oxygen_mixer.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099
  1. /*
  2. * C-Media CMI8788 driver - mixer code
  3. *
  4. * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
  5. *
  6. *
  7. * This driver is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License, version 2.
  9. *
  10. * This driver is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this driver; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/mutex.h>
  20. #include <sound/ac97_codec.h>
  21. #include <sound/asoundef.h>
  22. #include <sound/control.h>
  23. #include <sound/tlv.h>
  24. #include "oxygen.h"
  25. #include "cm9780.h"
  26. static int dac_volume_info(struct snd_kcontrol *ctl,
  27. struct snd_ctl_elem_info *info)
  28. {
  29. struct oxygen *chip = ctl->private_data;
  30. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  31. info->count = chip->model.dac_channels_mixer;
  32. info->value.integer.min = chip->model.dac_volume_min;
  33. info->value.integer.max = chip->model.dac_volume_max;
  34. return 0;
  35. }
  36. static int dac_volume_get(struct snd_kcontrol *ctl,
  37. struct snd_ctl_elem_value *value)
  38. {
  39. struct oxygen *chip = ctl->private_data;
  40. unsigned int i;
  41. mutex_lock(&chip->mutex);
  42. for (i = 0; i < chip->model.dac_channels_mixer; ++i)
  43. value->value.integer.value[i] = chip->dac_volume[i];
  44. mutex_unlock(&chip->mutex);
  45. return 0;
  46. }
  47. static int dac_volume_put(struct snd_kcontrol *ctl,
  48. struct snd_ctl_elem_value *value)
  49. {
  50. struct oxygen *chip = ctl->private_data;
  51. unsigned int i;
  52. int changed;
  53. changed = 0;
  54. mutex_lock(&chip->mutex);
  55. for (i = 0; i < chip->model.dac_channels_mixer; ++i)
  56. if (value->value.integer.value[i] != chip->dac_volume[i]) {
  57. chip->dac_volume[i] = value->value.integer.value[i];
  58. changed = 1;
  59. }
  60. if (changed)
  61. chip->model.update_dac_volume(chip);
  62. mutex_unlock(&chip->mutex);
  63. return changed;
  64. }
  65. static int dac_mute_get(struct snd_kcontrol *ctl,
  66. struct snd_ctl_elem_value *value)
  67. {
  68. struct oxygen *chip = ctl->private_data;
  69. mutex_lock(&chip->mutex);
  70. value->value.integer.value[0] = !chip->dac_mute;
  71. mutex_unlock(&chip->mutex);
  72. return 0;
  73. }
  74. static int dac_mute_put(struct snd_kcontrol *ctl,
  75. struct snd_ctl_elem_value *value)
  76. {
  77. struct oxygen *chip = ctl->private_data;
  78. int changed;
  79. mutex_lock(&chip->mutex);
  80. changed = !value->value.integer.value[0] != chip->dac_mute;
  81. if (changed) {
  82. chip->dac_mute = !value->value.integer.value[0];
  83. chip->model.update_dac_mute(chip);
  84. }
  85. mutex_unlock(&chip->mutex);
  86. return changed;
  87. }
  88. static unsigned int upmix_item_count(struct oxygen *chip)
  89. {
  90. if (chip->model.dac_channels_pcm < 8)
  91. return 2;
  92. else if (chip->model.update_center_lfe_mix)
  93. return 5;
  94. else
  95. return 3;
  96. }
  97. static int upmix_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
  98. {
  99. static const char *const names[5] = {
  100. "Front",
  101. "Front+Surround",
  102. "Front+Surround+Back",
  103. "Front+Surround+Center/LFE",
  104. "Front+Surround+Center/LFE+Back",
  105. };
  106. struct oxygen *chip = ctl->private_data;
  107. unsigned int count = upmix_item_count(chip);
  108. return snd_ctl_enum_info(info, 1, count, names);
  109. }
  110. static int upmix_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
  111. {
  112. struct oxygen *chip = ctl->private_data;
  113. mutex_lock(&chip->mutex);
  114. value->value.enumerated.item[0] = chip->dac_routing;
  115. mutex_unlock(&chip->mutex);
  116. return 0;
  117. }
  118. void oxygen_update_dac_routing(struct oxygen *chip)
  119. {
  120. /* DAC 0: front, DAC 1: surround, DAC 2: center/LFE, DAC 3: back */
  121. static const unsigned int reg_values[5] = {
  122. /* stereo -> front */
  123. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  124. (1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  125. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  126. (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  127. /* stereo -> front+surround */
  128. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  129. (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  130. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  131. (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  132. /* stereo -> front+surround+back */
  133. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  134. (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  135. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  136. (0 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  137. /* stereo -> front+surround+center/LFE */
  138. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  139. (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  140. (0 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  141. (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  142. /* stereo -> front+surround+center/LFE+back */
  143. (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  144. (0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  145. (0 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  146. (0 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
  147. };
  148. u8 channels;
  149. unsigned int reg_value;
  150. channels = oxygen_read8(chip, OXYGEN_PLAY_CHANNELS) &
  151. OXYGEN_PLAY_CHANNELS_MASK;
  152. if (channels == OXYGEN_PLAY_CHANNELS_2)
  153. reg_value = reg_values[chip->dac_routing];
  154. else if (channels == OXYGEN_PLAY_CHANNELS_8)
  155. /* in 7.1 mode, "rear" channels go to the "back" jack */
  156. reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  157. (3 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  158. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  159. (1 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
  160. else
  161. reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
  162. (1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
  163. (2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
  164. (3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
  165. if (chip->model.adjust_dac_routing)
  166. reg_value = chip->model.adjust_dac_routing(chip, reg_value);
  167. oxygen_write16_masked(chip, OXYGEN_PLAY_ROUTING, reg_value,
  168. OXYGEN_PLAY_DAC0_SOURCE_MASK |
  169. OXYGEN_PLAY_DAC1_SOURCE_MASK |
  170. OXYGEN_PLAY_DAC2_SOURCE_MASK |
  171. OXYGEN_PLAY_DAC3_SOURCE_MASK);
  172. if (chip->model.update_center_lfe_mix)
  173. chip->model.update_center_lfe_mix(chip, chip->dac_routing > 2);
  174. }
  175. static int upmix_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
  176. {
  177. struct oxygen *chip = ctl->private_data;
  178. unsigned int count = upmix_item_count(chip);
  179. int changed;
  180. if (value->value.enumerated.item[0] >= count)
  181. return -EINVAL;
  182. mutex_lock(&chip->mutex);
  183. changed = value->value.enumerated.item[0] != chip->dac_routing;
  184. if (changed) {
  185. chip->dac_routing = value->value.enumerated.item[0];
  186. oxygen_update_dac_routing(chip);
  187. }
  188. mutex_unlock(&chip->mutex);
  189. return changed;
  190. }
  191. static int spdif_switch_get(struct snd_kcontrol *ctl,
  192. struct snd_ctl_elem_value *value)
  193. {
  194. struct oxygen *chip = ctl->private_data;
  195. mutex_lock(&chip->mutex);
  196. value->value.integer.value[0] = chip->spdif_playback_enable;
  197. mutex_unlock(&chip->mutex);
  198. return 0;
  199. }
  200. static unsigned int oxygen_spdif_rate(unsigned int oxygen_rate)
  201. {
  202. switch (oxygen_rate) {
  203. case OXYGEN_RATE_32000:
  204. return IEC958_AES3_CON_FS_32000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  205. case OXYGEN_RATE_44100:
  206. return IEC958_AES3_CON_FS_44100 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  207. default: /* OXYGEN_RATE_48000 */
  208. return IEC958_AES3_CON_FS_48000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  209. case OXYGEN_RATE_64000:
  210. return 0xb << OXYGEN_SPDIF_CS_RATE_SHIFT;
  211. case OXYGEN_RATE_88200:
  212. return IEC958_AES3_CON_FS_88200 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  213. case OXYGEN_RATE_96000:
  214. return IEC958_AES3_CON_FS_96000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  215. case OXYGEN_RATE_176400:
  216. return IEC958_AES3_CON_FS_176400 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  217. case OXYGEN_RATE_192000:
  218. return IEC958_AES3_CON_FS_192000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
  219. }
  220. }
  221. void oxygen_update_spdif_source(struct oxygen *chip)
  222. {
  223. u32 old_control, new_control;
  224. u16 old_routing, new_routing;
  225. unsigned int oxygen_rate;
  226. old_control = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
  227. old_routing = oxygen_read16(chip, OXYGEN_PLAY_ROUTING);
  228. if (chip->pcm_active & (1 << PCM_SPDIF)) {
  229. new_control = old_control | OXYGEN_SPDIF_OUT_ENABLE;
  230. new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK)
  231. | OXYGEN_PLAY_SPDIF_SPDIF;
  232. oxygen_rate = (old_control >> OXYGEN_SPDIF_OUT_RATE_SHIFT)
  233. & OXYGEN_I2S_RATE_MASK;
  234. /* S/PDIF rate was already set by the caller */
  235. } else if ((chip->pcm_active & (1 << PCM_MULTICH)) &&
  236. chip->spdif_playback_enable) {
  237. new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK)
  238. | OXYGEN_PLAY_SPDIF_MULTICH_01;
  239. oxygen_rate = oxygen_read16(chip, OXYGEN_I2S_MULTICH_FORMAT)
  240. & OXYGEN_I2S_RATE_MASK;
  241. new_control = (old_control & ~OXYGEN_SPDIF_OUT_RATE_MASK) |
  242. (oxygen_rate << OXYGEN_SPDIF_OUT_RATE_SHIFT) |
  243. OXYGEN_SPDIF_OUT_ENABLE;
  244. } else {
  245. new_control = old_control & ~OXYGEN_SPDIF_OUT_ENABLE;
  246. new_routing = old_routing;
  247. oxygen_rate = OXYGEN_RATE_44100;
  248. }
  249. if (old_routing != new_routing) {
  250. oxygen_write32(chip, OXYGEN_SPDIF_CONTROL,
  251. new_control & ~OXYGEN_SPDIF_OUT_ENABLE);
  252. oxygen_write16(chip, OXYGEN_PLAY_ROUTING, new_routing);
  253. }
  254. if (new_control & OXYGEN_SPDIF_OUT_ENABLE)
  255. oxygen_write32(chip, OXYGEN_SPDIF_OUTPUT_BITS,
  256. oxygen_spdif_rate(oxygen_rate) |
  257. ((chip->pcm_active & (1 << PCM_SPDIF)) ?
  258. chip->spdif_pcm_bits : chip->spdif_bits));
  259. oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, new_control);
  260. }
  261. static int spdif_switch_put(struct snd_kcontrol *ctl,
  262. struct snd_ctl_elem_value *value)
  263. {
  264. struct oxygen *chip = ctl->private_data;
  265. int changed;
  266. mutex_lock(&chip->mutex);
  267. changed = value->value.integer.value[0] != chip->spdif_playback_enable;
  268. if (changed) {
  269. chip->spdif_playback_enable = !!value->value.integer.value[0];
  270. spin_lock_irq(&chip->reg_lock);
  271. oxygen_update_spdif_source(chip);
  272. spin_unlock_irq(&chip->reg_lock);
  273. }
  274. mutex_unlock(&chip->mutex);
  275. return changed;
  276. }
  277. static int spdif_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
  278. {
  279. info->type = SNDRV_CTL_ELEM_TYPE_IEC958;
  280. info->count = 1;
  281. return 0;
  282. }
  283. static void oxygen_to_iec958(u32 bits, struct snd_ctl_elem_value *value)
  284. {
  285. value->value.iec958.status[0] =
  286. bits & (OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C |
  287. OXYGEN_SPDIF_PREEMPHASIS);
  288. value->value.iec958.status[1] = /* category and original */
  289. bits >> OXYGEN_SPDIF_CATEGORY_SHIFT;
  290. }
  291. static u32 iec958_to_oxygen(struct snd_ctl_elem_value *value)
  292. {
  293. u32 bits;
  294. bits = value->value.iec958.status[0] &
  295. (OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C |
  296. OXYGEN_SPDIF_PREEMPHASIS);
  297. bits |= value->value.iec958.status[1] << OXYGEN_SPDIF_CATEGORY_SHIFT;
  298. if (bits & OXYGEN_SPDIF_NONAUDIO)
  299. bits |= OXYGEN_SPDIF_V;
  300. return bits;
  301. }
  302. static inline void write_spdif_bits(struct oxygen *chip, u32 bits)
  303. {
  304. oxygen_write32_masked(chip, OXYGEN_SPDIF_OUTPUT_BITS, bits,
  305. OXYGEN_SPDIF_NONAUDIO |
  306. OXYGEN_SPDIF_C |
  307. OXYGEN_SPDIF_PREEMPHASIS |
  308. OXYGEN_SPDIF_CATEGORY_MASK |
  309. OXYGEN_SPDIF_ORIGINAL |
  310. OXYGEN_SPDIF_V);
  311. }
  312. static int spdif_default_get(struct snd_kcontrol *ctl,
  313. struct snd_ctl_elem_value *value)
  314. {
  315. struct oxygen *chip = ctl->private_data;
  316. mutex_lock(&chip->mutex);
  317. oxygen_to_iec958(chip->spdif_bits, value);
  318. mutex_unlock(&chip->mutex);
  319. return 0;
  320. }
  321. static int spdif_default_put(struct snd_kcontrol *ctl,
  322. struct snd_ctl_elem_value *value)
  323. {
  324. struct oxygen *chip = ctl->private_data;
  325. u32 new_bits;
  326. int changed;
  327. new_bits = iec958_to_oxygen(value);
  328. mutex_lock(&chip->mutex);
  329. changed = new_bits != chip->spdif_bits;
  330. if (changed) {
  331. chip->spdif_bits = new_bits;
  332. if (!(chip->pcm_active & (1 << PCM_SPDIF)))
  333. write_spdif_bits(chip, new_bits);
  334. }
  335. mutex_unlock(&chip->mutex);
  336. return changed;
  337. }
  338. static int spdif_mask_get(struct snd_kcontrol *ctl,
  339. struct snd_ctl_elem_value *value)
  340. {
  341. value->value.iec958.status[0] = IEC958_AES0_NONAUDIO |
  342. IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS;
  343. value->value.iec958.status[1] =
  344. IEC958_AES1_CON_CATEGORY | IEC958_AES1_CON_ORIGINAL;
  345. return 0;
  346. }
  347. static int spdif_pcm_get(struct snd_kcontrol *ctl,
  348. struct snd_ctl_elem_value *value)
  349. {
  350. struct oxygen *chip = ctl->private_data;
  351. mutex_lock(&chip->mutex);
  352. oxygen_to_iec958(chip->spdif_pcm_bits, value);
  353. mutex_unlock(&chip->mutex);
  354. return 0;
  355. }
  356. static int spdif_pcm_put(struct snd_kcontrol *ctl,
  357. struct snd_ctl_elem_value *value)
  358. {
  359. struct oxygen *chip = ctl->private_data;
  360. u32 new_bits;
  361. int changed;
  362. new_bits = iec958_to_oxygen(value);
  363. mutex_lock(&chip->mutex);
  364. changed = new_bits != chip->spdif_pcm_bits;
  365. if (changed) {
  366. chip->spdif_pcm_bits = new_bits;
  367. if (chip->pcm_active & (1 << PCM_SPDIF))
  368. write_spdif_bits(chip, new_bits);
  369. }
  370. mutex_unlock(&chip->mutex);
  371. return changed;
  372. }
  373. static int spdif_input_mask_get(struct snd_kcontrol *ctl,
  374. struct snd_ctl_elem_value *value)
  375. {
  376. value->value.iec958.status[0] = 0xff;
  377. value->value.iec958.status[1] = 0xff;
  378. value->value.iec958.status[2] = 0xff;
  379. value->value.iec958.status[3] = 0xff;
  380. return 0;
  381. }
  382. static int spdif_input_default_get(struct snd_kcontrol *ctl,
  383. struct snd_ctl_elem_value *value)
  384. {
  385. struct oxygen *chip = ctl->private_data;
  386. u32 bits;
  387. bits = oxygen_read32(chip, OXYGEN_SPDIF_INPUT_BITS);
  388. value->value.iec958.status[0] = bits;
  389. value->value.iec958.status[1] = bits >> 8;
  390. value->value.iec958.status[2] = bits >> 16;
  391. value->value.iec958.status[3] = bits >> 24;
  392. return 0;
  393. }
  394. static int spdif_bit_switch_get(struct snd_kcontrol *ctl,
  395. struct snd_ctl_elem_value *value)
  396. {
  397. struct oxygen *chip = ctl->private_data;
  398. u32 bit = ctl->private_value;
  399. value->value.integer.value[0] =
  400. !!(oxygen_read32(chip, OXYGEN_SPDIF_CONTROL) & bit);
  401. return 0;
  402. }
  403. static int spdif_bit_switch_put(struct snd_kcontrol *ctl,
  404. struct snd_ctl_elem_value *value)
  405. {
  406. struct oxygen *chip = ctl->private_data;
  407. u32 bit = ctl->private_value;
  408. u32 oldreg, newreg;
  409. int changed;
  410. spin_lock_irq(&chip->reg_lock);
  411. oldreg = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
  412. if (value->value.integer.value[0])
  413. newreg = oldreg | bit;
  414. else
  415. newreg = oldreg & ~bit;
  416. changed = newreg != oldreg;
  417. if (changed)
  418. oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, newreg);
  419. spin_unlock_irq(&chip->reg_lock);
  420. return changed;
  421. }
  422. static int monitor_volume_info(struct snd_kcontrol *ctl,
  423. struct snd_ctl_elem_info *info)
  424. {
  425. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  426. info->count = 1;
  427. info->value.integer.min = 0;
  428. info->value.integer.max = 1;
  429. return 0;
  430. }
  431. static int monitor_get(struct snd_kcontrol *ctl,
  432. struct snd_ctl_elem_value *value)
  433. {
  434. struct oxygen *chip = ctl->private_data;
  435. u8 bit = ctl->private_value;
  436. int invert = ctl->private_value & (1 << 8);
  437. value->value.integer.value[0] =
  438. !!invert ^ !!(oxygen_read8(chip, OXYGEN_ADC_MONITOR) & bit);
  439. return 0;
  440. }
  441. static int monitor_put(struct snd_kcontrol *ctl,
  442. struct snd_ctl_elem_value *value)
  443. {
  444. struct oxygen *chip = ctl->private_data;
  445. u8 bit = ctl->private_value;
  446. int invert = ctl->private_value & (1 << 8);
  447. u8 oldreg, newreg;
  448. int changed;
  449. spin_lock_irq(&chip->reg_lock);
  450. oldreg = oxygen_read8(chip, OXYGEN_ADC_MONITOR);
  451. if ((!!value->value.integer.value[0] ^ !!invert) != 0)
  452. newreg = oldreg | bit;
  453. else
  454. newreg = oldreg & ~bit;
  455. changed = newreg != oldreg;
  456. if (changed)
  457. oxygen_write8(chip, OXYGEN_ADC_MONITOR, newreg);
  458. spin_unlock_irq(&chip->reg_lock);
  459. return changed;
  460. }
  461. static int ac97_switch_get(struct snd_kcontrol *ctl,
  462. struct snd_ctl_elem_value *value)
  463. {
  464. struct oxygen *chip = ctl->private_data;
  465. unsigned int codec = (ctl->private_value >> 24) & 1;
  466. unsigned int index = ctl->private_value & 0xff;
  467. unsigned int bitnr = (ctl->private_value >> 8) & 0xff;
  468. int invert = ctl->private_value & (1 << 16);
  469. u16 reg;
  470. mutex_lock(&chip->mutex);
  471. reg = oxygen_read_ac97(chip, codec, index);
  472. mutex_unlock(&chip->mutex);
  473. if (!(reg & (1 << bitnr)) ^ !invert)
  474. value->value.integer.value[0] = 1;
  475. else
  476. value->value.integer.value[0] = 0;
  477. return 0;
  478. }
  479. static void mute_ac97_ctl(struct oxygen *chip, unsigned int control)
  480. {
  481. unsigned int priv_idx;
  482. u16 value;
  483. if (!chip->controls[control])
  484. return;
  485. priv_idx = chip->controls[control]->private_value & 0xff;
  486. value = oxygen_read_ac97(chip, 0, priv_idx);
  487. if (!(value & 0x8000)) {
  488. oxygen_write_ac97(chip, 0, priv_idx, value | 0x8000);
  489. if (chip->model.ac97_switch)
  490. chip->model.ac97_switch(chip, priv_idx, 0x8000);
  491. snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
  492. &chip->controls[control]->id);
  493. }
  494. }
  495. static int ac97_switch_put(struct snd_kcontrol *ctl,
  496. struct snd_ctl_elem_value *value)
  497. {
  498. struct oxygen *chip = ctl->private_data;
  499. unsigned int codec = (ctl->private_value >> 24) & 1;
  500. unsigned int index = ctl->private_value & 0xff;
  501. unsigned int bitnr = (ctl->private_value >> 8) & 0xff;
  502. int invert = ctl->private_value & (1 << 16);
  503. u16 oldreg, newreg;
  504. int change;
  505. mutex_lock(&chip->mutex);
  506. oldreg = oxygen_read_ac97(chip, codec, index);
  507. newreg = oldreg;
  508. if (!value->value.integer.value[0] ^ !invert)
  509. newreg |= 1 << bitnr;
  510. else
  511. newreg &= ~(1 << bitnr);
  512. change = newreg != oldreg;
  513. if (change) {
  514. oxygen_write_ac97(chip, codec, index, newreg);
  515. if (codec == 0 && chip->model.ac97_switch)
  516. chip->model.ac97_switch(chip, index, newreg & 0x8000);
  517. if (index == AC97_LINE) {
  518. oxygen_write_ac97_masked(chip, 0, CM9780_GPIO_STATUS,
  519. newreg & 0x8000 ?
  520. CM9780_GPO0 : 0, CM9780_GPO0);
  521. if (!(newreg & 0x8000)) {
  522. mute_ac97_ctl(chip, CONTROL_MIC_CAPTURE_SWITCH);
  523. mute_ac97_ctl(chip, CONTROL_CD_CAPTURE_SWITCH);
  524. mute_ac97_ctl(chip, CONTROL_AUX_CAPTURE_SWITCH);
  525. }
  526. } else if ((index == AC97_MIC || index == AC97_CD ||
  527. index == AC97_VIDEO || index == AC97_AUX) &&
  528. bitnr == 15 && !(newreg & 0x8000)) {
  529. mute_ac97_ctl(chip, CONTROL_LINE_CAPTURE_SWITCH);
  530. oxygen_write_ac97_masked(chip, 0, CM9780_GPIO_STATUS,
  531. CM9780_GPO0, CM9780_GPO0);
  532. }
  533. }
  534. mutex_unlock(&chip->mutex);
  535. return change;
  536. }
  537. static int ac97_volume_info(struct snd_kcontrol *ctl,
  538. struct snd_ctl_elem_info *info)
  539. {
  540. int stereo = (ctl->private_value >> 16) & 1;
  541. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  542. info->count = stereo ? 2 : 1;
  543. info->value.integer.min = 0;
  544. info->value.integer.max = 0x1f;
  545. return 0;
  546. }
  547. static int ac97_volume_get(struct snd_kcontrol *ctl,
  548. struct snd_ctl_elem_value *value)
  549. {
  550. struct oxygen *chip = ctl->private_data;
  551. unsigned int codec = (ctl->private_value >> 24) & 1;
  552. int stereo = (ctl->private_value >> 16) & 1;
  553. unsigned int index = ctl->private_value & 0xff;
  554. u16 reg;
  555. mutex_lock(&chip->mutex);
  556. reg = oxygen_read_ac97(chip, codec, index);
  557. mutex_unlock(&chip->mutex);
  558. value->value.integer.value[0] = 31 - (reg & 0x1f);
  559. if (stereo)
  560. value->value.integer.value[1] = 31 - ((reg >> 8) & 0x1f);
  561. return 0;
  562. }
  563. static int ac97_volume_put(struct snd_kcontrol *ctl,
  564. struct snd_ctl_elem_value *value)
  565. {
  566. struct oxygen *chip = ctl->private_data;
  567. unsigned int codec = (ctl->private_value >> 24) & 1;
  568. int stereo = (ctl->private_value >> 16) & 1;
  569. unsigned int index = ctl->private_value & 0xff;
  570. u16 oldreg, newreg;
  571. int change;
  572. mutex_lock(&chip->mutex);
  573. oldreg = oxygen_read_ac97(chip, codec, index);
  574. newreg = oldreg;
  575. newreg = (newreg & ~0x1f) |
  576. (31 - (value->value.integer.value[0] & 0x1f));
  577. if (stereo)
  578. newreg = (newreg & ~0x1f00) |
  579. ((31 - (value->value.integer.value[1] & 0x1f)) << 8);
  580. else
  581. newreg = (newreg & ~0x1f00) | ((newreg & 0x1f) << 8);
  582. change = newreg != oldreg;
  583. if (change)
  584. oxygen_write_ac97(chip, codec, index, newreg);
  585. mutex_unlock(&chip->mutex);
  586. return change;
  587. }
  588. static int mic_fmic_source_info(struct snd_kcontrol *ctl,
  589. struct snd_ctl_elem_info *info)
  590. {
  591. static const char *const names[] = { "Mic Jack", "Front Panel" };
  592. return snd_ctl_enum_info(info, 1, 2, names);
  593. }
  594. static int mic_fmic_source_get(struct snd_kcontrol *ctl,
  595. struct snd_ctl_elem_value *value)
  596. {
  597. struct oxygen *chip = ctl->private_data;
  598. mutex_lock(&chip->mutex);
  599. value->value.enumerated.item[0] =
  600. !!(oxygen_read_ac97(chip, 0, CM9780_JACK) & CM9780_FMIC2MIC);
  601. mutex_unlock(&chip->mutex);
  602. return 0;
  603. }
  604. static int mic_fmic_source_put(struct snd_kcontrol *ctl,
  605. struct snd_ctl_elem_value *value)
  606. {
  607. struct oxygen *chip = ctl->private_data;
  608. u16 oldreg, newreg;
  609. int change;
  610. mutex_lock(&chip->mutex);
  611. oldreg = oxygen_read_ac97(chip, 0, CM9780_JACK);
  612. if (value->value.enumerated.item[0])
  613. newreg = oldreg | CM9780_FMIC2MIC;
  614. else
  615. newreg = oldreg & ~CM9780_FMIC2MIC;
  616. change = newreg != oldreg;
  617. if (change)
  618. oxygen_write_ac97(chip, 0, CM9780_JACK, newreg);
  619. mutex_unlock(&chip->mutex);
  620. return change;
  621. }
  622. static int ac97_fp_rec_volume_info(struct snd_kcontrol *ctl,
  623. struct snd_ctl_elem_info *info)
  624. {
  625. info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
  626. info->count = 2;
  627. info->value.integer.min = 0;
  628. info->value.integer.max = 7;
  629. return 0;
  630. }
  631. static int ac97_fp_rec_volume_get(struct snd_kcontrol *ctl,
  632. struct snd_ctl_elem_value *value)
  633. {
  634. struct oxygen *chip = ctl->private_data;
  635. u16 reg;
  636. mutex_lock(&chip->mutex);
  637. reg = oxygen_read_ac97(chip, 1, AC97_REC_GAIN);
  638. mutex_unlock(&chip->mutex);
  639. value->value.integer.value[0] = reg & 7;
  640. value->value.integer.value[1] = (reg >> 8) & 7;
  641. return 0;
  642. }
  643. static int ac97_fp_rec_volume_put(struct snd_kcontrol *ctl,
  644. struct snd_ctl_elem_value *value)
  645. {
  646. struct oxygen *chip = ctl->private_data;
  647. u16 oldreg, newreg;
  648. int change;
  649. mutex_lock(&chip->mutex);
  650. oldreg = oxygen_read_ac97(chip, 1, AC97_REC_GAIN);
  651. newreg = oldreg & ~0x0707;
  652. newreg = newreg | (value->value.integer.value[0] & 7);
  653. newreg = newreg | ((value->value.integer.value[0] & 7) << 8);
  654. change = newreg != oldreg;
  655. if (change)
  656. oxygen_write_ac97(chip, 1, AC97_REC_GAIN, newreg);
  657. mutex_unlock(&chip->mutex);
  658. return change;
  659. }
  660. #define AC97_SWITCH(xname, codec, index, bitnr, invert) { \
  661. .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  662. .name = xname, \
  663. .info = snd_ctl_boolean_mono_info, \
  664. .get = ac97_switch_get, \
  665. .put = ac97_switch_put, \
  666. .private_value = ((codec) << 24) | ((invert) << 16) | \
  667. ((bitnr) << 8) | (index), \
  668. }
  669. #define AC97_VOLUME(xname, codec, index, stereo) { \
  670. .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  671. .name = xname, \
  672. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
  673. SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
  674. .info = ac97_volume_info, \
  675. .get = ac97_volume_get, \
  676. .put = ac97_volume_put, \
  677. .tlv = { .p = ac97_db_scale, }, \
  678. .private_value = ((codec) << 24) | ((stereo) << 16) | (index), \
  679. }
  680. static DECLARE_TLV_DB_SCALE(monitor_db_scale, -600, 600, 0);
  681. static DECLARE_TLV_DB_SCALE(ac97_db_scale, -3450, 150, 0);
  682. static DECLARE_TLV_DB_SCALE(ac97_rec_db_scale, 0, 150, 0);
  683. static const struct snd_kcontrol_new controls[] = {
  684. {
  685. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  686. .name = "Master Playback Volume",
  687. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
  688. .info = dac_volume_info,
  689. .get = dac_volume_get,
  690. .put = dac_volume_put,
  691. },
  692. {
  693. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  694. .name = "Master Playback Switch",
  695. .info = snd_ctl_boolean_mono_info,
  696. .get = dac_mute_get,
  697. .put = dac_mute_put,
  698. },
  699. {
  700. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  701. .name = "Stereo Upmixing",
  702. .info = upmix_info,
  703. .get = upmix_get,
  704. .put = upmix_put,
  705. },
  706. {
  707. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  708. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, SWITCH),
  709. .info = snd_ctl_boolean_mono_info,
  710. .get = spdif_switch_get,
  711. .put = spdif_switch_put,
  712. },
  713. {
  714. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  715. .device = 1,
  716. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
  717. .info = spdif_info,
  718. .get = spdif_default_get,
  719. .put = spdif_default_put,
  720. },
  721. {
  722. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  723. .device = 1,
  724. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK),
  725. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  726. .info = spdif_info,
  727. .get = spdif_mask_get,
  728. },
  729. {
  730. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  731. .device = 1,
  732. .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
  733. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  734. SNDRV_CTL_ELEM_ACCESS_INACTIVE,
  735. .info = spdif_info,
  736. .get = spdif_pcm_get,
  737. .put = spdif_pcm_put,
  738. },
  739. };
  740. static const struct snd_kcontrol_new spdif_input_controls[] = {
  741. {
  742. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  743. .device = 1,
  744. .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, MASK),
  745. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  746. .info = spdif_info,
  747. .get = spdif_input_mask_get,
  748. },
  749. {
  750. .iface = SNDRV_CTL_ELEM_IFACE_PCM,
  751. .device = 1,
  752. .name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
  753. .access = SNDRV_CTL_ELEM_ACCESS_READ,
  754. .info = spdif_info,
  755. .get = spdif_input_default_get,
  756. },
  757. {
  758. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  759. .name = SNDRV_CTL_NAME_IEC958("Loopback ", NONE, SWITCH),
  760. .info = snd_ctl_boolean_mono_info,
  761. .get = spdif_bit_switch_get,
  762. .put = spdif_bit_switch_put,
  763. .private_value = OXYGEN_SPDIF_LOOPBACK,
  764. },
  765. {
  766. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  767. .name = SNDRV_CTL_NAME_IEC958("Validity Check ",CAPTURE,SWITCH),
  768. .info = snd_ctl_boolean_mono_info,
  769. .get = spdif_bit_switch_get,
  770. .put = spdif_bit_switch_put,
  771. .private_value = OXYGEN_SPDIF_SPDVALID,
  772. },
  773. };
  774. static const struct {
  775. unsigned int pcm_dev;
  776. struct snd_kcontrol_new controls[2];
  777. } monitor_controls[] = {
  778. {
  779. .pcm_dev = CAPTURE_0_FROM_I2S_1,
  780. .controls = {
  781. {
  782. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  783. .name = "Analog Input Monitor Playback Switch",
  784. .info = snd_ctl_boolean_mono_info,
  785. .get = monitor_get,
  786. .put = monitor_put,
  787. .private_value = OXYGEN_ADC_MONITOR_A,
  788. },
  789. {
  790. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  791. .name = "Analog Input Monitor Playback Volume",
  792. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  793. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  794. .info = monitor_volume_info,
  795. .get = monitor_get,
  796. .put = monitor_put,
  797. .private_value = OXYGEN_ADC_MONITOR_A_HALF_VOL
  798. | (1 << 8),
  799. .tlv = { .p = monitor_db_scale, },
  800. },
  801. },
  802. },
  803. {
  804. .pcm_dev = CAPTURE_0_FROM_I2S_2,
  805. .controls = {
  806. {
  807. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  808. .name = "Analog Input Monitor Playback Switch",
  809. .info = snd_ctl_boolean_mono_info,
  810. .get = monitor_get,
  811. .put = monitor_put,
  812. .private_value = OXYGEN_ADC_MONITOR_B,
  813. },
  814. {
  815. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  816. .name = "Analog Input Monitor Playback Volume",
  817. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  818. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  819. .info = monitor_volume_info,
  820. .get = monitor_get,
  821. .put = monitor_put,
  822. .private_value = OXYGEN_ADC_MONITOR_B_HALF_VOL
  823. | (1 << 8),
  824. .tlv = { .p = monitor_db_scale, },
  825. },
  826. },
  827. },
  828. {
  829. .pcm_dev = CAPTURE_2_FROM_I2S_2,
  830. .controls = {
  831. {
  832. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  833. .name = "Analog Input Monitor Playback Switch",
  834. .index = 1,
  835. .info = snd_ctl_boolean_mono_info,
  836. .get = monitor_get,
  837. .put = monitor_put,
  838. .private_value = OXYGEN_ADC_MONITOR_B,
  839. },
  840. {
  841. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  842. .name = "Analog Input Monitor Playback Volume",
  843. .index = 1,
  844. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  845. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  846. .info = monitor_volume_info,
  847. .get = monitor_get,
  848. .put = monitor_put,
  849. .private_value = OXYGEN_ADC_MONITOR_B_HALF_VOL
  850. | (1 << 8),
  851. .tlv = { .p = monitor_db_scale, },
  852. },
  853. },
  854. },
  855. {
  856. .pcm_dev = CAPTURE_1_FROM_SPDIF,
  857. .controls = {
  858. {
  859. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  860. .name = "Digital Input Monitor Playback Switch",
  861. .info = snd_ctl_boolean_mono_info,
  862. .get = monitor_get,
  863. .put = monitor_put,
  864. .private_value = OXYGEN_ADC_MONITOR_C,
  865. },
  866. {
  867. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  868. .name = "Digital Input Monitor Playback Volume",
  869. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  870. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  871. .info = monitor_volume_info,
  872. .get = monitor_get,
  873. .put = monitor_put,
  874. .private_value = OXYGEN_ADC_MONITOR_C_HALF_VOL
  875. | (1 << 8),
  876. .tlv = { .p = monitor_db_scale, },
  877. },
  878. },
  879. },
  880. };
  881. static const struct snd_kcontrol_new ac97_controls[] = {
  882. AC97_VOLUME("Mic Capture Volume", 0, AC97_MIC, 0),
  883. AC97_SWITCH("Mic Capture Switch", 0, AC97_MIC, 15, 1),
  884. AC97_SWITCH("Mic Boost (+20dB)", 0, AC97_MIC, 6, 0),
  885. {
  886. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  887. .name = "Mic Source Capture Enum",
  888. .info = mic_fmic_source_info,
  889. .get = mic_fmic_source_get,
  890. .put = mic_fmic_source_put,
  891. },
  892. AC97_SWITCH("Line Capture Switch", 0, AC97_LINE, 15, 1),
  893. AC97_VOLUME("CD Capture Volume", 0, AC97_CD, 1),
  894. AC97_SWITCH("CD Capture Switch", 0, AC97_CD, 15, 1),
  895. AC97_VOLUME("Aux Capture Volume", 0, AC97_AUX, 1),
  896. AC97_SWITCH("Aux Capture Switch", 0, AC97_AUX, 15, 1),
  897. };
  898. static const struct snd_kcontrol_new ac97_fp_controls[] = {
  899. AC97_VOLUME("Front Panel Playback Volume", 1, AC97_HEADPHONE, 1),
  900. AC97_SWITCH("Front Panel Playback Switch", 1, AC97_HEADPHONE, 15, 1),
  901. {
  902. .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
  903. .name = "Front Panel Capture Volume",
  904. .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
  905. SNDRV_CTL_ELEM_ACCESS_TLV_READ,
  906. .info = ac97_fp_rec_volume_info,
  907. .get = ac97_fp_rec_volume_get,
  908. .put = ac97_fp_rec_volume_put,
  909. .tlv = { .p = ac97_rec_db_scale, },
  910. },
  911. AC97_SWITCH("Front Panel Capture Switch", 1, AC97_REC_GAIN, 15, 1),
  912. };
  913. static void oxygen_any_ctl_free(struct snd_kcontrol *ctl)
  914. {
  915. struct oxygen *chip = ctl->private_data;
  916. unsigned int i;
  917. /* I'm too lazy to write a function for each control :-) */
  918. for (i = 0; i < ARRAY_SIZE(chip->controls); ++i)
  919. chip->controls[i] = NULL;
  920. }
  921. static int add_controls(struct oxygen *chip,
  922. const struct snd_kcontrol_new controls[],
  923. unsigned int count)
  924. {
  925. static const char *const known_ctl_names[CONTROL_COUNT] = {
  926. [CONTROL_SPDIF_PCM] =
  927. SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
  928. [CONTROL_SPDIF_INPUT_BITS] =
  929. SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
  930. [CONTROL_MIC_CAPTURE_SWITCH] = "Mic Capture Switch",
  931. [CONTROL_LINE_CAPTURE_SWITCH] = "Line Capture Switch",
  932. [CONTROL_CD_CAPTURE_SWITCH] = "CD Capture Switch",
  933. [CONTROL_AUX_CAPTURE_SWITCH] = "Aux Capture Switch",
  934. };
  935. unsigned int i, j;
  936. struct snd_kcontrol_new template;
  937. struct snd_kcontrol *ctl;
  938. int err;
  939. for (i = 0; i < count; ++i) {
  940. template = controls[i];
  941. if (chip->model.control_filter) {
  942. err = chip->model.control_filter(&template);
  943. if (err < 0)
  944. return err;
  945. if (err == 1)
  946. continue;
  947. }
  948. if (!strcmp(template.name, "Stereo Upmixing") &&
  949. chip->model.dac_channels_pcm == 2)
  950. continue;
  951. if (!strcmp(template.name, "Mic Source Capture Enum") &&
  952. !(chip->model.device_config & AC97_FMIC_SWITCH))
  953. continue;
  954. if (!strncmp(template.name, "CD Capture ", 11) &&
  955. !(chip->model.device_config & AC97_CD_INPUT))
  956. continue;
  957. if (!strcmp(template.name, "Master Playback Volume") &&
  958. chip->model.dac_tlv) {
  959. template.tlv.p = chip->model.dac_tlv;
  960. template.access |= SNDRV_CTL_ELEM_ACCESS_TLV_READ;
  961. }
  962. ctl = snd_ctl_new1(&template, chip);
  963. if (!ctl)
  964. return -ENOMEM;
  965. err = snd_ctl_add(chip->card, ctl);
  966. if (err < 0)
  967. return err;
  968. for (j = 0; j < CONTROL_COUNT; ++j)
  969. if (!strcmp(ctl->id.name, known_ctl_names[j])) {
  970. chip->controls[j] = ctl;
  971. ctl->private_free = oxygen_any_ctl_free;
  972. }
  973. }
  974. return 0;
  975. }
  976. int oxygen_mixer_init(struct oxygen *chip)
  977. {
  978. unsigned int i;
  979. int err;
  980. err = add_controls(chip, controls, ARRAY_SIZE(controls));
  981. if (err < 0)
  982. return err;
  983. if (chip->model.device_config & CAPTURE_1_FROM_SPDIF) {
  984. err = add_controls(chip, spdif_input_controls,
  985. ARRAY_SIZE(spdif_input_controls));
  986. if (err < 0)
  987. return err;
  988. }
  989. for (i = 0; i < ARRAY_SIZE(monitor_controls); ++i) {
  990. if (!(chip->model.device_config & monitor_controls[i].pcm_dev))
  991. continue;
  992. err = add_controls(chip, monitor_controls[i].controls,
  993. ARRAY_SIZE(monitor_controls[i].controls));
  994. if (err < 0)
  995. return err;
  996. }
  997. if (chip->has_ac97_0) {
  998. err = add_controls(chip, ac97_controls,
  999. ARRAY_SIZE(ac97_controls));
  1000. if (err < 0)
  1001. return err;
  1002. }
  1003. if (chip->has_ac97_1) {
  1004. err = add_controls(chip, ac97_fp_controls,
  1005. ARRAY_SIZE(ac97_fp_controls));
  1006. if (err < 0)
  1007. return err;
  1008. }
  1009. return chip->model.mixer_init ? chip->model.mixer_init(chip) : 0;
  1010. }