arp.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480
  1. /* linux/net/ipv4/arp.c
  2. *
  3. * Copyright (C) 1994 by Florian La Roche
  4. *
  5. * This module implements the Address Resolution Protocol ARP (RFC 826),
  6. * which is used to convert IP addresses (or in the future maybe other
  7. * high-level addresses) into a low-level hardware address (like an Ethernet
  8. * address).
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. *
  15. * Fixes:
  16. * Alan Cox : Removed the Ethernet assumptions in
  17. * Florian's code
  18. * Alan Cox : Fixed some small errors in the ARP
  19. * logic
  20. * Alan Cox : Allow >4K in /proc
  21. * Alan Cox : Make ARP add its own protocol entry
  22. * Ross Martin : Rewrote arp_rcv() and arp_get_info()
  23. * Stephen Henson : Add AX25 support to arp_get_info()
  24. * Alan Cox : Drop data when a device is downed.
  25. * Alan Cox : Use init_timer().
  26. * Alan Cox : Double lock fixes.
  27. * Martin Seine : Move the arphdr structure
  28. * to if_arp.h for compatibility.
  29. * with BSD based programs.
  30. * Andrew Tridgell : Added ARP netmask code and
  31. * re-arranged proxy handling.
  32. * Alan Cox : Changed to use notifiers.
  33. * Niibe Yutaka : Reply for this device or proxies only.
  34. * Alan Cox : Don't proxy across hardware types!
  35. * Jonathan Naylor : Added support for NET/ROM.
  36. * Mike Shaver : RFC1122 checks.
  37. * Jonathan Naylor : Only lookup the hardware address for
  38. * the correct hardware type.
  39. * Germano Caronni : Assorted subtle races.
  40. * Craig Schlenter : Don't modify permanent entry
  41. * during arp_rcv.
  42. * Russ Nelson : Tidied up a few bits.
  43. * Alexey Kuznetsov: Major changes to caching and behaviour,
  44. * eg intelligent arp probing and
  45. * generation
  46. * of host down events.
  47. * Alan Cox : Missing unlock in device events.
  48. * Eckes : ARP ioctl control errors.
  49. * Alexey Kuznetsov: Arp free fix.
  50. * Manuel Rodriguez: Gratuitous ARP.
  51. * Jonathan Layes : Added arpd support through kerneld
  52. * message queue (960314)
  53. * Mike Shaver : /proc/sys/net/ipv4/arp_* support
  54. * Mike McLagan : Routing by source
  55. * Stuart Cheshire : Metricom and grat arp fixes
  56. * *** FOR 2.1 clean this up ***
  57. * Lawrence V. Stefani: (08/12/96) Added FDDI support.
  58. * Alan Cox : Took the AP1000 nasty FDDI hack and
  59. * folded into the mainstream FDDI code.
  60. * Ack spit, Linus how did you allow that
  61. * one in...
  62. * Jes Sorensen : Make FDDI work again in 2.1.x and
  63. * clean up the APFDDI & gen. FDDI bits.
  64. * Alexey Kuznetsov: new arp state machine;
  65. * now it is in net/core/neighbour.c.
  66. * Krzysztof Halasa: Added Frame Relay ARP support.
  67. * Arnaldo C. Melo : convert /proc/net/arp to seq_file
  68. * Shmulik Hen: Split arp_send to arp_create and
  69. * arp_xmit so intermediate drivers like
  70. * bonding can change the skb before
  71. * sending (e.g. insert 8021q tag).
  72. * Harald Welte : convert to make use of jenkins hash
  73. * Jesper D. Brouer: Proxy ARP PVLAN RFC 3069 support.
  74. */
  75. #include <linux/module.h>
  76. #include <linux/types.h>
  77. #include <linux/string.h>
  78. #include <linux/kernel.h>
  79. #include <linux/capability.h>
  80. #include <linux/socket.h>
  81. #include <linux/sockios.h>
  82. #include <linux/errno.h>
  83. #include <linux/in.h>
  84. #include <linux/mm.h>
  85. #include <linux/inet.h>
  86. #include <linux/inetdevice.h>
  87. #include <linux/netdevice.h>
  88. #include <linux/etherdevice.h>
  89. #include <linux/fddidevice.h>
  90. #include <linux/if_arp.h>
  91. #include <linux/trdevice.h>
  92. #include <linux/skbuff.h>
  93. #include <linux/proc_fs.h>
  94. #include <linux/seq_file.h>
  95. #include <linux/stat.h>
  96. #include <linux/init.h>
  97. #include <linux/net.h>
  98. #include <linux/rcupdate.h>
  99. #include <linux/jhash.h>
  100. #include <linux/slab.h>
  101. #ifdef CONFIG_SYSCTL
  102. #include <linux/sysctl.h>
  103. #endif
  104. #include <net/net_namespace.h>
  105. #include <net/ip.h>
  106. #include <net/icmp.h>
  107. #include <net/route.h>
  108. #include <net/protocol.h>
  109. #include <net/tcp.h>
  110. #include <net/sock.h>
  111. #include <net/arp.h>
  112. #include <net/ax25.h>
  113. #include <net/netrom.h>
  114. #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
  115. #include <net/atmclip.h>
  116. struct neigh_table *clip_tbl_hook;
  117. EXPORT_SYMBOL(clip_tbl_hook);
  118. #endif
  119. #include <asm/system.h>
  120. #include <linux/uaccess.h>
  121. #include <linux/netfilter_arp.h>
  122. /*
  123. * Interface to generic neighbour cache.
  124. */
  125. static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 rnd);
  126. static int arp_constructor(struct neighbour *neigh);
  127. static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
  128. static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
  129. static void parp_redo(struct sk_buff *skb);
  130. static const struct neigh_ops arp_generic_ops = {
  131. .family = AF_INET,
  132. .solicit = arp_solicit,
  133. .error_report = arp_error_report,
  134. .output = neigh_resolve_output,
  135. .connected_output = neigh_connected_output,
  136. .hh_output = dev_queue_xmit,
  137. .queue_xmit = dev_queue_xmit,
  138. };
  139. static const struct neigh_ops arp_hh_ops = {
  140. .family = AF_INET,
  141. .solicit = arp_solicit,
  142. .error_report = arp_error_report,
  143. .output = neigh_resolve_output,
  144. .connected_output = neigh_resolve_output,
  145. .hh_output = dev_queue_xmit,
  146. .queue_xmit = dev_queue_xmit,
  147. };
  148. static const struct neigh_ops arp_direct_ops = {
  149. .family = AF_INET,
  150. .output = dev_queue_xmit,
  151. .connected_output = dev_queue_xmit,
  152. .hh_output = dev_queue_xmit,
  153. .queue_xmit = dev_queue_xmit,
  154. };
  155. static const struct neigh_ops arp_broken_ops = {
  156. .family = AF_INET,
  157. .solicit = arp_solicit,
  158. .error_report = arp_error_report,
  159. .output = neigh_compat_output,
  160. .connected_output = neigh_compat_output,
  161. .hh_output = dev_queue_xmit,
  162. .queue_xmit = dev_queue_xmit,
  163. };
  164. struct neigh_table arp_tbl = {
  165. .family = AF_INET,
  166. .entry_size = sizeof(struct neighbour) + 4,
  167. .key_len = 4,
  168. .hash = arp_hash,
  169. .constructor = arp_constructor,
  170. .proxy_redo = parp_redo,
  171. .id = "arp_cache",
  172. .parms = {
  173. .tbl = &arp_tbl,
  174. .base_reachable_time = 30 * HZ,
  175. .retrans_time = 1 * HZ,
  176. .gc_staletime = 60 * HZ,
  177. .reachable_time = 30 * HZ,
  178. .delay_probe_time = 5 * HZ,
  179. .queue_len = 3,
  180. .ucast_probes = 3,
  181. .mcast_probes = 3,
  182. .anycast_delay = 1 * HZ,
  183. .proxy_delay = (8 * HZ) / 10,
  184. .proxy_qlen = 64,
  185. .locktime = 1 * HZ,
  186. },
  187. .gc_interval = 30 * HZ,
  188. .gc_thresh1 = 128,
  189. .gc_thresh2 = 512,
  190. .gc_thresh3 = 1024,
  191. };
  192. EXPORT_SYMBOL(arp_tbl);
  193. int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
  194. {
  195. switch (dev->type) {
  196. case ARPHRD_ETHER:
  197. case ARPHRD_FDDI:
  198. case ARPHRD_IEEE802:
  199. ip_eth_mc_map(addr, haddr);
  200. return 0;
  201. case ARPHRD_IEEE802_TR:
  202. ip_tr_mc_map(addr, haddr);
  203. return 0;
  204. case ARPHRD_INFINIBAND:
  205. ip_ib_mc_map(addr, dev->broadcast, haddr);
  206. return 0;
  207. default:
  208. if (dir) {
  209. memcpy(haddr, dev->broadcast, dev->addr_len);
  210. return 0;
  211. }
  212. }
  213. return -EINVAL;
  214. }
  215. static u32 arp_hash(const void *pkey,
  216. const struct net_device *dev,
  217. __u32 hash_rnd)
  218. {
  219. return jhash_2words(*(u32 *)pkey, dev->ifindex, hash_rnd);
  220. }
  221. static int arp_constructor(struct neighbour *neigh)
  222. {
  223. __be32 addr = *(__be32 *)neigh->primary_key;
  224. struct net_device *dev = neigh->dev;
  225. struct in_device *in_dev;
  226. struct neigh_parms *parms;
  227. rcu_read_lock();
  228. in_dev = __in_dev_get_rcu(dev);
  229. if (in_dev == NULL) {
  230. rcu_read_unlock();
  231. return -EINVAL;
  232. }
  233. neigh->type = inet_addr_type(dev_net(dev), addr);
  234. parms = in_dev->arp_parms;
  235. __neigh_parms_put(neigh->parms);
  236. neigh->parms = neigh_parms_clone(parms);
  237. rcu_read_unlock();
  238. if (!dev->header_ops) {
  239. neigh->nud_state = NUD_NOARP;
  240. neigh->ops = &arp_direct_ops;
  241. neigh->output = neigh->ops->queue_xmit;
  242. } else {
  243. /* Good devices (checked by reading texts, but only Ethernet is
  244. tested)
  245. ARPHRD_ETHER: (ethernet, apfddi)
  246. ARPHRD_FDDI: (fddi)
  247. ARPHRD_IEEE802: (tr)
  248. ARPHRD_METRICOM: (strip)
  249. ARPHRD_ARCNET:
  250. etc. etc. etc.
  251. ARPHRD_IPDDP will also work, if author repairs it.
  252. I did not it, because this driver does not work even
  253. in old paradigm.
  254. */
  255. #if 1
  256. /* So... these "amateur" devices are hopeless.
  257. The only thing, that I can say now:
  258. It is very sad that we need to keep ugly obsolete
  259. code to make them happy.
  260. They should be moved to more reasonable state, now
  261. they use rebuild_header INSTEAD OF hard_start_xmit!!!
  262. Besides that, they are sort of out of date
  263. (a lot of redundant clones/copies, useless in 2.1),
  264. I wonder why people believe that they work.
  265. */
  266. switch (dev->type) {
  267. default:
  268. break;
  269. case ARPHRD_ROSE:
  270. #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
  271. case ARPHRD_AX25:
  272. #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
  273. case ARPHRD_NETROM:
  274. #endif
  275. neigh->ops = &arp_broken_ops;
  276. neigh->output = neigh->ops->output;
  277. return 0;
  278. #else
  279. break;
  280. #endif
  281. }
  282. #endif
  283. if (neigh->type == RTN_MULTICAST) {
  284. neigh->nud_state = NUD_NOARP;
  285. arp_mc_map(addr, neigh->ha, dev, 1);
  286. } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
  287. neigh->nud_state = NUD_NOARP;
  288. memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
  289. } else if (neigh->type == RTN_BROADCAST ||
  290. (dev->flags & IFF_POINTOPOINT)) {
  291. neigh->nud_state = NUD_NOARP;
  292. memcpy(neigh->ha, dev->broadcast, dev->addr_len);
  293. }
  294. if (dev->header_ops->cache)
  295. neigh->ops = &arp_hh_ops;
  296. else
  297. neigh->ops = &arp_generic_ops;
  298. if (neigh->nud_state & NUD_VALID)
  299. neigh->output = neigh->ops->connected_output;
  300. else
  301. neigh->output = neigh->ops->output;
  302. }
  303. return 0;
  304. }
  305. static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
  306. {
  307. dst_link_failure(skb);
  308. kfree_skb(skb);
  309. }
  310. static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
  311. {
  312. __be32 saddr = 0;
  313. u8 *dst_ha = NULL;
  314. struct net_device *dev = neigh->dev;
  315. __be32 target = *(__be32 *)neigh->primary_key;
  316. int probes = atomic_read(&neigh->probes);
  317. struct in_device *in_dev;
  318. rcu_read_lock();
  319. in_dev = __in_dev_get_rcu(dev);
  320. if (!in_dev) {
  321. rcu_read_unlock();
  322. return;
  323. }
  324. switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
  325. default:
  326. case 0: /* By default announce any local IP */
  327. if (skb && inet_addr_type(dev_net(dev),
  328. ip_hdr(skb)->saddr) == RTN_LOCAL)
  329. saddr = ip_hdr(skb)->saddr;
  330. break;
  331. case 1: /* Restrict announcements of saddr in same subnet */
  332. if (!skb)
  333. break;
  334. saddr = ip_hdr(skb)->saddr;
  335. if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
  336. /* saddr should be known to target */
  337. if (inet_addr_onlink(in_dev, target, saddr))
  338. break;
  339. }
  340. saddr = 0;
  341. break;
  342. case 2: /* Avoid secondary IPs, get a primary/preferred one */
  343. break;
  344. }
  345. rcu_read_unlock();
  346. if (!saddr)
  347. saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
  348. probes -= neigh->parms->ucast_probes;
  349. if (probes < 0) {
  350. if (!(neigh->nud_state & NUD_VALID))
  351. printk(KERN_DEBUG
  352. "trying to ucast probe in NUD_INVALID\n");
  353. dst_ha = neigh->ha;
  354. read_lock_bh(&neigh->lock);
  355. } else {
  356. probes -= neigh->parms->app_probes;
  357. if (probes < 0) {
  358. #ifdef CONFIG_ARPD
  359. neigh_app_ns(neigh);
  360. #endif
  361. return;
  362. }
  363. }
  364. arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
  365. dst_ha, dev->dev_addr, NULL);
  366. if (dst_ha)
  367. read_unlock_bh(&neigh->lock);
  368. }
  369. static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
  370. {
  371. int scope;
  372. switch (IN_DEV_ARP_IGNORE(in_dev)) {
  373. case 0: /* Reply, the tip is already validated */
  374. return 0;
  375. case 1: /* Reply only if tip is configured on the incoming interface */
  376. sip = 0;
  377. scope = RT_SCOPE_HOST;
  378. break;
  379. case 2: /*
  380. * Reply only if tip is configured on the incoming interface
  381. * and is in same subnet as sip
  382. */
  383. scope = RT_SCOPE_HOST;
  384. break;
  385. case 3: /* Do not reply for scope host addresses */
  386. sip = 0;
  387. scope = RT_SCOPE_LINK;
  388. break;
  389. case 4: /* Reserved */
  390. case 5:
  391. case 6:
  392. case 7:
  393. return 0;
  394. case 8: /* Do not reply */
  395. return 1;
  396. default:
  397. return 0;
  398. }
  399. return !inet_confirm_addr(in_dev, sip, tip, scope);
  400. }
  401. static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
  402. {
  403. struct rtable *rt;
  404. int flag = 0;
  405. /*unsigned long now; */
  406. struct net *net = dev_net(dev);
  407. rt = ip_route_output(net, sip, tip, 0, 0);
  408. if (IS_ERR(rt))
  409. return 1;
  410. if (rt->dst.dev != dev) {
  411. NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
  412. flag = 1;
  413. }
  414. ip_rt_put(rt);
  415. return flag;
  416. }
  417. /* OBSOLETE FUNCTIONS */
  418. /*
  419. * Find an arp mapping in the cache. If not found, post a request.
  420. *
  421. * It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
  422. * even if it exists. It is supposed that skb->dev was mangled
  423. * by a virtual device (eql, shaper). Nobody but broken devices
  424. * is allowed to use this function, it is scheduled to be removed. --ANK
  425. */
  426. static int arp_set_predefined(int addr_hint, unsigned char *haddr,
  427. __be32 paddr, struct net_device *dev)
  428. {
  429. switch (addr_hint) {
  430. case RTN_LOCAL:
  431. printk(KERN_DEBUG "ARP: arp called for own IP address\n");
  432. memcpy(haddr, dev->dev_addr, dev->addr_len);
  433. return 1;
  434. case RTN_MULTICAST:
  435. arp_mc_map(paddr, haddr, dev, 1);
  436. return 1;
  437. case RTN_BROADCAST:
  438. memcpy(haddr, dev->broadcast, dev->addr_len);
  439. return 1;
  440. }
  441. return 0;
  442. }
  443. int arp_find(unsigned char *haddr, struct sk_buff *skb)
  444. {
  445. struct net_device *dev = skb->dev;
  446. __be32 paddr;
  447. struct neighbour *n;
  448. if (!skb_dst(skb)) {
  449. printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
  450. kfree_skb(skb);
  451. return 1;
  452. }
  453. paddr = skb_rtable(skb)->rt_gateway;
  454. if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
  455. paddr, dev))
  456. return 0;
  457. n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
  458. if (n) {
  459. n->used = jiffies;
  460. if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
  461. neigh_ha_snapshot(haddr, n, dev);
  462. neigh_release(n);
  463. return 0;
  464. }
  465. neigh_release(n);
  466. } else
  467. kfree_skb(skb);
  468. return 1;
  469. }
  470. EXPORT_SYMBOL(arp_find);
  471. /* END OF OBSOLETE FUNCTIONS */
  472. int arp_bind_neighbour(struct dst_entry *dst)
  473. {
  474. struct net_device *dev = dst->dev;
  475. struct neighbour *n = dst->neighbour;
  476. if (dev == NULL)
  477. return -EINVAL;
  478. if (n == NULL) {
  479. __be32 nexthop = ((struct rtable *)dst)->rt_gateway;
  480. if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
  481. nexthop = 0;
  482. n = __neigh_lookup_errno(
  483. #if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
  484. dev->type == ARPHRD_ATM ?
  485. clip_tbl_hook :
  486. #endif
  487. &arp_tbl, &nexthop, dev);
  488. if (IS_ERR(n))
  489. return PTR_ERR(n);
  490. dst->neighbour = n;
  491. }
  492. return 0;
  493. }
  494. /*
  495. * Check if we can use proxy ARP for this path
  496. */
  497. static inline int arp_fwd_proxy(struct in_device *in_dev,
  498. struct net_device *dev, struct rtable *rt)
  499. {
  500. struct in_device *out_dev;
  501. int imi, omi = -1;
  502. if (rt->dst.dev == dev)
  503. return 0;
  504. if (!IN_DEV_PROXY_ARP(in_dev))
  505. return 0;
  506. imi = IN_DEV_MEDIUM_ID(in_dev);
  507. if (imi == 0)
  508. return 1;
  509. if (imi == -1)
  510. return 0;
  511. /* place to check for proxy_arp for routes */
  512. out_dev = __in_dev_get_rcu(rt->dst.dev);
  513. if (out_dev)
  514. omi = IN_DEV_MEDIUM_ID(out_dev);
  515. return omi != imi && omi != -1;
  516. }
  517. /*
  518. * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
  519. *
  520. * RFC3069 supports proxy arp replies back to the same interface. This
  521. * is done to support (ethernet) switch features, like RFC 3069, where
  522. * the individual ports are not allowed to communicate with each
  523. * other, BUT they are allowed to talk to the upstream router. As
  524. * described in RFC 3069, it is possible to allow these hosts to
  525. * communicate through the upstream router, by proxy_arp'ing.
  526. *
  527. * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
  528. *
  529. * This technology is known by different names:
  530. * In RFC 3069 it is called VLAN Aggregation.
  531. * Cisco and Allied Telesyn call it Private VLAN.
  532. * Hewlett-Packard call it Source-Port filtering or port-isolation.
  533. * Ericsson call it MAC-Forced Forwarding (RFC Draft).
  534. *
  535. */
  536. static inline int arp_fwd_pvlan(struct in_device *in_dev,
  537. struct net_device *dev, struct rtable *rt,
  538. __be32 sip, __be32 tip)
  539. {
  540. /* Private VLAN is only concerned about the same ethernet segment */
  541. if (rt->dst.dev != dev)
  542. return 0;
  543. /* Don't reply on self probes (often done by windowz boxes)*/
  544. if (sip == tip)
  545. return 0;
  546. if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
  547. return 1;
  548. else
  549. return 0;
  550. }
  551. /*
  552. * Interface to link layer: send routine and receive handler.
  553. */
  554. /*
  555. * Create an arp packet. If (dest_hw == NULL), we create a broadcast
  556. * message.
  557. */
  558. struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
  559. struct net_device *dev, __be32 src_ip,
  560. const unsigned char *dest_hw,
  561. const unsigned char *src_hw,
  562. const unsigned char *target_hw)
  563. {
  564. struct sk_buff *skb;
  565. struct arphdr *arp;
  566. unsigned char *arp_ptr;
  567. /*
  568. * Allocate a buffer
  569. */
  570. skb = alloc_skb(arp_hdr_len(dev) + LL_ALLOCATED_SPACE(dev), GFP_ATOMIC);
  571. if (skb == NULL)
  572. return NULL;
  573. skb_reserve(skb, LL_RESERVED_SPACE(dev));
  574. skb_reset_network_header(skb);
  575. arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
  576. skb->dev = dev;
  577. skb->protocol = htons(ETH_P_ARP);
  578. if (src_hw == NULL)
  579. src_hw = dev->dev_addr;
  580. if (dest_hw == NULL)
  581. dest_hw = dev->broadcast;
  582. /*
  583. * Fill the device header for the ARP frame
  584. */
  585. if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
  586. goto out;
  587. /*
  588. * Fill out the arp protocol part.
  589. *
  590. * The arp hardware type should match the device type, except for FDDI,
  591. * which (according to RFC 1390) should always equal 1 (Ethernet).
  592. */
  593. /*
  594. * Exceptions everywhere. AX.25 uses the AX.25 PID value not the
  595. * DIX code for the protocol. Make these device structure fields.
  596. */
  597. switch (dev->type) {
  598. default:
  599. arp->ar_hrd = htons(dev->type);
  600. arp->ar_pro = htons(ETH_P_IP);
  601. break;
  602. #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
  603. case ARPHRD_AX25:
  604. arp->ar_hrd = htons(ARPHRD_AX25);
  605. arp->ar_pro = htons(AX25_P_IP);
  606. break;
  607. #if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
  608. case ARPHRD_NETROM:
  609. arp->ar_hrd = htons(ARPHRD_NETROM);
  610. arp->ar_pro = htons(AX25_P_IP);
  611. break;
  612. #endif
  613. #endif
  614. #if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
  615. case ARPHRD_FDDI:
  616. arp->ar_hrd = htons(ARPHRD_ETHER);
  617. arp->ar_pro = htons(ETH_P_IP);
  618. break;
  619. #endif
  620. #if defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
  621. case ARPHRD_IEEE802_TR:
  622. arp->ar_hrd = htons(ARPHRD_IEEE802);
  623. arp->ar_pro = htons(ETH_P_IP);
  624. break;
  625. #endif
  626. }
  627. arp->ar_hln = dev->addr_len;
  628. arp->ar_pln = 4;
  629. arp->ar_op = htons(type);
  630. arp_ptr = (unsigned char *)(arp + 1);
  631. memcpy(arp_ptr, src_hw, dev->addr_len);
  632. arp_ptr += dev->addr_len;
  633. memcpy(arp_ptr, &src_ip, 4);
  634. arp_ptr += 4;
  635. if (target_hw != NULL)
  636. memcpy(arp_ptr, target_hw, dev->addr_len);
  637. else
  638. memset(arp_ptr, 0, dev->addr_len);
  639. arp_ptr += dev->addr_len;
  640. memcpy(arp_ptr, &dest_ip, 4);
  641. return skb;
  642. out:
  643. kfree_skb(skb);
  644. return NULL;
  645. }
  646. EXPORT_SYMBOL(arp_create);
  647. /*
  648. * Send an arp packet.
  649. */
  650. void arp_xmit(struct sk_buff *skb)
  651. {
  652. /* Send it off, maybe filter it using firewalling first. */
  653. NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
  654. }
  655. EXPORT_SYMBOL(arp_xmit);
  656. /*
  657. * Create and send an arp packet.
  658. */
  659. void arp_send(int type, int ptype, __be32 dest_ip,
  660. struct net_device *dev, __be32 src_ip,
  661. const unsigned char *dest_hw, const unsigned char *src_hw,
  662. const unsigned char *target_hw)
  663. {
  664. struct sk_buff *skb;
  665. /*
  666. * No arp on this interface.
  667. */
  668. if (dev->flags&IFF_NOARP)
  669. return;
  670. skb = arp_create(type, ptype, dest_ip, dev, src_ip,
  671. dest_hw, src_hw, target_hw);
  672. if (skb == NULL)
  673. return;
  674. arp_xmit(skb);
  675. }
  676. EXPORT_SYMBOL(arp_send);
  677. /*
  678. * Process an arp request.
  679. */
  680. static int arp_process(struct sk_buff *skb)
  681. {
  682. struct net_device *dev = skb->dev;
  683. struct in_device *in_dev = __in_dev_get_rcu(dev);
  684. struct arphdr *arp;
  685. unsigned char *arp_ptr;
  686. struct rtable *rt;
  687. unsigned char *sha;
  688. __be32 sip, tip;
  689. u16 dev_type = dev->type;
  690. int addr_type;
  691. struct neighbour *n;
  692. struct net *net = dev_net(dev);
  693. /* arp_rcv below verifies the ARP header and verifies the device
  694. * is ARP'able.
  695. */
  696. if (in_dev == NULL)
  697. goto out;
  698. arp = arp_hdr(skb);
  699. switch (dev_type) {
  700. default:
  701. if (arp->ar_pro != htons(ETH_P_IP) ||
  702. htons(dev_type) != arp->ar_hrd)
  703. goto out;
  704. break;
  705. case ARPHRD_ETHER:
  706. case ARPHRD_IEEE802_TR:
  707. case ARPHRD_FDDI:
  708. case ARPHRD_IEEE802:
  709. /*
  710. * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
  711. * devices, according to RFC 2625) devices will accept ARP
  712. * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
  713. * This is the case also of FDDI, where the RFC 1390 says that
  714. * FDDI devices should accept ARP hardware of (1) Ethernet,
  715. * however, to be more robust, we'll accept both 1 (Ethernet)
  716. * or 6 (IEEE 802.2)
  717. */
  718. if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
  719. arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
  720. arp->ar_pro != htons(ETH_P_IP))
  721. goto out;
  722. break;
  723. case ARPHRD_AX25:
  724. if (arp->ar_pro != htons(AX25_P_IP) ||
  725. arp->ar_hrd != htons(ARPHRD_AX25))
  726. goto out;
  727. break;
  728. case ARPHRD_NETROM:
  729. if (arp->ar_pro != htons(AX25_P_IP) ||
  730. arp->ar_hrd != htons(ARPHRD_NETROM))
  731. goto out;
  732. break;
  733. }
  734. /* Understand only these message types */
  735. if (arp->ar_op != htons(ARPOP_REPLY) &&
  736. arp->ar_op != htons(ARPOP_REQUEST))
  737. goto out;
  738. /*
  739. * Extract fields
  740. */
  741. arp_ptr = (unsigned char *)(arp + 1);
  742. sha = arp_ptr;
  743. arp_ptr += dev->addr_len;
  744. memcpy(&sip, arp_ptr, 4);
  745. arp_ptr += 4;
  746. arp_ptr += dev->addr_len;
  747. memcpy(&tip, arp_ptr, 4);
  748. /*
  749. * Check for bad requests for 127.x.x.x and requests for multicast
  750. * addresses. If this is one such, delete it.
  751. */
  752. if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
  753. goto out;
  754. /*
  755. * Special case: We must set Frame Relay source Q.922 address
  756. */
  757. if (dev_type == ARPHRD_DLCI)
  758. sha = dev->broadcast;
  759. /*
  760. * Process entry. The idea here is we want to send a reply if it is a
  761. * request for us or if it is a request for someone else that we hold
  762. * a proxy for. We want to add an entry to our cache if it is a reply
  763. * to us or if it is a request for our address.
  764. * (The assumption for this last is that if someone is requesting our
  765. * address, they are probably intending to talk to us, so it saves time
  766. * if we cache their address. Their address is also probably not in
  767. * our cache, since ours is not in their cache.)
  768. *
  769. * Putting this another way, we only care about replies if they are to
  770. * us, in which case we add them to the cache. For requests, we care
  771. * about those for us and those for our proxies. We reply to both,
  772. * and in the case of requests for us we add the requester to the arp
  773. * cache.
  774. */
  775. /* Special case: IPv4 duplicate address detection packet (RFC2131) */
  776. if (sip == 0) {
  777. if (arp->ar_op == htons(ARPOP_REQUEST) &&
  778. inet_addr_type(net, tip) == RTN_LOCAL &&
  779. !arp_ignore(in_dev, sip, tip))
  780. arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
  781. dev->dev_addr, sha);
  782. goto out;
  783. }
  784. if (arp->ar_op == htons(ARPOP_REQUEST) &&
  785. ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
  786. rt = skb_rtable(skb);
  787. addr_type = rt->rt_type;
  788. if (addr_type == RTN_LOCAL) {
  789. int dont_send;
  790. dont_send = arp_ignore(in_dev, sip, tip);
  791. if (!dont_send && IN_DEV_ARPFILTER(in_dev))
  792. dont_send = arp_filter(sip, tip, dev);
  793. if (!dont_send) {
  794. n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
  795. if (n) {
  796. arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
  797. dev, tip, sha, dev->dev_addr,
  798. sha);
  799. neigh_release(n);
  800. }
  801. }
  802. goto out;
  803. } else if (IN_DEV_FORWARD(in_dev)) {
  804. if (addr_type == RTN_UNICAST &&
  805. (arp_fwd_proxy(in_dev, dev, rt) ||
  806. arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
  807. pneigh_lookup(&arp_tbl, net, &tip, dev, 0))) {
  808. n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
  809. if (n)
  810. neigh_release(n);
  811. if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
  812. skb->pkt_type == PACKET_HOST ||
  813. in_dev->arp_parms->proxy_delay == 0) {
  814. arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
  815. dev, tip, sha, dev->dev_addr,
  816. sha);
  817. } else {
  818. pneigh_enqueue(&arp_tbl,
  819. in_dev->arp_parms, skb);
  820. return 0;
  821. }
  822. goto out;
  823. }
  824. }
  825. }
  826. /* Update our ARP tables */
  827. n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
  828. if (IPV4_DEVCONF_ALL(dev_net(dev), ARP_ACCEPT)) {
  829. /* Unsolicited ARP is not accepted by default.
  830. It is possible, that this option should be enabled for some
  831. devices (strip is candidate)
  832. */
  833. if (n == NULL &&
  834. (arp->ar_op == htons(ARPOP_REPLY) ||
  835. (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
  836. inet_addr_type(net, sip) == RTN_UNICAST)
  837. n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
  838. }
  839. if (n) {
  840. int state = NUD_REACHABLE;
  841. int override;
  842. /* If several different ARP replies follows back-to-back,
  843. use the FIRST one. It is possible, if several proxy
  844. agents are active. Taking the first reply prevents
  845. arp trashing and chooses the fastest router.
  846. */
  847. override = time_after(jiffies, n->updated + n->parms->locktime);
  848. /* Broadcast replies and request packets
  849. do not assert neighbour reachability.
  850. */
  851. if (arp->ar_op != htons(ARPOP_REPLY) ||
  852. skb->pkt_type != PACKET_HOST)
  853. state = NUD_STALE;
  854. neigh_update(n, sha, state,
  855. override ? NEIGH_UPDATE_F_OVERRIDE : 0);
  856. neigh_release(n);
  857. }
  858. out:
  859. consume_skb(skb);
  860. return 0;
  861. }
  862. static void parp_redo(struct sk_buff *skb)
  863. {
  864. arp_process(skb);
  865. }
  866. /*
  867. * Receive an arp request from the device layer.
  868. */
  869. static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
  870. struct packet_type *pt, struct net_device *orig_dev)
  871. {
  872. struct arphdr *arp;
  873. /* ARP header, plus 2 device addresses, plus 2 IP addresses. */
  874. if (!pskb_may_pull(skb, arp_hdr_len(dev)))
  875. goto freeskb;
  876. arp = arp_hdr(skb);
  877. if (arp->ar_hln != dev->addr_len ||
  878. dev->flags & IFF_NOARP ||
  879. skb->pkt_type == PACKET_OTHERHOST ||
  880. skb->pkt_type == PACKET_LOOPBACK ||
  881. arp->ar_pln != 4)
  882. goto freeskb;
  883. skb = skb_share_check(skb, GFP_ATOMIC);
  884. if (skb == NULL)
  885. goto out_of_mem;
  886. memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
  887. return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
  888. freeskb:
  889. kfree_skb(skb);
  890. out_of_mem:
  891. return 0;
  892. }
  893. /*
  894. * User level interface (ioctl)
  895. */
  896. /*
  897. * Set (create) an ARP cache entry.
  898. */
  899. static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
  900. {
  901. if (dev == NULL) {
  902. IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
  903. return 0;
  904. }
  905. if (__in_dev_get_rtnl(dev)) {
  906. IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
  907. return 0;
  908. }
  909. return -ENXIO;
  910. }
  911. static int arp_req_set_public(struct net *net, struct arpreq *r,
  912. struct net_device *dev)
  913. {
  914. __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
  915. __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
  916. if (mask && mask != htonl(0xFFFFFFFF))
  917. return -EINVAL;
  918. if (!dev && (r->arp_flags & ATF_COM)) {
  919. dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
  920. r->arp_ha.sa_data);
  921. if (!dev)
  922. return -ENODEV;
  923. }
  924. if (mask) {
  925. if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
  926. return -ENOBUFS;
  927. return 0;
  928. }
  929. return arp_req_set_proxy(net, dev, 1);
  930. }
  931. static int arp_req_set(struct net *net, struct arpreq *r,
  932. struct net_device *dev)
  933. {
  934. __be32 ip;
  935. struct neighbour *neigh;
  936. int err;
  937. if (r->arp_flags & ATF_PUBL)
  938. return arp_req_set_public(net, r, dev);
  939. ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
  940. if (r->arp_flags & ATF_PERM)
  941. r->arp_flags |= ATF_COM;
  942. if (dev == NULL) {
  943. struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
  944. if (IS_ERR(rt))
  945. return PTR_ERR(rt);
  946. dev = rt->dst.dev;
  947. ip_rt_put(rt);
  948. if (!dev)
  949. return -EINVAL;
  950. }
  951. switch (dev->type) {
  952. #if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
  953. case ARPHRD_FDDI:
  954. /*
  955. * According to RFC 1390, FDDI devices should accept ARP
  956. * hardware types of 1 (Ethernet). However, to be more
  957. * robust, we'll accept hardware types of either 1 (Ethernet)
  958. * or 6 (IEEE 802.2).
  959. */
  960. if (r->arp_ha.sa_family != ARPHRD_FDDI &&
  961. r->arp_ha.sa_family != ARPHRD_ETHER &&
  962. r->arp_ha.sa_family != ARPHRD_IEEE802)
  963. return -EINVAL;
  964. break;
  965. #endif
  966. default:
  967. if (r->arp_ha.sa_family != dev->type)
  968. return -EINVAL;
  969. break;
  970. }
  971. neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
  972. err = PTR_ERR(neigh);
  973. if (!IS_ERR(neigh)) {
  974. unsigned state = NUD_STALE;
  975. if (r->arp_flags & ATF_PERM)
  976. state = NUD_PERMANENT;
  977. err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
  978. r->arp_ha.sa_data : NULL, state,
  979. NEIGH_UPDATE_F_OVERRIDE |
  980. NEIGH_UPDATE_F_ADMIN);
  981. neigh_release(neigh);
  982. }
  983. return err;
  984. }
  985. static unsigned arp_state_to_flags(struct neighbour *neigh)
  986. {
  987. if (neigh->nud_state&NUD_PERMANENT)
  988. return ATF_PERM | ATF_COM;
  989. else if (neigh->nud_state&NUD_VALID)
  990. return ATF_COM;
  991. else
  992. return 0;
  993. }
  994. /*
  995. * Get an ARP cache entry.
  996. */
  997. static int arp_req_get(struct arpreq *r, struct net_device *dev)
  998. {
  999. __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
  1000. struct neighbour *neigh;
  1001. int err = -ENXIO;
  1002. neigh = neigh_lookup(&arp_tbl, &ip, dev);
  1003. if (neigh) {
  1004. read_lock_bh(&neigh->lock);
  1005. memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
  1006. r->arp_flags = arp_state_to_flags(neigh);
  1007. read_unlock_bh(&neigh->lock);
  1008. r->arp_ha.sa_family = dev->type;
  1009. strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
  1010. neigh_release(neigh);
  1011. err = 0;
  1012. }
  1013. return err;
  1014. }
  1015. int arp_invalidate(struct net_device *dev, __be32 ip)
  1016. {
  1017. struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
  1018. int err = -ENXIO;
  1019. if (neigh) {
  1020. if (neigh->nud_state & ~NUD_NOARP)
  1021. err = neigh_update(neigh, NULL, NUD_FAILED,
  1022. NEIGH_UPDATE_F_OVERRIDE|
  1023. NEIGH_UPDATE_F_ADMIN);
  1024. neigh_release(neigh);
  1025. }
  1026. return err;
  1027. }
  1028. EXPORT_SYMBOL(arp_invalidate);
  1029. static int arp_req_delete_public(struct net *net, struct arpreq *r,
  1030. struct net_device *dev)
  1031. {
  1032. __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
  1033. __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
  1034. if (mask == htonl(0xFFFFFFFF))
  1035. return pneigh_delete(&arp_tbl, net, &ip, dev);
  1036. if (mask)
  1037. return -EINVAL;
  1038. return arp_req_set_proxy(net, dev, 0);
  1039. }
  1040. static int arp_req_delete(struct net *net, struct arpreq *r,
  1041. struct net_device *dev)
  1042. {
  1043. __be32 ip;
  1044. if (r->arp_flags & ATF_PUBL)
  1045. return arp_req_delete_public(net, r, dev);
  1046. ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
  1047. if (dev == NULL) {
  1048. struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
  1049. if (IS_ERR(rt))
  1050. return PTR_ERR(rt);
  1051. dev = rt->dst.dev;
  1052. ip_rt_put(rt);
  1053. if (!dev)
  1054. return -EINVAL;
  1055. }
  1056. return arp_invalidate(dev, ip);
  1057. }
  1058. /*
  1059. * Handle an ARP layer I/O control request.
  1060. */
  1061. int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
  1062. {
  1063. int err;
  1064. struct arpreq r;
  1065. struct net_device *dev = NULL;
  1066. switch (cmd) {
  1067. case SIOCDARP:
  1068. case SIOCSARP:
  1069. if (!capable(CAP_NET_ADMIN))
  1070. return -EPERM;
  1071. case SIOCGARP:
  1072. err = copy_from_user(&r, arg, sizeof(struct arpreq));
  1073. if (err)
  1074. return -EFAULT;
  1075. break;
  1076. default:
  1077. return -EINVAL;
  1078. }
  1079. if (r.arp_pa.sa_family != AF_INET)
  1080. return -EPFNOSUPPORT;
  1081. if (!(r.arp_flags & ATF_PUBL) &&
  1082. (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
  1083. return -EINVAL;
  1084. if (!(r.arp_flags & ATF_NETMASK))
  1085. ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
  1086. htonl(0xFFFFFFFFUL);
  1087. rtnl_lock();
  1088. if (r.arp_dev[0]) {
  1089. err = -ENODEV;
  1090. dev = __dev_get_by_name(net, r.arp_dev);
  1091. if (dev == NULL)
  1092. goto out;
  1093. /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
  1094. if (!r.arp_ha.sa_family)
  1095. r.arp_ha.sa_family = dev->type;
  1096. err = -EINVAL;
  1097. if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
  1098. goto out;
  1099. } else if (cmd == SIOCGARP) {
  1100. err = -ENODEV;
  1101. goto out;
  1102. }
  1103. switch (cmd) {
  1104. case SIOCDARP:
  1105. err = arp_req_delete(net, &r, dev);
  1106. break;
  1107. case SIOCSARP:
  1108. err = arp_req_set(net, &r, dev);
  1109. break;
  1110. case SIOCGARP:
  1111. err = arp_req_get(&r, dev);
  1112. break;
  1113. }
  1114. out:
  1115. rtnl_unlock();
  1116. if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
  1117. err = -EFAULT;
  1118. return err;
  1119. }
  1120. static int arp_netdev_event(struct notifier_block *this, unsigned long event,
  1121. void *ptr)
  1122. {
  1123. struct net_device *dev = ptr;
  1124. switch (event) {
  1125. case NETDEV_CHANGEADDR:
  1126. neigh_changeaddr(&arp_tbl, dev);
  1127. rt_cache_flush(dev_net(dev), 0);
  1128. break;
  1129. default:
  1130. break;
  1131. }
  1132. return NOTIFY_DONE;
  1133. }
  1134. static struct notifier_block arp_netdev_notifier = {
  1135. .notifier_call = arp_netdev_event,
  1136. };
  1137. /* Note, that it is not on notifier chain.
  1138. It is necessary, that this routine was called after route cache will be
  1139. flushed.
  1140. */
  1141. void arp_ifdown(struct net_device *dev)
  1142. {
  1143. neigh_ifdown(&arp_tbl, dev);
  1144. }
  1145. /*
  1146. * Called once on startup.
  1147. */
  1148. static struct packet_type arp_packet_type __read_mostly = {
  1149. .type = cpu_to_be16(ETH_P_ARP),
  1150. .func = arp_rcv,
  1151. };
  1152. static int arp_proc_init(void);
  1153. void __init arp_init(void)
  1154. {
  1155. neigh_table_init(&arp_tbl);
  1156. dev_add_pack(&arp_packet_type);
  1157. arp_proc_init();
  1158. #ifdef CONFIG_SYSCTL
  1159. neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
  1160. #endif
  1161. register_netdevice_notifier(&arp_netdev_notifier);
  1162. }
  1163. #ifdef CONFIG_PROC_FS
  1164. #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
  1165. /* ------------------------------------------------------------------------ */
  1166. /*
  1167. * ax25 -> ASCII conversion
  1168. */
  1169. static char *ax2asc2(ax25_address *a, char *buf)
  1170. {
  1171. char c, *s;
  1172. int n;
  1173. for (n = 0, s = buf; n < 6; n++) {
  1174. c = (a->ax25_call[n] >> 1) & 0x7F;
  1175. if (c != ' ')
  1176. *s++ = c;
  1177. }
  1178. *s++ = '-';
  1179. n = (a->ax25_call[6] >> 1) & 0x0F;
  1180. if (n > 9) {
  1181. *s++ = '1';
  1182. n -= 10;
  1183. }
  1184. *s++ = n + '0';
  1185. *s++ = '\0';
  1186. if (*buf == '\0' || *buf == '-')
  1187. return "*";
  1188. return buf;
  1189. }
  1190. #endif /* CONFIG_AX25 */
  1191. #define HBUFFERLEN 30
  1192. static void arp_format_neigh_entry(struct seq_file *seq,
  1193. struct neighbour *n)
  1194. {
  1195. char hbuffer[HBUFFERLEN];
  1196. int k, j;
  1197. char tbuf[16];
  1198. struct net_device *dev = n->dev;
  1199. int hatype = dev->type;
  1200. read_lock(&n->lock);
  1201. /* Convert hardware address to XX:XX:XX:XX ... form. */
  1202. #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
  1203. if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
  1204. ax2asc2((ax25_address *)n->ha, hbuffer);
  1205. else {
  1206. #endif
  1207. for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
  1208. hbuffer[k++] = hex_asc_hi(n->ha[j]);
  1209. hbuffer[k++] = hex_asc_lo(n->ha[j]);
  1210. hbuffer[k++] = ':';
  1211. }
  1212. if (k != 0)
  1213. --k;
  1214. hbuffer[k] = 0;
  1215. #if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
  1216. }
  1217. #endif
  1218. sprintf(tbuf, "%pI4", n->primary_key);
  1219. seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
  1220. tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
  1221. read_unlock(&n->lock);
  1222. }
  1223. static void arp_format_pneigh_entry(struct seq_file *seq,
  1224. struct pneigh_entry *n)
  1225. {
  1226. struct net_device *dev = n->dev;
  1227. int hatype = dev ? dev->type : 0;
  1228. char tbuf[16];
  1229. sprintf(tbuf, "%pI4", n->key);
  1230. seq_printf(seq, "%-16s 0x%-10x0x%-10x%s * %s\n",
  1231. tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
  1232. dev ? dev->name : "*");
  1233. }
  1234. static int arp_seq_show(struct seq_file *seq, void *v)
  1235. {
  1236. if (v == SEQ_START_TOKEN) {
  1237. seq_puts(seq, "IP address HW type Flags "
  1238. "HW address Mask Device\n");
  1239. } else {
  1240. struct neigh_seq_state *state = seq->private;
  1241. if (state->flags & NEIGH_SEQ_IS_PNEIGH)
  1242. arp_format_pneigh_entry(seq, v);
  1243. else
  1244. arp_format_neigh_entry(seq, v);
  1245. }
  1246. return 0;
  1247. }
  1248. static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
  1249. {
  1250. /* Don't want to confuse "arp -a" w/ magic entries,
  1251. * so we tell the generic iterator to skip NUD_NOARP.
  1252. */
  1253. return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
  1254. }
  1255. /* ------------------------------------------------------------------------ */
  1256. static const struct seq_operations arp_seq_ops = {
  1257. .start = arp_seq_start,
  1258. .next = neigh_seq_next,
  1259. .stop = neigh_seq_stop,
  1260. .show = arp_seq_show,
  1261. };
  1262. static int arp_seq_open(struct inode *inode, struct file *file)
  1263. {
  1264. return seq_open_net(inode, file, &arp_seq_ops,
  1265. sizeof(struct neigh_seq_state));
  1266. }
  1267. static const struct file_operations arp_seq_fops = {
  1268. .owner = THIS_MODULE,
  1269. .open = arp_seq_open,
  1270. .read = seq_read,
  1271. .llseek = seq_lseek,
  1272. .release = seq_release_net,
  1273. };
  1274. static int __net_init arp_net_init(struct net *net)
  1275. {
  1276. if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
  1277. return -ENOMEM;
  1278. return 0;
  1279. }
  1280. static void __net_exit arp_net_exit(struct net *net)
  1281. {
  1282. proc_net_remove(net, "arp");
  1283. }
  1284. static struct pernet_operations arp_net_ops = {
  1285. .init = arp_net_init,
  1286. .exit = arp_net_exit,
  1287. };
  1288. static int __init arp_proc_init(void)
  1289. {
  1290. return register_pernet_subsys(&arp_net_ops);
  1291. }
  1292. #else /* CONFIG_PROC_FS */
  1293. static int __init arp_proc_init(void)
  1294. {
  1295. return 0;
  1296. }
  1297. #endif /* CONFIG_PROC_FS */