mixer.c 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209
  1. /*
  2. * (Tentative) USB Audio Driver for ALSA
  3. *
  4. * Mixer control part
  5. *
  6. * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
  7. *
  8. * Many codes borrowed from audio.c by
  9. * Alan Cox (alan@lxorguk.ukuu.org.uk)
  10. * Thomas Sailer (sailer@ife.ee.ethz.ch)
  11. *
  12. *
  13. * This program is free software; you can redistribute it and/or modify
  14. * it under the terms of the GNU General Public License as published by
  15. * the Free Software Foundation; either version 2 of the License, or
  16. * (at your option) any later version.
  17. *
  18. * This program is distributed in the hope that it will be useful,
  19. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  20. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  21. * GNU General Public License for more details.
  22. *
  23. * You should have received a copy of the GNU General Public License
  24. * along with this program; if not, write to the Free Software
  25. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  26. *
  27. */
  28. /*
  29. * TODOs, for both the mixer and the streaming interfaces:
  30. *
  31. * - support for UAC2 effect units
  32. * - support for graphical equalizers
  33. * - RANGE and MEM set commands (UAC2)
  34. * - RANGE and MEM interrupt dispatchers (UAC2)
  35. * - audio channel clustering (UAC2)
  36. * - audio sample rate converter units (UAC2)
  37. * - proper handling of clock multipliers (UAC2)
  38. * - dispatch clock change notifications (UAC2)
  39. * - stop PCM streams which use a clock that became invalid
  40. * - stop PCM streams which use a clock selector that has changed
  41. * - parse available sample rates again when clock sources changed
  42. */
  43. #include <linux/bitops.h>
  44. #include <linux/init.h>
  45. #include <linux/list.h>
  46. #include <linux/slab.h>
  47. #include <linux/string.h>
  48. #include <linux/usb.h>
  49. #include <linux/usb/audio.h>
  50. #include <linux/usb/audio-v2.h>
  51. #include <sound/core.h>
  52. #include <sound/control.h>
  53. #include <sound/hwdep.h>
  54. #include <sound/info.h>
  55. #include <sound/tlv.h>
  56. #include "usbaudio.h"
  57. #include "mixer.h"
  58. #include "helper.h"
  59. #include "mixer_quirks.h"
  60. #define MAX_ID_ELEMS 256
  61. struct usb_audio_term {
  62. int id;
  63. int type;
  64. int channels;
  65. unsigned int chconfig;
  66. int name;
  67. };
  68. struct usbmix_name_map;
  69. struct mixer_build {
  70. struct snd_usb_audio *chip;
  71. struct usb_mixer_interface *mixer;
  72. unsigned char *buffer;
  73. unsigned int buflen;
  74. DECLARE_BITMAP(unitbitmap, MAX_ID_ELEMS);
  75. struct usb_audio_term oterm;
  76. const struct usbmix_name_map *map;
  77. const struct usbmix_selector_map *selector_map;
  78. };
  79. enum {
  80. USB_MIXER_BOOLEAN,
  81. USB_MIXER_INV_BOOLEAN,
  82. USB_MIXER_S8,
  83. USB_MIXER_U8,
  84. USB_MIXER_S16,
  85. USB_MIXER_U16,
  86. };
  87. /*E-mu 0202/0404/0204 eXtension Unit(XU) control*/
  88. enum {
  89. USB_XU_CLOCK_RATE = 0xe301,
  90. USB_XU_CLOCK_SOURCE = 0xe302,
  91. USB_XU_DIGITAL_IO_STATUS = 0xe303,
  92. USB_XU_DEVICE_OPTIONS = 0xe304,
  93. USB_XU_DIRECT_MONITORING = 0xe305,
  94. USB_XU_METERING = 0xe306
  95. };
  96. enum {
  97. USB_XU_CLOCK_SOURCE_SELECTOR = 0x02, /* clock source*/
  98. USB_XU_CLOCK_RATE_SELECTOR = 0x03, /* clock rate */
  99. USB_XU_DIGITAL_FORMAT_SELECTOR = 0x01, /* the spdif format */
  100. USB_XU_SOFT_LIMIT_SELECTOR = 0x03 /* soft limiter */
  101. };
  102. /*
  103. * manual mapping of mixer names
  104. * if the mixer topology is too complicated and the parsed names are
  105. * ambiguous, add the entries in usbmixer_maps.c.
  106. */
  107. #include "mixer_maps.c"
  108. static const struct usbmix_name_map *
  109. find_map(struct mixer_build *state, int unitid, int control)
  110. {
  111. const struct usbmix_name_map *p = state->map;
  112. if (!p)
  113. return NULL;
  114. for (p = state->map; p->id; p++) {
  115. if (p->id == unitid &&
  116. (!control || !p->control || control == p->control))
  117. return p;
  118. }
  119. return NULL;
  120. }
  121. /* get the mapped name if the unit matches */
  122. static int
  123. check_mapped_name(const struct usbmix_name_map *p, char *buf, int buflen)
  124. {
  125. if (!p || !p->name)
  126. return 0;
  127. buflen--;
  128. return strlcpy(buf, p->name, buflen);
  129. }
  130. /* check whether the control should be ignored */
  131. static inline int
  132. check_ignored_ctl(const struct usbmix_name_map *p)
  133. {
  134. if (!p || p->name || p->dB)
  135. return 0;
  136. return 1;
  137. }
  138. /* dB mapping */
  139. static inline void check_mapped_dB(const struct usbmix_name_map *p,
  140. struct usb_mixer_elem_info *cval)
  141. {
  142. if (p && p->dB) {
  143. cval->dBmin = p->dB->min;
  144. cval->dBmax = p->dB->max;
  145. }
  146. }
  147. /* get the mapped selector source name */
  148. static int check_mapped_selector_name(struct mixer_build *state, int unitid,
  149. int index, char *buf, int buflen)
  150. {
  151. const struct usbmix_selector_map *p;
  152. if (! state->selector_map)
  153. return 0;
  154. for (p = state->selector_map; p->id; p++) {
  155. if (p->id == unitid && index < p->count)
  156. return strlcpy(buf, p->names[index], buflen);
  157. }
  158. return 0;
  159. }
  160. /*
  161. * find an audio control unit with the given unit id
  162. */
  163. static void *find_audio_control_unit(struct mixer_build *state, unsigned char unit)
  164. {
  165. /* we just parse the header */
  166. struct uac_feature_unit_descriptor *hdr = NULL;
  167. while ((hdr = snd_usb_find_desc(state->buffer, state->buflen, hdr,
  168. USB_DT_CS_INTERFACE)) != NULL) {
  169. if (hdr->bLength >= 4 &&
  170. hdr->bDescriptorSubtype >= UAC_INPUT_TERMINAL &&
  171. hdr->bDescriptorSubtype <= UAC2_SAMPLE_RATE_CONVERTER &&
  172. hdr->bUnitID == unit)
  173. return hdr;
  174. }
  175. return NULL;
  176. }
  177. /*
  178. * copy a string with the given id
  179. */
  180. static int snd_usb_copy_string_desc(struct mixer_build *state, int index, char *buf, int maxlen)
  181. {
  182. int len = usb_string(state->chip->dev, index, buf, maxlen - 1);
  183. buf[len] = 0;
  184. return len;
  185. }
  186. /*
  187. * convert from the byte/word on usb descriptor to the zero-based integer
  188. */
  189. static int convert_signed_value(struct usb_mixer_elem_info *cval, int val)
  190. {
  191. switch (cval->val_type) {
  192. case USB_MIXER_BOOLEAN:
  193. return !!val;
  194. case USB_MIXER_INV_BOOLEAN:
  195. return !val;
  196. case USB_MIXER_U8:
  197. val &= 0xff;
  198. break;
  199. case USB_MIXER_S8:
  200. val &= 0xff;
  201. if (val >= 0x80)
  202. val -= 0x100;
  203. break;
  204. case USB_MIXER_U16:
  205. val &= 0xffff;
  206. break;
  207. case USB_MIXER_S16:
  208. val &= 0xffff;
  209. if (val >= 0x8000)
  210. val -= 0x10000;
  211. break;
  212. }
  213. return val;
  214. }
  215. /*
  216. * convert from the zero-based int to the byte/word for usb descriptor
  217. */
  218. static int convert_bytes_value(struct usb_mixer_elem_info *cval, int val)
  219. {
  220. switch (cval->val_type) {
  221. case USB_MIXER_BOOLEAN:
  222. return !!val;
  223. case USB_MIXER_INV_BOOLEAN:
  224. return !val;
  225. case USB_MIXER_S8:
  226. case USB_MIXER_U8:
  227. return val & 0xff;
  228. case USB_MIXER_S16:
  229. case USB_MIXER_U16:
  230. return val & 0xffff;
  231. }
  232. return 0; /* not reached */
  233. }
  234. static int get_relative_value(struct usb_mixer_elem_info *cval, int val)
  235. {
  236. if (! cval->res)
  237. cval->res = 1;
  238. if (val < cval->min)
  239. return 0;
  240. else if (val >= cval->max)
  241. return (cval->max - cval->min + cval->res - 1) / cval->res;
  242. else
  243. return (val - cval->min) / cval->res;
  244. }
  245. static int get_abs_value(struct usb_mixer_elem_info *cval, int val)
  246. {
  247. if (val < 0)
  248. return cval->min;
  249. if (! cval->res)
  250. cval->res = 1;
  251. val *= cval->res;
  252. val += cval->min;
  253. if (val > cval->max)
  254. return cval->max;
  255. return val;
  256. }
  257. /*
  258. * retrieve a mixer value
  259. */
  260. static int get_ctl_value_v1(struct usb_mixer_elem_info *cval, int request, int validx, int *value_ret)
  261. {
  262. struct snd_usb_audio *chip = cval->mixer->chip;
  263. unsigned char buf[2];
  264. int val_len = cval->val_type >= USB_MIXER_S16 ? 2 : 1;
  265. int timeout = 10;
  266. while (timeout-- > 0) {
  267. if (snd_usb_ctl_msg(chip->dev, usb_rcvctrlpipe(chip->dev, 0), request,
  268. USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  269. validx, snd_usb_ctrl_intf(chip) | (cval->id << 8),
  270. buf, val_len, 100) >= val_len) {
  271. *value_ret = convert_signed_value(cval, snd_usb_combine_bytes(buf, val_len));
  272. return 0;
  273. }
  274. }
  275. snd_printdd(KERN_ERR "cannot get ctl value: req = %#x, wValue = %#x, wIndex = %#x, type = %d\n",
  276. request, validx, snd_usb_ctrl_intf(chip) | (cval->id << 8), cval->val_type);
  277. return -EINVAL;
  278. }
  279. static int get_ctl_value_v2(struct usb_mixer_elem_info *cval, int request, int validx, int *value_ret)
  280. {
  281. struct snd_usb_audio *chip = cval->mixer->chip;
  282. unsigned char buf[2 + 3*sizeof(__u16)]; /* enough space for one range */
  283. unsigned char *val;
  284. int ret, size;
  285. __u8 bRequest;
  286. if (request == UAC_GET_CUR) {
  287. bRequest = UAC2_CS_CUR;
  288. size = sizeof(__u16);
  289. } else {
  290. bRequest = UAC2_CS_RANGE;
  291. size = sizeof(buf);
  292. }
  293. memset(buf, 0, sizeof(buf));
  294. ret = snd_usb_ctl_msg(chip->dev, usb_rcvctrlpipe(chip->dev, 0), bRequest,
  295. USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_IN,
  296. validx, snd_usb_ctrl_intf(chip) | (cval->id << 8),
  297. buf, size, 1000);
  298. if (ret < 0) {
  299. snd_printk(KERN_ERR "cannot get ctl value: req = %#x, wValue = %#x, wIndex = %#x, type = %d\n",
  300. request, validx, snd_usb_ctrl_intf(chip) | (cval->id << 8), cval->val_type);
  301. return ret;
  302. }
  303. /* FIXME: how should we handle multiple triplets here? */
  304. switch (request) {
  305. case UAC_GET_CUR:
  306. val = buf;
  307. break;
  308. case UAC_GET_MIN:
  309. val = buf + sizeof(__u16);
  310. break;
  311. case UAC_GET_MAX:
  312. val = buf + sizeof(__u16) * 2;
  313. break;
  314. case UAC_GET_RES:
  315. val = buf + sizeof(__u16) * 3;
  316. break;
  317. default:
  318. return -EINVAL;
  319. }
  320. *value_ret = convert_signed_value(cval, snd_usb_combine_bytes(val, sizeof(__u16)));
  321. return 0;
  322. }
  323. static int get_ctl_value(struct usb_mixer_elem_info *cval, int request, int validx, int *value_ret)
  324. {
  325. return (cval->mixer->protocol == UAC_VERSION_1) ?
  326. get_ctl_value_v1(cval, request, validx, value_ret) :
  327. get_ctl_value_v2(cval, request, validx, value_ret);
  328. }
  329. static int get_cur_ctl_value(struct usb_mixer_elem_info *cval, int validx, int *value)
  330. {
  331. return get_ctl_value(cval, UAC_GET_CUR, validx, value);
  332. }
  333. /* channel = 0: master, 1 = first channel */
  334. static inline int get_cur_mix_raw(struct usb_mixer_elem_info *cval,
  335. int channel, int *value)
  336. {
  337. return get_ctl_value(cval, UAC_GET_CUR, (cval->control << 8) | channel, value);
  338. }
  339. static int get_cur_mix_value(struct usb_mixer_elem_info *cval,
  340. int channel, int index, int *value)
  341. {
  342. int err;
  343. if (cval->cached & (1 << channel)) {
  344. *value = cval->cache_val[index];
  345. return 0;
  346. }
  347. err = get_cur_mix_raw(cval, channel, value);
  348. if (err < 0) {
  349. if (!cval->mixer->ignore_ctl_error)
  350. snd_printd(KERN_ERR "cannot get current value for control %d ch %d: err = %d\n",
  351. cval->control, channel, err);
  352. return err;
  353. }
  354. cval->cached |= 1 << channel;
  355. cval->cache_val[index] = *value;
  356. return 0;
  357. }
  358. /*
  359. * set a mixer value
  360. */
  361. int snd_usb_mixer_set_ctl_value(struct usb_mixer_elem_info *cval,
  362. int request, int validx, int value_set)
  363. {
  364. struct snd_usb_audio *chip = cval->mixer->chip;
  365. unsigned char buf[2];
  366. int val_len, timeout = 10;
  367. if (cval->mixer->protocol == UAC_VERSION_1) {
  368. val_len = cval->val_type >= USB_MIXER_S16 ? 2 : 1;
  369. } else { /* UAC_VERSION_2 */
  370. /* audio class v2 controls are always 2 bytes in size */
  371. val_len = sizeof(__u16);
  372. /* FIXME */
  373. if (request != UAC_SET_CUR) {
  374. snd_printdd(KERN_WARNING "RANGE setting not yet supported\n");
  375. return -EINVAL;
  376. }
  377. request = UAC2_CS_CUR;
  378. }
  379. value_set = convert_bytes_value(cval, value_set);
  380. buf[0] = value_set & 0xff;
  381. buf[1] = (value_set >> 8) & 0xff;
  382. while (timeout-- > 0)
  383. if (snd_usb_ctl_msg(chip->dev,
  384. usb_sndctrlpipe(chip->dev, 0), request,
  385. USB_RECIP_INTERFACE | USB_TYPE_CLASS | USB_DIR_OUT,
  386. validx, snd_usb_ctrl_intf(chip) | (cval->id << 8),
  387. buf, val_len, 100) >= 0)
  388. return 0;
  389. snd_printdd(KERN_ERR "cannot set ctl value: req = %#x, wValue = %#x, wIndex = %#x, type = %d, data = %#x/%#x\n",
  390. request, validx, snd_usb_ctrl_intf(chip) | (cval->id << 8), cval->val_type, buf[0], buf[1]);
  391. return -EINVAL;
  392. }
  393. static int set_cur_ctl_value(struct usb_mixer_elem_info *cval, int validx, int value)
  394. {
  395. return snd_usb_mixer_set_ctl_value(cval, UAC_SET_CUR, validx, value);
  396. }
  397. static int set_cur_mix_value(struct usb_mixer_elem_info *cval, int channel,
  398. int index, int value)
  399. {
  400. int err;
  401. unsigned int read_only = (channel == 0) ?
  402. cval->master_readonly :
  403. cval->ch_readonly & (1 << (channel - 1));
  404. if (read_only) {
  405. snd_printdd(KERN_INFO "%s(): channel %d of control %d is read_only\n",
  406. __func__, channel, cval->control);
  407. return 0;
  408. }
  409. err = snd_usb_mixer_set_ctl_value(cval, UAC_SET_CUR, (cval->control << 8) | channel,
  410. value);
  411. if (err < 0)
  412. return err;
  413. cval->cached |= 1 << channel;
  414. cval->cache_val[index] = value;
  415. return 0;
  416. }
  417. /*
  418. * TLV callback for mixer volume controls
  419. */
  420. static int mixer_vol_tlv(struct snd_kcontrol *kcontrol, int op_flag,
  421. unsigned int size, unsigned int __user *_tlv)
  422. {
  423. struct usb_mixer_elem_info *cval = kcontrol->private_data;
  424. DECLARE_TLV_DB_MINMAX(scale, 0, 0);
  425. if (size < sizeof(scale))
  426. return -ENOMEM;
  427. scale[2] = cval->dBmin;
  428. scale[3] = cval->dBmax;
  429. if (copy_to_user(_tlv, scale, sizeof(scale)))
  430. return -EFAULT;
  431. return 0;
  432. }
  433. /*
  434. * parser routines begin here...
  435. */
  436. static int parse_audio_unit(struct mixer_build *state, int unitid);
  437. /*
  438. * check if the input/output channel routing is enabled on the given bitmap.
  439. * used for mixer unit parser
  440. */
  441. static int check_matrix_bitmap(unsigned char *bmap, int ich, int och, int num_outs)
  442. {
  443. int idx = ich * num_outs + och;
  444. return bmap[idx >> 3] & (0x80 >> (idx & 7));
  445. }
  446. /*
  447. * add an alsa control element
  448. * search and increment the index until an empty slot is found.
  449. *
  450. * if failed, give up and free the control instance.
  451. */
  452. static int add_control_to_empty(struct mixer_build *state, struct snd_kcontrol *kctl)
  453. {
  454. struct usb_mixer_elem_info *cval = kctl->private_data;
  455. int err;
  456. while (snd_ctl_find_id(state->chip->card, &kctl->id))
  457. kctl->id.index++;
  458. if ((err = snd_ctl_add(state->chip->card, kctl)) < 0) {
  459. snd_printd(KERN_ERR "cannot add control (err = %d)\n", err);
  460. return err;
  461. }
  462. cval->elem_id = &kctl->id;
  463. cval->next_id_elem = state->mixer->id_elems[cval->id];
  464. state->mixer->id_elems[cval->id] = cval;
  465. return 0;
  466. }
  467. /*
  468. * get a terminal name string
  469. */
  470. static struct iterm_name_combo {
  471. int type;
  472. char *name;
  473. } iterm_names[] = {
  474. { 0x0300, "Output" },
  475. { 0x0301, "Speaker" },
  476. { 0x0302, "Headphone" },
  477. { 0x0303, "HMD Audio" },
  478. { 0x0304, "Desktop Speaker" },
  479. { 0x0305, "Room Speaker" },
  480. { 0x0306, "Com Speaker" },
  481. { 0x0307, "LFE" },
  482. { 0x0600, "External In" },
  483. { 0x0601, "Analog In" },
  484. { 0x0602, "Digital In" },
  485. { 0x0603, "Line" },
  486. { 0x0604, "Legacy In" },
  487. { 0x0605, "IEC958 In" },
  488. { 0x0606, "1394 DA Stream" },
  489. { 0x0607, "1394 DV Stream" },
  490. { 0x0700, "Embedded" },
  491. { 0x0701, "Noise Source" },
  492. { 0x0702, "Equalization Noise" },
  493. { 0x0703, "CD" },
  494. { 0x0704, "DAT" },
  495. { 0x0705, "DCC" },
  496. { 0x0706, "MiniDisk" },
  497. { 0x0707, "Analog Tape" },
  498. { 0x0708, "Phonograph" },
  499. { 0x0709, "VCR Audio" },
  500. { 0x070a, "Video Disk Audio" },
  501. { 0x070b, "DVD Audio" },
  502. { 0x070c, "TV Tuner Audio" },
  503. { 0x070d, "Satellite Rec Audio" },
  504. { 0x070e, "Cable Tuner Audio" },
  505. { 0x070f, "DSS Audio" },
  506. { 0x0710, "Radio Receiver" },
  507. { 0x0711, "Radio Transmitter" },
  508. { 0x0712, "Multi-Track Recorder" },
  509. { 0x0713, "Synthesizer" },
  510. { 0 },
  511. };
  512. static int get_term_name(struct mixer_build *state, struct usb_audio_term *iterm,
  513. unsigned char *name, int maxlen, int term_only)
  514. {
  515. struct iterm_name_combo *names;
  516. if (iterm->name)
  517. return snd_usb_copy_string_desc(state, iterm->name, name, maxlen);
  518. /* virtual type - not a real terminal */
  519. if (iterm->type >> 16) {
  520. if (term_only)
  521. return 0;
  522. switch (iterm->type >> 16) {
  523. case UAC_SELECTOR_UNIT:
  524. strcpy(name, "Selector"); return 8;
  525. case UAC1_PROCESSING_UNIT:
  526. strcpy(name, "Process Unit"); return 12;
  527. case UAC1_EXTENSION_UNIT:
  528. strcpy(name, "Ext Unit"); return 8;
  529. case UAC_MIXER_UNIT:
  530. strcpy(name, "Mixer"); return 5;
  531. default:
  532. return sprintf(name, "Unit %d", iterm->id);
  533. }
  534. }
  535. switch (iterm->type & 0xff00) {
  536. case 0x0100:
  537. strcpy(name, "PCM"); return 3;
  538. case 0x0200:
  539. strcpy(name, "Mic"); return 3;
  540. case 0x0400:
  541. strcpy(name, "Headset"); return 7;
  542. case 0x0500:
  543. strcpy(name, "Phone"); return 5;
  544. }
  545. for (names = iterm_names; names->type; names++)
  546. if (names->type == iterm->type) {
  547. strcpy(name, names->name);
  548. return strlen(names->name);
  549. }
  550. return 0;
  551. }
  552. /*
  553. * parse the source unit recursively until it reaches to a terminal
  554. * or a branched unit.
  555. */
  556. static int check_input_term(struct mixer_build *state, int id, struct usb_audio_term *term)
  557. {
  558. int err;
  559. void *p1;
  560. memset(term, 0, sizeof(*term));
  561. while ((p1 = find_audio_control_unit(state, id)) != NULL) {
  562. unsigned char *hdr = p1;
  563. term->id = id;
  564. switch (hdr[2]) {
  565. case UAC_INPUT_TERMINAL:
  566. if (state->mixer->protocol == UAC_VERSION_1) {
  567. struct uac_input_terminal_descriptor *d = p1;
  568. term->type = le16_to_cpu(d->wTerminalType);
  569. term->channels = d->bNrChannels;
  570. term->chconfig = le16_to_cpu(d->wChannelConfig);
  571. term->name = d->iTerminal;
  572. } else { /* UAC_VERSION_2 */
  573. struct uac2_input_terminal_descriptor *d = p1;
  574. term->type = le16_to_cpu(d->wTerminalType);
  575. term->channels = d->bNrChannels;
  576. term->chconfig = le32_to_cpu(d->bmChannelConfig);
  577. term->name = d->iTerminal;
  578. /* call recursively to get the clock selectors */
  579. err = check_input_term(state, d->bCSourceID, term);
  580. if (err < 0)
  581. return err;
  582. }
  583. return 0;
  584. case UAC_FEATURE_UNIT: {
  585. /* the header is the same for v1 and v2 */
  586. struct uac_feature_unit_descriptor *d = p1;
  587. id = d->bSourceID;
  588. break; /* continue to parse */
  589. }
  590. case UAC_MIXER_UNIT: {
  591. struct uac_mixer_unit_descriptor *d = p1;
  592. term->type = d->bDescriptorSubtype << 16; /* virtual type */
  593. term->channels = uac_mixer_unit_bNrChannels(d);
  594. term->chconfig = uac_mixer_unit_wChannelConfig(d, state->mixer->protocol);
  595. term->name = uac_mixer_unit_iMixer(d);
  596. return 0;
  597. }
  598. case UAC_SELECTOR_UNIT:
  599. case UAC2_CLOCK_SELECTOR: {
  600. struct uac_selector_unit_descriptor *d = p1;
  601. /* call recursively to retrieve the channel info */
  602. if (check_input_term(state, d->baSourceID[0], term) < 0)
  603. return -ENODEV;
  604. term->type = d->bDescriptorSubtype << 16; /* virtual type */
  605. term->id = id;
  606. term->name = uac_selector_unit_iSelector(d);
  607. return 0;
  608. }
  609. case UAC1_PROCESSING_UNIT:
  610. case UAC1_EXTENSION_UNIT: {
  611. struct uac_processing_unit_descriptor *d = p1;
  612. if (d->bNrInPins) {
  613. id = d->baSourceID[0];
  614. break; /* continue to parse */
  615. }
  616. term->type = d->bDescriptorSubtype << 16; /* virtual type */
  617. term->channels = uac_processing_unit_bNrChannels(d);
  618. term->chconfig = uac_processing_unit_wChannelConfig(d, state->mixer->protocol);
  619. term->name = uac_processing_unit_iProcessing(d, state->mixer->protocol);
  620. return 0;
  621. }
  622. case UAC2_CLOCK_SOURCE: {
  623. struct uac_clock_source_descriptor *d = p1;
  624. term->type = d->bDescriptorSubtype << 16; /* virtual type */
  625. term->id = id;
  626. term->name = d->iClockSource;
  627. return 0;
  628. }
  629. default:
  630. return -ENODEV;
  631. }
  632. }
  633. return -ENODEV;
  634. }
  635. /*
  636. * Feature Unit
  637. */
  638. /* feature unit control information */
  639. struct usb_feature_control_info {
  640. const char *name;
  641. unsigned int type; /* control type (mute, volume, etc.) */
  642. };
  643. static struct usb_feature_control_info audio_feature_info[] = {
  644. { "Mute", USB_MIXER_INV_BOOLEAN },
  645. { "Volume", USB_MIXER_S16 },
  646. { "Tone Control - Bass", USB_MIXER_S8 },
  647. { "Tone Control - Mid", USB_MIXER_S8 },
  648. { "Tone Control - Treble", USB_MIXER_S8 },
  649. { "Graphic Equalizer", USB_MIXER_S8 }, /* FIXME: not implemeted yet */
  650. { "Auto Gain Control", USB_MIXER_BOOLEAN },
  651. { "Delay Control", USB_MIXER_U16 },
  652. { "Bass Boost", USB_MIXER_BOOLEAN },
  653. { "Loudness", USB_MIXER_BOOLEAN },
  654. /* UAC2 specific */
  655. { "Input Gain Control", USB_MIXER_U16 },
  656. { "Input Gain Pad Control", USB_MIXER_BOOLEAN },
  657. { "Phase Inverter Control", USB_MIXER_BOOLEAN },
  658. };
  659. /* private_free callback */
  660. static void usb_mixer_elem_free(struct snd_kcontrol *kctl)
  661. {
  662. kfree(kctl->private_data);
  663. kctl->private_data = NULL;
  664. }
  665. /*
  666. * interface to ALSA control for feature/mixer units
  667. */
  668. /*
  669. * retrieve the minimum and maximum values for the specified control
  670. */
  671. static int get_min_max(struct usb_mixer_elem_info *cval, int default_min)
  672. {
  673. /* for failsafe */
  674. cval->min = default_min;
  675. cval->max = cval->min + 1;
  676. cval->res = 1;
  677. cval->dBmin = cval->dBmax = 0;
  678. if (cval->val_type == USB_MIXER_BOOLEAN ||
  679. cval->val_type == USB_MIXER_INV_BOOLEAN) {
  680. cval->initialized = 1;
  681. } else {
  682. int minchn = 0;
  683. if (cval->cmask) {
  684. int i;
  685. for (i = 0; i < MAX_CHANNELS; i++)
  686. if (cval->cmask & (1 << i)) {
  687. minchn = i + 1;
  688. break;
  689. }
  690. }
  691. if (get_ctl_value(cval, UAC_GET_MAX, (cval->control << 8) | minchn, &cval->max) < 0 ||
  692. get_ctl_value(cval, UAC_GET_MIN, (cval->control << 8) | minchn, &cval->min) < 0) {
  693. snd_printd(KERN_ERR "%d:%d: cannot get min/max values for control %d (id %d)\n",
  694. cval->id, snd_usb_ctrl_intf(cval->mixer->chip), cval->control, cval->id);
  695. return -EINVAL;
  696. }
  697. if (get_ctl_value(cval, UAC_GET_RES, (cval->control << 8) | minchn, &cval->res) < 0) {
  698. cval->res = 1;
  699. } else {
  700. int last_valid_res = cval->res;
  701. while (cval->res > 1) {
  702. if (snd_usb_mixer_set_ctl_value(cval, UAC_SET_RES,
  703. (cval->control << 8) | minchn, cval->res / 2) < 0)
  704. break;
  705. cval->res /= 2;
  706. }
  707. if (get_ctl_value(cval, UAC_GET_RES, (cval->control << 8) | minchn, &cval->res) < 0)
  708. cval->res = last_valid_res;
  709. }
  710. if (cval->res == 0)
  711. cval->res = 1;
  712. /* Additional checks for the proper resolution
  713. *
  714. * Some devices report smaller resolutions than actually
  715. * reacting. They don't return errors but simply clip
  716. * to the lower aligned value.
  717. */
  718. if (cval->min + cval->res < cval->max) {
  719. int last_valid_res = cval->res;
  720. int saved, test, check;
  721. get_cur_mix_raw(cval, minchn, &saved);
  722. for (;;) {
  723. test = saved;
  724. if (test < cval->max)
  725. test += cval->res;
  726. else
  727. test -= cval->res;
  728. if (test < cval->min || test > cval->max ||
  729. set_cur_mix_value(cval, minchn, 0, test) ||
  730. get_cur_mix_raw(cval, minchn, &check)) {
  731. cval->res = last_valid_res;
  732. break;
  733. }
  734. if (test == check)
  735. break;
  736. cval->res *= 2;
  737. }
  738. set_cur_mix_value(cval, minchn, 0, saved);
  739. }
  740. cval->initialized = 1;
  741. }
  742. /* USB descriptions contain the dB scale in 1/256 dB unit
  743. * while ALSA TLV contains in 1/100 dB unit
  744. */
  745. cval->dBmin = (convert_signed_value(cval, cval->min) * 100) / 256;
  746. cval->dBmax = (convert_signed_value(cval, cval->max) * 100) / 256;
  747. if (cval->dBmin > cval->dBmax) {
  748. /* something is wrong; assume it's either from/to 0dB */
  749. if (cval->dBmin < 0)
  750. cval->dBmax = 0;
  751. else if (cval->dBmin > 0)
  752. cval->dBmin = 0;
  753. if (cval->dBmin > cval->dBmax) {
  754. /* totally crap, return an error */
  755. return -EINVAL;
  756. }
  757. }
  758. return 0;
  759. }
  760. /* get a feature/mixer unit info */
  761. static int mixer_ctl_feature_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
  762. {
  763. struct usb_mixer_elem_info *cval = kcontrol->private_data;
  764. if (cval->val_type == USB_MIXER_BOOLEAN ||
  765. cval->val_type == USB_MIXER_INV_BOOLEAN)
  766. uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
  767. else
  768. uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  769. uinfo->count = cval->channels;
  770. if (cval->val_type == USB_MIXER_BOOLEAN ||
  771. cval->val_type == USB_MIXER_INV_BOOLEAN) {
  772. uinfo->value.integer.min = 0;
  773. uinfo->value.integer.max = 1;
  774. } else {
  775. if (! cval->initialized)
  776. get_min_max(cval, 0);
  777. uinfo->value.integer.min = 0;
  778. uinfo->value.integer.max =
  779. (cval->max - cval->min + cval->res - 1) / cval->res;
  780. }
  781. return 0;
  782. }
  783. /* get the current value from feature/mixer unit */
  784. static int mixer_ctl_feature_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  785. {
  786. struct usb_mixer_elem_info *cval = kcontrol->private_data;
  787. int c, cnt, val, err;
  788. ucontrol->value.integer.value[0] = cval->min;
  789. if (cval->cmask) {
  790. cnt = 0;
  791. for (c = 0; c < MAX_CHANNELS; c++) {
  792. if (!(cval->cmask & (1 << c)))
  793. continue;
  794. err = get_cur_mix_value(cval, c + 1, cnt, &val);
  795. if (err < 0)
  796. return cval->mixer->ignore_ctl_error ? 0 : err;
  797. val = get_relative_value(cval, val);
  798. ucontrol->value.integer.value[cnt] = val;
  799. cnt++;
  800. }
  801. return 0;
  802. } else {
  803. /* master channel */
  804. err = get_cur_mix_value(cval, 0, 0, &val);
  805. if (err < 0)
  806. return cval->mixer->ignore_ctl_error ? 0 : err;
  807. val = get_relative_value(cval, val);
  808. ucontrol->value.integer.value[0] = val;
  809. }
  810. return 0;
  811. }
  812. /* put the current value to feature/mixer unit */
  813. static int mixer_ctl_feature_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  814. {
  815. struct usb_mixer_elem_info *cval = kcontrol->private_data;
  816. int c, cnt, val, oval, err;
  817. int changed = 0;
  818. if (cval->cmask) {
  819. cnt = 0;
  820. for (c = 0; c < MAX_CHANNELS; c++) {
  821. if (!(cval->cmask & (1 << c)))
  822. continue;
  823. err = get_cur_mix_value(cval, c + 1, cnt, &oval);
  824. if (err < 0)
  825. return cval->mixer->ignore_ctl_error ? 0 : err;
  826. val = ucontrol->value.integer.value[cnt];
  827. val = get_abs_value(cval, val);
  828. if (oval != val) {
  829. set_cur_mix_value(cval, c + 1, cnt, val);
  830. changed = 1;
  831. }
  832. cnt++;
  833. }
  834. } else {
  835. /* master channel */
  836. err = get_cur_mix_value(cval, 0, 0, &oval);
  837. if (err < 0)
  838. return cval->mixer->ignore_ctl_error ? 0 : err;
  839. val = ucontrol->value.integer.value[0];
  840. val = get_abs_value(cval, val);
  841. if (val != oval) {
  842. set_cur_mix_value(cval, 0, 0, val);
  843. changed = 1;
  844. }
  845. }
  846. return changed;
  847. }
  848. static struct snd_kcontrol_new usb_feature_unit_ctl = {
  849. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  850. .name = "", /* will be filled later manually */
  851. .info = mixer_ctl_feature_info,
  852. .get = mixer_ctl_feature_get,
  853. .put = mixer_ctl_feature_put,
  854. };
  855. /* the read-only variant */
  856. static struct snd_kcontrol_new usb_feature_unit_ctl_ro = {
  857. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  858. .name = "", /* will be filled later manually */
  859. .info = mixer_ctl_feature_info,
  860. .get = mixer_ctl_feature_get,
  861. .put = NULL,
  862. };
  863. /*
  864. * build a feature control
  865. */
  866. static size_t append_ctl_name(struct snd_kcontrol *kctl, const char *str)
  867. {
  868. return strlcat(kctl->id.name, str, sizeof(kctl->id.name));
  869. }
  870. static void build_feature_ctl(struct mixer_build *state, void *raw_desc,
  871. unsigned int ctl_mask, int control,
  872. struct usb_audio_term *iterm, int unitid,
  873. int readonly_mask)
  874. {
  875. struct uac_feature_unit_descriptor *desc = raw_desc;
  876. unsigned int len = 0;
  877. int mapped_name = 0;
  878. int nameid = uac_feature_unit_iFeature(desc);
  879. struct snd_kcontrol *kctl;
  880. struct usb_mixer_elem_info *cval;
  881. const struct usbmix_name_map *map;
  882. control++; /* change from zero-based to 1-based value */
  883. if (control == UAC_FU_GRAPHIC_EQUALIZER) {
  884. /* FIXME: not supported yet */
  885. return;
  886. }
  887. map = find_map(state, unitid, control);
  888. if (check_ignored_ctl(map))
  889. return;
  890. cval = kzalloc(sizeof(*cval), GFP_KERNEL);
  891. if (! cval) {
  892. snd_printk(KERN_ERR "cannot malloc kcontrol\n");
  893. return;
  894. }
  895. cval->mixer = state->mixer;
  896. cval->id = unitid;
  897. cval->control = control;
  898. cval->cmask = ctl_mask;
  899. cval->val_type = audio_feature_info[control-1].type;
  900. if (ctl_mask == 0) {
  901. cval->channels = 1; /* master channel */
  902. cval->master_readonly = readonly_mask;
  903. } else {
  904. int i, c = 0;
  905. for (i = 0; i < 16; i++)
  906. if (ctl_mask & (1 << i))
  907. c++;
  908. cval->channels = c;
  909. cval->ch_readonly = readonly_mask;
  910. }
  911. /* get min/max values */
  912. get_min_max(cval, 0);
  913. /* if all channels in the mask are marked read-only, make the control
  914. * read-only. set_cur_mix_value() will check the mask again and won't
  915. * issue write commands to read-only channels. */
  916. if (cval->channels == readonly_mask)
  917. kctl = snd_ctl_new1(&usb_feature_unit_ctl_ro, cval);
  918. else
  919. kctl = snd_ctl_new1(&usb_feature_unit_ctl, cval);
  920. if (! kctl) {
  921. snd_printk(KERN_ERR "cannot malloc kcontrol\n");
  922. kfree(cval);
  923. return;
  924. }
  925. kctl->private_free = usb_mixer_elem_free;
  926. len = check_mapped_name(map, kctl->id.name, sizeof(kctl->id.name));
  927. mapped_name = len != 0;
  928. if (! len && nameid)
  929. len = snd_usb_copy_string_desc(state, nameid,
  930. kctl->id.name, sizeof(kctl->id.name));
  931. switch (control) {
  932. case UAC_FU_MUTE:
  933. case UAC_FU_VOLUME:
  934. /* determine the control name. the rule is:
  935. * - if a name id is given in descriptor, use it.
  936. * - if the connected input can be determined, then use the name
  937. * of terminal type.
  938. * - if the connected output can be determined, use it.
  939. * - otherwise, anonymous name.
  940. */
  941. if (! len) {
  942. len = get_term_name(state, iterm, kctl->id.name, sizeof(kctl->id.name), 1);
  943. if (! len)
  944. len = get_term_name(state, &state->oterm, kctl->id.name, sizeof(kctl->id.name), 1);
  945. if (! len)
  946. len = snprintf(kctl->id.name, sizeof(kctl->id.name),
  947. "Feature %d", unitid);
  948. }
  949. /* determine the stream direction:
  950. * if the connected output is USB stream, then it's likely a
  951. * capture stream. otherwise it should be playback (hopefully :)
  952. */
  953. if (! mapped_name && ! (state->oterm.type >> 16)) {
  954. if ((state->oterm.type & 0xff00) == 0x0100) {
  955. len = append_ctl_name(kctl, " Capture");
  956. } else {
  957. len = append_ctl_name(kctl, " Playback");
  958. }
  959. }
  960. append_ctl_name(kctl, control == UAC_FU_MUTE ?
  961. " Switch" : " Volume");
  962. if (control == UAC_FU_VOLUME) {
  963. kctl->tlv.c = mixer_vol_tlv;
  964. kctl->vd[0].access |=
  965. SNDRV_CTL_ELEM_ACCESS_TLV_READ |
  966. SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK;
  967. check_mapped_dB(map, cval);
  968. }
  969. break;
  970. default:
  971. if (! len)
  972. strlcpy(kctl->id.name, audio_feature_info[control-1].name,
  973. sizeof(kctl->id.name));
  974. break;
  975. }
  976. /* volume control quirks */
  977. switch (state->chip->usb_id) {
  978. case USB_ID(0x0471, 0x0101):
  979. case USB_ID(0x0471, 0x0104):
  980. case USB_ID(0x0471, 0x0105):
  981. case USB_ID(0x0672, 0x1041):
  982. /* quirk for UDA1321/N101.
  983. * note that detection between firmware 2.1.1.7 (N101)
  984. * and later 2.1.1.21 is not very clear from datasheets.
  985. * I hope that the min value is -15360 for newer firmware --jk
  986. */
  987. if (!strcmp(kctl->id.name, "PCM Playback Volume") &&
  988. cval->min == -15616) {
  989. snd_printk(KERN_INFO
  990. "set volume quirk for UDA1321/N101 chip\n");
  991. cval->max = -256;
  992. }
  993. break;
  994. case USB_ID(0x046d, 0x09a4):
  995. if (!strcmp(kctl->id.name, "Mic Capture Volume")) {
  996. snd_printk(KERN_INFO
  997. "set volume quirk for QuickCam E3500\n");
  998. cval->min = 6080;
  999. cval->max = 8768;
  1000. cval->res = 192;
  1001. }
  1002. break;
  1003. case USB_ID(0x046d, 0x0809):
  1004. case USB_ID(0x046d, 0x0991):
  1005. /* Most audio usb devices lie about volume resolution.
  1006. * Most Logitech webcams have res = 384.
  1007. * Proboly there is some logitech magic behind this number --fishor
  1008. */
  1009. if (!strcmp(kctl->id.name, "Mic Capture Volume")) {
  1010. snd_printk(KERN_INFO
  1011. "set resolution quirk: cval->res = 384\n");
  1012. cval->res = 384;
  1013. }
  1014. break;
  1015. }
  1016. snd_printdd(KERN_INFO "[%d] FU [%s] ch = %d, val = %d/%d/%d\n",
  1017. cval->id, kctl->id.name, cval->channels, cval->min, cval->max, cval->res);
  1018. add_control_to_empty(state, kctl);
  1019. }
  1020. /*
  1021. * parse a feature unit
  1022. *
  1023. * most of controlls are defined here.
  1024. */
  1025. static int parse_audio_feature_unit(struct mixer_build *state, int unitid, void *_ftr)
  1026. {
  1027. int channels, i, j;
  1028. struct usb_audio_term iterm;
  1029. unsigned int master_bits, first_ch_bits;
  1030. int err, csize;
  1031. struct uac_feature_unit_descriptor *hdr = _ftr;
  1032. __u8 *bmaControls;
  1033. if (state->mixer->protocol == UAC_VERSION_1) {
  1034. csize = hdr->bControlSize;
  1035. channels = (hdr->bLength - 7) / csize - 1;
  1036. bmaControls = hdr->bmaControls;
  1037. } else {
  1038. struct uac2_feature_unit_descriptor *ftr = _ftr;
  1039. csize = 4;
  1040. channels = (hdr->bLength - 6) / 4 - 1;
  1041. bmaControls = ftr->bmaControls;
  1042. }
  1043. if (hdr->bLength < 7 || !csize || hdr->bLength < 7 + csize) {
  1044. snd_printk(KERN_ERR "usbaudio: unit %u: invalid UAC_FEATURE_UNIT descriptor\n", unitid);
  1045. return -EINVAL;
  1046. }
  1047. /* parse the source unit */
  1048. if ((err = parse_audio_unit(state, hdr->bSourceID)) < 0)
  1049. return err;
  1050. /* determine the input source type and name */
  1051. if (check_input_term(state, hdr->bSourceID, &iterm) < 0)
  1052. return -EINVAL;
  1053. master_bits = snd_usb_combine_bytes(bmaControls, csize);
  1054. /* master configuration quirks */
  1055. switch (state->chip->usb_id) {
  1056. case USB_ID(0x08bb, 0x2702):
  1057. snd_printk(KERN_INFO
  1058. "usbmixer: master volume quirk for PCM2702 chip\n");
  1059. /* disable non-functional volume control */
  1060. master_bits &= ~UAC_CONTROL_BIT(UAC_FU_VOLUME);
  1061. break;
  1062. }
  1063. if (channels > 0)
  1064. first_ch_bits = snd_usb_combine_bytes(bmaControls + csize, csize);
  1065. else
  1066. first_ch_bits = 0;
  1067. if (state->mixer->protocol == UAC_VERSION_1) {
  1068. /* check all control types */
  1069. for (i = 0; i < 10; i++) {
  1070. unsigned int ch_bits = 0;
  1071. for (j = 0; j < channels; j++) {
  1072. unsigned int mask = snd_usb_combine_bytes(bmaControls + csize * (j+1), csize);
  1073. if (mask & (1 << i))
  1074. ch_bits |= (1 << j);
  1075. }
  1076. /* audio class v1 controls are never read-only */
  1077. if (ch_bits & 1) /* the first channel must be set (for ease of programming) */
  1078. build_feature_ctl(state, _ftr, ch_bits, i, &iterm, unitid, 0);
  1079. if (master_bits & (1 << i))
  1080. build_feature_ctl(state, _ftr, 0, i, &iterm, unitid, 0);
  1081. }
  1082. } else { /* UAC_VERSION_2 */
  1083. for (i = 0; i < 30/2; i++) {
  1084. unsigned int ch_bits = 0;
  1085. unsigned int ch_read_only = 0;
  1086. for (j = 0; j < channels; j++) {
  1087. unsigned int mask = snd_usb_combine_bytes(bmaControls + csize * (j+1), csize);
  1088. if (uac2_control_is_readable(mask, i)) {
  1089. ch_bits |= (1 << j);
  1090. if (!uac2_control_is_writeable(mask, i))
  1091. ch_read_only |= (1 << j);
  1092. }
  1093. }
  1094. /* NOTE: build_feature_ctl() will mark the control read-only if all channels
  1095. * are marked read-only in the descriptors. Otherwise, the control will be
  1096. * reported as writeable, but the driver will not actually issue a write
  1097. * command for read-only channels */
  1098. if (ch_bits & 1) /* the first channel must be set (for ease of programming) */
  1099. build_feature_ctl(state, _ftr, ch_bits, i, &iterm, unitid, ch_read_only);
  1100. if (uac2_control_is_readable(master_bits, i))
  1101. build_feature_ctl(state, _ftr, 0, i, &iterm, unitid,
  1102. !uac2_control_is_writeable(master_bits, i));
  1103. }
  1104. }
  1105. return 0;
  1106. }
  1107. /*
  1108. * Mixer Unit
  1109. */
  1110. /*
  1111. * build a mixer unit control
  1112. *
  1113. * the callbacks are identical with feature unit.
  1114. * input channel number (zero based) is given in control field instead.
  1115. */
  1116. static void build_mixer_unit_ctl(struct mixer_build *state,
  1117. struct uac_mixer_unit_descriptor *desc,
  1118. int in_pin, int in_ch, int unitid,
  1119. struct usb_audio_term *iterm)
  1120. {
  1121. struct usb_mixer_elem_info *cval;
  1122. unsigned int num_outs = uac_mixer_unit_bNrChannels(desc);
  1123. unsigned int i, len;
  1124. struct snd_kcontrol *kctl;
  1125. const struct usbmix_name_map *map;
  1126. map = find_map(state, unitid, 0);
  1127. if (check_ignored_ctl(map))
  1128. return;
  1129. cval = kzalloc(sizeof(*cval), GFP_KERNEL);
  1130. if (! cval)
  1131. return;
  1132. cval->mixer = state->mixer;
  1133. cval->id = unitid;
  1134. cval->control = in_ch + 1; /* based on 1 */
  1135. cval->val_type = USB_MIXER_S16;
  1136. for (i = 0; i < num_outs; i++) {
  1137. if (check_matrix_bitmap(uac_mixer_unit_bmControls(desc, state->mixer->protocol), in_ch, i, num_outs)) {
  1138. cval->cmask |= (1 << i);
  1139. cval->channels++;
  1140. }
  1141. }
  1142. /* get min/max values */
  1143. get_min_max(cval, 0);
  1144. kctl = snd_ctl_new1(&usb_feature_unit_ctl, cval);
  1145. if (! kctl) {
  1146. snd_printk(KERN_ERR "cannot malloc kcontrol\n");
  1147. kfree(cval);
  1148. return;
  1149. }
  1150. kctl->private_free = usb_mixer_elem_free;
  1151. len = check_mapped_name(map, kctl->id.name, sizeof(kctl->id.name));
  1152. if (! len)
  1153. len = get_term_name(state, iterm, kctl->id.name, sizeof(kctl->id.name), 0);
  1154. if (! len)
  1155. len = sprintf(kctl->id.name, "Mixer Source %d", in_ch + 1);
  1156. append_ctl_name(kctl, " Volume");
  1157. snd_printdd(KERN_INFO "[%d] MU [%s] ch = %d, val = %d/%d\n",
  1158. cval->id, kctl->id.name, cval->channels, cval->min, cval->max);
  1159. add_control_to_empty(state, kctl);
  1160. }
  1161. /*
  1162. * parse a mixer unit
  1163. */
  1164. static int parse_audio_mixer_unit(struct mixer_build *state, int unitid, void *raw_desc)
  1165. {
  1166. struct uac_mixer_unit_descriptor *desc = raw_desc;
  1167. struct usb_audio_term iterm;
  1168. int input_pins, num_ins, num_outs;
  1169. int pin, ich, err;
  1170. if (desc->bLength < 11 || ! (input_pins = desc->bNrInPins) || ! (num_outs = uac_mixer_unit_bNrChannels(desc))) {
  1171. snd_printk(KERN_ERR "invalid MIXER UNIT descriptor %d\n", unitid);
  1172. return -EINVAL;
  1173. }
  1174. /* no bmControls field (e.g. Maya44) -> ignore */
  1175. if (desc->bLength <= 10 + input_pins) {
  1176. snd_printdd(KERN_INFO "MU %d has no bmControls field\n", unitid);
  1177. return 0;
  1178. }
  1179. num_ins = 0;
  1180. ich = 0;
  1181. for (pin = 0; pin < input_pins; pin++) {
  1182. err = parse_audio_unit(state, desc->baSourceID[pin]);
  1183. if (err < 0)
  1184. return err;
  1185. err = check_input_term(state, desc->baSourceID[pin], &iterm);
  1186. if (err < 0)
  1187. return err;
  1188. num_ins += iterm.channels;
  1189. for (; ich < num_ins; ++ich) {
  1190. int och, ich_has_controls = 0;
  1191. for (och = 0; och < num_outs; ++och) {
  1192. if (check_matrix_bitmap(uac_mixer_unit_bmControls(desc, state->mixer->protocol),
  1193. ich, och, num_outs)) {
  1194. ich_has_controls = 1;
  1195. break;
  1196. }
  1197. }
  1198. if (ich_has_controls)
  1199. build_mixer_unit_ctl(state, desc, pin, ich,
  1200. unitid, &iterm);
  1201. }
  1202. }
  1203. return 0;
  1204. }
  1205. /*
  1206. * Processing Unit / Extension Unit
  1207. */
  1208. /* get callback for processing/extension unit */
  1209. static int mixer_ctl_procunit_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  1210. {
  1211. struct usb_mixer_elem_info *cval = kcontrol->private_data;
  1212. int err, val;
  1213. err = get_cur_ctl_value(cval, cval->control << 8, &val);
  1214. if (err < 0 && cval->mixer->ignore_ctl_error) {
  1215. ucontrol->value.integer.value[0] = cval->min;
  1216. return 0;
  1217. }
  1218. if (err < 0)
  1219. return err;
  1220. val = get_relative_value(cval, val);
  1221. ucontrol->value.integer.value[0] = val;
  1222. return 0;
  1223. }
  1224. /* put callback for processing/extension unit */
  1225. static int mixer_ctl_procunit_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  1226. {
  1227. struct usb_mixer_elem_info *cval = kcontrol->private_data;
  1228. int val, oval, err;
  1229. err = get_cur_ctl_value(cval, cval->control << 8, &oval);
  1230. if (err < 0) {
  1231. if (cval->mixer->ignore_ctl_error)
  1232. return 0;
  1233. return err;
  1234. }
  1235. val = ucontrol->value.integer.value[0];
  1236. val = get_abs_value(cval, val);
  1237. if (val != oval) {
  1238. set_cur_ctl_value(cval, cval->control << 8, val);
  1239. return 1;
  1240. }
  1241. return 0;
  1242. }
  1243. /* alsa control interface for processing/extension unit */
  1244. static struct snd_kcontrol_new mixer_procunit_ctl = {
  1245. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  1246. .name = "", /* will be filled later */
  1247. .info = mixer_ctl_feature_info,
  1248. .get = mixer_ctl_procunit_get,
  1249. .put = mixer_ctl_procunit_put,
  1250. };
  1251. /*
  1252. * predefined data for processing units
  1253. */
  1254. struct procunit_value_info {
  1255. int control;
  1256. char *suffix;
  1257. int val_type;
  1258. int min_value;
  1259. };
  1260. struct procunit_info {
  1261. int type;
  1262. char *name;
  1263. struct procunit_value_info *values;
  1264. };
  1265. static struct procunit_value_info updown_proc_info[] = {
  1266. { UAC_UD_ENABLE, "Switch", USB_MIXER_BOOLEAN },
  1267. { UAC_UD_MODE_SELECT, "Mode Select", USB_MIXER_U8, 1 },
  1268. { 0 }
  1269. };
  1270. static struct procunit_value_info prologic_proc_info[] = {
  1271. { UAC_DP_ENABLE, "Switch", USB_MIXER_BOOLEAN },
  1272. { UAC_DP_MODE_SELECT, "Mode Select", USB_MIXER_U8, 1 },
  1273. { 0 }
  1274. };
  1275. static struct procunit_value_info threed_enh_proc_info[] = {
  1276. { UAC_3D_ENABLE, "Switch", USB_MIXER_BOOLEAN },
  1277. { UAC_3D_SPACE, "Spaciousness", USB_MIXER_U8 },
  1278. { 0 }
  1279. };
  1280. static struct procunit_value_info reverb_proc_info[] = {
  1281. { UAC_REVERB_ENABLE, "Switch", USB_MIXER_BOOLEAN },
  1282. { UAC_REVERB_LEVEL, "Level", USB_MIXER_U8 },
  1283. { UAC_REVERB_TIME, "Time", USB_MIXER_U16 },
  1284. { UAC_REVERB_FEEDBACK, "Feedback", USB_MIXER_U8 },
  1285. { 0 }
  1286. };
  1287. static struct procunit_value_info chorus_proc_info[] = {
  1288. { UAC_CHORUS_ENABLE, "Switch", USB_MIXER_BOOLEAN },
  1289. { UAC_CHORUS_LEVEL, "Level", USB_MIXER_U8 },
  1290. { UAC_CHORUS_RATE, "Rate", USB_MIXER_U16 },
  1291. { UAC_CHORUS_DEPTH, "Depth", USB_MIXER_U16 },
  1292. { 0 }
  1293. };
  1294. static struct procunit_value_info dcr_proc_info[] = {
  1295. { UAC_DCR_ENABLE, "Switch", USB_MIXER_BOOLEAN },
  1296. { UAC_DCR_RATE, "Ratio", USB_MIXER_U16 },
  1297. { UAC_DCR_MAXAMPL, "Max Amp", USB_MIXER_S16 },
  1298. { UAC_DCR_THRESHOLD, "Threshold", USB_MIXER_S16 },
  1299. { UAC_DCR_ATTACK_TIME, "Attack Time", USB_MIXER_U16 },
  1300. { UAC_DCR_RELEASE_TIME, "Release Time", USB_MIXER_U16 },
  1301. { 0 }
  1302. };
  1303. static struct procunit_info procunits[] = {
  1304. { UAC_PROCESS_UP_DOWNMIX, "Up Down", updown_proc_info },
  1305. { UAC_PROCESS_DOLBY_PROLOGIC, "Dolby Prologic", prologic_proc_info },
  1306. { UAC_PROCESS_STEREO_EXTENDER, "3D Stereo Extender", threed_enh_proc_info },
  1307. { UAC_PROCESS_REVERB, "Reverb", reverb_proc_info },
  1308. { UAC_PROCESS_CHORUS, "Chorus", chorus_proc_info },
  1309. { UAC_PROCESS_DYN_RANGE_COMP, "DCR", dcr_proc_info },
  1310. { 0 },
  1311. };
  1312. /*
  1313. * predefined data for extension units
  1314. */
  1315. static struct procunit_value_info clock_rate_xu_info[] = {
  1316. { USB_XU_CLOCK_RATE_SELECTOR, "Selector", USB_MIXER_U8, 0 },
  1317. { 0 }
  1318. };
  1319. static struct procunit_value_info clock_source_xu_info[] = {
  1320. { USB_XU_CLOCK_SOURCE_SELECTOR, "External", USB_MIXER_BOOLEAN },
  1321. { 0 }
  1322. };
  1323. static struct procunit_value_info spdif_format_xu_info[] = {
  1324. { USB_XU_DIGITAL_FORMAT_SELECTOR, "SPDIF/AC3", USB_MIXER_BOOLEAN },
  1325. { 0 }
  1326. };
  1327. static struct procunit_value_info soft_limit_xu_info[] = {
  1328. { USB_XU_SOFT_LIMIT_SELECTOR, " ", USB_MIXER_BOOLEAN },
  1329. { 0 }
  1330. };
  1331. static struct procunit_info extunits[] = {
  1332. { USB_XU_CLOCK_RATE, "Clock rate", clock_rate_xu_info },
  1333. { USB_XU_CLOCK_SOURCE, "DigitalIn CLK source", clock_source_xu_info },
  1334. { USB_XU_DIGITAL_IO_STATUS, "DigitalOut format:", spdif_format_xu_info },
  1335. { USB_XU_DEVICE_OPTIONS, "AnalogueIn Soft Limit", soft_limit_xu_info },
  1336. { 0 }
  1337. };
  1338. /*
  1339. * build a processing/extension unit
  1340. */
  1341. static int build_audio_procunit(struct mixer_build *state, int unitid, void *raw_desc, struct procunit_info *list, char *name)
  1342. {
  1343. struct uac_processing_unit_descriptor *desc = raw_desc;
  1344. int num_ins = desc->bNrInPins;
  1345. struct usb_mixer_elem_info *cval;
  1346. struct snd_kcontrol *kctl;
  1347. int i, err, nameid, type, len;
  1348. struct procunit_info *info;
  1349. struct procunit_value_info *valinfo;
  1350. const struct usbmix_name_map *map;
  1351. static struct procunit_value_info default_value_info[] = {
  1352. { 0x01, "Switch", USB_MIXER_BOOLEAN },
  1353. { 0 }
  1354. };
  1355. static struct procunit_info default_info = {
  1356. 0, NULL, default_value_info
  1357. };
  1358. if (desc->bLength < 13 || desc->bLength < 13 + num_ins ||
  1359. desc->bLength < num_ins + uac_processing_unit_bControlSize(desc, state->mixer->protocol)) {
  1360. snd_printk(KERN_ERR "invalid %s descriptor (id %d)\n", name, unitid);
  1361. return -EINVAL;
  1362. }
  1363. for (i = 0; i < num_ins; i++) {
  1364. if ((err = parse_audio_unit(state, desc->baSourceID[i])) < 0)
  1365. return err;
  1366. }
  1367. type = le16_to_cpu(desc->wProcessType);
  1368. for (info = list; info && info->type; info++)
  1369. if (info->type == type)
  1370. break;
  1371. if (! info || ! info->type)
  1372. info = &default_info;
  1373. for (valinfo = info->values; valinfo->control; valinfo++) {
  1374. __u8 *controls = uac_processing_unit_bmControls(desc, state->mixer->protocol);
  1375. if (! (controls[valinfo->control / 8] & (1 << ((valinfo->control % 8) - 1))))
  1376. continue;
  1377. map = find_map(state, unitid, valinfo->control);
  1378. if (check_ignored_ctl(map))
  1379. continue;
  1380. cval = kzalloc(sizeof(*cval), GFP_KERNEL);
  1381. if (! cval) {
  1382. snd_printk(KERN_ERR "cannot malloc kcontrol\n");
  1383. return -ENOMEM;
  1384. }
  1385. cval->mixer = state->mixer;
  1386. cval->id = unitid;
  1387. cval->control = valinfo->control;
  1388. cval->val_type = valinfo->val_type;
  1389. cval->channels = 1;
  1390. /* get min/max values */
  1391. if (type == UAC_PROCESS_UP_DOWNMIX && cval->control == UAC_UD_MODE_SELECT) {
  1392. __u8 *control_spec = uac_processing_unit_specific(desc, state->mixer->protocol);
  1393. /* FIXME: hard-coded */
  1394. cval->min = 1;
  1395. cval->max = control_spec[0];
  1396. cval->res = 1;
  1397. cval->initialized = 1;
  1398. } else {
  1399. if (type == USB_XU_CLOCK_RATE) {
  1400. /* E-Mu USB 0404/0202/TrackerPre/0204
  1401. * samplerate control quirk
  1402. */
  1403. cval->min = 0;
  1404. cval->max = 5;
  1405. cval->res = 1;
  1406. cval->initialized = 1;
  1407. } else
  1408. get_min_max(cval, valinfo->min_value);
  1409. }
  1410. kctl = snd_ctl_new1(&mixer_procunit_ctl, cval);
  1411. if (! kctl) {
  1412. snd_printk(KERN_ERR "cannot malloc kcontrol\n");
  1413. kfree(cval);
  1414. return -ENOMEM;
  1415. }
  1416. kctl->private_free = usb_mixer_elem_free;
  1417. if (check_mapped_name(map, kctl->id.name,
  1418. sizeof(kctl->id.name)))
  1419. /* nothing */ ;
  1420. else if (info->name)
  1421. strlcpy(kctl->id.name, info->name, sizeof(kctl->id.name));
  1422. else {
  1423. nameid = uac_processing_unit_iProcessing(desc, state->mixer->protocol);
  1424. len = 0;
  1425. if (nameid)
  1426. len = snd_usb_copy_string_desc(state, nameid, kctl->id.name, sizeof(kctl->id.name));
  1427. if (! len)
  1428. strlcpy(kctl->id.name, name, sizeof(kctl->id.name));
  1429. }
  1430. append_ctl_name(kctl, " ");
  1431. append_ctl_name(kctl, valinfo->suffix);
  1432. snd_printdd(KERN_INFO "[%d] PU [%s] ch = %d, val = %d/%d\n",
  1433. cval->id, kctl->id.name, cval->channels, cval->min, cval->max);
  1434. if ((err = add_control_to_empty(state, kctl)) < 0)
  1435. return err;
  1436. }
  1437. return 0;
  1438. }
  1439. static int parse_audio_processing_unit(struct mixer_build *state, int unitid, void *raw_desc)
  1440. {
  1441. return build_audio_procunit(state, unitid, raw_desc, procunits, "Processing Unit");
  1442. }
  1443. static int parse_audio_extension_unit(struct mixer_build *state, int unitid, void *raw_desc)
  1444. {
  1445. /* Note that we parse extension units with processing unit descriptors.
  1446. * That's ok as the layout is the same */
  1447. return build_audio_procunit(state, unitid, raw_desc, extunits, "Extension Unit");
  1448. }
  1449. /*
  1450. * Selector Unit
  1451. */
  1452. /* info callback for selector unit
  1453. * use an enumerator type for routing
  1454. */
  1455. static int mixer_ctl_selector_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
  1456. {
  1457. struct usb_mixer_elem_info *cval = kcontrol->private_data;
  1458. const char **itemlist = (const char **)kcontrol->private_value;
  1459. if (snd_BUG_ON(!itemlist))
  1460. return -EINVAL;
  1461. return snd_ctl_enum_info(uinfo, 1, cval->max, itemlist);
  1462. }
  1463. /* get callback for selector unit */
  1464. static int mixer_ctl_selector_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  1465. {
  1466. struct usb_mixer_elem_info *cval = kcontrol->private_data;
  1467. int val, err;
  1468. err = get_cur_ctl_value(cval, cval->control << 8, &val);
  1469. if (err < 0) {
  1470. if (cval->mixer->ignore_ctl_error) {
  1471. ucontrol->value.enumerated.item[0] = 0;
  1472. return 0;
  1473. }
  1474. return err;
  1475. }
  1476. val = get_relative_value(cval, val);
  1477. ucontrol->value.enumerated.item[0] = val;
  1478. return 0;
  1479. }
  1480. /* put callback for selector unit */
  1481. static int mixer_ctl_selector_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
  1482. {
  1483. struct usb_mixer_elem_info *cval = kcontrol->private_data;
  1484. int val, oval, err;
  1485. err = get_cur_ctl_value(cval, cval->control << 8, &oval);
  1486. if (err < 0) {
  1487. if (cval->mixer->ignore_ctl_error)
  1488. return 0;
  1489. return err;
  1490. }
  1491. val = ucontrol->value.enumerated.item[0];
  1492. val = get_abs_value(cval, val);
  1493. if (val != oval) {
  1494. set_cur_ctl_value(cval, cval->control << 8, val);
  1495. return 1;
  1496. }
  1497. return 0;
  1498. }
  1499. /* alsa control interface for selector unit */
  1500. static struct snd_kcontrol_new mixer_selectunit_ctl = {
  1501. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  1502. .name = "", /* will be filled later */
  1503. .info = mixer_ctl_selector_info,
  1504. .get = mixer_ctl_selector_get,
  1505. .put = mixer_ctl_selector_put,
  1506. };
  1507. /* private free callback.
  1508. * free both private_data and private_value
  1509. */
  1510. static void usb_mixer_selector_elem_free(struct snd_kcontrol *kctl)
  1511. {
  1512. int i, num_ins = 0;
  1513. if (kctl->private_data) {
  1514. struct usb_mixer_elem_info *cval = kctl->private_data;
  1515. num_ins = cval->max;
  1516. kfree(cval);
  1517. kctl->private_data = NULL;
  1518. }
  1519. if (kctl->private_value) {
  1520. char **itemlist = (char **)kctl->private_value;
  1521. for (i = 0; i < num_ins; i++)
  1522. kfree(itemlist[i]);
  1523. kfree(itemlist);
  1524. kctl->private_value = 0;
  1525. }
  1526. }
  1527. /*
  1528. * parse a selector unit
  1529. */
  1530. static int parse_audio_selector_unit(struct mixer_build *state, int unitid, void *raw_desc)
  1531. {
  1532. struct uac_selector_unit_descriptor *desc = raw_desc;
  1533. unsigned int i, nameid, len;
  1534. int err;
  1535. struct usb_mixer_elem_info *cval;
  1536. struct snd_kcontrol *kctl;
  1537. const struct usbmix_name_map *map;
  1538. char **namelist;
  1539. if (!desc->bNrInPins || desc->bLength < 5 + desc->bNrInPins) {
  1540. snd_printk(KERN_ERR "invalid SELECTOR UNIT descriptor %d\n", unitid);
  1541. return -EINVAL;
  1542. }
  1543. for (i = 0; i < desc->bNrInPins; i++) {
  1544. if ((err = parse_audio_unit(state, desc->baSourceID[i])) < 0)
  1545. return err;
  1546. }
  1547. if (desc->bNrInPins == 1) /* only one ? nonsense! */
  1548. return 0;
  1549. map = find_map(state, unitid, 0);
  1550. if (check_ignored_ctl(map))
  1551. return 0;
  1552. cval = kzalloc(sizeof(*cval), GFP_KERNEL);
  1553. if (! cval) {
  1554. snd_printk(KERN_ERR "cannot malloc kcontrol\n");
  1555. return -ENOMEM;
  1556. }
  1557. cval->mixer = state->mixer;
  1558. cval->id = unitid;
  1559. cval->val_type = USB_MIXER_U8;
  1560. cval->channels = 1;
  1561. cval->min = 1;
  1562. cval->max = desc->bNrInPins;
  1563. cval->res = 1;
  1564. cval->initialized = 1;
  1565. if (desc->bDescriptorSubtype == UAC2_CLOCK_SELECTOR)
  1566. cval->control = UAC2_CX_CLOCK_SELECTOR;
  1567. else
  1568. cval->control = 0;
  1569. namelist = kmalloc(sizeof(char *) * desc->bNrInPins, GFP_KERNEL);
  1570. if (! namelist) {
  1571. snd_printk(KERN_ERR "cannot malloc\n");
  1572. kfree(cval);
  1573. return -ENOMEM;
  1574. }
  1575. #define MAX_ITEM_NAME_LEN 64
  1576. for (i = 0; i < desc->bNrInPins; i++) {
  1577. struct usb_audio_term iterm;
  1578. len = 0;
  1579. namelist[i] = kmalloc(MAX_ITEM_NAME_LEN, GFP_KERNEL);
  1580. if (! namelist[i]) {
  1581. snd_printk(KERN_ERR "cannot malloc\n");
  1582. while (i--)
  1583. kfree(namelist[i]);
  1584. kfree(namelist);
  1585. kfree(cval);
  1586. return -ENOMEM;
  1587. }
  1588. len = check_mapped_selector_name(state, unitid, i, namelist[i],
  1589. MAX_ITEM_NAME_LEN);
  1590. if (! len && check_input_term(state, desc->baSourceID[i], &iterm) >= 0)
  1591. len = get_term_name(state, &iterm, namelist[i], MAX_ITEM_NAME_LEN, 0);
  1592. if (! len)
  1593. sprintf(namelist[i], "Input %d", i);
  1594. }
  1595. kctl = snd_ctl_new1(&mixer_selectunit_ctl, cval);
  1596. if (! kctl) {
  1597. snd_printk(KERN_ERR "cannot malloc kcontrol\n");
  1598. kfree(namelist);
  1599. kfree(cval);
  1600. return -ENOMEM;
  1601. }
  1602. kctl->private_value = (unsigned long)namelist;
  1603. kctl->private_free = usb_mixer_selector_elem_free;
  1604. nameid = uac_selector_unit_iSelector(desc);
  1605. len = check_mapped_name(map, kctl->id.name, sizeof(kctl->id.name));
  1606. if (len)
  1607. ;
  1608. else if (nameid)
  1609. snd_usb_copy_string_desc(state, nameid, kctl->id.name, sizeof(kctl->id.name));
  1610. else {
  1611. len = get_term_name(state, &state->oterm,
  1612. kctl->id.name, sizeof(kctl->id.name), 0);
  1613. if (! len)
  1614. strlcpy(kctl->id.name, "USB", sizeof(kctl->id.name));
  1615. if (desc->bDescriptorSubtype == UAC2_CLOCK_SELECTOR)
  1616. append_ctl_name(kctl, " Clock Source");
  1617. else if ((state->oterm.type & 0xff00) == 0x0100)
  1618. append_ctl_name(kctl, " Capture Source");
  1619. else
  1620. append_ctl_name(kctl, " Playback Source");
  1621. }
  1622. snd_printdd(KERN_INFO "[%d] SU [%s] items = %d\n",
  1623. cval->id, kctl->id.name, desc->bNrInPins);
  1624. if ((err = add_control_to_empty(state, kctl)) < 0)
  1625. return err;
  1626. return 0;
  1627. }
  1628. /*
  1629. * parse an audio unit recursively
  1630. */
  1631. static int parse_audio_unit(struct mixer_build *state, int unitid)
  1632. {
  1633. unsigned char *p1;
  1634. if (test_and_set_bit(unitid, state->unitbitmap))
  1635. return 0; /* the unit already visited */
  1636. p1 = find_audio_control_unit(state, unitid);
  1637. if (!p1) {
  1638. snd_printk(KERN_ERR "usbaudio: unit %d not found!\n", unitid);
  1639. return -EINVAL;
  1640. }
  1641. switch (p1[2]) {
  1642. case UAC_INPUT_TERMINAL:
  1643. case UAC2_CLOCK_SOURCE:
  1644. return 0; /* NOP */
  1645. case UAC_MIXER_UNIT:
  1646. return parse_audio_mixer_unit(state, unitid, p1);
  1647. case UAC_SELECTOR_UNIT:
  1648. case UAC2_CLOCK_SELECTOR:
  1649. return parse_audio_selector_unit(state, unitid, p1);
  1650. case UAC_FEATURE_UNIT:
  1651. return parse_audio_feature_unit(state, unitid, p1);
  1652. case UAC1_PROCESSING_UNIT:
  1653. /* UAC2_EFFECT_UNIT has the same value */
  1654. if (state->mixer->protocol == UAC_VERSION_1)
  1655. return parse_audio_processing_unit(state, unitid, p1);
  1656. else
  1657. return 0; /* FIXME - effect units not implemented yet */
  1658. case UAC1_EXTENSION_UNIT:
  1659. /* UAC2_PROCESSING_UNIT_V2 has the same value */
  1660. if (state->mixer->protocol == UAC_VERSION_1)
  1661. return parse_audio_extension_unit(state, unitid, p1);
  1662. else /* UAC_VERSION_2 */
  1663. return parse_audio_processing_unit(state, unitid, p1);
  1664. default:
  1665. snd_printk(KERN_ERR "usbaudio: unit %u: unexpected type 0x%02x\n", unitid, p1[2]);
  1666. return -EINVAL;
  1667. }
  1668. }
  1669. static void snd_usb_mixer_free(struct usb_mixer_interface *mixer)
  1670. {
  1671. kfree(mixer->id_elems);
  1672. if (mixer->urb) {
  1673. kfree(mixer->urb->transfer_buffer);
  1674. usb_free_urb(mixer->urb);
  1675. }
  1676. usb_free_urb(mixer->rc_urb);
  1677. kfree(mixer->rc_setup_packet);
  1678. kfree(mixer);
  1679. }
  1680. static int snd_usb_mixer_dev_free(struct snd_device *device)
  1681. {
  1682. struct usb_mixer_interface *mixer = device->device_data;
  1683. snd_usb_mixer_free(mixer);
  1684. return 0;
  1685. }
  1686. /*
  1687. * create mixer controls
  1688. *
  1689. * walk through all UAC_OUTPUT_TERMINAL descriptors to search for mixers
  1690. */
  1691. static int snd_usb_mixer_controls(struct usb_mixer_interface *mixer)
  1692. {
  1693. struct mixer_build state;
  1694. int err;
  1695. const struct usbmix_ctl_map *map;
  1696. struct usb_host_interface *hostif;
  1697. void *p;
  1698. hostif = mixer->chip->ctrl_intf;
  1699. memset(&state, 0, sizeof(state));
  1700. state.chip = mixer->chip;
  1701. state.mixer = mixer;
  1702. state.buffer = hostif->extra;
  1703. state.buflen = hostif->extralen;
  1704. /* check the mapping table */
  1705. for (map = usbmix_ctl_maps; map->id; map++) {
  1706. if (map->id == state.chip->usb_id) {
  1707. state.map = map->map;
  1708. state.selector_map = map->selector_map;
  1709. mixer->ignore_ctl_error = map->ignore_ctl_error;
  1710. break;
  1711. }
  1712. }
  1713. p = NULL;
  1714. while ((p = snd_usb_find_csint_desc(hostif->extra, hostif->extralen, p, UAC_OUTPUT_TERMINAL)) != NULL) {
  1715. if (mixer->protocol == UAC_VERSION_1) {
  1716. struct uac1_output_terminal_descriptor *desc = p;
  1717. if (desc->bLength < sizeof(*desc))
  1718. continue; /* invalid descriptor? */
  1719. set_bit(desc->bTerminalID, state.unitbitmap); /* mark terminal ID as visited */
  1720. state.oterm.id = desc->bTerminalID;
  1721. state.oterm.type = le16_to_cpu(desc->wTerminalType);
  1722. state.oterm.name = desc->iTerminal;
  1723. err = parse_audio_unit(&state, desc->bSourceID);
  1724. if (err < 0)
  1725. return err;
  1726. } else { /* UAC_VERSION_2 */
  1727. struct uac2_output_terminal_descriptor *desc = p;
  1728. if (desc->bLength < sizeof(*desc))
  1729. continue; /* invalid descriptor? */
  1730. set_bit(desc->bTerminalID, state.unitbitmap); /* mark terminal ID as visited */
  1731. state.oterm.id = desc->bTerminalID;
  1732. state.oterm.type = le16_to_cpu(desc->wTerminalType);
  1733. state.oterm.name = desc->iTerminal;
  1734. err = parse_audio_unit(&state, desc->bSourceID);
  1735. if (err < 0)
  1736. return err;
  1737. /* for UAC2, use the same approach to also add the clock selectors */
  1738. err = parse_audio_unit(&state, desc->bCSourceID);
  1739. if (err < 0)
  1740. return err;
  1741. }
  1742. }
  1743. return 0;
  1744. }
  1745. void snd_usb_mixer_notify_id(struct usb_mixer_interface *mixer, int unitid)
  1746. {
  1747. struct usb_mixer_elem_info *info;
  1748. for (info = mixer->id_elems[unitid]; info; info = info->next_id_elem)
  1749. snd_ctl_notify(mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
  1750. info->elem_id);
  1751. }
  1752. static void snd_usb_mixer_dump_cval(struct snd_info_buffer *buffer,
  1753. int unitid,
  1754. struct usb_mixer_elem_info *cval)
  1755. {
  1756. static char *val_types[] = {"BOOLEAN", "INV_BOOLEAN",
  1757. "S8", "U8", "S16", "U16"};
  1758. snd_iprintf(buffer, " Unit: %i\n", unitid);
  1759. if (cval->elem_id)
  1760. snd_iprintf(buffer, " Control: name=\"%s\", index=%i\n",
  1761. cval->elem_id->name, cval->elem_id->index);
  1762. snd_iprintf(buffer, " Info: id=%i, control=%i, cmask=0x%x, "
  1763. "channels=%i, type=\"%s\"\n", cval->id,
  1764. cval->control, cval->cmask, cval->channels,
  1765. val_types[cval->val_type]);
  1766. snd_iprintf(buffer, " Volume: min=%i, max=%i, dBmin=%i, dBmax=%i\n",
  1767. cval->min, cval->max, cval->dBmin, cval->dBmax);
  1768. }
  1769. static void snd_usb_mixer_proc_read(struct snd_info_entry *entry,
  1770. struct snd_info_buffer *buffer)
  1771. {
  1772. struct snd_usb_audio *chip = entry->private_data;
  1773. struct usb_mixer_interface *mixer;
  1774. struct usb_mixer_elem_info *cval;
  1775. int unitid;
  1776. list_for_each_entry(mixer, &chip->mixer_list, list) {
  1777. snd_iprintf(buffer,
  1778. "USB Mixer: usb_id=0x%08x, ctrlif=%i, ctlerr=%i\n",
  1779. chip->usb_id, snd_usb_ctrl_intf(chip),
  1780. mixer->ignore_ctl_error);
  1781. snd_iprintf(buffer, "Card: %s\n", chip->card->longname);
  1782. for (unitid = 0; unitid < MAX_ID_ELEMS; unitid++) {
  1783. for (cval = mixer->id_elems[unitid]; cval;
  1784. cval = cval->next_id_elem)
  1785. snd_usb_mixer_dump_cval(buffer, unitid, cval);
  1786. }
  1787. }
  1788. }
  1789. static void snd_usb_mixer_interrupt_v2(struct usb_mixer_interface *mixer,
  1790. int attribute, int value, int index)
  1791. {
  1792. struct usb_mixer_elem_info *info;
  1793. __u8 unitid = (index >> 8) & 0xff;
  1794. __u8 control = (value >> 8) & 0xff;
  1795. __u8 channel = value & 0xff;
  1796. if (channel >= MAX_CHANNELS) {
  1797. snd_printk(KERN_DEBUG "%s(): bogus channel number %d\n",
  1798. __func__, channel);
  1799. return;
  1800. }
  1801. for (info = mixer->id_elems[unitid]; info; info = info->next_id_elem) {
  1802. if (info->control != control)
  1803. continue;
  1804. switch (attribute) {
  1805. case UAC2_CS_CUR:
  1806. /* invalidate cache, so the value is read from the device */
  1807. if (channel)
  1808. info->cached &= ~(1 << channel);
  1809. else /* master channel */
  1810. info->cached = 0;
  1811. snd_ctl_notify(mixer->chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
  1812. info->elem_id);
  1813. break;
  1814. case UAC2_CS_RANGE:
  1815. /* TODO */
  1816. break;
  1817. case UAC2_CS_MEM:
  1818. /* TODO */
  1819. break;
  1820. default:
  1821. snd_printk(KERN_DEBUG "unknown attribute %d in interrupt\n",
  1822. attribute);
  1823. break;
  1824. } /* switch */
  1825. }
  1826. }
  1827. static void snd_usb_mixer_interrupt(struct urb *urb)
  1828. {
  1829. struct usb_mixer_interface *mixer = urb->context;
  1830. int len = urb->actual_length;
  1831. if (urb->status != 0)
  1832. goto requeue;
  1833. if (mixer->protocol == UAC_VERSION_1) {
  1834. struct uac1_status_word *status;
  1835. for (status = urb->transfer_buffer;
  1836. len >= sizeof(*status);
  1837. len -= sizeof(*status), status++) {
  1838. snd_printd(KERN_DEBUG "status interrupt: %02x %02x\n",
  1839. status->bStatusType,
  1840. status->bOriginator);
  1841. /* ignore any notifications not from the control interface */
  1842. if ((status->bStatusType & UAC1_STATUS_TYPE_ORIG_MASK) !=
  1843. UAC1_STATUS_TYPE_ORIG_AUDIO_CONTROL_IF)
  1844. continue;
  1845. if (status->bStatusType & UAC1_STATUS_TYPE_MEM_CHANGED)
  1846. snd_usb_mixer_rc_memory_change(mixer, status->bOriginator);
  1847. else
  1848. snd_usb_mixer_notify_id(mixer, status->bOriginator);
  1849. }
  1850. } else { /* UAC_VERSION_2 */
  1851. struct uac2_interrupt_data_msg *msg;
  1852. for (msg = urb->transfer_buffer;
  1853. len >= sizeof(*msg);
  1854. len -= sizeof(*msg), msg++) {
  1855. /* drop vendor specific and endpoint requests */
  1856. if ((msg->bInfo & UAC2_INTERRUPT_DATA_MSG_VENDOR) ||
  1857. (msg->bInfo & UAC2_INTERRUPT_DATA_MSG_EP))
  1858. continue;
  1859. snd_usb_mixer_interrupt_v2(mixer, msg->bAttribute,
  1860. le16_to_cpu(msg->wValue),
  1861. le16_to_cpu(msg->wIndex));
  1862. }
  1863. }
  1864. requeue:
  1865. if (urb->status != -ENOENT && urb->status != -ECONNRESET) {
  1866. urb->dev = mixer->chip->dev;
  1867. usb_submit_urb(urb, GFP_ATOMIC);
  1868. }
  1869. }
  1870. /* create the handler for the optional status interrupt endpoint */
  1871. static int snd_usb_mixer_status_create(struct usb_mixer_interface *mixer)
  1872. {
  1873. struct usb_host_interface *hostif;
  1874. struct usb_endpoint_descriptor *ep;
  1875. void *transfer_buffer;
  1876. int buffer_length;
  1877. unsigned int epnum;
  1878. hostif = mixer->chip->ctrl_intf;
  1879. /* we need one interrupt input endpoint */
  1880. if (get_iface_desc(hostif)->bNumEndpoints < 1)
  1881. return 0;
  1882. ep = get_endpoint(hostif, 0);
  1883. if (!usb_endpoint_dir_in(ep) || !usb_endpoint_xfer_int(ep))
  1884. return 0;
  1885. epnum = usb_endpoint_num(ep);
  1886. buffer_length = le16_to_cpu(ep->wMaxPacketSize);
  1887. transfer_buffer = kmalloc(buffer_length, GFP_KERNEL);
  1888. if (!transfer_buffer)
  1889. return -ENOMEM;
  1890. mixer->urb = usb_alloc_urb(0, GFP_KERNEL);
  1891. if (!mixer->urb) {
  1892. kfree(transfer_buffer);
  1893. return -ENOMEM;
  1894. }
  1895. usb_fill_int_urb(mixer->urb, mixer->chip->dev,
  1896. usb_rcvintpipe(mixer->chip->dev, epnum),
  1897. transfer_buffer, buffer_length,
  1898. snd_usb_mixer_interrupt, mixer, ep->bInterval);
  1899. usb_submit_urb(mixer->urb, GFP_KERNEL);
  1900. return 0;
  1901. }
  1902. int snd_usb_create_mixer(struct snd_usb_audio *chip, int ctrlif,
  1903. int ignore_error)
  1904. {
  1905. static struct snd_device_ops dev_ops = {
  1906. .dev_free = snd_usb_mixer_dev_free
  1907. };
  1908. struct usb_mixer_interface *mixer;
  1909. struct snd_info_entry *entry;
  1910. struct usb_host_interface *host_iface;
  1911. int err;
  1912. strcpy(chip->card->mixername, "USB Mixer");
  1913. mixer = kzalloc(sizeof(*mixer), GFP_KERNEL);
  1914. if (!mixer)
  1915. return -ENOMEM;
  1916. mixer->chip = chip;
  1917. mixer->ignore_ctl_error = ignore_error;
  1918. mixer->id_elems = kcalloc(MAX_ID_ELEMS, sizeof(*mixer->id_elems),
  1919. GFP_KERNEL);
  1920. if (!mixer->id_elems) {
  1921. kfree(mixer);
  1922. return -ENOMEM;
  1923. }
  1924. host_iface = &usb_ifnum_to_if(chip->dev, ctrlif)->altsetting[0];
  1925. switch (get_iface_desc(host_iface)->bInterfaceProtocol) {
  1926. case UAC_VERSION_1:
  1927. default:
  1928. mixer->protocol = UAC_VERSION_1;
  1929. break;
  1930. case UAC_VERSION_2:
  1931. mixer->protocol = UAC_VERSION_2;
  1932. break;
  1933. }
  1934. if ((err = snd_usb_mixer_controls(mixer)) < 0 ||
  1935. (err = snd_usb_mixer_status_create(mixer)) < 0)
  1936. goto _error;
  1937. snd_usb_mixer_apply_create_quirk(mixer);
  1938. err = snd_device_new(chip->card, SNDRV_DEV_LOWLEVEL, mixer, &dev_ops);
  1939. if (err < 0)
  1940. goto _error;
  1941. if (list_empty(&chip->mixer_list) &&
  1942. !snd_card_proc_new(chip->card, "usbmixer", &entry))
  1943. snd_info_set_text_ops(entry, chip, snd_usb_mixer_proc_read);
  1944. list_add(&mixer->list, &chip->mixer_list);
  1945. return 0;
  1946. _error:
  1947. snd_usb_mixer_free(mixer);
  1948. return err;
  1949. }
  1950. void snd_usb_mixer_disconnect(struct list_head *p)
  1951. {
  1952. struct usb_mixer_interface *mixer;
  1953. mixer = list_entry(p, struct usb_mixer_interface, list);
  1954. usb_kill_urb(mixer->urb);
  1955. usb_kill_urb(mixer->rc_urb);
  1956. }