.db[dr];
  649. break;
  650. case 4:
  651. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  652. return 1;
  653. /* fall through */
  654. case 6:
  655. *val = vcpu->arch.dr6;
  656. break;
  657. case 5:
  658. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  659. return 1;
  660. /* fall through */
  661. default: /* 7 */
  662. *val = vcpu->arch.dr7;
  663. break;
  664. }
  665. return 0;
  666. }
  667. int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  668. {
  669. if (_kvm_get_dr(vcpu, dr, val)) {
  670. kvm_queue_exception(vcpu, UD_VECTOR);
  671. return 1;
  672. }
  673. return 0;
  674. }
  675. EXPORT_SYMBOL_GPL(kvm_get_dr);
  676. /*
  677. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  678. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  679. *
  680. * This list is modified at module load time to reflect the
  681. * capabilities of the host cpu. This capabilities test skips MSRs that are
  682. * kvm-specific. Those are put in the beginning of the list.
  683. */
  684. #define KVM_SAVE_MSRS_BEGIN 8
  685. static u32 msrs_to_save[] = {
  686. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  687. MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
  688. HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
  689. HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN,
  690. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  691. MSR_STAR,
  692. #ifdef CONFIG_X86_64
  693. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  694. #endif
  695. MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  696. };
  697. static unsigned num_msrs_to_save;
  698. static u32 emulated_msrs[] = {
  699. MSR_IA32_MISC_ENABLE,
  700. MSR_IA32_MCG_STATUS,
  701. MSR_IA32_MCG_CTL,
  702. };
  703. static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
  704. {
  705. u64 old_efer = vcpu->arch.efer;
  706. if (efer & efer_reserved_bits)
  707. return 1;
  708. if (is_paging(vcpu)
  709. && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
  710. return 1;
  711. if (efer & EFER_FFXSR) {
  712. struct kvm_cpuid_entry2 *feat;
  713. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  714. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
  715. return 1;
  716. }
  717. if (efer & EFER_SVME) {
  718. struct kvm_cpuid_entry2 *feat;
  719. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  720. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
  721. return 1;
  722. }
  723. efer &= ~EFER_LMA;
  724. efer |= vcpu->arch.efer & EFER_LMA;
  725. kvm_x86_ops->set_efer(vcpu, efer);
  726. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  727. /* Update reserved bits */
  728. if ((efer ^ old_efer) & EFER_NX)
  729. kvm_mmu_reset_context(vcpu);
  730. return 0;
  731. }
  732. void kvm_enable_efer_bits(u64 mask)
  733. {
  734. efer_reserved_bits &= ~mask;
  735. }
  736. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  737. /*
  738. * Writes msr value into into the appropriate "register".
  739. * Returns 0 on success, non-0 otherwise.
  740. * Assumes vcpu_load() was already called.
  741. */
  742. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  743. {
  744. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  745. }
  746. /*
  747. * Adapt set_msr() to msr_io()'s calling convention
  748. */
  749. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  750. {
  751. return kvm_set_msr(vcpu, index, *data);
  752. }
  753. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  754. {
  755. int version;
  756. int r;
  757. struct pvclock_wall_clock wc;
  758. struct timespec boot;
  759. if (!wall_clock)
  760. return;
  761. r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
  762. if (r)
  763. return;
  764. if (version & 1)
  765. ++version; /* first time write, random junk */
  766. ++version;
  767. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  768. /*
  769. * The guest calculates current wall clock time by adding
  770. * system time (updated by kvm_guest_time_update below) to the
  771. * wall clock specified here. guest system time equals host
  772. * system time for us, thus we must fill in host boot time here.
  773. */
  774. getboottime(&boot);
  775. wc.sec = boot.tv_sec;
  776. wc.nsec = boot.tv_nsec;
  777. wc.version = version;
  778. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  779. version++;
  780. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  781. }
  782. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  783. {
  784. uint32_t quotient, remainder;
  785. /* Don't try to replace with do_div(), this one calculates
  786. * "(dividend << 32) / divisor" */
  787. __asm__ ( "divl %4"
  788. : "=a" (quotient), "=d" (remainder)
  789. : "0" (0), "1" (dividend), "r" (divisor) );
  790. return quotient;
  791. }
  792. static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
  793. s8 *pshift, u32 *pmultiplier)
  794. {
  795. uint64_t scaled64;
  796. int32_t shift = 0;
  797. uint64_t tps64;
  798. uint32_t tps32;
  799. tps64 = base_khz * 1000LL;
  800. scaled64 = scaled_khz * 1000LL;
  801. while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
  802. tps64 >>= 1;
  803. shift--;
  804. }
  805. tps32 = (uint32_t)tps64;
  806. while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
  807. if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
  808. scaled64 >>= 1;
  809. else
  810. tps32 <<= 1;
  811. shift++;
  812. }
  813. *pshift = shift;
  814. *pmultiplier = div_frac(scaled64, tps32);
  815. pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
  816. __func__, base_khz, scaled_khz, shift, *pmultiplier);
  817. }
  818. static inline u64 get_kernel_ns(void)
  819. {
  820. struct timespec ts;
  821. WARN_ON(preemptible());
  822. ktime_get_ts(&ts);
  823. monotonic_to_bootbased(&ts);
  824. return timespec_to_ns(&ts);
  825. }
  826. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  827. unsigned long max_tsc_khz;
  828. static inline int kvm_tsc_changes_freq(void)
  829. {
  830. int cpu = get_cpu();
  831. int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
  832. cpufreq_quick_get(cpu) != 0;
  833. put_cpu();
  834. return ret;
  835. }
  836. static u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu)
  837. {
  838. if (vcpu->arch.virtual_tsc_khz)
  839. return vcpu->arch.virtual_tsc_khz;
  840. else
  841. return __this_cpu_read(cpu_tsc_khz);
  842. }
  843. static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
  844. {
  845. u64 ret;
  846. WARN_ON(preemptible());
  847. if (kvm_tsc_changes_freq())
  848. printk_once(KERN_WARNING
  849. "kvm: unreliable cycle conversion on adjustable rate TSC\n");
  850. ret = nsec * vcpu_tsc_khz(vcpu);
  851. do_div(ret, USEC_PER_SEC);
  852. return ret;
  853. }
  854. static void kvm_init_tsc_catchup(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
  855. {
  856. /* Compute a scale to convert nanoseconds in TSC cycles */
  857. kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
  858. &vcpu->arch.tsc_catchup_shift,
  859. &vcpu->arch.tsc_catchup_mult);
  860. }
  861. static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
  862. {
  863. u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
  864. vcpu->arch.tsc_catchup_mult,
  865. vcpu->arch.tsc_catchup_shift);
  866. tsc += vcpu->arch.last_tsc_write;
  867. return tsc;
  868. }
  869. void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
  870. {
  871. struct kvm *kvm = vcpu->kvm;
  872. u64 offset, ns, elapsed;
  873. unsigned long flags;
  874. s64 sdiff;
  875. raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
  876. offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
  877. ns = get_kernel_ns();
  878. elapsed = ns - kvm->arch.last_tsc_nsec;
  879. sdiff = data - kvm->arch.last_tsc_write;
  880. if (sdiff < 0)
  881. sdiff = -sdiff;
  882. /*
  883. * Special case: close write to TSC within 5 seconds of
  884. * another CPU is interpreted as an attempt to synchronize
  885. * The 5 seconds is to accommodate host load / swapping as
  886. * well as any reset of TSC during the boot process.
  887. *
  888. * In that case, for a reliable TSC, we can match TSC offsets,
  889. * or make a best guest using elapsed value.
  890. */
  891. if (sdiff < nsec_to_cycles(vcpu, 5ULL * NSEC_PER_SEC) &&
  892. elapsed < 5ULL * NSEC_PER_SEC) {
  893. if (!check_tsc_unstable()) {
  894. offset = kvm->arch.last_tsc_offset;
  895. pr_debug("kvm: matched tsc offset for %llu\n", data);
  896. } else {
  897. u64 delta = nsec_to_cycles(vcpu, elapsed);
  898. offset += delta;
  899. pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
  900. }
  901. ns = kvm->arch.last_tsc_nsec;
  902. }
  903. kvm->arch.last_tsc_nsec = ns;
  904. kvm->arch.last_tsc_write = data;
  905. kvm->arch.last_tsc_offset = offset;
  906. kvm_x86_ops->write_tsc_offset(vcpu, offset);
  907. raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
  908. /* Reset of TSC must disable overshoot protection below */
  909. vcpu->arch.hv_clock.tsc_timestamp = 0;
  910. vcpu->arch.last_tsc_write = data;
  911. vcpu->arch.last_tsc_nsec = ns;
  912. }
  913. EXPORT_SYMBOL_GPL(kvm_write_tsc);
  914. static int kvm_guest_time_update(struct kvm_vcpu *v)
  915. {
  916. unsigned long flags;
  917. struct kvm_vcpu_arch *vcpu = &v->arch;
  918. void *shared_kaddr;
  919. unsigned long this_tsc_khz;
  920. s64 kernel_ns, max_kernel_ns;
  921. u64 tsc_timestamp;
  922. /* Keep irq disabled to prevent changes to the clock */
  923. local_irq_save(flags);
  924. kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
  925. kernel_ns = get_kernel_ns();
  926. this_tsc_khz = vcpu_tsc_khz(v);
  927. if (unlikely(this_tsc_khz == 0)) {
  928. local_irq_restore(flags);
  929. kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
  930. return 1;
  931. }
  932. /*
  933. * We may have to catch up the TSC to match elapsed wall clock
  934. * time for two reasons, even if kvmclock is used.
  935. * 1) CPU could have been running below the maximum TSC rate
  936. * 2) Broken TSC compensation resets the base at each VCPU
  937. * entry to avoid unknown leaps of TSC even when running
  938. * again on the same CPU. This may cause apparent elapsed
  939. * time to disappear, and the guest to stand still or run
  940. * very slowly.
  941. */
  942. if (vcpu->tsc_catchup) {
  943. u64 tsc = compute_guest_tsc(v, kernel_ns);
  944. if (tsc > tsc_timestamp) {
  945. kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
  946. tsc_timestamp = tsc;
  947. }
  948. }
  949. local_irq_restore(flags);
  950. if (!vcpu->time_page)
  951. return 0;
  952. /*
  953. * Time as measured by the TSC may go backwards when resetting the base
  954. * tsc_timestamp. The reason for this is that the TSC resolution is
  955. * higher than the resolution of the other clock scales. Thus, many
  956. * possible measurments of the TSC correspond to one measurement of any
  957. * other clock, and so a spread of values is possible. This is not a
  958. * problem for the computation of the nanosecond clock; with TSC rates
  959. * around 1GHZ, there can only be a few cycles which correspond to one
  960. * nanosecond value, and any path through this code will inevitably
  961. * take longer than that. However, with the kernel_ns value itself,
  962. * the precision may be much lower, down to HZ granularity. If the
  963. * first sampling of TSC against kernel_ns ends in the low part of the
  964. * range, and the second in the high end of the range, we can get:
  965. *
  966. * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
  967. *
  968. * As the sampling errors potentially range in the thousands of cycles,
  969. * it is possible such a time value has already been observed by the
  970. * guest. To protect against this, we must compute the system time as
  971. * observed by the guest and ensure the new system time is greater.
  972. */
  973. max_kernel_ns = 0;
  974. if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
  975. max_kernel_ns = vcpu->last_guest_tsc -
  976. vcpu->hv_clock.tsc_timestamp;
  977. max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
  978. vcpu->hv_clock.tsc_to_system_mul,
  979. vcpu->hv_clock.tsc_shift);
  980. max_kernel_ns += vcpu->last_kernel_ns;
  981. }
  982. if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
  983. kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
  984. &vcpu->hv_clock.tsc_shift,
  985. &vcpu->hv_clock.tsc_to_system_mul);
  986. vcpu->hw_tsc_khz = this_tsc_khz;
  987. }
  988. if (max_kernel_ns > kernel_ns)
  989. kernel_ns = max_kernel_ns;
  990. /* With all the info we got, fill in the values */
  991. vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
  992. vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
  993. vcpu->last_kernel_ns = kernel_ns;
  994. vcpu->last_guest_tsc = tsc_timestamp;
  995. vcpu->hv_clock.flags = 0;
  996. /*
  997. * The interface expects us to write an even number signaling that the
  998. * update is finished. Since the guest won't see the intermediate
  999. * state, we just increase by 2 at the end.
  1000. */
  1001. vcpu->hv_clock.version += 2;
  1002. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  1003. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  1004. sizeof(vcpu->hv_clock));
  1005. kunmap_atomic(shared_kaddr, KM_USER0);
  1006. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  1007. return 0;
  1008. }
  1009. static bool msr_mtrr_valid(unsigned msr)
  1010. {
  1011. switch (msr) {
  1012. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  1013. case MSR_MTRRfix64K_00000:
  1014. case MSR_MTRRfix16K_80000:
  1015. case MSR_MTRRfix16K_A0000:
  1016. case MSR_MTRRfix4K_C0000:
  1017. case MSR_MTRRfix4K_C8000:
  1018. case MSR_MTRRfix4K_D0000:
  1019. case MSR_MTRRfix4K_D8000:
  1020. case MSR_MTRRfix4K_E0000:
  1021. case MSR_MTRRfix4K_E8000:
  1022. case MSR_MTRRfix4K_F0000:
  1023. case MSR_MTRRfix4K_F8000:
  1024. case MSR_MTRRdefType:
  1025. case MSR_IA32_CR_PAT:
  1026. return true;
  1027. case 0x2f8:
  1028. return true;
  1029. }
  1030. return false;
  1031. }
  1032. static bool valid_pat_type(unsigned t)
  1033. {
  1034. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  1035. }
  1036. static bool valid_mtrr_type(unsigned t)
  1037. {
  1038. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  1039. }
  1040. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1041. {
  1042. int i;
  1043. if (!msr_mtrr_valid(msr))
  1044. return false;
  1045. if (msr == MSR_IA32_CR_PAT) {
  1046. for (i = 0; i < 8; i++)
  1047. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  1048. return false;
  1049. return true;
  1050. } else if (msr == MSR_MTRRdefType) {
  1051. if (data & ~0xcff)
  1052. return false;
  1053. return valid_mtrr_type(data & 0xff);
  1054. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  1055. for (i = 0; i < 8 ; i++)
  1056. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  1057. return false;
  1058. return true;
  1059. }
  1060. /* variable MTRRs */
  1061. return valid_mtrr_type(data & 0xff);
  1062. }
  1063. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1064. {
  1065. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1066. if (!mtrr_valid(vcpu, msr, data))
  1067. return 1;
  1068. if (msr == MSR_MTRRdefType) {
  1069. vcpu->arch.mtrr_state.def_type = data;
  1070. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  1071. } else if (msr == MSR_MTRRfix64K_00000)
  1072. p[0] = data;
  1073. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1074. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  1075. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1076. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  1077. else if (msr == MSR_IA32_CR_PAT)
  1078. vcpu->arch.pat = data;
  1079. else { /* Variable MTRRs */
  1080. int idx, is_mtrr_mask;
  1081. u64 *pt;
  1082. idx = (msr - 0x200) / 2;
  1083. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1084. if (!is_mtrr_mask)
  1085. pt =
  1086. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1087. else
  1088. pt =
  1089. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1090. *pt = data;
  1091. }
  1092. kvm_mmu_reset_context(vcpu);
  1093. return 0;
  1094. }
  1095. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1096. {
  1097. u64 mcg_cap = vcpu->arch.mcg_cap;
  1098. unsigned bank_num = mcg_cap & 0xff;
  1099. switch (msr) {
  1100. case MSR_IA32_MCG_STATUS:
  1101. vcpu->arch.mcg_status = data;
  1102. break;
  1103. case MSR_IA32_MCG_CTL:
  1104. if (!(mcg_cap & MCG_CTL_P))
  1105. return 1;
  1106. if (data != 0 && data != ~(u64)0)
  1107. return -1;
  1108. vcpu->arch.mcg_ctl = data;
  1109. break;
  1110. default:
  1111. if (msr >= MSR_IA32_MC0_CTL &&
  1112. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1113. u32 offset = msr - MSR_IA32_MC0_CTL;
  1114. /* only 0 or all 1s can be written to IA32_MCi_CTL
  1115. * some Linux kernels though clear bit 10 in bank 4 to
  1116. * workaround a BIOS/GART TBL issue on AMD K8s, ignore
  1117. * this to avoid an uncatched #GP in the guest
  1118. */
  1119. if ((offset & 0x3) == 0 &&
  1120. data != 0 && (data | (1 << 10)) != ~(u64)0)
  1121. return -1;
  1122. vcpu->arch.mce_banks[offset] = data;
  1123. break;
  1124. }
  1125. return 1;
  1126. }
  1127. return 0;
  1128. }
  1129. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  1130. {
  1131. struct kvm *kvm = vcpu->kvm;
  1132. int lm = is_long_mode(vcpu);
  1133. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  1134. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  1135. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  1136. : kvm->arch.xen_hvm_config.blob_size_32;
  1137. u32 page_num = data & ~PAGE_MASK;
  1138. u64 page_addr = data & PAGE_MASK;
  1139. u8 *page;
  1140. int r;
  1141. r = -E2BIG;
  1142. if (page_num >= blob_size)
  1143. goto out;
  1144. r = -ENOMEM;
  1145. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  1146. if (!page)
  1147. goto out;
  1148. r = -EFAULT;
  1149. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  1150. goto out_free;
  1151. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  1152. goto out_free;
  1153. r = 0;
  1154. out_free:
  1155. kfree(page);
  1156. out:
  1157. return r;
  1158. }
  1159. static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
  1160. {
  1161. return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
  1162. }
  1163. static bool kvm_hv_msr_partition_wide(u32 msr)
  1164. {
  1165. bool r = false;
  1166. switch (msr) {
  1167. case HV_X64_MSR_GUEST_OS_ID:
  1168. case HV_X64_MSR_HYPERCALL:
  1169. r = true;
  1170. break;
  1171. }
  1172. return r;
  1173. }
  1174. static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1175. {
  1176. struct kvm *kvm = vcpu->kvm;
  1177. switch (msr) {
  1178. case HV_X64_MSR_GUEST_OS_ID:
  1179. kvm->arch.hv_guest_os_id = data;
  1180. /* setting guest os id to zero disables hypercall page */
  1181. if (!kvm->arch.hv_guest_os_id)
  1182. kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
  1183. break;
  1184. case HV_X64_MSR_HYPERCALL: {
  1185. u64 gfn;
  1186. unsigned long addr;
  1187. u8 instructions[4];
  1188. /* if guest os id is not set hypercall should remain disabled */
  1189. if (!kvm->arch.hv_guest_os_id)
  1190. break;
  1191. if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
  1192. kvm->arch.hv_hypercall = data;
  1193. break;
  1194. }
  1195. gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
  1196. addr = gfn_to_hva(kvm, gfn);
  1197. if (kvm_is_error_hva(addr))
  1198. return 1;
  1199. kvm_x86_ops->patch_hypercall(vcpu, instructions);
  1200. ((unsigned char *)instructions)[3] = 0xc3; /* ret */
  1201. if (__copy_to_user((void __user *)addr, instructions, 4))
  1202. return 1;
  1203. kvm->arch.hv_hypercall = data;
  1204. break;
  1205. }
  1206. default:
  1207. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1208. "data 0x%llx\n", msr, data);
  1209. return 1;
  1210. }
  1211. return 0;
  1212. }
  1213. static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1214. {
  1215. switch (msr) {
  1216. case HV_X64_MSR_APIC_ASSIST_PAGE: {
  1217. unsigned long addr;
  1218. if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
  1219. vcpu->arch.hv_vapic = data;
  1220. break;
  1221. }
  1222. addr = gfn_to_hva(vcpu->kvm, data >>
  1223. HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
  1224. if (kvm_is_error_hva(addr))
  1225. return 1;
  1226. if (__clear_user((void __user *)addr, PAGE_SIZE))
  1227. return 1;
  1228. vcpu->arch.hv_vapic = data;
  1229. break;
  1230. }
  1231. case HV_X64_MSR_EOI:
  1232. return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
  1233. case HV_X64_MSR_ICR:
  1234. return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
  1235. case HV_X64_MSR_TPR:
  1236. return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
  1237. default:
  1238. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1239. "data 0x%llx\n", msr, data);
  1240. return 1;
  1241. }
  1242. return 0;
  1243. }
  1244. static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
  1245. {
  1246. gpa_t gpa = data & ~0x3f;
  1247. /* Bits 2:5 are resrved, Should be zero */
  1248. if (data & 0x3c)
  1249. return 1;
  1250. vcpu->arch.apf.msr_val = data;
  1251. if (!(data & KVM_ASYNC_PF_ENABLED)) {
  1252. kvm_clear_async_pf_completion_queue(vcpu);
  1253. kvm_async_pf_hash_reset(vcpu);
  1254. return 0;
  1255. }
  1256. if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
  1257. return 1;
  1258. vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
  1259. kvm_async_pf_wakeup_all(vcpu);
  1260. return 0;
  1261. }
  1262. static void kvmclock_reset(struct kvm_vcpu *vcpu)
  1263. {
  1264. if (vcpu->arch.time_page) {
  1265. kvm_release_page_dirty(vcpu->arch.time_page);
  1266. vcpu->arch.time_page = NULL;
  1267. }
  1268. }
  1269. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1270. {
  1271. switch (msr) {
  1272. case MSR_EFER:
  1273. return set_efer(vcpu, data);
  1274. case MSR_K7_HWCR:
  1275. data &= ~(u64)0x40; /* ignore flush filter disable */
  1276. data &= ~(u64)0x100; /* ignore ignne emulation enable */
  1277. if (data != 0) {
  1278. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  1279. data);
  1280. return 1;
  1281. }
  1282. break;
  1283. case MSR_FAM10H_MMIO_CONF_BASE:
  1284. if (data != 0) {
  1285. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  1286. "0x%llx\n", data);
  1287. return 1;
  1288. }
  1289. break;
  1290. case MSR_AMD64_NB_CFG:
  1291. break;
  1292. case MSR_IA32_DEBUGCTLMSR:
  1293. if (!data) {
  1294. /* We support the non-activated case already */
  1295. break;
  1296. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  1297. /* Values other than LBR and BTF are vendor-specific,
  1298. thus reserved and should throw a #GP */
  1299. return 1;
  1300. }
  1301. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  1302. __func__, data);
  1303. break;
  1304. case MSR_IA32_UCODE_REV:
  1305. case MSR_IA32_UCODE_WRITE:
  1306. case MSR_VM_HSAVE_PA:
  1307. case MSR_AMD64_PATCH_LOADER:
  1308. break;
  1309. case 0x200 ... 0x2ff:
  1310. return set_msr_mtrr(vcpu, msr, data);
  1311. case MSR_IA32_APICBASE:
  1312. kvm_set_apic_base(vcpu, data);
  1313. break;
  1314. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1315. return kvm_x2apic_msr_write(vcpu, msr, data);
  1316. case MSR_IA32_MISC_ENABLE:
  1317. vcpu->arch.ia32_misc_enable_msr = data;
  1318. break;
  1319. case MSR_KVM_WALL_CLOCK_NEW:
  1320. case MSR_KVM_WALL_CLOCK:
  1321. vcpu->kvm->arch.wall_clock = data;
  1322. kvm_write_wall_clock(vcpu->kvm, data);
  1323. break;
  1324. case MSR_KVM_SYSTEM_TIME_NEW:
  1325. case MSR_KVM_SYSTEM_TIME: {
  1326. kvmclock_reset(vcpu);
  1327. vcpu->arch.time = data;
  1328. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  1329. /* we verify if the enable bit is set... */
  1330. if (!(data & 1))
  1331. break;
  1332. /* ...but clean it before doing the actual write */
  1333. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  1334. vcpu->arch.time_page =
  1335. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  1336. if (is_error_page(vcpu->arch.time_page)) {
  1337. kvm_release_page_clean(vcpu->arch.time_page);
  1338. vcpu->arch.time_page = NULL;
  1339. }
  1340. break;
  1341. }
  1342. case MSR_KVM_ASYNC_PF_EN:
  1343. if (kvm_pv_enable_async_pf(vcpu, data))
  1344. return 1;
  1345. break;
  1346. case MSR_IA32_MCG_CTL:
  1347. case MSR_IA32_MCG_STATUS:
  1348. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1349. return set_msr_mce(vcpu, msr, data);
  1350. /* Performance counters are not protected by a CPUID bit,
  1351. * so we should check all of them in the generic path for the sake of
  1352. * cross vendor migration.
  1353. * Writing a zero into the event select MSRs disables them,
  1354. * which we perfectly emulate ;-). Any other value should be at least
  1355. * reported, some guests depend on them.
  1356. */
  1357. case MSR_P6_EVNTSEL0:
  1358. case MSR_P6_EVNTSEL1:
  1359. case MSR_K7_EVNTSEL0:
  1360. case MSR_K7_EVNTSEL1:
  1361. case MSR_K7_EVNTSEL2:
  1362. case MSR_K7_EVNTSEL3:
  1363. if (data != 0)
  1364. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1365. "0x%x data 0x%llx\n", msr, data);
  1366. break;
  1367. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  1368. * so we ignore writes to make it happy.
  1369. */
  1370. case MSR_P6_PERFCTR0:
  1371. case MSR_P6_PERFCTR1:
  1372. case MSR_K7_PERFCTR0:
  1373. case MSR_K7_PERFCTR1:
  1374. case MSR_K7_PERFCTR2:
  1375. case MSR_K7_PERFCTR3:
  1376. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1377. "0x%x data 0x%llx\n", msr, data);
  1378. break;
  1379. case MSR_K7_CLK_CTL:
  1380. /*
  1381. * Ignore all writes to this no longer documented MSR.
  1382. * Writes are only relevant for old K7 processors,
  1383. * all pre-dating SVM, but a recommended workaround from
  1384. * AMD for these chips. It is possible to speicify the
  1385. * affected processor models on the command line, hence
  1386. * the need to ignore the workaround.
  1387. */
  1388. break;
  1389. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1390. if (kvm_hv_msr_partition_wide(msr)) {
  1391. int r;
  1392. mutex_lock(&vcpu->kvm->lock);
  1393. r = set_msr_hyperv_pw(vcpu, msr, data);
  1394. mutex_unlock(&vcpu->kvm->lock);
  1395. return r;
  1396. } else
  1397. return set_msr_hyperv(vcpu, msr, data);
  1398. break;
  1399. case MSR_IA32_BBL_CR_CTL3:
  1400. /* Drop writes to this legacy MSR -- see rdmsr
  1401. * counterpart for further detail.
  1402. */
  1403. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
  1404. break;
  1405. default:
  1406. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  1407. return xen_hvm_config(vcpu, data);
  1408. if (!ignore_msrs) {
  1409. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  1410. msr, data);
  1411. return 1;
  1412. } else {
  1413. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  1414. msr, data);
  1415. break;
  1416. }
  1417. }
  1418. return 0;
  1419. }
  1420. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1421. /*
  1422. * Reads an msr value (of 'msr_index') into 'pdata'.
  1423. * Returns 0 on success, non-0 otherwise.
  1424. * Assumes vcpu_load() was already called.
  1425. */
  1426. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1427. {
  1428. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1429. }
  1430. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1431. {
  1432. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1433. if (!msr_mtrr_valid(msr))
  1434. return 1;
  1435. if (msr == MSR_MTRRdefType)
  1436. *pdata = vcpu->arch.mtrr_state.def_type +
  1437. (vcpu->arch.mtrr_state.enabled << 10);
  1438. else if (msr == MSR_MTRRfix64K_00000)
  1439. *pdata = p[0];
  1440. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1441. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1442. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1443. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1444. else if (msr == MSR_IA32_CR_PAT)
  1445. *pdata = vcpu->arch.pat;
  1446. else { /* Variable MTRRs */
  1447. int idx, is_mtrr_mask;
  1448. u64 *pt;
  1449. idx = (msr - 0x200) / 2;
  1450. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1451. if (!is_mtrr_mask)
  1452. pt =
  1453. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1454. else
  1455. pt =
  1456. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1457. *pdata = *pt;
  1458. }
  1459. return 0;
  1460. }
  1461. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1462. {
  1463. u64 data;
  1464. u64 mcg_cap = vcpu->arch.mcg_cap;
  1465. unsigned bank_num = mcg_cap & 0xff;
  1466. switch (msr) {
  1467. case MSR_IA32_P5_MC_ADDR:
  1468. case MSR_IA32_P5_MC_TYPE:
  1469. data = 0;
  1470. break;
  1471. case MSR_IA32_MCG_CAP:
  1472. data = vcpu->arch.mcg_cap;
  1473. break;
  1474. case MSR_IA32_MCG_CTL:
  1475. if (!(mcg_cap & MCG_CTL_P))
  1476. return 1;
  1477. data = vcpu->arch.mcg_ctl;
  1478. break;
  1479. case MSR_IA32_MCG_STATUS:
  1480. data = vcpu->arch.mcg_status;
  1481. break;
  1482. default:
  1483. if (msr >= MSR_IA32_MC0_CTL &&
  1484. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1485. u32 offset = msr - MSR_IA32_MC0_CTL;
  1486. data = vcpu->arch.mce_banks[offset];
  1487. break;
  1488. }
  1489. return 1;
  1490. }
  1491. *pdata = data;
  1492. return 0;
  1493. }
  1494. static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1495. {
  1496. u64 data = 0;
  1497. struct kvm *kvm = vcpu->kvm;
  1498. switch (msr) {
  1499. case HV_X64_MSR_GUEST_OS_ID:
  1500. data = kvm->arch.hv_guest_os_id;
  1501. break;
  1502. case HV_X64_MSR_HYPERCALL:
  1503. data = kvm->arch.hv_hypercall;
  1504. break;
  1505. default:
  1506. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1507. return 1;
  1508. }
  1509. *pdata = data;
  1510. return 0;
  1511. }
  1512. static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1513. {
  1514. u64 data = 0;
  1515. switch (msr) {
  1516. case HV_X64_MSR_VP_INDEX: {
  1517. int r;
  1518. struct kvm_vcpu *v;
  1519. kvm_for_each_vcpu(r, v, vcpu->kvm)
  1520. if (v == vcpu)
  1521. data = r;
  1522. break;
  1523. }
  1524. case HV_X64_MSR_EOI:
  1525. return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
  1526. case HV_X64_MSR_ICR:
  1527. return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
  1528. case HV_X64_MSR_TPR:
  1529. return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
  1530. default:
  1531. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1532. return 1;
  1533. }
  1534. *pdata = data;
  1535. return 0;
  1536. }
  1537. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1538. {
  1539. u64 data;
  1540. switch (msr) {
  1541. case MSR_IA32_PLATFORM_ID:
  1542. case MSR_IA32_UCODE_REV:
  1543. case MSR_IA32_EBL_CR_POWERON:
  1544. case MSR_IA32_DEBUGCTLMSR:
  1545. case MSR_IA32_LASTBRANCHFROMIP:
  1546. case MSR_IA32_LASTBRANCHTOIP:
  1547. case MSR_IA32_LASTINTFROMIP:
  1548. case MSR_IA32_LASTINTTOIP:
  1549. case MSR_K8_SYSCFG:
  1550. case MSR_K7_HWCR:
  1551. case MSR_VM_HSAVE_PA:
  1552. case MSR_P6_PERFCTR0:
  1553. case MSR_P6_PERFCTR1:
  1554. case MSR_P6_EVNTSEL0:
  1555. case MSR_P6_EVNTSEL1:
  1556. case MSR_K7_EVNTSEL0:
  1557. case MSR_K7_PERFCTR0:
  1558. case MSR_K8_INT_PENDING_MSG:
  1559. case MSR_AMD64_NB_CFG:
  1560. case MSR_FAM10H_MMIO_CONF_BASE:
  1561. data = 0;
  1562. break;
  1563. case MSR_MTRRcap:
  1564. data = 0x500 | KVM_NR_VAR_MTRR;
  1565. break;
  1566. case 0x200 ... 0x2ff:
  1567. return get_msr_mtrr(vcpu, msr, pdata);
  1568. case 0xcd: /* fsb frequency */
  1569. data = 3;
  1570. break;
  1571. /*
  1572. * MSR_EBC_FREQUENCY_ID
  1573. * Conservative value valid for even the basic CPU models.
  1574. * Models 0,1: 000 in bits 23:21 indicating a bus speed of
  1575. * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
  1576. * and 266MHz for model 3, or 4. Set Core Clock
  1577. * Frequency to System Bus Frequency Ratio to 1 (bits
  1578. * 31:24) even though these are only valid for CPU
  1579. * models > 2, however guests may end up dividing or
  1580. * multiplying by zero otherwise.
  1581. */
  1582. case MSR_EBC_FREQUENCY_ID:
  1583. data = 1 << 24;
  1584. break;
  1585. case MSR_IA32_APICBASE:
  1586. data = kvm_get_apic_base(vcpu);
  1587. break;
  1588. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1589. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1590. break;
  1591. case MSR_IA32_MISC_ENABLE:
  1592. data = vcpu->arch.ia32_misc_enable_msr;
  1593. break;
  1594. case MSR_IA32_PERF_STATUS:
  1595. /* TSC increment by tick */
  1596. data = 1000ULL;
  1597. /* CPU multiplier */
  1598. data |= (((uint64_t)4ULL) << 40);
  1599. break;
  1600. case MSR_EFER:
  1601. data = vcpu->arch.efer;
  1602. break;
  1603. case MSR_KVM_WALL_CLOCK:
  1604. case MSR_KVM_WALL_CLOCK_NEW:
  1605. data = vcpu->kvm->arch.wall_clock;
  1606. break;
  1607. case MSR_KVM_SYSTEM_TIME:
  1608. case MSR_KVM_SYSTEM_TIME_NEW:
  1609. data = vcpu->arch.time;
  1610. break;
  1611. case MSR_KVM_ASYNC_PF_EN:
  1612. data = vcpu->arch.apf.msr_val;
  1613. break;
  1614. case MSR_IA32_P5_MC_ADDR:
  1615. case MSR_IA32_P5_MC_TYPE:
  1616. case MSR_IA32_MCG_CAP:
  1617. case MSR_IA32_MCG_CTL:
  1618. case MSR_IA32_MCG_STATUS:
  1619. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1620. return get_msr_mce(vcpu, msr, pdata);
  1621. case MSR_K7_CLK_CTL:
  1622. /*
  1623. * Provide expected ramp-up count for K7. All other
  1624. * are set to zero, indicating minimum divisors for
  1625. * every field.
  1626. *
  1627. * This prevents guest kernels on AMD host with CPU
  1628. * type 6, model 8 and higher from exploding due to
  1629. * the rdmsr failing.
  1630. */
  1631. data = 0x20000000;
  1632. break;
  1633. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1634. if (kvm_hv_msr_partition_wide(msr)) {
  1635. int r;
  1636. mutex_lock(&vcpu->kvm->lock);
  1637. r = get_msr_hyperv_pw(vcpu, msr, pdata);
  1638. mutex_unlock(&vcpu->kvm->lock);
  1639. return r;
  1640. } else
  1641. return get_msr_hyperv(vcpu, msr, pdata);
  1642. break;
  1643. case MSR_IA32_BBL_CR_CTL3:
  1644. /* This legacy MSR exists but isn't fully documented in current
  1645. * silicon. It is however accessed by winxp in very narrow
  1646. * scenarios where it sets bit #19, itself documented as
  1647. * a "reserved" bit. Best effort attempt to source coherent
  1648. * read data here should the balance of the register be
  1649. * interpreted by the guest:
  1650. *
  1651. * L2 cache control register 3: 64GB range, 256KB size,
  1652. * enabled, latency 0x1, configured
  1653. */
  1654. data = 0xbe702111;
  1655. break;
  1656. default:
  1657. if (!ignore_msrs) {
  1658. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1659. return 1;
  1660. } else {
  1661. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1662. data = 0;
  1663. }
  1664. break;
  1665. }
  1666. *pdata = data;
  1667. return 0;
  1668. }
  1669. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1670. /*
  1671. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1672. *
  1673. * @return number of msrs set successfully.
  1674. */
  1675. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1676. struct kvm_msr_entry *entries,
  1677. int (*do_msr)(struct kvm_vcpu *vcpu,
  1678. unsigned index, u64 *data))
  1679. {
  1680. int i, idx;
  1681. idx = srcu_read_lock(&vcpu->kvm->srcu);
  1682. for (i = 0; i < msrs->nmsrs; ++i)
  1683. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1684. break;
  1685. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  1686. return i;
  1687. }
  1688. /*
  1689. * Read or write a bunch of msrs. Parameters are user addresses.
  1690. *
  1691. * @return number of msrs set successfully.
  1692. */
  1693. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1694. int (*do_msr)(struct kvm_vcpu *vcpu,
  1695. unsigned index, u64 *data),
  1696. int writeback)
  1697. {
  1698. struct kvm_msrs msrs;
  1699. struct kvm_msr_entry *entries;
  1700. int r, n;
  1701. unsigned size;
  1702. r = -EFAULT;
  1703. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1704. goto out;
  1705. r = -E2BIG;
  1706. if (msrs.nmsrs >= MAX_IO_MSRS)
  1707. goto out;
  1708. r = -ENOMEM;
  1709. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1710. entries = kmalloc(size, GFP_KERNEL);
  1711. if (!entries)
  1712. goto out;
  1713. r = -EFAULT;
  1714. if (copy_from_user(entries, user_msrs->entries, size))
  1715. goto out_free;
  1716. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1717. if (r < 0)
  1718. goto out_free;
  1719. r = -EFAULT;
  1720. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1721. goto out_free;
  1722. r = n;
  1723. out_free:
  1724. kfree(entries);
  1725. out:
  1726. return r;
  1727. }
  1728. int kvm_dev_ioctl_check_extension(long ext)
  1729. {
  1730. int r;
  1731. switch (ext) {
  1732. case KVM_CAP_IRQCHIP:
  1733. case KVM_CAP_HLT:
  1734. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1735. case KVM_CAP_SET_TSS_ADDR:
  1736. case KVM_CAP_EXT_CPUID:
  1737. case KVM_CAP_CLOCKSOURCE:
  1738. case KVM_CAP_PIT:
  1739. case KVM_CAP_NOP_IO_DELAY:
  1740. case KVM_CAP_MP_STATE:
  1741. case KVM_CAP_SYNC_MMU:
  1742. case KVM_CAP_USER_NMI:
  1743. case KVM_CAP_REINJECT_CONTROL:
  1744. case KVM_CAP_IRQ_INJECT_STATUS:
  1745. case KVM_CAP_ASSIGN_DEV_IRQ:
  1746. case KVM_CAP_IRQFD:
  1747. case KVM_CAP_IOEVENTFD:
  1748. case KVM_CAP_PIT2:
  1749. case KVM_CAP_PIT_STATE2:
  1750. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1751. case KVM_CAP_XEN_HVM:
  1752. case KVM_CAP_ADJUST_CLOCK:
  1753. case KVM_CAP_VCPU_EVENTS:
  1754. case KVM_CAP_HYPERV:
  1755. case KVM_CAP_HYPERV_VAPIC:
  1756. case KVM_CAP_HYPERV_SPIN:
  1757. case KVM_CAP_PCI_SEGMENT:
  1758. case KVM_CAP_DEBUGREGS:
  1759. case KVM_CAP_X86_ROBUST_SINGLESTEP:
  1760. case KVM_CAP_XSAVE:
  1761. case KVM_CAP_ASYNC_PF:
  1762. case KVM_CAP_GET_TSC_KHZ:
  1763. r = 1;
  1764. break;
  1765. case KVM_CAP_COALESCED_MMIO:
  1766. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1767. break;
  1768. case KVM_CAP_VAPIC:
  1769. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1770. break;
  1771. case KVM_CAP_NR_VCPUS:
  1772. r = KVM_MAX_VCPUS;
  1773. break;
  1774. case KVM_CAP_NR_MEMSLOTS:
  1775. r = KVM_MEMORY_SLOTS;
  1776. break;
  1777. case KVM_CAP_PV_MMU: /* obsolete */
  1778. r = 0;
  1779. break;
  1780. case KVM_CAP_IOMMU:
  1781. r = iommu_found();
  1782. break;
  1783. case KVM_CAP_MCE:
  1784. r = KVM_MAX_MCE_BANKS;
  1785. break;
  1786. case KVM_CAP_XCRS:
  1787. r = cpu_has_xsave;
  1788. break;
  1789. case KVM_CAP_TSC_CONTROL:
  1790. r = kvm_has_tsc_control;
  1791. break;
  1792. default:
  1793. r = 0;
  1794. break;
  1795. }
  1796. return r;
  1797. }
  1798. long kvm_arch_dev_ioctl(struct file *filp,
  1799. unsigned int ioctl, unsigned long arg)
  1800. {
  1801. void __user *argp = (void __user *)arg;
  1802. long r;
  1803. switch (ioctl) {
  1804. case KVM_GET_MSR_INDEX_LIST: {
  1805. struct kvm_msr_list __user *user_msr_list = argp;
  1806. struct kvm_msr_list msr_list;
  1807. unsigned n;
  1808. r = -EFAULT;
  1809. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1810. goto out;
  1811. n = msr_list.nmsrs;
  1812. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1813. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1814. goto out;
  1815. r = -E2BIG;
  1816. if (n < msr_list.nmsrs)
  1817. goto out;
  1818. r = -EFAULT;
  1819. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1820. num_msrs_to_save * sizeof(u32)))
  1821. goto out;
  1822. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1823. &emulated_msrs,
  1824. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1825. goto out;
  1826. r = 0;
  1827. break;
  1828. }
  1829. case KVM_GET_SUPPORTED_CPUID: {
  1830. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1831. struct kvm_cpuid2 cpuid;
  1832. r = -EFAULT;
  1833. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1834. goto out;
  1835. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1836. cpuid_arg->entries);
  1837. if (r)
  1838. goto out;
  1839. r = -EFAULT;
  1840. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1841. goto out;
  1842. r = 0;
  1843. break;
  1844. }
  1845. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1846. u64 mce_cap;
  1847. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1848. r = -EFAULT;
  1849. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1850. goto out;
  1851. r = 0;
  1852. break;
  1853. }
  1854. default:
  1855. r = -EINVAL;
  1856. }
  1857. out:
  1858. return r;
  1859. }
  1860. static void wbinvd_ipi(void *garbage)
  1861. {
  1862. wbinvd();
  1863. }
  1864. static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
  1865. {
  1866. return vcpu->kvm->arch.iommu_domain &&
  1867. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
  1868. }
  1869. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1870. {
  1871. /* Address WBINVD may be executed by guest */
  1872. if (need_emulate_wbinvd(vcpu)) {
  1873. if (kvm_x86_ops->has_wbinvd_exit())
  1874. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  1875. else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
  1876. smp_call_function_single(vcpu->cpu,
  1877. wbinvd_ipi, NULL, 1);
  1878. }
  1879. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1880. if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
  1881. /* Make sure TSC doesn't go backwards */
  1882. s64 tsc_delta;
  1883. u64 tsc;
  1884. kvm_get_msr(vcpu, MSR_IA32_TSC, &tsc);
  1885. tsc_delta = !vcpu->arch.last_guest_tsc ? 0 :
  1886. tsc - vcpu->arch.last_guest_tsc;
  1887. if (tsc_delta < 0)
  1888. mark_tsc_unstable("KVM discovered backwards TSC");
  1889. if (check_tsc_unstable()) {
  1890. kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
  1891. vcpu->arch.tsc_catchup = 1;
  1892. }
  1893. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  1894. if (vcpu->cpu != cpu)
  1895. kvm_migrate_timers(vcpu);
  1896. vcpu->cpu = cpu;
  1897. }
  1898. }
  1899. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1900. {
  1901. kvm_x86_ops->vcpu_put(vcpu);
  1902. kvm_put_guest_fpu(vcpu);
  1903. kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
  1904. }
  1905. static int is_efer_nx(void)
  1906. {
  1907. unsigned long long efer = 0;
  1908. rdmsrl_safe(MSR_EFER, &efer);
  1909. return efer & EFER_NX;
  1910. }
  1911. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1912. {
  1913. int i;
  1914. struct kvm_cpuid_entry2 *e, *entry;
  1915. entry = NULL;
  1916. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1917. e = &vcpu->arch.cpuid_entries[i];
  1918. if (e->function == 0x80000001) {
  1919. entry = e;
  1920. break;
  1921. }
  1922. }
  1923. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1924. entry->edx &= ~(1 << 20);
  1925. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1926. }
  1927. }
  1928. /* when an old userspace process fills a new kernel module */
  1929. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1930. struct kvm_cpuid *cpuid,
  1931. struct kvm_cpuid_entry __user *entries)
  1932. {
  1933. int r, i;
  1934. struct kvm_cpuid_entry *cpuid_entries;
  1935. r = -E2BIG;
  1936. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1937. goto out;
  1938. r = -ENOMEM;
  1939. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1940. if (!cpuid_entries)
  1941. goto out;
  1942. r = -EFAULT;
  1943. if (copy_from_user(cpuid_entries, entries,
  1944. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1945. goto out_free;
  1946. for (i = 0; i < cpuid->nent; i++) {
  1947. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1948. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1949. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1950. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1951. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1952. vcpu->arch.cpuid_entries[i].index = 0;
  1953. vcpu->arch.cpuid_entries[i].flags = 0;
  1954. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1955. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1956. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1957. }
  1958. vcpu->arch.cpuid_nent = cpuid->nent;
  1959. cpuid_fix_nx_cap(vcpu);
  1960. r = 0;
  1961. kvm_apic_set_version(vcpu);
  1962. kvm_x86_ops->cpuid_update(vcpu);
  1963. update_cpuid(vcpu);
  1964. out_free:
  1965. vfree(cpuid_entries);
  1966. out:
  1967. return r;
  1968. }
  1969. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1970. struct kvm_cpuid2 *cpuid,
  1971. struct kvm_cpuid_entry2 __user *entries)
  1972. {
  1973. int r;
  1974. r = -E2BIG;
  1975. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1976. goto out;
  1977. r = -EFAULT;
  1978. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1979. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1980. goto out;
  1981. vcpu->arch.cpuid_nent = cpuid->nent;
  1982. kvm_apic_set_version(vcpu);
  1983. kvm_x86_ops->cpuid_update(vcpu);
  1984. update_cpuid(vcpu);
  1985. return 0;
  1986. out:
  1987. return r;
  1988. }
  1989. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1990. struct kvm_cpuid2 *cpuid,
  1991. struct kvm_cpuid_entry2 __user *entries)
  1992. {
  1993. int r;
  1994. r = -E2BIG;
  1995. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1996. goto out;
  1997. r = -EFAULT;
  1998. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1999. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  2000. goto out;
  2001. return 0;
  2002. out:
  2003. cpuid->nent = vcpu->arch.cpuid_nent;
  2004. return r;
  2005. }
  2006. static void cpuid_mask(u32 *word, int wordnum)
  2007. {
  2008. *word &= boot_cpu_data.x86_capability[wordnum];
  2009. }
  2010. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  2011. u32 index)
  2012. {
  2013. entry->function = function;
  2014. entry->index = index;
  2015. cpuid_count(entry->function, entry->index,
  2016. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  2017. entry->flags = 0;
  2018. }
  2019. static bool supported_xcr0_bit(unsigned bit)
  2020. {
  2021. u64 mask = ((u64)1 << bit);
  2022. return mask & (XSTATE_FP | XSTATE_SSE | XSTATE_YMM) & host_xcr0;
  2023. }
  2024. #define F(x) bit(X86_FEATURE_##x)
  2025. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  2026. u32 index, int *nent, int maxnent)
  2027. {
  2028. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  2029. #ifdef CONFIG_X86_64
  2030. unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
  2031. ? F(GBPAGES) : 0;
  2032. unsigned f_lm = F(LM);
  2033. #else
  2034. unsigned f_gbpages = 0;
  2035. unsigned f_lm = 0;
  2036. #endif
  2037. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  2038. /* cpuid 1.edx */
  2039. const u32 kvm_supported_word0_x86_features =
  2040. F(FPU) | F(VME) | F(DE) | F(PSE) |
  2041. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  2042. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  2043. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  2044. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  2045. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  2046. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  2047. 0 /* HTT, TM, Reserved, PBE */;
  2048. /* cpuid 0x80000001.edx */
  2049. const u32 kvm_supported_word1_x86_features =
  2050. F(FPU) | F(VME) | F(DE) | F(PSE) |
  2051. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  2052. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  2053. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  2054. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  2055. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  2056. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  2057. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  2058. /* cpuid 1.ecx */
  2059. const u32 kvm_supported_word4_x86_features =
  2060. F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
  2061. 0 /* DS-CPL, VMX, SMX, EST */ |
  2062. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  2063. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  2064. 0 /* Reserved, DCA */ | F(XMM4_1) |
  2065. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  2066. 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
  2067. F(F16C);
  2068. /* cpuid 0x80000001.ecx */
  2069. const u32 kvm_supported_word6_x86_features =
  2070. F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
  2071. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  2072. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
  2073. 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
  2074. /* cpuid 0xC0000001.edx */
  2075. const u32 kvm_supported_word5_x86_features =
  2076. F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
  2077. F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
  2078. F(PMM) | F(PMM_EN);
  2079. /* all calls to cpuid_count() should be made on the same cpu */
  2080. get_cpu();
  2081. do_cpuid_1_ent(entry, function, index);
  2082. ++*nent;
  2083. switch (function) {
  2084. case 0:
  2085. entry->eax = min(entry->eax, (u32)0xd);
  2086. break;
  2087. case 1:
  2088. entry->edx &= kvm_supported_word0_x86_features;
  2089. cpuid_mask(&entry->edx, 0);
  2090. entry->ecx &= kvm_supported_word4_x86_features;
  2091. cpuid_mask(&entry->ecx, 4);
  2092. /* we support x2apic emulation even if host does not support
  2093. * it since we emulate x2apic in software */
  2094. entry->ecx |= F(X2APIC);
  2095. break;
  2096. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  2097. * may return different values. This forces us to get_cpu() before
  2098. * issuing the first command, and also to emulate this annoying behavior
  2099. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  2100. case 2: {
  2101. int t, times = entry->eax & 0xff;
  2102. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  2103. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2104. for (t = 1; t < times && *nent < maxnent; ++t) {
  2105. do_cpuid_1_ent(&entry[t], function, 0);
  2106. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  2107. ++*nent;
  2108. }
  2109. break;
  2110. }
  2111. /* function 4 and 0xb have additional index. */
  2112. case 4: {
  2113. int i, cache_type;
  2114. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2115. /* read more entries until cache_type is zero */
  2116. for (i = 1; *nent < maxnent; ++i) {
  2117. cache_type = entry[i - 1].eax & 0x1f;
  2118. if (!cache_type)
  2119. break;
  2120. do_cpuid_1_ent(&entry[i], function, i);
  2121. entry[i].flags |=
  2122. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2123. ++*nent;
  2124. }
  2125. break;
  2126. }
  2127. case 9:
  2128. break;
  2129. case 0xb: {
  2130. int i, level_type;
  2131. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2132. /* read more entries until level_type is zero */
  2133. for (i = 1; *nent < maxnent; ++i) {
  2134. level_type = entry[i - 1].ecx & 0xff00;
  2135. if (!level_type)
  2136. break;
  2137. do_cpuid_1_ent(&entry[i], function, i);
  2138. entry[i].flags |=
  2139. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2140. ++*nent;
  2141. }
  2142. break;
  2143. }
  2144. case 0xd: {
  2145. int i;
  2146. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2147. for (i = 1; *nent < maxnent && i < 64; ++i) {
  2148. if (entry[i].eax == 0 || !supported_xcr0_bit(i))
  2149. continue;
  2150. do_cpuid_1_ent(&entry[i], function, i);
  2151. entry[i].flags |=
  2152. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2153. ++*nent;
  2154. }
  2155. break;
  2156. }
  2157. case KVM_CPUID_SIGNATURE: {
  2158. char signature[12] = "KVMKVMKVM\0\0";
  2159. u32 *sigptr = (u32 *)signature;
  2160. entry->eax = 0;
  2161. entry->ebx = sigptr[0];
  2162. entry->ecx = sigptr[1];
  2163. entry->edx = sigptr[2];
  2164. break;
  2165. }
  2166. case KVM_CPUID_FEATURES:
  2167. entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
  2168. (1 << KVM_FEATURE_NOP_IO_DELAY) |
  2169. (1 << KVM_FEATURE_CLOCKSOURCE2) |
  2170. (1 << KVM_FEATURE_ASYNC_PF) |
  2171. (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
  2172. entry->ebx = 0;
  2173. entry->ecx = 0;
  2174. entry->edx = 0;
  2175. break;
  2176. case 0x80000000:
  2177. entry->eax = min(entry->eax, 0x8000001a);
  2178. break;
  2179. case 0x80000001:
  2180. entry->edx &= kvm_supported_word1_x86_features;
  2181. cpuid_mask(&entry->edx, 1);
  2182. entry->ecx &= kvm_supported_word6_x86_features;
  2183. cpuid_mask(&entry->ecx, 6);
  2184. break;
  2185. case 0x80000008: {
  2186. unsigned g_phys_as = (entry->eax >> 16) & 0xff;
  2187. unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
  2188. unsigned phys_as = entry->eax & 0xff;
  2189. if (!g_phys_as)
  2190. g_phys_as = phys_as;
  2191. entry->eax = g_phys_as | (virt_as << 8);
  2192. entry->ebx = entry->edx = 0;
  2193. break;
  2194. }
  2195. case 0x80000019:
  2196. entry->ecx = entry->edx = 0;
  2197. break;
  2198. case 0x8000001a:
  2199. break;
  2200. case 0x8000001d:
  2201. break;
  2202. /*Add support for Centaur's CPUID instruction*/
  2203. case 0xC0000000:
  2204. /*Just support up to 0xC0000004 now*/
  2205. entry->eax = min(entry->eax, 0xC0000004);
  2206. break;
  2207. case 0xC0000001:
  2208. entry->edx &= kvm_supported_word5_x86_features;
  2209. cpuid_mask(&entry->edx, 5);
  2210. break;
  2211. case 3: /* Processor serial number */
  2212. case 5: /* MONITOR/MWAIT */
  2213. case 6: /* Thermal management */
  2214. case 0xA: /* Architectural Performance Monitoring */
  2215. case 0x80000007: /* Advanced power management */
  2216. case 0xC0000002:
  2217. case 0xC0000003:
  2218. case 0xC0000004:
  2219. default:
  2220. entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
  2221. break;
  2222. }
  2223. kvm_x86_ops->set_supported_cpuid(function, entry);
  2224. put_cpu();
  2225. }
  2226. #undef F
  2227. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  2228. struct kvm_cpuid_entry2 __user *entries)
  2229. {
  2230. struct kvm_cpuid_entry2 *cpuid_entries;
  2231. int limit, nent = 0, r = -E2BIG;
  2232. u32 func;
  2233. if (cpuid->nent < 1)
  2234. goto out;
  2235. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2236. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  2237. r = -ENOMEM;
  2238. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  2239. if (!cpuid_entries)
  2240. goto out;
  2241. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  2242. limit = cpuid_entries[0].eax;
  2243. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  2244. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  2245. &nent, cpuid->nent);
  2246. r = -E2BIG;
  2247. if (nent >= cpuid->nent)
  2248. goto out_free;
  2249. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  2250. limit = cpuid_entries[nent - 1].eax;
  2251. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  2252. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  2253. &nent, cpuid->nent);
  2254. r = -E2BIG;
  2255. if (nent >= cpuid->nent)
  2256. goto out_free;
  2257. /* Add support for Centaur's CPUID instruction. */
  2258. if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR) {
  2259. do_cpuid_ent(&cpuid_entries[nent], 0xC0000000, 0,
  2260. &nent, cpuid->nent);
  2261. r = -E2BIG;
  2262. if (nent >= cpuid->nent)
  2263. goto out_free;
  2264. limit = cpuid_entries[nent - 1].eax;
  2265. for (func = 0xC0000001;
  2266. func <= limit && nent < cpuid->nent; ++func)
  2267. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  2268. &nent, cpuid->nent);
  2269. r = -E2BIG;
  2270. if (nent >= cpuid->nent)
  2271. goto out_free;
  2272. }
  2273. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
  2274. cpuid->nent);
  2275. r = -E2BIG;
  2276. if (nent >= cpuid->nent)
  2277. goto out_free;
  2278. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
  2279. cpuid->nent);
  2280. r = -E2BIG;
  2281. if (nent >= cpuid->nent)
  2282. goto out_free;
  2283. r = -EFAULT;
  2284. if (copy_to_user(entries, cpuid_entries,
  2285. nent * sizeof(struct kvm_cpuid_entry2)))
  2286. goto out_free;
  2287. cpuid->nent = nent;
  2288. r = 0;
  2289. out_free:
  2290. vfree(cpuid_entries);
  2291. out:
  2292. return r;
  2293. }
  2294. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  2295. struct kvm_lapic_state *s)
  2296. {
  2297. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  2298. return 0;
  2299. }
  2300. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  2301. struct kvm_lapic_state *s)
  2302. {
  2303. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  2304. kvm_apic_post_state_restore(vcpu);
  2305. update_cr8_intercept(vcpu);
  2306. return 0;
  2307. }
  2308. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2309. struct kvm_interrupt *irq)
  2310. {
  2311. if (irq->irq < 0 || irq->irq >= 256)
  2312. return -EINVAL;
  2313. if (irqchip_in_kernel(vcpu->kvm))
  2314. return -ENXIO;
  2315. kvm_queue_interrupt(vcpu, irq->irq, false);
  2316. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2317. return 0;
  2318. }
  2319. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  2320. {
  2321. kvm_inject_nmi(vcpu);
  2322. return 0;
  2323. }
  2324. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  2325. struct kvm_tpr_access_ctl *tac)
  2326. {
  2327. if (tac->flags)
  2328. return -EINVAL;
  2329. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  2330. return 0;
  2331. }
  2332. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  2333. u64 mcg_cap)
  2334. {
  2335. int r;
  2336. unsigned bank_num = mcg_cap & 0xff, bank;
  2337. r = -EINVAL;
  2338. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  2339. goto out;
  2340. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  2341. goto out;
  2342. r = 0;
  2343. vcpu->arch.mcg_cap = mcg_cap;
  2344. /* Init IA32_MCG_CTL to all 1s */
  2345. if (mcg_cap & MCG_CTL_P)
  2346. vcpu->arch.mcg_ctl = ~(u64)0;
  2347. /* Init IA32_MCi_CTL to all 1s */
  2348. for (bank = 0; bank < bank_num; bank++)
  2349. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  2350. out:
  2351. return r;
  2352. }
  2353. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  2354. struct kvm_x86_mce *mce)
  2355. {
  2356. u64 mcg_cap = vcpu->arch.mcg_cap;
  2357. unsigned bank_num = mcg_cap & 0xff;
  2358. u64 *banks = vcpu->arch.mce_banks;
  2359. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  2360. return -EINVAL;
  2361. /*
  2362. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  2363. * reporting is disabled
  2364. */
  2365. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  2366. vcpu->arch.mcg_ctl != ~(u64)0)
  2367. return 0;
  2368. banks += 4 * mce->bank;
  2369. /*
  2370. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  2371. * reporting is disabled for the bank
  2372. */
  2373. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  2374. return 0;
  2375. if (mce->status & MCI_STATUS_UC) {
  2376. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  2377. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  2378. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2379. return 0;
  2380. }
  2381. if (banks[1] & MCI_STATUS_VAL)
  2382. mce->status |= MCI_STATUS_OVER;
  2383. banks[2] = mce->addr;
  2384. banks[3] = mce->misc;
  2385. vcpu->arch.mcg_status = mce->mcg_status;
  2386. banks[1] = mce->status;
  2387. kvm_queue_exception(vcpu, MC_VECTOR);
  2388. } else if (!(banks[1] & MCI_STATUS_VAL)
  2389. || !(banks[1] & MCI_STATUS_UC)) {
  2390. if (banks[1] & MCI_STATUS_VAL)
  2391. mce->status |= MCI_STATUS_OVER;
  2392. banks[2] = mce->addr;
  2393. banks[3] = mce->misc;
  2394. banks[1] = mce->status;
  2395. } else
  2396. banks[1] |= MCI_STATUS_OVER;
  2397. return 0;
  2398. }
  2399. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  2400. struct kvm_vcpu_events *events)
  2401. {
  2402. events->exception.injected =
  2403. vcpu->arch.exception.pending &&
  2404. !kvm_exception_is_soft(vcpu->arch.exception.nr);
  2405. events->exception.nr = vcpu->arch.exception.nr;
  2406. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  2407. events->exception.pad = 0;
  2408. events->exception.error_code = vcpu->arch.exception.error_code;
  2409. events->interrupt.injected =
  2410. vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
  2411. events->interrupt.nr = vcpu->arch.interrupt.nr;
  2412. events->interrupt.soft = 0;
  2413. events->interrupt.shadow =
  2414. kvm_x86_ops->get_interrupt_shadow(vcpu,
  2415. KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
  2416. events->nmi.injected = vcpu->arch.nmi_injected;
  2417. events->nmi.pending = vcpu->arch.nmi_pending;
  2418. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  2419. events->nmi.pad = 0;
  2420. events->sipi_vector = vcpu->arch.sipi_vector;
  2421. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  2422. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2423. | KVM_VCPUEVENT_VALID_SHADOW);
  2424. memset(&events->reserved, 0, sizeof(events->reserved));
  2425. }
  2426. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  2427. struct kvm_vcpu_events *events)
  2428. {
  2429. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  2430. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2431. | KVM_VCPUEVENT_VALID_SHADOW))
  2432. return -EINVAL;
  2433. vcpu->arch.exception.pending = events->exception.injected;
  2434. vcpu->arch.exception.nr = events->exception.nr;
  2435. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  2436. vcpu->arch.exception.error_code = events->exception.error_code;
  2437. vcpu->arch.interrupt.pending = events->interrupt.injected;
  2438. vcpu->arch.interrupt.nr = events->interrupt.nr;
  2439. vcpu->arch.interrupt.soft = events->interrupt.soft;
  2440. if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
  2441. kvm_x86_ops->set_interrupt_shadow(vcpu,
  2442. events->interrupt.shadow);
  2443. vcpu->arch.nmi_injected = events->nmi.injected;
  2444. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  2445. vcpu->arch.nmi_pending = events->nmi.pending;
  2446. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  2447. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  2448. vcpu->arch.sipi_vector = events->sipi_vector;
  2449. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2450. return 0;
  2451. }
  2452. static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
  2453. struct kvm_debugregs *dbgregs)
  2454. {
  2455. memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
  2456. dbgregs->dr6 = vcpu->arch.dr6;
  2457. dbgregs->dr7 = vcpu->arch.dr7;
  2458. dbgregs->flags = 0;
  2459. memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
  2460. }
  2461. static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
  2462. struct kvm_debugregs *dbgregs)
  2463. {
  2464. if (dbgregs->flags)
  2465. return -EINVAL;
  2466. memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
  2467. vcpu->arch.dr6 = dbgregs->dr6;
  2468. vcpu->arch.dr7 = dbgregs->dr7;
  2469. return 0;
  2470. }
  2471. static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
  2472. struct kvm_xsave *guest_xsave)
  2473. {
  2474. if (cpu_has_xsave)
  2475. memcpy(guest_xsave->region,
  2476. &vcpu->arch.guest_fpu.state->xsave,
  2477. xstate_size);
  2478. else {
  2479. memcpy(guest_xsave->region,
  2480. &vcpu->arch.guest_fpu.state->fxsave,
  2481. sizeof(struct i387_fxsave_struct));
  2482. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
  2483. XSTATE_FPSSE;
  2484. }
  2485. }
  2486. static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
  2487. struct kvm_xsave *guest_xsave)
  2488. {
  2489. u64 xstate_bv =
  2490. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
  2491. if (cpu_has_xsave)
  2492. memcpy(&vcpu->arch.guest_fpu.state->xsave,
  2493. guest_xsave->region, xstate_size);
  2494. else {
  2495. if (xstate_bv & ~XSTATE_FPSSE)
  2496. return -EINVAL;
  2497. memcpy(&vcpu->arch.guest_fpu.state->fxsave,
  2498. guest_xsave->region, sizeof(struct i387_fxsave_struct));
  2499. }
  2500. return 0;
  2501. }
  2502. static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
  2503. struct kvm_xcrs *guest_xcrs)
  2504. {
  2505. if (!cpu_has_xsave) {
  2506. guest_xcrs->nr_xcrs = 0;
  2507. return;
  2508. }
  2509. guest_xcrs->nr_xcrs = 1;
  2510. guest_xcrs->flags = 0;
  2511. guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
  2512. guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
  2513. }
  2514. static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
  2515. struct kvm_xcrs *guest_xcrs)
  2516. {
  2517. int i, r = 0;
  2518. if (!cpu_has_xsave)
  2519. return -EINVAL;
  2520. if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
  2521. return -EINVAL;
  2522. for (i = 0; i < guest_xcrs->nr_xcrs; i++)
  2523. /* Only support XCR0 currently */
  2524. if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
  2525. r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
  2526. guest_xcrs->xcrs[0].value);
  2527. break;
  2528. }
  2529. if (r)
  2530. r = -EINVAL;
  2531. return r;
  2532. }
  2533. long kvm_arch_vcpu_ioctl(struct file *filp,
  2534. unsigned int ioctl, unsigned long arg)
  2535. {
  2536. struct kvm_vcpu *vcpu = filp->private_data;
  2537. void __user *argp = (void __user *)arg;
  2538. int r;
  2539. union {
  2540. struct kvm_lapic_state *lapic;
  2541. struct kvm_xsave *xsave;
  2542. struct kvm_xcrs *xcrs;
  2543. void *buffer;
  2544. } u;
  2545. u.buffer = NULL;
  2546. switch (ioctl) {
  2547. case KVM_GET_LAPIC: {
  2548. r = -EINVAL;
  2549. if (!vcpu->arch.apic)
  2550. goto out;
  2551. u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2552. r = -ENOMEM;
  2553. if (!u.lapic)
  2554. goto out;
  2555. r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
  2556. if (r)
  2557. goto out;
  2558. r = -EFAULT;
  2559. if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
  2560. goto out;
  2561. r = 0;
  2562. break;
  2563. }
  2564. case KVM_SET_LAPIC: {
  2565. r = -EINVAL;
  2566. if (!vcpu->arch.apic)
  2567. goto out;
  2568. u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2569. r = -ENOMEM;
  2570. if (!u.lapic)
  2571. goto out;
  2572. r = -EFAULT;
  2573. if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
  2574. goto out;
  2575. r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
  2576. if (r)
  2577. goto out;
  2578. r = 0;
  2579. break;
  2580. }
  2581. case KVM_INTERRUPT: {
  2582. struct kvm_interrupt irq;
  2583. r = -EFAULT;
  2584. if (copy_from_user(&irq, argp, sizeof irq))
  2585. goto out;
  2586. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2587. if (r)
  2588. goto out;
  2589. r = 0;
  2590. break;
  2591. }
  2592. case KVM_NMI: {
  2593. r = kvm_vcpu_ioctl_nmi(vcpu);
  2594. if (r)
  2595. goto out;
  2596. r = 0;
  2597. break;
  2598. }
  2599. case KVM_SET_CPUID: {
  2600. struct kvm_cpuid __user *cpuid_arg = argp;
  2601. struct kvm_cpuid cpuid;
  2602. r = -EFAULT;
  2603. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2604. goto out;
  2605. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2606. if (r)
  2607. goto out;
  2608. break;
  2609. }
  2610. case KVM_SET_CPUID2: {
  2611. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2612. struct kvm_cpuid2 cpuid;
  2613. r = -EFAULT;
  2614. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2615. goto out;
  2616. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  2617. cpuid_arg->entries);
  2618. if (r)
  2619. goto out;
  2620. break;
  2621. }
  2622. case KVM_GET_CPUID2: {
  2623. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2624. struct kvm_cpuid2 cpuid;
  2625. r = -EFAULT;
  2626. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2627. goto out;
  2628. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  2629. cpuid_arg->entries);
  2630. if (r)
  2631. goto out;
  2632. r = -EFAULT;
  2633. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2634. goto out;
  2635. r = 0;
  2636. break;
  2637. }
  2638. case KVM_GET_MSRS:
  2639. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2640. break;
  2641. case KVM_SET_MSRS:
  2642. r = msr_io(vcpu, argp, do_set_msr, 0);
  2643. break;
  2644. case KVM_TPR_ACCESS_REPORTING: {
  2645. struct kvm_tpr_access_ctl tac;
  2646. r = -EFAULT;
  2647. if (copy_from_user(&tac, argp, sizeof tac))
  2648. goto out;
  2649. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  2650. if (r)
  2651. goto out;
  2652. r = -EFAULT;
  2653. if (copy_to_user(argp, &tac, sizeof tac))
  2654. goto out;
  2655. r = 0;
  2656. break;
  2657. };
  2658. case KVM_SET_VAPIC_ADDR: {
  2659. struct kvm_vapic_addr va;
  2660. r = -EINVAL;
  2661. if (!irqchip_in_kernel(vcpu->kvm))
  2662. goto out;
  2663. r = -EFAULT;
  2664. if (copy_from_user(&va, argp, sizeof va))
  2665. goto out;
  2666. r = 0;
  2667. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  2668. break;
  2669. }
  2670. case KVM_X86_SETUP_MCE: {
  2671. u64 mcg_cap;
  2672. r = -EFAULT;
  2673. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  2674. goto out;
  2675. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  2676. break;
  2677. }
  2678. case KVM_X86_SET_MCE: {
  2679. struct kvm_x86_mce mce;
  2680. r = -EFAULT;
  2681. if (copy_from_user(&mce, argp, sizeof mce))
  2682. goto out;
  2683. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  2684. break;
  2685. }
  2686. case KVM_GET_VCPU_EVENTS: {
  2687. struct kvm_vcpu_events events;
  2688. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  2689. r = -EFAULT;
  2690. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  2691. break;
  2692. r = 0;
  2693. break;
  2694. }
  2695. case KVM_SET_VCPU_EVENTS: {
  2696. struct kvm_vcpu_events events;
  2697. r = -EFAULT;
  2698. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  2699. break;
  2700. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  2701. break;
  2702. }
  2703. case KVM_GET_DEBUGREGS: {
  2704. struct kvm_debugregs dbgregs;
  2705. kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
  2706. r = -EFAULT;
  2707. if (copy_to_user(argp, &dbgregs,
  2708. sizeof(struct kvm_debugregs)))
  2709. break;
  2710. r = 0;
  2711. break;
  2712. }
  2713. case KVM_SET_DEBUGREGS: {
  2714. struct kvm_debugregs dbgregs;
  2715. r = -EFAULT;
  2716. if (copy_from_user(&dbgregs, argp,
  2717. sizeof(struct kvm_debugregs)))
  2718. break;
  2719. r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
  2720. break;
  2721. }
  2722. case KVM_GET_XSAVE: {
  2723. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2724. r = -ENOMEM;
  2725. if (!u.xsave)
  2726. break;
  2727. kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
  2728. r = -EFAULT;
  2729. if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
  2730. break;
  2731. r = 0;
  2732. break;
  2733. }
  2734. case KVM_SET_XSAVE: {
  2735. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2736. r = -ENOMEM;
  2737. if (!u.xsave)
  2738. break;
  2739. r = -EFAULT;
  2740. if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
  2741. break;
  2742. r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
  2743. break;
  2744. }
  2745. case KVM_GET_XCRS: {
  2746. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2747. r = -ENOMEM;
  2748. if (!u.xcrs)
  2749. break;
  2750. kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
  2751. r = -EFAULT;
  2752. if (copy_to_user(argp, u.xcrs,
  2753. sizeof(struct kvm_xcrs)))
  2754. break;
  2755. r = 0;
  2756. break;
  2757. }
  2758. case KVM_SET_XCRS: {
  2759. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2760. r = -ENOMEM;
  2761. if (!u.xcrs)
  2762. break;
  2763. r = -EFAULT;
  2764. if (copy_from_user(u.xcrs, argp,
  2765. sizeof(struct kvm_xcrs)))
  2766. break;
  2767. r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
  2768. break;
  2769. }
  2770. case KVM_SET_TSC_KHZ: {
  2771. u32 user_tsc_khz;
  2772. r = -EINVAL;
  2773. if (!kvm_has_tsc_control)
  2774. break;
  2775. user_tsc_khz = (u32)arg;
  2776. if (user_tsc_khz >= kvm_max_guest_tsc_khz)
  2777. goto out;
  2778. kvm_x86_ops->set_tsc_khz(vcpu, user_tsc_khz);
  2779. r = 0;
  2780. goto out;
  2781. }
  2782. case KVM_GET_TSC_KHZ: {
  2783. r = -EIO;
  2784. if (check_tsc_unstable())
  2785. goto out;
  2786. r = vcpu_tsc_khz(vcpu);
  2787. goto out;
  2788. }
  2789. default:
  2790. r = -EINVAL;
  2791. }
  2792. out:
  2793. kfree(u.buffer);
  2794. return r;
  2795. }
  2796. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  2797. {
  2798. int ret;
  2799. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  2800. return -1;
  2801. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  2802. return ret;
  2803. }
  2804. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  2805. u64 ident_addr)
  2806. {
  2807. kvm->arch.ept_identity_map_addr = ident_addr;
  2808. return 0;
  2809. }
  2810. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  2811. u32 kvm_nr_mmu_pages)
  2812. {
  2813. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  2814. return -EINVAL;
  2815. mutex_lock(&kvm->slots_lock);
  2816. spin_lock(&kvm->mmu_lock);
  2817. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  2818. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  2819. spin_unlock(&kvm->mmu_lock);
  2820. mutex_unlock(&kvm->slots_lock);
  2821. return 0;
  2822. }
  2823. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  2824. {
  2825. return kvm->arch.n_max_mmu_pages;
  2826. }
  2827. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2828. {
  2829. int r;
  2830. r = 0;
  2831. switch (chip->chip_id) {
  2832. case KVM_IRQCHIP_PIC_MASTER:
  2833. memcpy(&chip->chip.pic,
  2834. &pic_irqchip(kvm)->pics[0],
  2835. sizeof(struct kvm_pic_state));
  2836. break;
  2837. case KVM_IRQCHIP_PIC_SLAVE:
  2838. memcpy(&chip->chip.pic,
  2839. &pic_irqchip(kvm)->pics[1],
  2840. sizeof(struct kvm_pic_state));
  2841. break;
  2842. case KVM_IRQCHIP_IOAPIC:
  2843. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2844. break;
  2845. default:
  2846. r = -EINVAL;
  2847. break;
  2848. }
  2849. return r;
  2850. }
  2851. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2852. {
  2853. int r;
  2854. r = 0;
  2855. switch (chip->chip_id) {
  2856. case KVM_IRQCHIP_PIC_MASTER:
  2857. spin_lock(&pic_irqchip(kvm)->lock);
  2858. memcpy(&pic_irqchip(kvm)->pics[0],
  2859. &chip->chip.pic,
  2860. sizeof(struct kvm_pic_state));
  2861. spin_unlock(&pic_irqchip(kvm)->lock);
  2862. break;
  2863. case KVM_IRQCHIP_PIC_SLAVE:
  2864. spin_lock(&pic_irqchip(kvm)->lock);
  2865. memcpy(&pic_irqchip(kvm)->pics[1],
  2866. &chip->chip.pic,
  2867. sizeof(struct kvm_pic_state));
  2868. spin_unlock(&pic_irqchip(kvm)->lock);
  2869. break;
  2870. case KVM_IRQCHIP_IOAPIC:
  2871. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2872. break;
  2873. default:
  2874. r = -EINVAL;
  2875. break;
  2876. }
  2877. kvm_pic_update_irq(pic_irqchip(kvm));
  2878. return r;
  2879. }
  2880. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2881. {
  2882. int r = 0;
  2883. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2884. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2885. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2886. return r;
  2887. }
  2888. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2889. {
  2890. int r = 0;
  2891. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2892. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2893. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2894. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2895. return r;
  2896. }
  2897. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2898. {
  2899. int r = 0;
  2900. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2901. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2902. sizeof(ps->channels));
  2903. ps->flags = kvm->arch.vpit->pit_state.flags;
  2904. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2905. memset(&ps->reserved, 0, sizeof(ps->reserved));
  2906. return r;
  2907. }
  2908. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2909. {
  2910. int r = 0, start = 0;
  2911. u32 prev_legacy, cur_legacy;
  2912. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2913. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2914. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2915. if (!prev_legacy && cur_legacy)
  2916. start = 1;
  2917. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2918. sizeof(kvm->arch.vpit->pit_state.channels));
  2919. kvm->arch.vpit->pit_state.flags = ps->flags;
  2920. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2921. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2922. return r;
  2923. }
  2924. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2925. struct kvm_reinject_control *control)
  2926. {
  2927. if (!kvm->arch.vpit)
  2928. return -ENXIO;
  2929. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2930. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2931. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2932. return 0;
  2933. }
  2934. /*
  2935. * Get (and clear) the dirty memory log for a memory slot.
  2936. */
  2937. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2938. struct kvm_dirty_log *log)
  2939. {
  2940. int r, i;
  2941. struct kvm_memory_slot *memslot;
  2942. unsigned long n;
  2943. unsigned long is_dirty = 0;
  2944. mutex_lock(&kvm->slots_lock);
  2945. r = -EINVAL;
  2946. if (log->slot >= KVM_MEMORY_SLOTS)
  2947. goto out;
  2948. memslot = &kvm->memslots->memslots[log->slot];
  2949. r = -ENOENT;
  2950. if (!memslot->dirty_bitmap)
  2951. goto out;
  2952. n = kvm_dirty_bitmap_bytes(memslot);
  2953. for (i = 0; !is_dirty && i < n/sizeof(long); i++)
  2954. is_dirty = memslot->dirty_bitmap[i];
  2955. /* If nothing is dirty, don't bother messing with page tables. */
  2956. if (is_dirty) {
  2957. struct kvm_memslots *slots, *old_slots;
  2958. unsigned long *dirty_bitmap;
  2959. dirty_bitmap = memslot->dirty_bitmap_head;
  2960. if (memslot->dirty_bitmap == dirty_bitmap)
  2961. dirty_bitmap += n / sizeof(long);
  2962. memset(dirty_bitmap, 0, n);
  2963. r = -ENOMEM;
  2964. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  2965. if (!slots)
  2966. goto out;
  2967. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  2968. slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
  2969. slots->generation++;
  2970. old_slots = kvm->memslots;
  2971. rcu_assign_pointer(kvm->memslots, slots);
  2972. synchronize_srcu_expedited(&kvm->srcu);
  2973. dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
  2974. kfree(old_slots);
  2975. spin_lock(&kvm->mmu_lock);
  2976. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2977. spin_unlock(&kvm->mmu_lock);
  2978. r = -EFAULT;
  2979. if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
  2980. goto out;
  2981. } else {
  2982. r = -EFAULT;
  2983. if (clear_user(log->dirty_bitmap, n))
  2984. goto out;
  2985. }
  2986. r = 0;
  2987. out:
  2988. mutex_unlock(&kvm->slots_lock);
  2989. return r;
  2990. }
  2991. long kvm_arch_vm_ioctl(struct file *filp,
  2992. unsigned int ioctl, unsigned long arg)
  2993. {
  2994. struct kvm *kvm = filp->private_data;
  2995. void __user *argp = (void __user *)arg;
  2996. int r = -ENOTTY;
  2997. /*
  2998. * This union makes it completely explicit to gcc-3.x
  2999. * that these two variables' stack usage should be
  3000. * combined, not added together.
  3001. */
  3002. union {
  3003. struct kvm_pit_state ps;
  3004. struct kvm_pit_state2 ps2;
  3005. struct kvm_pit_config pit_config;
  3006. } u;
  3007. switch (ioctl) {
  3008. case KVM_SET_TSS_ADDR:
  3009. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  3010. if (r < 0)
  3011. goto out;
  3012. break;
  3013. case KVM_SET_IDENTITY_MAP_ADDR: {
  3014. u64 ident_addr;
  3015. r = -EFAULT;
  3016. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  3017. goto out;
  3018. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  3019. if (r < 0)
  3020. goto out;
  3021. break;
  3022. }
  3023. case KVM_SET_NR_MMU_PAGES:
  3024. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  3025. if (r)
  3026. goto out;
  3027. break;
  3028. case KVM_GET_NR_MMU_PAGES:
  3029. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  3030. break;
  3031. case KVM_CREATE_IRQCHIP: {
  3032. struct kvm_pic *vpic;
  3033. mutex_lock(&kvm->lock);
  3034. r = -EEXIST;
  3035. if (kvm->arch.vpic)
  3036. goto create_irqchip_unlock;
  3037. r = -ENOMEM;
  3038. vpic = kvm_create_pic(kvm);
  3039. if (vpic) {
  3040. r = kvm_ioapic_init(kvm);
  3041. if (r) {
  3042. mutex_lock(&kvm->slots_lock);
  3043. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  3044. &vpic->dev);
  3045. mutex_unlock(&kvm->slots_lock);
  3046. kfree(vpic);
  3047. goto create_irqchip_unlock;
  3048. }
  3049. } else
  3050. goto create_irqchip_unlock;
  3051. smp_wmb();
  3052. kvm->arch.vpic = vpic;
  3053. smp_wmb();
  3054. r = kvm_setup_default_irq_routing(kvm);
  3055. if (r) {
  3056. mutex_lock(&kvm->slots_lock);
  3057. mutex_lock(&kvm->irq_lock);
  3058. kvm_ioapic_destroy(kvm);
  3059. kvm_destroy_pic(kvm);
  3060. mutex_unlock(&kvm->irq_lock);
  3061. mutex_unlock(&kvm->slots_lock);
  3062. }
  3063. create_irqchip_unlock:
  3064. mutex_unlock(&kvm->lock);
  3065. break;
  3066. }
  3067. case KVM_CREATE_PIT:
  3068. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  3069. goto create_pit;
  3070. case KVM_CREATE_PIT2:
  3071. r = -EFAULT;
  3072. if (copy_from_user(&u.pit_config, argp,
  3073. sizeof(struct kvm_pit_config)))
  3074. goto out;
  3075. create_pit:
  3076. mutex_lock(&kvm->slots_lock);
  3077. r = -EEXIST;
  3078. if (kvm->arch.vpit)
  3079. goto create_pit_unlock;
  3080. r = -ENOMEM;
  3081. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  3082. if (kvm->arch.vpit)
  3083. r = 0;
  3084. create_pit_unlock:
  3085. mutex_unlock(&kvm->slots_lock);
  3086. break;
  3087. case KVM_IRQ_LINE_STATUS:
  3088. case KVM_IRQ_LINE: {
  3089. struct kvm_irq_level irq_event;
  3090. r = -EFAULT;
  3091. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  3092. goto out;
  3093. r = -ENXIO;
  3094. if (irqchip_in_kernel(kvm)) {
  3095. __s32 status;
  3096. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  3097. irq_event.irq, irq_event.level);
  3098. if (ioctl == KVM_IRQ_LINE_STATUS) {
  3099. r = -EFAULT;
  3100. irq_event.status = status;
  3101. if (copy_to_user(argp, &irq_event,
  3102. sizeof irq_event))
  3103. goto out;
  3104. }
  3105. r = 0;
  3106. }
  3107. break;
  3108. }
  3109. case KVM_GET_IRQCHIP: {
  3110. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  3111. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  3112. r = -ENOMEM;
  3113. if (!chip)
  3114. goto out;
  3115. r = -EFAULT;
  3116. if (copy_from_user(chip, argp, sizeof *chip))
  3117. goto get_irqchip_out;
  3118. r = -ENXIO;
  3119. if (!irqchip_in_kernel(kvm))
  3120. goto get_irqchip_out;
  3121. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  3122. if (r)
  3123. goto get_irqchip_out;
  3124. r = -EFAULT;
  3125. if (copy_to_user(argp, chip, sizeof *chip))
  3126. goto get_irqchip_out;
  3127. r = 0;
  3128. get_irqchip_out:
  3129. kfree(chip);
  3130. if (r)
  3131. goto out;
  3132. break;
  3133. }
  3134. case KVM_SET_IRQCHIP: {
  3135. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  3136. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  3137. r = -ENOMEM;
  3138. if (!chip)
  3139. goto out;
  3140. r = -EFAULT;
  3141. if (copy_from_user(chip, argp, sizeof *chip))
  3142. goto set_irqchip_out;
  3143. r = -ENXIO;
  3144. if (!irqchip_in_kernel(kvm))
  3145. goto set_irqchip_out;
  3146. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  3147. if (r)
  3148. goto set_irqchip_out;
  3149. r = 0;
  3150. set_irqchip_out:
  3151. kfree(chip);
  3152. if (r)
  3153. goto out;
  3154. break;
  3155. }
  3156. case KVM_GET_PIT: {
  3157. r = -EFAULT;
  3158. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  3159. goto out;
  3160. r = -ENXIO;
  3161. if (!kvm->arch.vpit)
  3162. goto out;
  3163. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  3164. if (r)
  3165. goto out;
  3166. r = -EFAULT;
  3167. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  3168. goto out;
  3169. r = 0;
  3170. break;
  3171. }
  3172. case KVM_SET_PIT: {
  3173. r = -EFAULT;
  3174. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  3175. goto out;
  3176. r = -ENXIO;
  3177. if (!kvm->arch.vpit)
  3178. goto out;
  3179. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  3180. if (r)
  3181. goto out;
  3182. r = 0;
  3183. break;
  3184. }
  3185. case KVM_GET_PIT2: {
  3186. r = -ENXIO;
  3187. if (!kvm->arch.vpit)
  3188. goto out;
  3189. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  3190. if (r)
  3191. goto out;
  3192. r = -EFAULT;
  3193. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  3194. goto out;
  3195. r = 0;
  3196. break;
  3197. }
  3198. case KVM_SET_PIT2: {
  3199. r = -EFAULT;
  3200. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  3201. goto out;
  3202. r = -ENXIO;
  3203. if (!kvm->arch.vpit)
  3204. goto out;
  3205. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  3206. if (r)
  3207. goto out;
  3208. r = 0;
  3209. break;
  3210. }
  3211. case KVM_REINJECT_CONTROL: {
  3212. struct kvm_reinject_control control;
  3213. r = -EFAULT;
  3214. if (copy_from_user(&control, argp, sizeof(control)))
  3215. goto out;
  3216. r = kvm_vm_ioctl_reinject(kvm, &control);
  3217. if (r)
  3218. goto out;
  3219. r = 0;
  3220. break;
  3221. }
  3222. case KVM_XEN_HVM_CONFIG: {
  3223. r = -EFAULT;
  3224. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  3225. sizeof(struct kvm_xen_hvm_config)))
  3226. goto out;
  3227. r = -EINVAL;
  3228. if (kvm->arch.xen_hvm_config.flags)
  3229. goto out;
  3230. r = 0;
  3231. break;
  3232. }
  3233. case KVM_SET_CLOCK: {
  3234. struct kvm_clock_data user_ns;
  3235. u64 now_ns;
  3236. s64 delta;
  3237. r = -EFAULT;
  3238. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  3239. goto out;
  3240. r = -EINVAL;
  3241. if (user_ns.flags)
  3242. goto out;
  3243. r = 0;
  3244. local_irq_disable();
  3245. now_ns = get_kernel_ns();
  3246. delta = user_ns.clock - now_ns;
  3247. local_irq_enable();
  3248. kvm->arch.kvmclock_offset = delta;
  3249. break;
  3250. }
  3251. case KVM_GET_CLOCK: {
  3252. struct kvm_clock_data user_ns;
  3253. u64 now_ns;
  3254. local_irq_disable();
  3255. now_ns = get_kernel_ns();
  3256. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  3257. local_irq_enable();
  3258. user_ns.flags = 0;
  3259. memset(&user_ns.pad, 0, sizeof(user_ns.pad));
  3260. r = -EFAULT;
  3261. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  3262. goto out;
  3263. r = 0;
  3264. break;
  3265. }
  3266. default:
  3267. ;
  3268. }
  3269. out:
  3270. return r;
  3271. }
  3272. static void kvm_init_msr_list(void)
  3273. {
  3274. u32 dummy[2];
  3275. unsigned i, j;
  3276. /* skip the first msrs in the list. KVM-specific */
  3277. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  3278. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  3279. continue;
  3280. if (j < i)
  3281. msrs_to_save[j] = msrs_to_save[i];
  3282. j++;
  3283. }
  3284. num_msrs_to_save = j;
  3285. }
  3286. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  3287. const void *v)
  3288. {
  3289. int handled = 0;
  3290. int n;
  3291. do {
  3292. n = min(len, 8);
  3293. if (!(vcpu->arch.apic &&
  3294. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
  3295. && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
  3296. break;
  3297. handled += n;
  3298. addr += n;
  3299. len -= n;
  3300. v += n;
  3301. } while (len);
  3302. return handled;
  3303. }
  3304. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  3305. {
  3306. int handled = 0;
  3307. int n;
  3308. do {
  3309. n = min(len, 8);
  3310. if (!(vcpu->arch.apic &&
  3311. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
  3312. && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
  3313. break;
  3314. trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
  3315. handled += n;
  3316. addr += n;
  3317. len -= n;
  3318. v += n;
  3319. } while (len);
  3320. return handled;
  3321. }
  3322. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3323. struct kvm_segment *var, int seg)
  3324. {
  3325. kvm_x86_ops->set_segment(vcpu, var, seg);
  3326. }
  3327. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3328. struct kvm_segment *var, int seg)
  3329. {
  3330. kvm_x86_ops->get_segment(vcpu, var, seg);
  3331. }
  3332. static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
  3333. {
  3334. return gpa;
  3335. }
  3336. static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
  3337. {
  3338. gpa_t t_gpa;
  3339. struct x86_exception exception;
  3340. BUG_ON(!mmu_is_nested(vcpu));
  3341. /* NPT walks are always user-walks */
  3342. access |= PFERR_USER_MASK;
  3343. t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
  3344. return t_gpa;
  3345. }
  3346. gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
  3347. struct x86_exception *exception)
  3348. {
  3349. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3350. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3351. }
  3352. gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
  3353. struct x86_exception *exception)
  3354. {
  3355. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3356. access |= PFERR_FETCH_MASK;
  3357. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3358. }
  3359. gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
  3360. struct x86_exception *exception)
  3361. {
  3362. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3363. access |= PFERR_WRITE_MASK;
  3364. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
  3365. }
  3366. /* uses this to access any guest's mapped memory without checking CPL */
  3367. gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
  3368. struct x86_exception *exception)
  3369. {
  3370. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
  3371. }
  3372. static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
  3373. struct kvm_vcpu *vcpu, u32 access,
  3374. struct x86_exception *exception)
  3375. {
  3376. void *data = val;
  3377. int r = X86EMUL_CONTINUE;
  3378. while (bytes) {
  3379. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
  3380. exception);
  3381. unsigned offset = addr & (PAGE_SIZE-1);
  3382. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  3383. int ret;
  3384. if (gpa == UNMAPPED_GVA)
  3385. return X86EMUL_PROPAGATE_FAULT;
  3386. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  3387. if (ret < 0) {
  3388. r = X86EMUL_IO_NEEDED;
  3389. goto out;
  3390. }
  3391. bytes -= toread;
  3392. data += toread;
  3393. addr += toread;
  3394. }
  3395. out:
  3396. return r;
  3397. }
  3398. /* used for instruction fetching */
  3399. static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
  3400. gva_t addr, void *val, unsigned int bytes,
  3401. struct x86_exception *exception)
  3402. {
  3403. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3404. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3405. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
  3406. access | PFERR_FETCH_MASK,
  3407. exception);
  3408. }
  3409. int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
  3410. gva_t addr, void *val, unsigned int bytes,
  3411. struct x86_exception *exception)
  3412. {
  3413. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3414. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3415. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
  3416. exception);
  3417. }
  3418. EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
  3419. static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
  3420. gva_t addr, void *val, unsigned int bytes,
  3421. struct x86_exception *exception)
  3422. {
  3423. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3424. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
  3425. }
  3426. static int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
  3427. gva_t addr, void *val,
  3428. unsigned int bytes,
  3429. struct x86_exception *exception)
  3430. {
  3431. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3432. void *data = val;
  3433. int r = X86EMUL_CONTINUE;
  3434. while (bytes) {
  3435. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
  3436. PFERR_WRITE_MASK,
  3437. exception);
  3438. unsigned offset = addr & (PAGE_SIZE-1);
  3439. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  3440. int ret;
  3441. if (gpa == UNMAPPED_GVA)
  3442. return X86EMUL_PROPAGATE_FAULT;
  3443. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  3444. if (ret < 0) {
  3445. r = X86EMUL_IO_NEEDED;
  3446. goto out;
  3447. }
  3448. bytes -= towrite;
  3449. data += towrite;
  3450. addr += towrite;
  3451. }
  3452. out:
  3453. return r;
  3454. }
  3455. static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
  3456. unsigned long addr,
  3457. void *val,
  3458. unsigned int bytes,
  3459. struct x86_exception *exception)
  3460. {
  3461. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3462. gpa_t gpa;
  3463. int handled;
  3464. if (vcpu->mmio_read_completed) {
  3465. memcpy(val, vcpu->mmio_data, bytes);
  3466. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  3467. vcpu->mmio_phys_addr, *(u64 *)val);
  3468. vcpu->mmio_read_completed = 0;
  3469. return X86EMUL_CONTINUE;
  3470. }
  3471. gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, exception);
  3472. if (gpa == UNMAPPED_GVA)
  3473. return X86EMUL_PROPAGATE_FAULT;
  3474. /* For APIC access vmexit */
  3475. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3476. goto mmio;
  3477. if (kvm_read_guest_virt(ctxt, addr, val, bytes, exception)
  3478. == X86EMUL_CONTINUE)
  3479. return X86EMUL_CONTINUE;
  3480. mmio:
  3481. /*
  3482. * Is this MMIO handled locally?
  3483. */
  3484. handled = vcpu_mmio_read(vcpu, gpa, bytes, val);
  3485. if (handled == bytes)
  3486. return X86EMUL_CONTINUE;
  3487. gpa += handled;
  3488. bytes -= handled;
  3489. val += handled;
  3490. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  3491. vcpu->mmio_needed = 1;
  3492. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3493. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3494. vcpu->mmio_size = bytes;
  3495. vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
  3496. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
  3497. vcpu->mmio_index = 0;
  3498. return X86EMUL_IO_NEEDED;
  3499. }
  3500. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  3501. const void *val, int bytes)
  3502. {
  3503. int ret;
  3504. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  3505. if (ret < 0)
  3506. return 0;
  3507. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  3508. return 1;
  3509. }
  3510. static int emulator_write_emulated_onepage(unsigned long addr,
  3511. const void *val,
  3512. unsigned int bytes,
  3513. struct x86_exception *exception,
  3514. struct kvm_vcpu *vcpu)
  3515. {
  3516. gpa_t gpa;
  3517. int handled;
  3518. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, exception);
  3519. if (gpa == UNMAPPED_GVA)
  3520. return X86EMUL_PROPAGATE_FAULT;
  3521. /* For APIC access vmexit */
  3522. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3523. goto mmio;
  3524. if (emulator_write_phys(vcpu, gpa, val, bytes))
  3525. return X86EMUL_CONTINUE;
  3526. mmio:
  3527. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  3528. /*
  3529. * Is this MMIO handled locally?
  3530. */
  3531. handled = vcpu_mmio_write(vcpu, gpa, bytes, val);
  3532. if (handled == bytes)
  3533. return X86EMUL_CONTINUE;
  3534. gpa += handled;
  3535. bytes -= handled;
  3536. val += handled;
  3537. vcpu->mmio_needed = 1;
  3538. memcpy(vcpu->mmio_data, val, bytes);
  3539. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3540. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3541. vcpu->mmio_size = bytes;
  3542. vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
  3543. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
  3544. memcpy(vcpu->run->mmio.data, vcpu->mmio_data, 8);
  3545. vcpu->mmio_index = 0;
  3546. return X86EMUL_CONTINUE;
  3547. }
  3548. int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
  3549. unsigned long addr,
  3550. const void *val,
  3551. unsigned int bytes,
  3552. struct x86_exception *exception)
  3553. {
  3554. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3555. /* Crossing a page boundary? */
  3556. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  3557. int rc, now;
  3558. now = -addr & ~PAGE_MASK;
  3559. rc = emulator_write_emulated_onepage(addr, val, now, exception,
  3560. vcpu);
  3561. if (rc != X86EMUL_CONTINUE)
  3562. return rc;
  3563. addr += now;
  3564. val += now;
  3565. bytes -= now;
  3566. }
  3567. return emulator_write_emulated_onepage(addr, val, bytes, exception,
  3568. vcpu);
  3569. }
  3570. #define CMPXCHG_TYPE(t, ptr, old, new) \
  3571. (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
  3572. #ifdef CONFIG_X86_64
  3573. # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
  3574. #else
  3575. # define CMPXCHG64(ptr, old, new) \
  3576. (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
  3577. #endif
  3578. static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
  3579. unsigned long addr,
  3580. const void *old,
  3581. const void *new,
  3582. unsigned int bytes,
  3583. struct x86_exception *exception)
  3584. {
  3585. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3586. gpa_t gpa;
  3587. struct page *page;
  3588. char *kaddr;
  3589. bool exchanged;
  3590. /* guests cmpxchg8b have to be emulated atomically */
  3591. if (bytes > 8 || (bytes & (bytes - 1)))
  3592. goto emul_write;
  3593. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
  3594. if (gpa == UNMAPPED_GVA ||
  3595. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3596. goto emul_write;
  3597. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  3598. goto emul_write;
  3599. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3600. if (is_error_page(page)) {
  3601. kvm_release_page_clean(page);
  3602. goto emul_write;
  3603. }
  3604. kaddr = kmap_atomic(page, KM_USER0);
  3605. kaddr += offset_in_page(gpa);
  3606. switch (bytes) {
  3607. case 1:
  3608. exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
  3609. break;
  3610. case 2:
  3611. exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
  3612. break;
  3613. case 4:
  3614. exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
  3615. break;
  3616. case 8:
  3617. exchanged = CMPXCHG64(kaddr, old, new);
  3618. break;
  3619. default:
  3620. BUG();
  3621. }
  3622. kunmap_atomic(kaddr, KM_USER0);
  3623. kvm_release_page_dirty(page);
  3624. if (!exchanged)
  3625. return X86EMUL_CMPXCHG_FAILED;
  3626. kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
  3627. return X86EMUL_CONTINUE;
  3628. emul_write:
  3629. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  3630. return emulator_write_emulated(ctxt, addr, new, bytes, exception);
  3631. }
  3632. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  3633. {
  3634. /* TODO: String I/O for in kernel device */
  3635. int r;
  3636. if (vcpu->arch.pio.in)
  3637. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  3638. vcpu->arch.pio.size, pd);
  3639. else
  3640. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3641. vcpu->arch.pio.port, vcpu->arch.pio.size,
  3642. pd);
  3643. return r;
  3644. }
  3645. static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
  3646. int size, unsigned short port, void *val,
  3647. unsigned int count)
  3648. {
  3649. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3650. if (vcpu->arch.pio.count)
  3651. goto data_avail;
  3652. trace_kvm_pio(0, port, size, count);
  3653. vcpu->arch.pio.port = port;
  3654. vcpu->arch.pio.in = 1;
  3655. vcpu->arch.pio.count = count;
  3656. vcpu->arch.pio.size = size;
  3657. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3658. data_avail:
  3659. memcpy(val, vcpu->arch.pio_data, size * count);
  3660. vcpu->arch.pio.count = 0;
  3661. return 1;
  3662. }
  3663. vcpu->run->exit_reason = KVM_EXIT_IO;
  3664. vcpu->run->io.direction = KVM_EXIT_IO_IN;
  3665. vcpu->run->io.size = size;
  3666. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3667. vcpu->run->io.count = count;
  3668. vcpu->run->io.port = port;
  3669. return 0;
  3670. }
  3671. static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
  3672. int size, unsigned short port,
  3673. const void *val, unsigned int count)
  3674. {
  3675. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3676. trace_kvm_pio(1, port, size, count);
  3677. vcpu->arch.pio.port = port;
  3678. vcpu->arch.pio.in = 0;
  3679. vcpu->arch.pio.count = count;
  3680. vcpu->arch.pio.size = size;
  3681. memcpy(vcpu->arch.pio_data, val, size * count);
  3682. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3683. vcpu->arch.pio.count = 0;
  3684. return 1;
  3685. }
  3686. vcpu->run->exit_reason = KVM_EXIT_IO;
  3687. vcpu->run->io.direction = KVM_EXIT_IO_OUT;
  3688. vcpu->run->io.size = size;
  3689. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3690. vcpu->run->io.count = count;
  3691. vcpu->run->io.port = port;
  3692. return 0;
  3693. }
  3694. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  3695. {
  3696. return kvm_x86_ops->get_segment_base(vcpu, seg);
  3697. }
  3698. static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
  3699. {
  3700. kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
  3701. }
  3702. int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
  3703. {
  3704. if (!need_emulate_wbinvd(vcpu))
  3705. return X86EMUL_CONTINUE;
  3706. if (kvm_x86_ops->has_wbinvd_exit()) {
  3707. int cpu = get_cpu();
  3708. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  3709. smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
  3710. wbinvd_ipi, NULL, 1);
  3711. put_cpu();
  3712. cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
  3713. } else
  3714. wbinvd();
  3715. return X86EMUL_CONTINUE;
  3716. }
  3717. EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
  3718. static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
  3719. {
  3720. kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
  3721. }
  3722. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  3723. {
  3724. return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
  3725. }
  3726. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  3727. {
  3728. return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
  3729. }
  3730. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3731. {
  3732. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3733. }
  3734. static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
  3735. {
  3736. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3737. unsigned long value;
  3738. switch (cr) {
  3739. case 0:
  3740. value = kvm_read_cr0(vcpu);
  3741. break;
  3742. case 2:
  3743. value = vcpu->arch.cr2;
  3744. break;
  3745. case 3:
  3746. value = kvm_read_cr3(vcpu);
  3747. break;
  3748. case 4:
  3749. value = kvm_read_cr4(vcpu);
  3750. break;
  3751. case 8:
  3752. value = kvm_get_cr8(vcpu);
  3753. break;
  3754. default:
  3755. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3756. return 0;
  3757. }
  3758. return value;
  3759. }
  3760. static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
  3761. {
  3762. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3763. int res = 0;
  3764. switch (cr) {
  3765. case 0:
  3766. res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
  3767. break;
  3768. case 2:
  3769. vcpu->arch.cr2 = val;
  3770. break;
  3771. case 3:
  3772. res = kvm_set_cr3(vcpu, val);
  3773. break;
  3774. case 4:
  3775. res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3776. break;
  3777. case 8:
  3778. res = kvm_set_cr8(vcpu, val);
  3779. break;
  3780. default:
  3781. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3782. res = -1;
  3783. }
  3784. return res;
  3785. }
  3786. static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
  3787. {
  3788. return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
  3789. }
  3790. static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
  3791. {
  3792. kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
  3793. }
  3794. static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
  3795. {
  3796. kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
  3797. }
  3798. static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
  3799. {
  3800. kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
  3801. }
  3802. static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
  3803. {
  3804. kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
  3805. }
  3806. static unsigned long emulator_get_cached_segment_base(
  3807. struct x86_emulate_ctxt *ctxt, int seg)
  3808. {
  3809. return get_segment_base(emul_to_vcpu(ctxt), seg);
  3810. }
  3811. static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
  3812. struct desc_struct *desc, u32 *base3,
  3813. int seg)
  3814. {
  3815. struct kvm_segment var;
  3816. kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
  3817. *selector = var.selector;
  3818. if (var.unusable)
  3819. return false;
  3820. if (var.g)
  3821. var.limit >>= 12;
  3822. set_desc_limit(desc, var.limit);
  3823. set_desc_base(desc, (unsigned long)var.base);
  3824. #ifdef CONFIG_X86_64
  3825. if (base3)
  3826. *base3 = var.base >> 32;
  3827. #endif
  3828. desc->type = var.type;
  3829. desc->s = var.s;
  3830. desc->dpl = var.dpl;
  3831. desc->p = var.present;
  3832. desc->avl = var.avl;
  3833. desc->l = var.l;
  3834. desc->d = var.db;
  3835. desc->g = var.g;
  3836. return true;
  3837. }
  3838. static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
  3839. struct desc_struct *desc, u32 base3,
  3840. int seg)
  3841. {
  3842. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  3843. struct kvm_segment var;
  3844. var.selector = selector;
  3845. var.base = get_desc_base(desc);
  3846. #ifdef CONFIG_X86_64
  3847. var.base |= ((u64)base3) << 32;
  3848. #endif
  3849. var.limit = get_desc_limit(desc);
  3850. if (desc->g)
  3851. var.limit = (var.limit << 12) | 0xfff;
  3852. var.type = desc->type;
  3853. var.present = desc->p;
  3854. var.dpl = desc->dpl;
  3855. var.db = desc->d;
  3856. var.s = desc->s;
  3857. var.l = desc->l;
  3858. var.g = desc->g;
  3859. var.avl = desc->avl;
  3860. var.present = desc->p;
  3861. var.unusable = !var.present;
  3862. var.padding = 0;
  3863. kvm_set_segment(vcpu, &var, seg);
  3864. return;
  3865. }
  3866. static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
  3867. u32 msr_index, u64 *pdata)
  3868. {
  3869. return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
  3870. }
  3871. static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
  3872. u32 msr_index, u64 data)
  3873. {
  3874. return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
  3875. }
  3876. static void emulator_halt(struct x86_emulate_ctxt *ctxt)
  3877. {
  3878. emul_to_vcpu(ctxt)->arch.halt_request = 1;
  3879. }
  3880. static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
  3881. {
  3882. preempt_disable();
  3883. kvm_load_guest_fpu(emul_to_vcpu(ctxt));
  3884. /*
  3885. * CR0.TS may reference the host fpu state, not the guest fpu state,
  3886. * so it may be clear at this point.
  3887. */
  3888. clts();
  3889. }
  3890. static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
  3891. {
  3892. preempt_enable();
  3893. }
  3894. static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
  3895. struct x86_instruction_info *info,
  3896. enum x86_intercept_stage stage)
  3897. {
  3898. return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
  3899. }
  3900. static struct x86_emulate_ops emulate_ops = {
  3901. .read_std = kvm_read_guest_virt_system,
  3902. .write_std = kvm_write_guest_virt_system,
  3903. .fetch = kvm_fetch_guest_virt,
  3904. .read_emulated = emulator_read_emulated,
  3905. .write_emulated = emulator_write_emulated,
  3906. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  3907. .invlpg = emulator_invlpg,
  3908. .pio_in_emulated = emulator_pio_in_emulated,
  3909. .pio_out_emulated = emulator_pio_out_emulated,
  3910. .get_segment = emulator_get_segment,
  3911. .set_segment = emulator_set_segment,
  3912. .get_cached_segment_base = emulator_get_cached_segment_base,
  3913. .get_gdt = emulator_get_gdt,
  3914. .get_idt = emulator_get_idt,
  3915. .set_gdt = emulator_set_gdt,
  3916. .set_idt = emulator_set_idt,
  3917. .get_cr = emulator_get_cr,
  3918. .set_cr = emulator_set_cr,
  3919. .cpl = emulator_get_cpl,
  3920. .get_dr = emulator_get_dr,
  3921. .set_dr = emulator_set_dr,
  3922. .set_msr = emulator_set_msr,
  3923. .get_msr = emulator_get_msr,
  3924. .halt = emulator_halt,
  3925. .wbinvd = emulator_wbinvd,
  3926. .fix_hypercall = emulator_fix_hypercall,
  3927. .get_fpu = emulator_get_fpu,
  3928. .put_fpu = emulator_put_fpu,
  3929. .intercept = emulator_intercept,
  3930. };
  3931. static void cache_all_regs(struct kvm_vcpu *vcpu)
  3932. {
  3933. kvm_register_read(vcpu, VCPU_REGS_RAX);
  3934. kvm_register_read(vcpu, VCPU_REGS_RSP);
  3935. kvm_register_read(vcpu, VCPU_REGS_RIP);
  3936. vcpu->arch.regs_dirty = ~0;
  3937. }
  3938. static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
  3939. {
  3940. u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
  3941. /*
  3942. * an sti; sti; sequence only disable interrupts for the first
  3943. * instruction. So, if the last instruction, be it emulated or
  3944. * not, left the system with the INT_STI flag enabled, it
  3945. * means that the last instruction is an sti. We should not
  3946. * leave the flag on in this case. The same goes for mov ss
  3947. */
  3948. if (!(int_shadow & mask))
  3949. kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
  3950. }
  3951. static void inject_emulated_exception(struct kvm_vcpu *vcpu)
  3952. {
  3953. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  3954. if (ctxt->exception.vector == PF_VECTOR)
  3955. kvm_propagate_fault(vcpu, &ctxt->exception);
  3956. else if (ctxt->exception.error_code_valid)
  3957. kvm_queue_exception_e(vcpu, ctxt->exception.vector,
  3958. ctxt->exception.error_code);
  3959. else
  3960. kvm_queue_exception(vcpu, ctxt->exception.vector);
  3961. }
  3962. static void init_decode_cache(struct decode_cache *c,
  3963. const unsigned long *regs)
  3964. {
  3965. memset(c, 0, offsetof(struct decode_cache, regs));
  3966. memcpy(c->regs, regs, sizeof(c->regs));
  3967. c->fetch.start = 0;
  3968. c->fetch.end = 0;
  3969. c->io_read.pos = 0;
  3970. c->io_read.end = 0;
  3971. c->mem_read.pos = 0;
  3972. c->mem_read.end = 0;
  3973. }
  3974. static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
  3975. {
  3976. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  3977. struct decode_cache *c = &ctxt->decode;
  3978. int cs_db, cs_l;
  3979. /*
  3980. * TODO: fix emulate.c to use guest_read/write_register
  3981. * instead of direct ->regs accesses, can save hundred cycles
  3982. * on Intel for instructions that don't read/change RSP, for
  3983. * for example.
  3984. */
  3985. cache_all_regs(vcpu);
  3986. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3987. ctxt->eflags = kvm_get_rflags(vcpu);
  3988. ctxt->eip = kvm_rip_read(vcpu);
  3989. ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  3990. (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
  3991. cs_l ? X86EMUL_MODE_PROT64 :
  3992. cs_db ? X86EMUL_MODE_PROT32 :
  3993. X86EMUL_MODE_PROT16;
  3994. ctxt->guest_mode = is_guest_mode(vcpu);
  3995. init_decode_cache(c, vcpu->arch.regs);
  3996. vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
  3997. }
  3998. int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
  3999. {
  4000. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  4001. int ret;
  4002. init_emulate_ctxt(vcpu);
  4003. vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
  4004. vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
  4005. vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip +
  4006. inc_eip;
  4007. ret = emulate_int_real(&vcpu->arch.emulate_ctxt, irq);
  4008. if (ret != X86EMUL_CONTINUE)
  4009. return EMULATE_FAIL;
  4010. vcpu->arch.emulate_ctxt.eip = c->eip;
  4011. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  4012. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  4013. kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  4014. if (irq == NMI_VECTOR)
  4015. vcpu->arch.nmi_pending = false;
  4016. else
  4017. vcpu->arch.interrupt.pending = false;
  4018. return EMULATE_DONE;
  4019. }
  4020. EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
  4021. static int handle_emulation_failure(struct kvm_vcpu *vcpu)
  4022. {
  4023. int r = EMULATE_DONE;
  4024. ++vcpu->stat.insn_emulation_fail;
  4025. trace_kvm_emulate_insn_failed(vcpu);
  4026. if (!is_guest_mode(vcpu)) {
  4027. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4028. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4029. vcpu->run->internal.ndata = 0;
  4030. r = EMULATE_FAIL;
  4031. }
  4032. kvm_queue_exception(vcpu, UD_VECTOR);
  4033. return r;
  4034. }
  4035. static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
  4036. {
  4037. gpa_t gpa;
  4038. if (tdp_enabled)
  4039. return false;
  4040. /*
  4041. * if emulation was due to access to shadowed page table
  4042. * and it failed try to unshadow page and re-entetr the
  4043. * guest to let CPU execute the instruction.
  4044. */
  4045. if (kvm_mmu_unprotect_page_virt(vcpu, gva))
  4046. return true;
  4047. gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
  4048. if (gpa == UNMAPPED_GVA)
  4049. return true; /* let cpu generate fault */
  4050. if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
  4051. return true;
  4052. return false;
  4053. }
  4054. int x86_emulate_instruction(struct kvm_vcpu *vcpu,
  4055. unsigned long cr2,
  4056. int emulation_type,
  4057. void *insn,
  4058. int insn_len)
  4059. {
  4060. int r;
  4061. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  4062. bool writeback = true;
  4063. kvm_clear_exception_queue(vcpu);
  4064. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  4065. init_emulate_ctxt(vcpu);
  4066. vcpu->arch.emulate_ctxt.interruptibility = 0;
  4067. vcpu->arch.emulate_ctxt.have_exception = false;
  4068. vcpu->arch.emulate_ctxt.perm_ok = false;
  4069. vcpu->arch.emulate_ctxt.only_vendor_specific_insn
  4070. = emulation_type & EMULTYPE_TRAP_UD;
  4071. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, insn, insn_len);
  4072. trace_kvm_emulate_insn_start(vcpu);
  4073. ++vcpu->stat.insn_emulation;
  4074. if (r) {
  4075. if (emulation_type & EMULTYPE_TRAP_UD)
  4076. return EMULATE_FAIL;
  4077. if (reexecute_instruction(vcpu, cr2))
  4078. return EMULATE_DONE;
  4079. if (emulation_type & EMULTYPE_SKIP)
  4080. return EMULATE_FAIL;
  4081. return handle_emulation_failure(vcpu);
  4082. }
  4083. }
  4084. if (emulation_type & EMULTYPE_SKIP) {
  4085. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  4086. return EMULATE_DONE;
  4087. }
  4088. /* this is needed for vmware backdoor interface to work since it
  4089. changes registers values during IO operation */
  4090. if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
  4091. vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
  4092. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  4093. }
  4094. restart:
  4095. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
  4096. if (r == EMULATION_INTERCEPTED)
  4097. return EMULATE_DONE;
  4098. if (r == EMULATION_FAILED) {
  4099. if (reexecute_instruction(vcpu, cr2))
  4100. return EMULATE_DONE;
  4101. return handle_emulation_failure(vcpu);
  4102. }
  4103. if (vcpu->arch.emulate_ctxt.have_exception) {
  4104. inject_emulated_exception(vcpu);
  4105. r = EMULATE_DONE;
  4106. } else if (vcpu->arch.pio.count) {
  4107. if (!vcpu->arch.pio.in)
  4108. vcpu->arch.pio.count = 0;
  4109. else
  4110. writeback = false;
  4111. r = EMULATE_DO_MMIO;
  4112. } else if (vcpu->mmio_needed) {
  4113. if (!vcpu->mmio_is_write)
  4114. writeback = false;
  4115. r = EMULATE_DO_MMIO;
  4116. } else if (r == EMULATION_RESTART)
  4117. goto restart;
  4118. else
  4119. r = EMULATE_DONE;
  4120. if (writeback) {
  4121. toggle_interruptibility(vcpu,
  4122. vcpu->arch.emulate_ctxt.interruptibility);
  4123. kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  4124. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4125. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  4126. vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
  4127. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  4128. } else
  4129. vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
  4130. return r;
  4131. }
  4132. EXPORT_SYMBOL_GPL(x86_emulate_instruction);
  4133. int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
  4134. {
  4135. unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4136. int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
  4137. size, port, &val, 1);
  4138. /* do not return to emulator after return from userspace */
  4139. vcpu->arch.pio.count = 0;
  4140. return ret;
  4141. }
  4142. EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
  4143. static void tsc_bad(void *info)
  4144. {
  4145. __this_cpu_write(cpu_tsc_khz, 0);
  4146. }
  4147. static void tsc_khz_changed(void *data)
  4148. {
  4149. struct cpufreq_freqs *freq = data;
  4150. unsigned long khz = 0;
  4151. if (data)
  4152. khz = freq->new;
  4153. else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  4154. khz = cpufreq_quick_get(raw_smp_processor_id());
  4155. if (!khz)
  4156. khz = tsc_khz;
  4157. __this_cpu_write(cpu_tsc_khz, khz);
  4158. }
  4159. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  4160. void *data)
  4161. {
  4162. struct cpufreq_freqs *freq = data;
  4163. struct kvm *kvm;
  4164. struct kvm_vcpu *vcpu;
  4165. int i, send_ipi = 0;
  4166. /*
  4167. * We allow guests to temporarily run on slowing clocks,
  4168. * provided we notify them after, or to run on accelerating
  4169. * clocks, provided we notify them before. Thus time never
  4170. * goes backwards.
  4171. *
  4172. * However, we have a problem. We can't atomically update
  4173. * the frequency of a given CPU from this function; it is
  4174. * merely a notifier, which can be called from any CPU.
  4175. * Changing the TSC frequency at arbitrary points in time
  4176. * requires a recomputation of local variables related to
  4177. * the TSC for each VCPU. We must flag these local variables
  4178. * to be updated and be sure the update takes place with the
  4179. * new frequency before any guests proceed.
  4180. *
  4181. * Unfortunately, the combination of hotplug CPU and frequency
  4182. * change creates an intractable locking scenario; the order
  4183. * of when these callouts happen is undefined with respect to
  4184. * CPU hotplug, and they can race with each other. As such,
  4185. * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
  4186. * undefined; you can actually have a CPU frequency change take
  4187. * place in between the computation of X and the setting of the
  4188. * variable. To protect against this problem, all updates of
  4189. * the per_cpu tsc_khz variable are done in an interrupt
  4190. * protected IPI, and all callers wishing to update the value
  4191. * must wait for a synchronous IPI to complete (which is trivial
  4192. * if the caller is on the CPU already). This establishes the
  4193. * necessary total order on variable updates.
  4194. *
  4195. * Note that because a guest time update may take place
  4196. * anytime after the setting of the VCPU's request bit, the
  4197. * correct TSC value must be set before the request. However,
  4198. * to ensure the update actually makes it to any guest which
  4199. * starts running in hardware virtualization between the set
  4200. * and the acquisition of the spinlock, we must also ping the
  4201. * CPU after setting the request bit.
  4202. *
  4203. */
  4204. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  4205. return 0;
  4206. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  4207. return 0;
  4208. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  4209. raw_spin_lock(&kvm_lock);
  4210. list_for_each_entry(kvm, &vm_list, vm_list) {
  4211. kvm_for_each_vcpu(i, vcpu, kvm) {
  4212. if (vcpu->cpu != freq->cpu)
  4213. continue;
  4214. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  4215. if (vcpu->cpu != smp_processor_id())
  4216. send_ipi = 1;
  4217. }
  4218. }
  4219. raw_spin_unlock(&kvm_lock);
  4220. if (freq->old < freq->new && send_ipi) {
  4221. /*
  4222. * We upscale the frequency. Must make the guest
  4223. * doesn't see old kvmclock values while running with
  4224. * the new frequency, otherwise we risk the guest sees
  4225. * time go backwards.
  4226. *
  4227. * In case we update the frequency for another cpu
  4228. * (which might be in guest context) send an interrupt
  4229. * to kick the cpu out of guest context. Next time
  4230. * guest context is entered kvmclock will be updated,
  4231. * so the guest will not see stale values.
  4232. */
  4233. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  4234. }
  4235. return 0;
  4236. }
  4237. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  4238. .notifier_call = kvmclock_cpufreq_notifier
  4239. };
  4240. static int kvmclock_cpu_notifier(struct notifier_block *nfb,
  4241. unsigned long action, void *hcpu)
  4242. {
  4243. unsigned int cpu = (unsigned long)hcpu;
  4244. switch (action) {
  4245. case CPU_ONLINE:
  4246. case CPU_DOWN_FAILED:
  4247. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  4248. break;
  4249. case CPU_DOWN_PREPARE:
  4250. smp_call_function_single(cpu, tsc_bad, NULL, 1);
  4251. break;
  4252. }
  4253. return NOTIFY_OK;
  4254. }
  4255. static struct notifier_block kvmclock_cpu_notifier_block = {
  4256. .notifier_call = kvmclock_cpu_notifier,
  4257. .priority = -INT_MAX
  4258. };
  4259. static void kvm_timer_init(void)
  4260. {
  4261. int cpu;
  4262. max_tsc_khz = tsc_khz;
  4263. register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4264. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4265. #ifdef CONFIG_CPU_FREQ
  4266. struct cpufreq_policy policy;
  4267. memset(&policy, 0, sizeof(policy));
  4268. cpu = get_cpu();
  4269. cpufreq_get_policy(&policy, cpu);
  4270. if (policy.cpuinfo.max_freq)
  4271. max_tsc_khz = policy.cpuinfo.max_freq;
  4272. put_cpu();
  4273. #endif
  4274. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  4275. CPUFREQ_TRANSITION_NOTIFIER);
  4276. }
  4277. pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
  4278. for_each_online_cpu(cpu)
  4279. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  4280. }
  4281. static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
  4282. static int kvm_is_in_guest(void)
  4283. {
  4284. return percpu_read(current_vcpu) != NULL;
  4285. }
  4286. static int kvm_is_user_mode(void)
  4287. {
  4288. int user_mode = 3;
  4289. if (percpu_read(current_vcpu))
  4290. user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
  4291. return user_mode != 0;
  4292. }
  4293. static unsigned long kvm_get_guest_ip(void)
  4294. {
  4295. unsigned long ip = 0;
  4296. if (percpu_read(current_vcpu))
  4297. ip = kvm_rip_read(percpu_read(current_vcpu));
  4298. return ip;
  4299. }
  4300. static struct perf_guest_info_callbacks kvm_guest_cbs = {
  4301. .is_in_guest = kvm_is_in_guest,
  4302. .is_user_mode = kvm_is_user_mode,
  4303. .get_guest_ip = kvm_get_guest_ip,
  4304. };
  4305. void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
  4306. {
  4307. percpu_write(current_vcpu, vcpu);
  4308. }
  4309. EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
  4310. void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
  4311. {
  4312. percpu_write(current_vcpu, NULL);
  4313. }
  4314. EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
  4315. int kvm_arch_init(void *opaque)
  4316. {
  4317. int r;
  4318. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  4319. if (kvm_x86_ops) {
  4320. printk(KERN_ERR "kvm: already loaded the other module\n");
  4321. r = -EEXIST;
  4322. goto out;
  4323. }
  4324. if (!ops->cpu_has_kvm_support()) {
  4325. printk(KERN_ERR "kvm: no hardware support\n");
  4326. r = -EOPNOTSUPP;
  4327. goto out;
  4328. }
  4329. if (ops->disabled_by_bios()) {
  4330. printk(KERN_ERR "kvm: disabled by bios\n");
  4331. r = -EOPNOTSUPP;
  4332. goto out;
  4333. }
  4334. r = kvm_mmu_module_init();
  4335. if (r)
  4336. goto out;
  4337. kvm_init_msr_list();
  4338. kvm_x86_ops = ops;
  4339. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  4340. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  4341. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  4342. kvm_timer_init();
  4343. perf_register_guest_info_callbacks(&kvm_guest_cbs);
  4344. if (cpu_has_xsave)
  4345. host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
  4346. return 0;
  4347. out:
  4348. return r;
  4349. }
  4350. void kvm_arch_exit(void)
  4351. {
  4352. perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
  4353. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  4354. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  4355. CPUFREQ_TRANSITION_NOTIFIER);
  4356. unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4357. kvm_x86_ops = NULL;
  4358. kvm_mmu_module_exit();
  4359. }
  4360. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  4361. {
  4362. ++vcpu->stat.halt_exits;
  4363. if (irqchip_in_kernel(vcpu->kvm)) {
  4364. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  4365. return 1;
  4366. } else {
  4367. vcpu->run->exit_reason = KVM_EXIT_HLT;
  4368. return 0;
  4369. }
  4370. }
  4371. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  4372. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  4373. unsigned long a1)
  4374. {
  4375. if (is_long_mode(vcpu))
  4376. return a0;
  4377. else
  4378. return a0 | ((gpa_t)a1 << 32);
  4379. }
  4380. int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
  4381. {
  4382. u64 param, ingpa, outgpa, ret;
  4383. uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
  4384. bool fast, longmode;
  4385. int cs_db, cs_l;
  4386. /*
  4387. * hypercall generates UD from non zero cpl and real mode
  4388. * per HYPER-V spec
  4389. */
  4390. if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
  4391. kvm_queue_exception(vcpu, UD_VECTOR);
  4392. return 0;
  4393. }
  4394. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  4395. longmode = is_long_mode(vcpu) && cs_l == 1;
  4396. if (!longmode) {
  4397. param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
  4398. (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
  4399. ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
  4400. (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
  4401. outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
  4402. (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
  4403. }
  4404. #ifdef CONFIG_X86_64
  4405. else {
  4406. param = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4407. ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4408. outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
  4409. }
  4410. #endif
  4411. code = param & 0xffff;
  4412. fast = (param >> 16) & 0x1;
  4413. rep_cnt = (param >> 32) & 0xfff;
  4414. rep_idx = (param >> 48) & 0xfff;
  4415. trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
  4416. switch (code) {
  4417. case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
  4418. kvm_vcpu_on_spin(vcpu);
  4419. break;
  4420. default:
  4421. res = HV_STATUS_INVALID_HYPERCALL_CODE;
  4422. break;
  4423. }
  4424. ret = res | (((u64)rep_done & 0xfff) << 32);
  4425. if (longmode) {
  4426. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4427. } else {
  4428. kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
  4429. kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
  4430. }
  4431. return 1;
  4432. }
  4433. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  4434. {
  4435. unsigned long nr, a0, a1, a2, a3, ret;
  4436. int r = 1;
  4437. if (kvm_hv_hypercall_enabled(vcpu->kvm))
  4438. return kvm_hv_hypercall(vcpu);
  4439. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4440. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4441. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4442. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4443. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4444. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  4445. if (!is_long_mode(vcpu)) {
  4446. nr &= 0xFFFFFFFF;
  4447. a0 &= 0xFFFFFFFF;
  4448. a1 &= 0xFFFFFFFF;
  4449. a2 &= 0xFFFFFFFF;
  4450. a3 &= 0xFFFFFFFF;
  4451. }
  4452. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  4453. ret = -KVM_EPERM;
  4454. goto out;
  4455. }
  4456. switch (nr) {
  4457. case KVM_HC_VAPIC_POLL_IRQ:
  4458. ret = 0;
  4459. break;
  4460. case KVM_HC_MMU_OP:
  4461. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  4462. break;
  4463. default:
  4464. ret = -KVM_ENOSYS;
  4465. break;
  4466. }
  4467. out:
  4468. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4469. ++vcpu->stat.hypercalls;
  4470. return r;
  4471. }
  4472. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  4473. int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
  4474. {
  4475. struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
  4476. char instruction[3];
  4477. unsigned long rip = kvm_rip_read(vcpu);
  4478. /*
  4479. * Blow out the MMU to ensure that no other VCPU has an active mapping
  4480. * to ensure that the updated hypercall appears atomically across all
  4481. * VCPUs.
  4482. */
  4483. kvm_mmu_zap_all(vcpu->kvm);
  4484. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  4485. return emulator_write_emulated(&vcpu->arch.emulate_ctxt,
  4486. rip, instruction, 3, NULL);
  4487. }
  4488. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  4489. {
  4490. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  4491. int j, nent = vcpu->arch.cpuid_nent;
  4492. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  4493. /* when no next entry is found, the current entry[i] is reselected */
  4494. for (j = i + 1; ; j = (j + 1) % nent) {
  4495. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  4496. if (ej->function == e->function) {
  4497. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  4498. return j;
  4499. }
  4500. }
  4501. return 0; /* silence gcc, even though control never reaches here */
  4502. }
  4503. /* find an entry with matching function, matching index (if needed), and that
  4504. * should be read next (if it's stateful) */
  4505. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  4506. u32 function, u32 index)
  4507. {
  4508. if (e->function != function)
  4509. return 0;
  4510. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  4511. return 0;
  4512. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  4513. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  4514. return 0;
  4515. return 1;
  4516. }
  4517. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  4518. u32 function, u32 index)
  4519. {
  4520. int i;
  4521. struct kvm_cpuid_entry2 *best = NULL;
  4522. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  4523. struct kvm_cpuid_entry2 *e;
  4524. e = &vcpu->arch.cpuid_entries[i];
  4525. if (is_matching_cpuid_entry(e, function, index)) {
  4526. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  4527. move_to_next_stateful_cpuid_entry(vcpu, i);
  4528. best = e;
  4529. break;
  4530. }
  4531. }
  4532. return best;
  4533. }
  4534. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  4535. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  4536. {
  4537. struct kvm_cpuid_entry2 *best;
  4538. best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
  4539. if (!best || best->eax < 0x80000008)
  4540. goto not_found;
  4541. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  4542. if (best)
  4543. return best->eax & 0xff;
  4544. not_found:
  4545. return 36;
  4546. }
  4547. /*
  4548. * If no match is found, check whether we exceed the vCPU's limit
  4549. * and return the content of the highest valid _standard_ leaf instead.
  4550. * This is to satisfy the CPUID specification.
  4551. */
  4552. static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
  4553. u32 function, u32 index)
  4554. {
  4555. struct kvm_cpuid_entry2 *maxlevel;
  4556. maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
  4557. if (!maxlevel || maxlevel->eax >= function)
  4558. return NULL;
  4559. if (function & 0x80000000) {
  4560. maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
  4561. if (!maxlevel)
  4562. return NULL;
  4563. }
  4564. return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
  4565. }
  4566. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  4567. {
  4568. u32 function, index;
  4569. struct kvm_cpuid_entry2 *best;
  4570. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4571. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4572. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  4573. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  4574. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  4575. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  4576. best = kvm_find_cpuid_entry(vcpu, function, index);
  4577. if (!best)
  4578. best = check_cpuid_limit(vcpu, function, index);
  4579. if (best) {
  4580. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  4581. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  4582. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  4583. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  4584. }
  4585. kvm_x86_ops->skip_emulated_instruction(vcpu);
  4586. trace_kvm_cpuid(function,
  4587. kvm_register_read(vcpu, VCPU_REGS_RAX),
  4588. kvm_register_read(vcpu, VCPU_REGS_RBX),
  4589. kvm_register_read(vcpu, VCPU_REGS_RCX),
  4590. kvm_register_read(vcpu, VCPU_REGS_RDX));
  4591. }
  4592. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  4593. /*
  4594. * Check if userspace requested an interrupt window, and that the
  4595. * interrupt window is open.
  4596. *
  4597. * No need to exit to userspace if we already have an interrupt queued.
  4598. */
  4599. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  4600. {
  4601. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  4602. vcpu->run->request_interrupt_window &&
  4603. kvm_arch_interrupt_allowed(vcpu));
  4604. }
  4605. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  4606. {
  4607. struct kvm_run *kvm_run = vcpu->run;
  4608. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  4609. kvm_run->cr8 = kvm_get_cr8(vcpu);
  4610. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  4611. if (irqchip_in_kernel(vcpu->kvm))
  4612. kvm_run->ready_for_interrupt_injection = 1;
  4613. else
  4614. kvm_run->ready_for_interrupt_injection =
  4615. kvm_arch_interrupt_allowed(vcpu) &&
  4616. !kvm_cpu_has_interrupt(vcpu) &&
  4617. !kvm_event_needs_reinjection(vcpu);
  4618. }
  4619. static void vapic_enter(struct kvm_vcpu *vcpu)
  4620. {
  4621. struct kvm_lapic *apic = vcpu->arch.apic;
  4622. struct page *page;
  4623. if (!apic || !apic->vapic_addr)
  4624. return;
  4625. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4626. vcpu->arch.apic->vapic_page = page;
  4627. }
  4628. static void vapic_exit(struct kvm_vcpu *vcpu)
  4629. {
  4630. struct kvm_lapic *apic = vcpu->arch.apic;
  4631. int idx;
  4632. if (!apic || !apic->vapic_addr)
  4633. return;
  4634. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4635. kvm_release_page_dirty(apic->vapic_page);
  4636. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4637. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4638. }
  4639. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  4640. {
  4641. int max_irr, tpr;
  4642. if (!kvm_x86_ops->update_cr8_intercept)
  4643. return;
  4644. if (!vcpu->arch.apic)
  4645. return;
  4646. if (!vcpu->arch.apic->vapic_addr)
  4647. max_irr = kvm_lapic_find_highest_irr(vcpu);
  4648. else
  4649. max_irr = -1;
  4650. if (max_irr != -1)
  4651. max_irr >>= 4;
  4652. tpr = kvm_lapic_get_cr8(vcpu);
  4653. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  4654. }
  4655. static void inject_pending_event(struct kvm_vcpu *vcpu)
  4656. {
  4657. /* try to reinject previous events if any */
  4658. if (vcpu->arch.exception.pending) {
  4659. trace_kvm_inj_exception(vcpu->arch.exception.nr,
  4660. vcpu->arch.exception.has_error_code,
  4661. vcpu->arch.exception.error_code);
  4662. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  4663. vcpu->arch.exception.has_error_code,
  4664. vcpu->arch.exception.error_code,
  4665. vcpu->arch.exception.reinject);
  4666. return;
  4667. }
  4668. if (vcpu->arch.nmi_injected) {
  4669. kvm_x86_ops->set_nmi(vcpu);
  4670. return;
  4671. }
  4672. if (vcpu->arch.interrupt.pending) {
  4673. kvm_x86_ops->set_irq(vcpu);
  4674. return;
  4675. }
  4676. /* try to inject new event if pending */
  4677. if (vcpu->arch.nmi_pending) {
  4678. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  4679. vcpu->arch.nmi_pending = false;
  4680. vcpu->arch.nmi_injected = true;
  4681. kvm_x86_ops->set_nmi(vcpu);
  4682. }
  4683. } else if (kvm_cpu_has_interrupt(vcpu)) {
  4684. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  4685. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  4686. false);
  4687. kvm_x86_ops->set_irq(vcpu);
  4688. }
  4689. }
  4690. }
  4691. static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
  4692. {
  4693. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
  4694. !vcpu->guest_xcr0_loaded) {
  4695. /* kvm_set_xcr() also depends on this */
  4696. xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
  4697. vcpu->guest_xcr0_loaded = 1;
  4698. }
  4699. }
  4700. static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
  4701. {
  4702. if (vcpu->guest_xcr0_loaded) {
  4703. if (vcpu->arch.xcr0 != host_xcr0)
  4704. xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
  4705. vcpu->guest_xcr0_loaded = 0;
  4706. }
  4707. }
  4708. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  4709. {
  4710. int r;
  4711. bool nmi_pending;
  4712. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  4713. vcpu->run->request_interrupt_window;
  4714. if (vcpu->requests) {
  4715. if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
  4716. kvm_mmu_unload(vcpu);
  4717. if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
  4718. __kvm_migrate_timers(vcpu);
  4719. if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
  4720. r = kvm_guest_time_update(vcpu);
  4721. if (unlikely(r))
  4722. goto out;
  4723. }
  4724. if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
  4725. kvm_mmu_sync_roots(vcpu);
  4726. if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
  4727. kvm_x86_ops->tlb_flush(vcpu);
  4728. if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
  4729. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  4730. r = 0;
  4731. goto out;
  4732. }
  4733. if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
  4734. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  4735. r = 0;
  4736. goto out;
  4737. }
  4738. if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
  4739. vcpu->fpu_active = 0;
  4740. kvm_x86_ops->fpu_deactivate(vcpu);
  4741. }
  4742. if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
  4743. /* Page is swapped out. Do synthetic halt */
  4744. vcpu->arch.apf.halted = true;
  4745. r = 1;
  4746. goto out;
  4747. }
  4748. }
  4749. r = kvm_mmu_reload(vcpu);
  4750. if (unlikely(r))
  4751. goto out;
  4752. /*
  4753. * An NMI can be injected between local nmi_pending read and
  4754. * vcpu->arch.nmi_pending read inside inject_pending_event().
  4755. * But in that case, KVM_REQ_EVENT will be set, which makes
  4756. * the race described above benign.
  4757. */
  4758. nmi_pending = ACCESS_ONCE(vcpu->arch.nmi_pending);
  4759. if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
  4760. inject_pending_event(vcpu);
  4761. /* enable NMI/IRQ window open exits if needed */
  4762. if (nmi_pending)
  4763. kvm_x86_ops->enable_nmi_window(vcpu);
  4764. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  4765. kvm_x86_ops->enable_irq_window(vcpu);
  4766. if (kvm_lapic_enabled(vcpu)) {
  4767. update_cr8_intercept(vcpu);
  4768. kvm_lapic_sync_to_vapic(vcpu);
  4769. }
  4770. }
  4771. preempt_disable();
  4772. kvm_x86_ops->prepare_guest_switch(vcpu);
  4773. if (vcpu->fpu_active)
  4774. kvm_load_guest_fpu(vcpu);
  4775. kvm_load_guest_xcr0(vcpu);
  4776. vcpu->mode = IN_GUEST_MODE;
  4777. /* We should set ->mode before check ->requests,
  4778. * see the comment in make_all_cpus_request.
  4779. */
  4780. smp_mb();
  4781. local_irq_disable();
  4782. if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
  4783. || need_resched() || signal_pending(current)) {
  4784. vcpu->mode = OUTSIDE_GUEST_MODE;
  4785. smp_wmb();
  4786. local_irq_enable();
  4787. preempt_enable();
  4788. kvm_x86_ops->cancel_injection(vcpu);
  4789. r = 1;
  4790. goto out;
  4791. }
  4792. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4793. kvm_guest_enter();
  4794. if (unlikely(vcpu->arch.switch_db_regs)) {
  4795. set_debugreg(0, 7);
  4796. set_debugreg(vcpu->arch.eff_db[0], 0);
  4797. set_debugreg(vcpu->arch.eff_db[1], 1);
  4798. set_debugreg(vcpu->arch.eff_db[2], 2);
  4799. set_debugreg(vcpu->arch.eff_db[3], 3);
  4800. }
  4801. trace_kvm_entry(vcpu->vcpu_id);
  4802. kvm_x86_ops->run(vcpu);
  4803. /*
  4804. * If the guest has used debug registers, at least dr7
  4805. * will be disabled while returning to the host.
  4806. * If we don't have active breakpoints in the host, we don't
  4807. * care about the messed up debug address registers. But if
  4808. * we have some of them active, restore the old state.
  4809. */
  4810. if (hw_breakpoint_active())
  4811. hw_breakpoint_restore();
  4812. kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
  4813. vcpu->mode = OUTSIDE_GUEST_MODE;
  4814. smp_wmb();
  4815. local_irq_enable();
  4816. ++vcpu->stat.exits;
  4817. /*
  4818. * We must have an instruction between local_irq_enable() and
  4819. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  4820. * the interrupt shadow. The stat.exits increment will do nicely.
  4821. * But we need to prevent reordering, hence this barrier():
  4822. */
  4823. barrier();
  4824. kvm_guest_exit();
  4825. preempt_enable();
  4826. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4827. /*
  4828. * Profile KVM exit RIPs:
  4829. */
  4830. if (unlikely(prof_on == KVM_PROFILING)) {
  4831. unsigned long rip = kvm_rip_read(vcpu);
  4832. profile_hit(KVM_PROFILING, (void *)rip);
  4833. }
  4834. kvm_lapic_sync_from_vapic(vcpu);
  4835. r = kvm_x86_ops->handle_exit(vcpu);
  4836. out:
  4837. return r;
  4838. }
  4839. static int __vcpu_run(struct kvm_vcpu *vcpu)
  4840. {
  4841. int r;
  4842. struct kvm *kvm = vcpu->kvm;
  4843. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  4844. pr_debug("vcpu %d received sipi with vector # %x\n",
  4845. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  4846. kvm_lapic_reset(vcpu);
  4847. r = kvm_arch_vcpu_reset(vcpu);
  4848. if (r)
  4849. return r;
  4850. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4851. }
  4852. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4853. vapic_enter(vcpu);
  4854. r = 1;
  4855. while (r > 0) {
  4856. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
  4857. !vcpu->arch.apf.halted)
  4858. r = vcpu_enter_guest(vcpu);
  4859. else {
  4860. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4861. kvm_vcpu_block(vcpu);
  4862. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4863. if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
  4864. {
  4865. switch(vcpu->arch.mp_state) {
  4866. case KVM_MP_STATE_HALTED:
  4867. vcpu->arch.mp_state =
  4868. KVM_MP_STATE_RUNNABLE;
  4869. case KVM_MP_STATE_RUNNABLE:
  4870. vcpu->arch.apf.halted = false;
  4871. break;
  4872. case KVM_MP_STATE_SIPI_RECEIVED:
  4873. default:
  4874. r = -EINTR;
  4875. break;
  4876. }
  4877. }
  4878. }
  4879. if (r <= 0)
  4880. break;
  4881. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  4882. if (kvm_cpu_has_pending_timer(vcpu))
  4883. kvm_inject_pending_timer_irqs(vcpu);
  4884. if (dm_request_for_irq_injection(vcpu)) {
  4885. r = -EINTR;
  4886. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4887. ++vcpu->stat.request_irq_exits;
  4888. }
  4889. kvm_check_async_pf_completion(vcpu);
  4890. if (signal_pending(current)) {
  4891. r = -EINTR;
  4892. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4893. ++vcpu->stat.signal_exits;
  4894. }
  4895. if (need_resched()) {
  4896. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4897. kvm_resched(vcpu);
  4898. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4899. }
  4900. }
  4901. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4902. vapic_exit(vcpu);
  4903. return r;
  4904. }
  4905. static int complete_mmio(struct kvm_vcpu *vcpu)
  4906. {
  4907. struct kvm_run *run = vcpu->run;
  4908. int r;
  4909. if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
  4910. return 1;
  4911. if (vcpu->mmio_needed) {
  4912. vcpu->mmio_needed = 0;
  4913. if (!vcpu->mmio_is_write)
  4914. memcpy(vcpu->mmio_data + vcpu->mmio_index,
  4915. run->mmio.data, 8);
  4916. vcpu->mmio_index += 8;
  4917. if (vcpu->mmio_index < vcpu->mmio_size) {
  4918. run->exit_reason = KVM_EXIT_MMIO;
  4919. run->mmio.phys_addr = vcpu->mmio_phys_addr + vcpu->mmio_index;
  4920. memcpy(run->mmio.data, vcpu->mmio_data + vcpu->mmio_index, 8);
  4921. run->mmio.len = min(vcpu->mmio_size - vcpu->mmio_index, 8);
  4922. run->mmio.is_write = vcpu->mmio_is_write;
  4923. vcpu->mmio_needed = 1;
  4924. return 0;
  4925. }
  4926. if (vcpu->mmio_is_write)
  4927. return 1;
  4928. vcpu->mmio_read_completed = 1;
  4929. }
  4930. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4931. r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
  4932. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4933. if (r != EMULATE_DONE)
  4934. return 0;
  4935. return 1;
  4936. }
  4937. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  4938. {
  4939. int r;
  4940. sigset_t sigsaved;
  4941. if (!tsk_used_math(current) && init_fpu(current))
  4942. return -ENOMEM;
  4943. if (vcpu->sigset_active)
  4944. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  4945. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  4946. kvm_vcpu_block(vcpu);
  4947. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  4948. r = -EAGAIN;
  4949. goto out;
  4950. }
  4951. /* re-sync apic's tpr */
  4952. if (!irqchip_in_kernel(vcpu->kvm)) {
  4953. if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
  4954. r = -EINVAL;
  4955. goto out;
  4956. }
  4957. }
  4958. r = complete_mmio(vcpu);
  4959. if (r <= 0)
  4960. goto out;
  4961. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  4962. kvm_register_write(vcpu, VCPU_REGS_RAX,
  4963. kvm_run->hypercall.ret);
  4964. r = __vcpu_run(vcpu);
  4965. out:
  4966. post_kvm_run_save(vcpu);
  4967. if (vcpu->sigset_active)
  4968. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  4969. return r;
  4970. }
  4971. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4972. {
  4973. if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
  4974. /*
  4975. * We are here if userspace calls get_regs() in the middle of
  4976. * instruction emulation. Registers state needs to be copied
  4977. * back from emulation context to vcpu. Usrapace shouldn't do
  4978. * that usually, but some bad designed PV devices (vmware
  4979. * backdoor interface) need this to work
  4980. */
  4981. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  4982. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  4983. vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
  4984. }
  4985. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4986. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4987. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4988. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4989. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4990. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4991. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4992. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4993. #ifdef CONFIG_X86_64
  4994. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  4995. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  4996. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  4997. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  4998. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  4999. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  5000. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  5001. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  5002. #endif
  5003. regs->rip = kvm_rip_read(vcpu);
  5004. regs->rflags = kvm_get_rflags(vcpu);
  5005. return 0;
  5006. }
  5007. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  5008. {
  5009. vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
  5010. vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
  5011. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  5012. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  5013. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  5014. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  5015. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  5016. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  5017. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  5018. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  5019. #ifdef CONFIG_X86_64
  5020. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  5021. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  5022. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  5023. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  5024. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  5025. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  5026. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  5027. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  5028. #endif
  5029. kvm_rip_write(vcpu, regs->rip);
  5030. kvm_set_rflags(vcpu, regs->rflags);
  5031. vcpu->arch.exception.pending = false;
  5032. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5033. return 0;
  5034. }
  5035. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  5036. {
  5037. struct kvm_segment cs;
  5038. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  5039. *db = cs.db;
  5040. *l = cs.l;
  5041. }
  5042. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  5043. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  5044. struct kvm_sregs *sregs)
  5045. {
  5046. struct desc_ptr dt;
  5047. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  5048. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  5049. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  5050. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  5051. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  5052. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  5053. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  5054. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  5055. kvm_x86_ops->get_idt(vcpu, &dt);
  5056. sregs->idt.limit = dt.size;
  5057. sregs->idt.base = dt.address;
  5058. kvm_x86_ops->get_gdt(vcpu, &dt);
  5059. sregs->gdt.limit = dt.size;
  5060. sregs->gdt.base = dt.address;
  5061. sregs->cr0 = kvm_read_cr0(vcpu);
  5062. sregs->cr2 = vcpu->arch.cr2;
  5063. sregs->cr3 = kvm_read_cr3(vcpu);
  5064. sregs->cr4 = kvm_read_cr4(vcpu);
  5065. sregs->cr8 = kvm_get_cr8(vcpu);
  5066. sregs->efer = vcpu->arch.efer;
  5067. sregs->apic_base = kvm_get_apic_base(vcpu);
  5068. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  5069. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  5070. set_bit(vcpu->arch.interrupt.nr,
  5071. (unsigned long *)sregs->interrupt_bitmap);
  5072. return 0;
  5073. }
  5074. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  5075. struct kvm_mp_state *mp_state)
  5076. {
  5077. mp_state->mp_state = vcpu->arch.mp_state;
  5078. return 0;
  5079. }
  5080. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  5081. struct kvm_mp_state *mp_state)
  5082. {
  5083. vcpu->arch.mp_state = mp_state->mp_state;
  5084. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5085. return 0;
  5086. }
  5087. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
  5088. bool has_error_code, u32 error_code)
  5089. {
  5090. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  5091. int ret;
  5092. init_emulate_ctxt(vcpu);
  5093. ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
  5094. tss_selector, reason, has_error_code,
  5095. error_code);
  5096. if (ret)
  5097. return EMULATE_FAIL;
  5098. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  5099. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  5100. kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  5101. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5102. return EMULATE_DONE;
  5103. }
  5104. EXPORT_SYMBOL_GPL(kvm_task_switch);
  5105. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  5106. struct kvm_sregs *sregs)
  5107. {
  5108. int mmu_reset_needed = 0;
  5109. int pending_vec, max_bits, idx;
  5110. struct desc_ptr dt;
  5111. dt.size = sregs->idt.limit;
  5112. dt.address = sregs->idt.base;
  5113. kvm_x86_ops->set_idt(vcpu, &dt);
  5114. dt.size = sregs->gdt.limit;
  5115. dt.address = sregs->gdt.base;
  5116. kvm_x86_ops->set_gdt(vcpu, &dt);
  5117. vcpu->arch.cr2 = sregs->cr2;
  5118. mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
  5119. vcpu->arch.cr3 = sregs->cr3;
  5120. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  5121. kvm_set_cr8(vcpu, sregs->cr8);
  5122. mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
  5123. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  5124. kvm_set_apic_base(vcpu, sregs->apic_base);
  5125. mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
  5126. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  5127. vcpu->arch.cr0 = sregs->cr0;
  5128. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  5129. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  5130. if (sregs->cr4 & X86_CR4_OSXSAVE)
  5131. update_cpuid(vcpu);
  5132. idx = srcu_read_lock(&vcpu->kvm->srcu);
  5133. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  5134. load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
  5135. mmu_reset_needed = 1;
  5136. }
  5137. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  5138. if (mmu_reset_needed)
  5139. kvm_mmu_reset_context(vcpu);
  5140. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  5141. pending_vec = find_first_bit(
  5142. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  5143. if (pending_vec < max_bits) {
  5144. kvm_queue_interrupt(vcpu, pending_vec, false);
  5145. pr_debug("Set back pending irq %d\n", pending_vec);
  5146. }
  5147. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  5148. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  5149. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  5150. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  5151. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  5152. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  5153. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  5154. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  5155. update_cr8_intercept(vcpu);
  5156. /* Older userspace won't unhalt the vcpu on reset. */
  5157. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  5158. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  5159. !is_protmode(vcpu))
  5160. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  5161. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5162. return 0;
  5163. }
  5164. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  5165. struct kvm_guest_debug *dbg)
  5166. {
  5167. unsigned long rflags;
  5168. int i, r;
  5169. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  5170. r = -EBUSY;
  5171. if (vcpu->arch.exception.pending)
  5172. goto out;
  5173. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  5174. kvm_queue_exception(vcpu, DB_VECTOR);
  5175. else
  5176. kvm_queue_exception(vcpu, BP_VECTOR);
  5177. }
  5178. /*
  5179. * Read rflags as long as potentially injected trace flags are still
  5180. * filtered out.
  5181. */
  5182. rflags = kvm_get_rflags(vcpu);
  5183. vcpu->guest_debug = dbg->control;
  5184. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  5185. vcpu->guest_debug = 0;
  5186. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  5187. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  5188. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  5189. vcpu->arch.switch_db_regs =
  5190. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  5191. } else {
  5192. for (i = 0; i < KVM_NR_DB_REGS; i++)
  5193. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  5194. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  5195. }
  5196. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5197. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
  5198. get_segment_base(vcpu, VCPU_SREG_CS);
  5199. /*
  5200. * Trigger an rflags update that will inject or remove the trace
  5201. * flags.
  5202. */
  5203. kvm_set_rflags(vcpu, rflags);
  5204. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  5205. r = 0;
  5206. out:
  5207. return r;
  5208. }
  5209. /*
  5210. * Translate a guest virtual address to a guest physical address.
  5211. */
  5212. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  5213. struct kvm_translation *tr)
  5214. {
  5215. unsigned long vaddr = tr->linear_address;
  5216. gpa_t gpa;
  5217. int idx;
  5218. idx = srcu_read_lock(&vcpu->kvm->srcu);
  5219. gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
  5220. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  5221. tr->physical_address = gpa;
  5222. tr->valid = gpa != UNMAPPED_GVA;
  5223. tr->writeable = 1;
  5224. tr->usermode = 0;
  5225. return 0;
  5226. }
  5227. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  5228. {
  5229. struct i387_fxsave_struct *fxsave =
  5230. &vcpu->arch.guest_fpu.state->fxsave;
  5231. memcpy(fpu->fpr, fxsave->st_space, 128);
  5232. fpu->fcw = fxsave->cwd;
  5233. fpu->fsw = fxsave->swd;
  5234. fpu->ftwx = fxsave->twd;
  5235. fpu->last_opcode = fxsave->fop;
  5236. fpu->last_ip = fxsave->rip;
  5237. fpu->last_dp = fxsave->rdp;
  5238. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  5239. return 0;
  5240. }
  5241. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  5242. {
  5243. struct i387_fxsave_struct *fxsave =
  5244. &vcpu->arch.guest_fpu.state->fxsave;
  5245. memcpy(fxsave->st_space, fpu->fpr, 128);
  5246. fxsave->cwd = fpu->fcw;
  5247. fxsave->swd = fpu->fsw;
  5248. fxsave->twd = fpu->ftwx;
  5249. fxsave->fop = fpu->last_opcode;
  5250. fxsave->rip = fpu->last_ip;
  5251. fxsave->rdp = fpu->last_dp;
  5252. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  5253. return 0;
  5254. }
  5255. int fx_init(struct kvm_vcpu *vcpu)
  5256. {
  5257. int err;
  5258. err = fpu_alloc(&vcpu->arch.guest_fpu);
  5259. if (err)
  5260. return err;
  5261. fpu_finit(&vcpu->arch.guest_fpu);
  5262. /*
  5263. * Ensure guest xcr0 is valid for loading
  5264. */
  5265. vcpu->arch.xcr0 = XSTATE_FP;
  5266. vcpu->arch.cr0 |= X86_CR0_ET;
  5267. return 0;
  5268. }
  5269. EXPORT_SYMBOL_GPL(fx_init);
  5270. static void fx_free(struct kvm_vcpu *vcpu)
  5271. {
  5272. fpu_free(&vcpu->arch.guest_fpu);
  5273. }
  5274. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  5275. {
  5276. if (vcpu->guest_fpu_loaded)
  5277. return;
  5278. /*
  5279. * Restore all possible states in the guest,
  5280. * and assume host would use all available bits.
  5281. * Guest xcr0 would be loaded later.
  5282. */
  5283. kvm_put_guest_xcr0(vcpu);
  5284. vcpu->guest_fpu_loaded = 1;
  5285. unlazy_fpu(current);
  5286. fpu_restore_checking(&vcpu->arch.guest_fpu);
  5287. trace_kvm_fpu(1);
  5288. }
  5289. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  5290. {
  5291. kvm_put_guest_xcr0(vcpu);
  5292. if (!vcpu->guest_fpu_loaded)
  5293. return;
  5294. vcpu->guest_fpu_loaded = 0;
  5295. fpu_save_init(&vcpu->arch.guest_fpu);
  5296. ++vcpu->stat.fpu_reload;
  5297. kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
  5298. trace_kvm_fpu(0);
  5299. }
  5300. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  5301. {
  5302. kvmclock_reset(vcpu);
  5303. free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
  5304. fx_free(vcpu);
  5305. kvm_x86_ops->vcpu_free(vcpu);
  5306. }
  5307. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  5308. unsigned int id)
  5309. {
  5310. if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
  5311. printk_once(KERN_WARNING
  5312. "kvm: SMP vm created on host with unstable TSC; "
  5313. "guest TSC will not be reliable\n");
  5314. return kvm_x86_ops->vcpu_create(kvm, id);
  5315. }
  5316. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  5317. {
  5318. int r;
  5319. vcpu->arch.mtrr_state.have_fixed = 1;
  5320. vcpu_load(vcpu);
  5321. r = kvm_arch_vcpu_reset(vcpu);
  5322. if (r == 0)
  5323. r = kvm_mmu_setup(vcpu);
  5324. vcpu_put(vcpu);
  5325. return r;
  5326. }
  5327. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  5328. {
  5329. vcpu->arch.apf.msr_val = 0;
  5330. vcpu_load(vcpu);
  5331. kvm_mmu_unload(vcpu);
  5332. vcpu_put(vcpu);
  5333. fx_free(vcpu);
  5334. kvm_x86_ops->vcpu_free(vcpu);
  5335. }
  5336. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  5337. {
  5338. vcpu->arch.nmi_pending = false;
  5339. vcpu->arch.nmi_injected = false;
  5340. vcpu->arch.switch_db_regs = 0;
  5341. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  5342. vcpu->arch.dr6 = DR6_FIXED_1;
  5343. vcpu->arch.dr7 = DR7_FIXED_1;
  5344. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5345. vcpu->arch.apf.msr_val = 0;
  5346. kvmclock_reset(vcpu);
  5347. kvm_clear_async_pf_completion_queue(vcpu);
  5348. kvm_async_pf_hash_reset(vcpu);
  5349. vcpu->arch.apf.halted = false;
  5350. return kvm_x86_ops->vcpu_reset(vcpu);
  5351. }
  5352. int kvm_arch_hardware_enable(void *garbage)
  5353. {
  5354. struct kvm *kvm;
  5355. struct kvm_vcpu *vcpu;
  5356. int i;
  5357. kvm_shared_msr_cpu_online();
  5358. list_for_each_entry(kvm, &vm_list, vm_list)
  5359. kvm_for_each_vcpu(i, vcpu, kvm)
  5360. if (vcpu->cpu == smp_processor_id())
  5361. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  5362. return kvm_x86_ops->hardware_enable(garbage);
  5363. }
  5364. void kvm_arch_hardware_disable(void *garbage)
  5365. {
  5366. kvm_x86_ops->hardware_disable(garbage);
  5367. drop_user_return_notifiers(garbage);
  5368. }
  5369. int kvm_arch_hardware_setup(void)
  5370. {
  5371. return kvm_x86_ops->hardware_setup();
  5372. }
  5373. void kvm_arch_hardware_unsetup(void)
  5374. {
  5375. kvm_x86_ops->hardware_unsetup();
  5376. }
  5377. void kvm_arch_check_processor_compat(void *rtn)
  5378. {
  5379. kvm_x86_ops->check_processor_compatibility(rtn);
  5380. }
  5381. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  5382. {
  5383. struct page *page;
  5384. struct kvm *kvm;
  5385. int r;
  5386. BUG_ON(vcpu->kvm == NULL);
  5387. kvm = vcpu->kvm;
  5388. vcpu->arch.emulate_ctxt.ops = &emulate_ops;
  5389. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  5390. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  5391. vcpu->arch.mmu.translate_gpa = translate_gpa;
  5392. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  5393. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  5394. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  5395. else
  5396. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  5397. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  5398. if (!page) {
  5399. r = -ENOMEM;
  5400. goto fail;
  5401. }
  5402. vcpu->arch.pio_data = page_address(page);
  5403. kvm_init_tsc_catchup(vcpu, max_tsc_khz);
  5404. r = kvm_mmu_create(vcpu);
  5405. if (r < 0)
  5406. goto fail_free_pio_data;
  5407. if (irqchip_in_kernel(kvm)) {
  5408. r = kvm_create_lapic(vcpu);
  5409. if (r < 0)
  5410. goto fail_mmu_destroy;
  5411. }
  5412. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  5413. GFP_KERNEL);
  5414. if (!vcpu->arch.mce_banks) {
  5415. r = -ENOMEM;
  5416. goto fail_free_lapic;
  5417. }
  5418. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  5419. if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
  5420. goto fail_free_mce_banks;
  5421. kvm_async_pf_hash_reset(vcpu);
  5422. return 0;
  5423. fail_free_mce_banks:
  5424. kfree(vcpu->arch.mce_banks);
  5425. fail_free_lapic:
  5426. kvm_free_lapic(vcpu);
  5427. fail_mmu_destroy:
  5428. kvm_mmu_destroy(vcpu);
  5429. fail_free_pio_data:
  5430. free_page((unsigned long)vcpu->arch.pio_data);
  5431. fail:
  5432. return r;
  5433. }
  5434. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  5435. {
  5436. int idx;
  5437. kfree(vcpu->arch.mce_banks);
  5438. kvm_free_lapic(vcpu);
  5439. idx = srcu_read_lock(&vcpu->kvm->srcu);
  5440. kvm_mmu_destroy(vcpu);
  5441. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  5442. free_page((unsigned long)vcpu->arch.pio_data);
  5443. }
  5444. int kvm_arch_init_vm(struct kvm *kvm)
  5445. {
  5446. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  5447. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  5448. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  5449. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  5450. raw_spin_lock_init(&kvm->arch.tsc_write_lock);
  5451. return 0;
  5452. }
  5453. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  5454. {
  5455. vcpu_load(vcpu);
  5456. kvm_mmu_unload(vcpu);
  5457. vcpu_put(vcpu);
  5458. }
  5459. static void kvm_free_vcpus(struct kvm *kvm)
  5460. {
  5461. unsigned int i;
  5462. struct kvm_vcpu *vcpu;
  5463. /*
  5464. * Unpin any mmu pages first.
  5465. */
  5466. kvm_for_each_vcpu(i, vcpu, kvm) {
  5467. kvm_clear_async_pf_completion_queue(vcpu);
  5468. kvm_unload_vcpu_mmu(vcpu);
  5469. }
  5470. kvm_for_each_vcpu(i, vcpu, kvm)
  5471. kvm_arch_vcpu_free(vcpu);
  5472. mutex_lock(&kvm->lock);
  5473. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  5474. kvm->vcpus[i] = NULL;
  5475. atomic_set(&kvm->online_vcpus, 0);
  5476. mutex_unlock(&kvm->lock);
  5477. }
  5478. void kvm_arch_sync_events(struct kvm *kvm)
  5479. {
  5480. kvm_free_all_assigned_devices(kvm);
  5481. kvm_free_pit(kvm);
  5482. }
  5483. void kvm_arch_destroy_vm(struct kvm *kvm)
  5484. {
  5485. kvm_iommu_unmap_guest(kvm);
  5486. kfree(kvm->arch.vpic);
  5487. kfree(kvm->arch.vioapic);
  5488. kvm_free_vcpus(kvm);
  5489. if (kvm->arch.apic_access_page)
  5490. put_page(kvm->arch.apic_access_page);
  5491. if (kvm->arch.ept_identity_pagetable)
  5492. put_page(kvm->arch.ept_identity_pagetable);
  5493. }
  5494. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  5495. struct kvm_memory_slot *memslot,
  5496. struct kvm_memory_slot old,
  5497. struct kvm_userspace_memory_region *mem,
  5498. int user_alloc)
  5499. {
  5500. int npages = memslot->npages;
  5501. int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
  5502. /* Prevent internal slot pages from being moved by fork()/COW. */
  5503. if (memslot->id >= KVM_MEMORY_SLOTS)
  5504. map_flags = MAP_SHARED | MAP_ANONYMOUS;
  5505. /*To keep backward compatibility with older userspace,
  5506. *x86 needs to hanlde !user_alloc case.
  5507. */
  5508. if (!user_alloc) {
  5509. if (npages && !old.rmap) {
  5510. unsigned long userspace_addr;
  5511. down_write(&current->mm->mmap_sem);
  5512. userspace_addr = do_mmap(NULL, 0,
  5513. npages * PAGE_SIZE,
  5514. PROT_READ | PROT_WRITE,
  5515. map_flags,
  5516. 0);
  5517. up_write(&current->mm->mmap_sem);
  5518. if (IS_ERR((void *)userspace_addr))
  5519. return PTR_ERR((void *)userspace_addr);
  5520. memslot->userspace_addr = userspace_addr;
  5521. }
  5522. }
  5523. return 0;
  5524. }
  5525. void kvm_arch_commit_memory_region(struct kvm *kvm,
  5526. struct kvm_userspace_memory_region *mem,
  5527. struct kvm_memory_slot old,
  5528. int user_alloc)
  5529. {
  5530. int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
  5531. if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
  5532. int ret;
  5533. down_write(&current->mm->mmap_sem);
  5534. ret = do_munmap(current->mm, old.userspace_addr,
  5535. old.npages * PAGE_SIZE);
  5536. up_write(&current->mm->mmap_sem);
  5537. if (ret < 0)
  5538. printk(KERN_WARNING
  5539. "kvm_vm_ioctl_set_memory_region: "
  5540. "failed to munmap memory\n");
  5541. }
  5542. if (!kvm->arch.n_requested_mmu_pages)
  5543. nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  5544. spin_lock(&kvm->mmu_lock);
  5545. if (nr_mmu_pages)
  5546. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  5547. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  5548. spin_unlock(&kvm->mmu_lock);
  5549. }
  5550. void kvm_arch_flush_shadow(struct kvm *kvm)
  5551. {
  5552. kvm_mmu_zap_all(kvm);
  5553. kvm_reload_remote_mmus(kvm);
  5554. }
  5555. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  5556. {
  5557. return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
  5558. !vcpu->arch.apf.halted)
  5559. || !list_empty_careful(&vcpu->async_pf.done)
  5560. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  5561. || vcpu->arch.nmi_pending ||
  5562. (kvm_arch_interrupt_allowed(vcpu) &&
  5563. kvm_cpu_has_interrupt(vcpu));
  5564. }
  5565. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  5566. {
  5567. int me;
  5568. int cpu = vcpu->cpu;
  5569. if (waitqueue_active(&vcpu->wq)) {
  5570. wake_up_interruptible(&vcpu->wq);
  5571. ++vcpu->stat.halt_wakeup;
  5572. }
  5573. me = get_cpu();
  5574. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  5575. if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
  5576. smp_send_reschedule(cpu);
  5577. put_cpu();
  5578. }
  5579. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  5580. {
  5581. return kvm_x86_ops->interrupt_allowed(vcpu);
  5582. }
  5583. bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
  5584. {
  5585. unsigned long current_rip = kvm_rip_read(vcpu) +
  5586. get_segment_base(vcpu, VCPU_SREG_CS);
  5587. return current_rip == linear_rip;
  5588. }
  5589. EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
  5590. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  5591. {
  5592. unsigned long rflags;
  5593. rflags = kvm_x86_ops->get_rflags(vcpu);
  5594. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5595. rflags &= ~X86_EFLAGS_TF;
  5596. return rflags;
  5597. }
  5598. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  5599. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  5600. {
  5601. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  5602. kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
  5603. rflags |= X86_EFLAGS_TF;
  5604. kvm_x86_ops->set_rflags(vcpu, rflags);
  5605. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5606. }
  5607. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  5608. void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
  5609. {
  5610. int r;
  5611. if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
  5612. is_error_page(work->page))
  5613. return;
  5614. r = kvm_mmu_reload(vcpu);
  5615. if (unlikely(r))
  5616. return;
  5617. if (!vcpu->arch.mmu.direct_map &&
  5618. work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
  5619. return;
  5620. vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
  5621. }
  5622. static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
  5623. {
  5624. return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
  5625. }
  5626. static inline u32 kvm_async_pf_next_probe(u32 key)
  5627. {
  5628. return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
  5629. }
  5630. static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  5631. {
  5632. u32 key = kvm_async_pf_hash_fn(gfn);
  5633. while (vcpu->arch.apf.gfns[key] != ~0)
  5634. key = kvm_async_pf_next_probe(key);
  5635. vcpu->arch.apf.gfns[key] = gfn;
  5636. }
  5637. static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
  5638. {
  5639. int i;
  5640. u32 key = kvm_async_pf_hash_fn(gfn);
  5641. for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
  5642. (vcpu->arch.apf.gfns[key] != gfn &&
  5643. vcpu->arch.apf.gfns[key] != ~0); i++)
  5644. key = kvm_async_pf_next_probe(key);
  5645. return key;
  5646. }
  5647. bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  5648. {
  5649. return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
  5650. }
  5651. static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  5652. {
  5653. u32 i, j, k;
  5654. i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
  5655. while (true) {
  5656. vcpu->arch.apf.gfns[i] = ~0;
  5657. do {
  5658. j = kvm_async_pf_next_probe(j);
  5659. if (vcpu->arch.apf.gfns[j] == ~0)
  5660. return;
  5661. k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
  5662. /*
  5663. * k lies cyclically in ]i,j]
  5664. * | i.k.j |
  5665. * |....j i.k.| or |.k..j i...|
  5666. */
  5667. } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
  5668. vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
  5669. i = j;
  5670. }
  5671. }
  5672. static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
  5673. {
  5674. return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
  5675. sizeof(val));
  5676. }
  5677. void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
  5678. struct kvm_async_pf *work)
  5679. {
  5680. struct x86_exception fault;
  5681. trace_kvm_async_pf_not_present(work->arch.token, work->gva);
  5682. kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
  5683. if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
  5684. (vcpu->arch.apf.send_user_only &&
  5685. kvm_x86_ops->get_cpl(vcpu) == 0))
  5686. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  5687. else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
  5688. fault.vector = PF_VECTOR;
  5689. fault.error_code_valid = true;
  5690. fault.error_code = 0;
  5691. fault.nested_page_fault = false;
  5692. fault.address = work->arch.token;
  5693. kvm_inject_page_fault(vcpu, &fault);
  5694. }
  5695. }
  5696. void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
  5697. struct kvm_async_pf *work)
  5698. {
  5699. struct x86_exception fault;
  5700. trace_kvm_async_pf_ready(work->arch.token, work->gva);
  5701. if (is_error_page(work->page))
  5702. work->arch.token = ~0; /* broadcast wakeup */
  5703. else
  5704. kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
  5705. if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
  5706. !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
  5707. fault.vector = PF_VECTOR;
  5708. fault.error_code_valid = true;
  5709. fault.error_code = 0;
  5710. fault.nested_page_fault = false;
  5711. fault.address = work->arch.token;
  5712. kvm_inject_page_fault(vcpu, &fault);
  5713. }
  5714. vcpu->arch.apf.halted = false;
  5715. }
  5716. bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
  5717. {
  5718. if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
  5719. return true;
  5720. else
  5721. return !kvm_event_needs_reinjection(vcpu) &&
  5722. kvm_x86_ops->interrupt_allowed(vcpu);
  5723. }
  5724. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  5725. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  5726. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  5727. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  5728. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  5729. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  5730. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  5731. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  5732. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  5733. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  5734. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
  5735. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);